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Abstract: The phenomenon of base-rate neglect has elicited much debate. One arena of debate concerns how people make judgments
under conditions of uncertainty. Another more controversial arena concerns human rationality. In this target article, we attempt to
unpack the perspectives in the literature on both kinds of issues and evaluate their ability to explain existing data and their
conceptual coherence. From this evaluation we conclude that the best account of the data should be framed in terms of a dual-
process model of judgment, which attributes base-rate neglect to associative judgment strategies that fail to adequately represent
the set structure of the problem. Base-rate neglect is reduced when problems are presented in a format that affords accurate
representation in terms of nested sets of individuals.
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1. Introduction

Diagnosing whether a patient has a disease, predicting
whether a defendant is guilty of a crime, and other every-
day as well as life-changing decisions reflect, in part, the
decision-maker’s subjective degree of belief in uncertain
events. Intuitions about probability frequently deviate dra-
matically from the dictates of probability theory (e.g., Gilo-
vich et al. 2002). One form of deviation is notorious:
people’s tendency to neglect base-rates in favor of specific
case data. A number of theorists (e.g., Brase 2002a; Cos-
mides & Tooby 1996; Gigerenzer & Hoffrage 1995) have
argued that such neglect reveals little more than exper-
imenters’ failure to ask about uncertainty in a form that
naı̈ve respondents can understand – specifically, in the
form of a question about natural frequencies. The brunt
of our argument in this target article is that this perspec-
tive is far too narrow. After surveying the theoretical per-
spectives on the issue, we show that both data and
conceptual considerations demand that judgment be
understood in terms of dual processing systems: one that
is responsible for systematic error and another that is
capable of reasoning not just about natural frequencies,
but about relations among any kind of set representation.

Base-rate neglect has been extensively studied in the
context of Bayes’ theorem, which provides a normative stan-
dard for updating the probability of a hypothesis in light of
new evidence. Research has evaluated the extent to which
intuitive probability judgment conforms to the theorem
by employing a Bayesian inference task in which the
respondent is presented a word problem and has to infer
the probability of a hypothesis (e.g., the presence versus
absence of breast cancer) on the basis of an observation

(e.g., a positive mammography). Consider the following
Bayesian inference problem presented by Gigerenzer and
Hoffrage (1995; adapted from Eddy 1982):

The probability of breast cancer is 1% for a woman at age forty
who participates in routine screening [base-rate]. If a woman
has breast cancer, the probability is 80% that she will get a
positive mammography [hit-rate]. If a woman does not have
breast cancer, the probability is 9.6% that she will also get a
positive mammography [false-alarm rate]. A woman in this
age group had a positive mammography in a routine screening.
What is the probability that she actually has breast cancer? _%.
(Gigerenzer & Hoffrage 1995, p. 685)
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According to Bayes’ theorem,1 the probability that the
patient has breast cancer given that she has a positive
mammography is 7.8%. Evidence that people’s judgments
on this problem accord with Bayes’ theorem would be con-
sistent with the claim that the mind embodies a calculus of
probability, whereas the lack of such a correspondence
would demonstrate that people’s judgments can be at var-
iance with sound probabilistic principles and, as a conse-
quence, that people can be led to make incoherent
decisions (Ramsey 1964; Savage 1954). Thus, the extent
to which intuitive probability judgment conforms to the
normative prescriptions of Bayes’ theorem has impli-
cations for the nature of human judgment (for a review
of the theoretical debate on human rationality, see Stano-
vich 1999). In the case of Eddy’s study, fewer than 5% of
the respondents generated the Bayesian solution.

Early studies evaluating Bayesian inference under single-
event probabilities also showed systematic deviations from
Bayes’ theorem. Hammerton (1973), for example, found
that only 10% of the physicians tested generated the
Bayesian solution, with the median response approxi-
mating the hit-rate of the test. Similarly, Casscells et al.
(1978) and Eddy (1982) found that a low proportion of
respondents generated the Bayesian solution: 18% in the
former and 5% in the latter, with the modal response in
each study corresponding to the hit-rate of the test. All
of this suggests that the mind does not normally reason
in a way consistent with the laws of probability theory.

1.1. Base-rate facilitation

However, this conclusion has not been drawn universally.
Eddy’s (1982) problem concerned a single event, the prob-
ability that a particular woman has breast cancer. In some
problems, when probabilities that refer to the chances of a
single event occurring (e.g., 1%) are reformulated and pre-
sented in terms of natural frequency formats (e.g., 10 out
of 1,000), people more often draw probability estimates
that conform to Bayes’ theorem. Consider the following
mammography problem presented in a natural frequency
format by Gigerenzer and Hoffrage (1995):

10 out of every 1,000 women at age forty who participate in
routine screening have breast cancer [base-rate]. 8 out of
every 10 women with breast cancer will get a positive mammo-
graphy [hit-rate]. 95 out of every 990 women without breast
cancer will also get a positive mammography [false-alarm rate].
Here is a new representative sample of women at age forty
who got a positive mammography in routine screening. How
many of these women do you expect to actually have breast
cancer? __ out of __ . (Gigerenzer & Hoffrage 1995, p. 688)

The proportion of responses conforming to Bayes’
theorem increased by a factor of about three in this case,
46% under natural frequency formats versus 16% under
a single-event probability format. The observed facilitation
has motivated researchers to argue that coherent prob-
ability judgment depends on representing events in the
form of natural frequencies (e.g., Brase 2002a; Cosmides
& Tooby 1996; Gigerenzer & Hoffrage 1995).

Cosmides and Tooby (1996) also conducted a series of
experiments that employed Bayesian inference problems
that had previously elicited judgmental errors under
single-event probability formats. In Experiment 1, they
replicated Casscells et al. (1978), demonstrating that
only 12% of their respondents produced the Bayesian

answer when presented with single-event probabilities.
Cosmides and Tooby then transformed the single-event
probabilities into natural frequencies, resulting in a
remarkably high proportion of Bayesian responses: 72%
of respondents generated the Bayesian solution, support-
ing the authors’ conclusion that Bayesian inference
depends on the use of natural frequencies.

Gigerenzer (1996) explored whether physicians, who
frequently assess and diagnose medical illness, would
demonstrate the same pattern of judgments as that of clini-
cally untrained college undergraduates. Consistent with
the judgments drawn by college students (e.g., Gigerenzer
& Hoffrage 1995), Gigerenzer found that the sample of 48
physicians tested generated the Bayesian solution in only
10% of the cases under single-event probability formats,
whereas 46% did so with natural frequency formats. Phys-
icians spent about 25% more time on the single-event
probability problems, which suggests that they found
these problems more difficult to solve than problems pre-
sented in a natural frequency format. Thus, the physician’s
judgments were consistent with those of non-physicians,
suggesting that formal training in medical diagnosis does
not lead to more accurate Bayesian reasoning and that
natural frequencies facilitate probabilistic inference
across populations.

Further studies have demonstrated that the facilitory
effect of natural frequencies on Bayesian inference
observed in the laboratory has the potential for improving
the predictive accuracy of professionals in important real-
world settings. Gigerenzer and his colleagues have shown,
for example, that natural frequencies facilitate Bayesian
inference in AIDS counseling (Gigerenzer et al. 1998),
in the assessment of statistical information by judges
(Lindsey et al. 2003), and in teaching Bayesian reasoning
to college undergraduates (Kuzenhauser & Hoffrage
2002; Sedlmeier & Gigerenzer 2001). In summary, the
reviewed findings demonstrate facilitation in Bayesian
inference when single-event probabilities are translated
into natural frequencies, consistent with the view that
coherent probability judgment depends on natural fre-
quency representations.

1.2. Theoretical accounts

Explanations of facilitation in Bayesian inference can be
grouped into five types that can be arrayed along a conti-
nuum of cognitive control, from accounts that ascribe
facilitation to processes that have little to do with strategic
cognitive processing to those that appeal to general-
purpose reasoning procedures. The five accounts we
discuss can be contrasted at the coarsest level on five
dimensions (see Table 1). We do not claim that theorists
have consistently made these distinctions in the past,
only that these distinctions are in fact appropriate ones.

A parallel taxonomy for theories of categorization can be
found in Sloman et al. (in press). We briefly introduce the
theoretical frameworks here. The discussion of each will
be elaborated as required to reveal assumptions and
derive predictions in the following sections in order to
compare and contrast them.

1.2.1. Mind as Swiss army knife. Several theorists have
argued that the human mind consists of a number of
specialized modules (Cosmides & Tooby 1996; Gigerenzer
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& Selten 2001). Each module is assumed to be unavailable
to conscious awareness or deliberate control (i.e., cogni-
tively impenetrable), and also assumed to be able to
process only a specific type of information (i.e., information-
ally encapsulated; see Fodor 1983). One module in particu-
lar is designed to process natural frequencies. This module
is thought to have evolved because natural frequency infor-
mation is what was available to our ancestors in the environ-
ment of evolutionary adaptiveness. In this view, facilitation
occurs because natural frequency data are processed by a
computationally effective processing module.

Two arguments have been advanced in support of the
ecological validity of natural frequency data. First, as
natural frequency information is acquired, it can be
“easily, immediately, and usefully incorporated with past
frequency information via the use of natural sampling,
which is the method of counting occurrences of events
as they are encountered and storing the resulting know-
ledge base for possible use later” (Brase 2002b, p. 384).
Second, information stored in a natural frequency format
preserves the sample size of the reference class (e.g., 10
out of 1,000 women have breast cancer), and are arranged
into subset relations (e.g., of the 10 women that have
breast cancer, 8 are positively diagnosed) that indicate
how many cases of the total sample there are in each sub-
category (i.e., the base-rate, the hit-rate, and false-alarm
rate). Because natural frequency formats entail the
sample and effect sizes, posterior probabilities consistent
with Bayes’ theorem can be calculated without explicitly
incorporating base-rates, thereby allowing simple calcu-
lations2 (Kleiter 1994). Thus, proponents of this view
argue that the mind has evolved to process natural fre-
quency formats over single-event probabilities, and that,
in particular, it includes a cognitive module that “maps fre-
quentist representations of prior probabilities and likeli-
hoods onto a frequentist representation of a posterior
probability in a way that satisfies the constraints of
Bayes’ theorem” (Cosmides & Tooby 1996, p. 60).

Theorists who take this position uniformly motivate
their hypothesis via a process of natural selection.
However, the cognitive and evolutionary claims are in
fact conceptually independent. The mind could consist
of cognitively impenetrable and informationally encapsu-
lated modules whether or not any or all of those
modules evolved for the specific reasons offered.

1.2.2. Natural frequency algorithm. A weaker claim is that
the mind includes a specific algorithm for effectively
processing natural frequency information (Gigerenzer &
Hoffrage 1995). Unlike the mind-as-Swiss-army-knife
view, this hypothesis makes no general claim about the
architecture of mind. Despite their difference in scope,
however, these two theories adopt the same computational
and evolutionary commitments.

Consistent with the mind-as-Swiss-army-knife view, the
algorithm approach proposes that coherent probability
judgment derives from a simplified form of Bayes’
theorem. The proposed algorithm computes the number of
cases where the hypothesis and observation co-occur, N(H
and D), out of the total number of cases where the obser-
vation occurs, N(H and D)þN(not-H and D) ¼ N(D)
(Gigerenzer & Hoffrage 1995; Kleiter 1994). Because
this form of Bayes’ theorem expresses a simple ratio of
frequencies, we refer to it as “the Ratio.”

Following the mind-as-Swiss-army knife view, propo-
nents of this approach have ascribed the origin of the
Bayesian ratio to evolution. Gigerenzer and Hoffrage
(1995, p. 686), for example, state

The evolutionary argument that cognitive algorithms were
designed for frequency information, acquired through
natural sampling, has implications for the computations an
organism needs to perform when making Bayesian
inferences . . . . Bayesian algorithms are computationally
simpler when information is encoded in a frequency format
rather than a standard probability format.

As a consequence, the algorithm view predicts that “Per-
formance on frequentist problems will satisfy some of
the constraints that a calculus of probability specifies,
such as Bayes’ rule. This would occur because some induc-
tive reasoning mechanisms in our cognitive architecture
embody aspects of a calculus of probability” (Cosmides
& Tooby 1996, p. 17).

The proposed algorithm is necessarily informationally
encapsulated, as it operates on a specific information
format – natural frequencies; but it is not necessarily cog-
nitively impenetrable, as no one has claimed that other
cognitive processes cannot affect or cannot use the algor-
ithm’s computations. The primary motivation for the
existence of this algorithm has been computational
(Gigerenzer & Hoffrage 1995; Kleiter 1994). As reviewed
above, the value of natural frequencies is that these

Table 1. Prerequisites for reduction of base-rate neglect according to 5 theoretical frameworks

Mind as Swiss
army knife

Natural frequency
algorithm

Natural frequency
heuristic

Non-evolutionary
natural frequency
heuristic

Nested sets
and dual
processes

Cognitive impenetrability X
Informational encapsulation X X
Appeal to evolution X X X
Cognitive process uniquely

sensitive to natural frequency
formats

X X X X

Transparency of nested
set relations

X X X X X

Note. The prerequisites of each theory are indicated by an ‘X’.
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formats entail the sample and effect sizes and, as a conse-
quence, simplify the calculation of Bayes’ theorem: Prob-
ability judgments are coherent with Bayesian prescriptions
even without explicit consideration of base-rates.

1.2.3. Natural frequency heuristic. A claim which puts
facilitation under more cognitive control is that people
use heuristics to make judgments (Gigerenzer & Selten
2001; Tversky & Kahneman 1974) and that the Ratio is
one such heuristic (Gigerenzer et al. 1999). According to
this view, “heuristics can perform as well, or better, than
algorithms that involve complex computations . . . . The
astonishingly high accuracy of these heuristics indicates
their ecological rationality; fast and frugal heuristics
exploit the statistical structure of the environment, and
they are adapted to this structure” (Gigerenzer 2006).
Advocates of this approach motivate the proposed heuris-
tic by pointing to the ecological validity of natural fre-
quency formats, as Gigerenzer further states (p. 52):

To evaluate the performance of the human mind, one needs to
look at its environment and, in particular, the external rep-
resentation of the information. For most of the time during
which the human mind evolved, information was encountered
in the form of natural frequencies . . .

Thus, this view proposes that the mind evolved to process
natural frequencies and that this evolutionary adaptation
gave rise to the proposed heuristic that computes the
Bayesian Ratio from natural frequencies.

1.2.4. Non-evolutionary natural frequency heuristic.
Evolutionary arguments about the ecological validity of
natural frequency representations provide part of the
motivation for the preceding theories. In particular, pro-
ponents of the theories argue that throughout the course
of human evolution natural frequencies were acquired
via natural sampling (i.e., encoding event frequencies as
they are encountered, and storing them in the appropriate
reference class).

In contrast, the non-evolutionary natural frequency
theory proposes that natural sampling is not necessarily
an evolved procedure for encoding statistical regularities
in the environment, but rather, a useful sampling
method that, one way or another, people can appreciate
and use. The natural frequency representations that
result from natural sampling, on this view, simplify the
calculation of Bayes’ theorem and, as a consequence,
facilitate Bayesian inference (Kleiter 1994). Thus, this
non-evolutionary view differs from the preceding accounts
by resting on a purely computational argument that is
independent of any commitments as to which cognitive
processes have been selected for by evolution.

This theory proposes that the computational simplicity
afforded by natural frequencies gives rise to a heuristic
that computes the Bayesian Ratio from natural
frequencies. The proposed heuristic implies a higher
degree of cognitive control than the preceding modular
algorithms.

1.2.5. Nested sets and dual processes. The most extreme
departure from the modular view claims that facilitation
is a product of general-purpose reasoning processes
(Evans et al. 2000; Fox & Levav 2004; Girotto & Gonzales
2001; Johnson-Laird et al. 1999; Kahneman & Frederick
2002; 2005; Over 2003; Reyna 1991; Sloman et al. 2003).

In this view, people use two systems to reason (Evans &
Over 1996; Kahneman & Frederick 2002; 2005; Reyna &
Brainerd 1994; Sloman 1996a; Stanovich & West 2000),
often called Systems 1 and 2. But in an effort to use
more expressive labels, we will employ Sloman’s terms
“associative” and “rule-based.”

The dual-process model attributes responses based on
associative principles like similarity or retrieval from
memory to a primitive associative judgment system. It
attributes responses based on more deliberative proces-
sing that involves working memory, such as the elementary
set operations that respect the logic of set inclusion and
facilitate Bayesian inference, to a second rule-based
system. Judgmental errors produced by cognitive heuris-
tics are generated by associative processes, whereas the
induction of a representation of category instances that
makes nested set relations transparent also induces use
of rules about elementary set operations – operations of
the sort perhaps described by Fox and Levav (2004) or
Johnson-Laird et al. (1999).

According to this theory, base-rate neglect results from
associative responding and facilitation occurs when people
correctly use rules to make the inference. Rule-based
inference is more cognitively demanding than associative
inference, and is therefore more likely to occur when par-
ticipants have more time, more incentives, or more exter-
nal aids to make a judgment and are under fewer other
demands at the moment of judgment. It is also more
likely for people who have greater skill in employing the
relevant rules. This last prediction is supported by Stano-
vich and West (2000) who find correlations between intel-
ligence and use of base rates.

Rules are effective devices for solving a problem to the
extent that the problem is represented in a way compatible
with the rules. For example, long division is an effective
method for solving division problems, but only if
numbers are represented using Arabic numerals; division
with Roman numerals requires different rules. By
analogy, this view proposes that natural frequencies facili-
tate use of base-rates because the rules people have access
to and are able to use to solve the specific kind of problem
studied in the base-rate neglect literature are more com-
patible with natural frequency formats than single-event
probability formats.

Specifically, people are adept at using rules consisting of
simple elementary set operations. But these operations are
only applicable when problems are represented in terms
of sets, as opposed to single events (Reyna 1991; Reyna
& Brainerd 1995). According to this view, facilitation in
Bayesian inference occurs under natural frequencies
because these formats are an effective cue to the represen-
tation of the set structure underlying a Bayesian inference
problem. This is the nested sets hypothesis of Tversky and
Kahneman (1983). In this framework, natural frequency
formats prompt the respondent to adopt an outside view
by inducing a representation of category instances (e.g.,
10 out of 1,000 women have breast cancer) that reveals
the set structure of the problem and makes the nested
set relations transparent for problem solving.3 We refer
to this hypothesis as the nested sets theory (Ayton &
Wright 1994; Evans et al. 2000; Fox & Levav 2004; Girotto
& Gonzalez 2001; 2002; Johnson-Laird et al. 1999;
Reyna 1991; Tversky & Kahneman 1983; Macchi 2000;
Mellers & McGraw 1999; Sloman et al. 2003). Unlike
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the other theories, it predicts that facilitation should be
observable in a variety of different tasks, not just posterior
probability problems, when nested set relations are made
transparent.

2. Overview of empirical and conceptual
issues reviewed

We now turn to an evaluation of these five theoretical fra-
meworks. We evaluate a range of empirical and conceptual
issues that bear on the validity of these frameworks.

2.1. Review of empirical literature

The theories are evaluated with respect to the empirical
predictions summarized in Table 2. The predictions of
each theory derive from (1) the degree of cognitive
control attributed to probability judgment (see Table 1),
and (2) the proposed cognitive operations that underlie
estimates of probability.

Theories that adopt a low degree of cognitive control –
proposing cognitively impenetrable modules or infor-
mationally encapsulated algorithms – restrict Bayesian
inference to contexts that satisfy the assumptions of the
processing module or algorithm. In contrast, theories
that adopt a high degree of cognitive control – appealing
to a natural frequency heuristic or a domain general

capacity to perform set operations – predict Bayesian
inference in a wider range of contexts. The latter theories
are distinguished from one another in terms of the cogni-
tive operations they propose: The evolutionary and non-
evolutionary natural frequency heuristics depend on
structural features of the problem, such as question form
and reference class. They imply the accurate encoding
and comprehension of natural frequencies and an accurate
weighting of the encoded event frequencies to calculate
the Bayesian ratio. In contrast, the nested sets theory
does not rely on natural frequencies and, instead, predicts
facilitation in Bayesian inference, and in a range of other
deductive and inductive reasoning tasks, when the set
structure of the problem is made transparent, thereby pro-
moting use of elementary set operations and inferences
about the logical (i.e., extensional) properties they entail.

2.2. Information format and judgment domain

The preceding review of the literature found that natural
frequency formats consistently reduced base-rate neglect
relative to probability formats. However, the size of this
effect varied considerably across studies (see Table 3).

Cosmides and Tooby (1996), for example, observed a
60-point % difference between the proportions of Bayesian
responses under natural frequencies versus single-event
probabilities, whereas Gigerenzer and Hoffrage (1995)

Table 2. Empirical predictions of the five theoretical frameworks

Mind as Swiss
army knife

Natural
frequency
algorithm

Natural
frequency
heuristic

Non-evolutionary
natural frequency
heuristic

Nested sets
and dual
processes

Facilitation with natural
frequencies (information
format and judgment domain)

X X X X X

Facilitation with questions that
prompt the respondent to
compute the Bayesian ratio
(question form)

X X X

Facilitation with statistical
information organized in a
partitive structure (reference
class)

X X X

Facilitation with diagrammatic
representations that highlight
the set structure of the
problem

X X X

Inaccurate frequency
judgments

X

Equivalent comprehension of
natural frequencies and
single-event probabilities

X

Non-normative weighting of
likelihood ratio and prior odds

X

Facilitation with set
representations in deductive
and inductive reasoning

X

Note. The predictions of each theory are indicated by an ‘X.’
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reported a difference only half that size. The wide variabil-
ity in the size of the effects makes it clear that in no sense
do natural frequencies eliminate base-rate neglect, though
they do reduce it.

Sloman et al. (2003) conducted a series of experiments
that attempted to replicate the effect sizes observed by
the previous studies (e.g., Cosmides & Tooby 1996; Exper-
iment 2, Condition 1). Although Sloman et al. found facili-
tation with natural frequencies, the size of the effect was
smaller than that observed by Cosmides and Tooby: The
percent of Bayesian solutions generated under single-
event probabilities (20%) was comparable to Cosmides
and Tooby (12%), but the percentage of Bayesian
answers generated under natural frequencies was
smaller (i.e., 72% versus 51% for Sloman et al.). In a
further replication, Sloman et al. found that only 31% of
their respondents generated the Bayesian solution, a stat-
istically non-significant advantage for natural frequencies.

Evans et al. (2000, Experiment 1) similarly found only a
small effect of information format. They report 24% Baye-
sian solutions under single-event probabilities and 35%
under natural frequencies, a difference that was not
reliable.

Brase et al. (2006) examined whether methodological
factors contribute to the observed variability in effect
size. They identified two factors that modulate the facili-
tory effect of natural frequencies in Bayesian inference:
(1) the academic selectivity of the university the partici-
pants attend, and (2) whether or not the experiment
offered a monetary incentive for participation. Exper-
iments whose participants attended a top-tier national uni-
versity and were paid reported a significantly higher
proportion of Bayesian responses (e.g., Cosmides &
Tooby 1996) than experiments whose participants
attended a second-tier regional university and were not
paid (e.g., Brase et al. 2006, Experiments 3 and 4).
These results suggest that a higher proportion of Bayesian
responses is observed in experiments that (a) select

participants with a higher level of general intelligence, as
indexed by the academic selectivity of the university the
participant attends (Stanovich & West 1998a), and (b)
increase motivation by providing a monetary incentive.
The former observation is consistent with the view that
Bayesian inference depends on domain general cognitive
processes to the degree that intelligence is domain
general. The latter suggests that Bayesian inference is stra-
tegic, and not supported by automatic (e.g., modularized)
reasoning processes.

2.3. Question form

One methodological factor that may mediate the effect of
problem format is the form of the Bayesian inference
question presented to participants (Girotto & Gonzalez
2001). The Bayesian solution expresses the ratio between
the size of the subset of cases in which the hypothesis
and observation co-occur and the total number of obser-
vations. Thus, it follows that the respondent should be
more likely to arrive at this solution when prompted to
adopt an outside view by utilizing the sample of category
instances presented in the problem (e.g., “Here is a new
sample of patients who have obtained a positive test re-
sult in routine screening. How many of these patients do
you expect to actually have the disease? __ out of __”)
versus a question that presents information about category
properties (e.g., “. . . Pierre has a positive reaction to the
test . . .”) and prompts the respondent to adopt an inside
view by considering the fact about Pierre to compute a
probability estimate. As a result, the form of the question
should modulate the observed facilitation.

In the preceding studies, however, information format
and judgment domain were confounded with question
form: Only problems that presented natural frequencies
prompted use of the sample of category instances pre-
sented in the problem to compute the two terms of the
Bayesian solution, whereas single-event probability pro-
blems prompted the use of category properties to
compute a conditional probability.

To dissociate these factors, Girotto and Gonzalez (2001)
proposed that single-event probabilities (e.g., 1%) can be
represented as chances4 (e.g., “One chance out of 100”).
Under the chance formulation of probability, the respon-
dent can be asked either for the standard conditional prob-
ability or for values that correspond more closely to the
ratio expressed by Bayes’ theorem. The latter question
asks the respondent to evaluate the chances that Pierre
has a positive test for a particular infection, out of the
total chances that Pierre has a positive test, thereby
prompting consideration of the chances that Pierre – who
could be anyone with a positive test in the sample – has
the infection. In addition to encouraging an outside view
by prompting the respondent to represent the sample of
category instances presented in the problem, this question
prompts the computation of the Bayesian ratio in two
clearly defined steps: First calculate the overall number
of chances where the conditioning event is observed,
then compare this quantity to the number of chances
where the conditioning event is observed in the presence
of the hypothesis.

To evaluate the role of question form in Bayesian
inference, Girotto and Gonzalez (2001, Study 1) con-
ducted an experiment that manipulated question form

Table 3. Percent correct for Bayesian inference problems
reported in the literature (sample sizes in parentheses)

Information format and
judgment domain

Study Probability Frequency

Casscells et al. (1978) 18 (60) —
Cosmides & Tooby (1996; Exp. 2) 12 (25) 72 (25)
Eddy (1988) 5 (100) —
Evans et al. (2000; Exp. 1) 24 (42) 35 (43)‡
Gigerenzer (1996) 10 (48) 46 (48)
Gigerenzer & Hoffrage (1995) 16 (30) 46 (30)
Macchi (2000) 6 (30) 40 (30)
Sloman et al. (2003; Exp.1) 20 (25) 51 (45)
Sloman et al. (2003; Exp. 1b) — 31 (48)‡

Note. Probability problems require that the respondent compute a
conditional-event probability from data presented in a non-partitive
form, whereas frequency problems include questions that prompt
the respondent to evaluate the two terms of the Bayesian ratio and
present data that is partitioned into these components.
‡ p . 0.05
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independently of information format and judgment
domain. The authors presented the following Bayesian
inference scenario to 80 college undergraduates of the
University of Provence, France:

A person who was tested had 4 chances out of 100 of having the
infection. 3 of the 4 chances of having the infection were
associated with a positive reaction to the test. 12 of the remain-
ing 96 chances of not having the infection were also associated
with a positive reaction to the test (Girotto & Gonzalez 2001,
p. 253).

Half of the respondents were then asked to compute a
conditional probability (i.e., “If Pierre has a positive reac-
tion, there will be __ chance(s) out of __ that the infection
is associated with his positive reaction”), whereas the
remaining respondents were asked to evaluate the ratio
of probabilities expressed in the Bayesian solution (i.e.,
“Imagine that Pierre is tested now. Out of the total 100
chances, Pierre has __ chances of having a positive reac-
tion, __ of which will be associated with having the
infection”).

Girotto and Gonzalez (2001) found that only 8% of the
respondents generated the Bayesian solution when asked
to compute a conditional probability, consistent with the
earlier literature. But the proportion of Bayesian answers
increased to 43% when the question prompted the respon-
dent to evaluate the two terms of the Bayesian solution.
The same pattern was observed with the natural frequency
format problem. Only 18% of the respondents generated
the Bayesian solution when asked to compute a con-
ditional frequency, whereas this proportion increased to
58% when asked to evaluate the two terms separately.
This level of performance is comparable to that observed
under standard natural frequency formats (e.g., Gigeren-
zer & Hoffrage 1995), and supports Girotto and Gonza-
lez’s claim that the two-step question approximates the
question asked with standard natural frequency formats.
In further support of Girotto and Gonzalez’s predictions,
there were no reliable effects of information format or
judgment domain across all the reported comparisons.

These findings suggest that people are not predisposed
against using single-event probabilities but instead appear
to be highly sensitive to the form of the question: When
asked to reason about category instances to compute the
two terms of the Bayesian ratio, respondents were able
to draw the normative solution under single-event prob-
abilities. Facilitation in Bayesian inference under natural
frequencies need not imply that the mind is designed to
process these formats, but instead can be attributed to
the facilitory effect of prompting use of the sample of cat-
egory instances presented in the problem to evaluate the
two terms of the Bayesian ratio.

2.4. Reference class

To assess the role of problem structure in Bayesian infer-
ence, we review studies that have manipulated structural
features of the problem. Girotto and Gonzalez (2001)
report two experiments that systematically assess perform-
ance under different partitionings of the data: Defective
frequency partitions and non-partitive frequency pro-
blems. Consider the following medical diagnosis
problem, which presents natural frequencies under what
Girotto and Gonzalez (2001, Study 5) term a defective
partition:

4 out of 100 people tested were infected. 3 of the 4 infected
people had a positive reaction to the test. 84 of the 96 unin-
fected people did not have a positive reaction to the test.
Imagine that a group of people is now tested. In a group of
100 people, one can expect __ individuals to have a positive
reaction, __ of whom will have the infection.

In contrast to the standard partitioning of the data under
natural frequencies, here the frequency of uninfected
people who did not have a positive reaction to the test is
reported, instead of the frequency of uninfected, positive
reactions. As a result, to derive the Bayesian solution,
the first value must be subtracted from the total popu-
lation of uninfected individuals to obtain the desired
value (96 – 84 ¼ 12), and the result can be used to deter-
mine the proportion of infected, positive people out of the
total number of people who obtain a positive test (e.g.,
3/15 ¼ 0.2). Although this problem exhibits a partitive
structure, Girotto and Gonzalez predicted that the defec-
tive partitioning of the data would produce a greater pro-
portion of errors than observed under the standard data
partitioning, because the former requires an additional
computation. Consistent with this prediction, only 35%
of respondents generated the Bayesian solution, whereas
53% did so under the standard data partitioning. Nested
set relations were more likely to facilitate Bayesian reason-
ing when the data were partitioned into the components
that are needed to generate the solution.

Girotto and Gonzalez (2001, Study 6) also assessed per-
formance under natural frequency formats that were not
partitioned into nested set relations (i.e., unpartitioned
frequencies). As in the case of standard natural frequency
format problems (e.g., Cosmides & Tooby 1996), these
multiple-sample problems employed natural frequencies
and prompted the respondent to compute the two terms
of the Bayesian solution.5 Such a problem must be
treated in the same way as a single-event probability
problem (i.e., using the conditional probability and addi-
tivity laws) to determine the two terms of the Bayesian sol-
ution. Girotto and Gonzalez therefore predicted that
performance under multiple samples would be poor,
approximating the performance observed under standard
probability problems. As predicted, none of the respon-
dents generated the Bayesian solution under the multiple
sample or standard single-event probability frames.
Natural frequency formats facilitate Bayesian inference
only when they partition the data into components
needed to draw the Bayesian solution.

Converging evidence is provided by Macchi (2000), who
presented Bayesian inference problems in either a parti-
tive or non-partitive form. Macchi found that only 3% of
respondents generated the Bayesian solution when asked
to evaluate the two terms of the Bayesian ratio with non-
partitive frequency problems. Similarly, only 6% of the
respondents generated the Bayesian solution when asked
to compute a conditional probability under non-partitive
probability formats (see also Sloman et al. 2003, Exper-
iment 4). But when presented under a partitive formu-
lation and asked to evaluate the two terms of the
Bayesian ratio the proportions increased to 40% under
partitive natural frequency formats, 33% under partitive
single-event probabilities, and 36% under the modified
partitive single-event probability problems. The findings
reinforce the nested sets view that information structure
is the factor determining predictive accuracy.
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To further explore the contribution of information
structure and question form in Bayesian inference,
Sloman et al. (2003) assessed performance using a con-
ditional chance question. In contrast to the standard con-
ditional probability question that presents information
about a particular individual (e.g., “Pierre has a positive
reaction to the test”), their conditional probability ques-
tion asked the respondent to evaluate “the chance that a
person found to have a positive test result actually has
the disease.” This question requests the probability of an
unknown category instance and therefore prompts the
respondent to consult the data presented in the problem
to assess the probability that this person – who could be
any randomly chosen person with a positive result in the
sample – has the disease. In Experiment 1, Sloman et al.
looked for facilitation in Bayesian inference on a partitive
single-event probability problem by prompting use of the
sample of category instances presented in the problem to
compute a conditional probability, as the nested sets
hypothesis predicts. Forty-eight percent of the 48 respon-
dents tested generated the Bayesian solution, demonstrat-
ing that making partitive structure transparent facilitates
Bayesian inference.

In summary, the reviewed findings suggest that when
the data are partitioned into the components needed to
arrive at the solution and participants are prompted
to use the sample of category instances in the problem
to compute the two terms of the Bayesian ratio, the
respondent is more likely to (1) understand the question,
(2) see the underlying nested set structure by partitioning
the data into exhaustive subsets, and (3) select the pieces
of evidence that are needed for the solution. According
to the nested sets theory, accurate probability judgments
derive from the ability to perform elementary set oper-
ations whose computations are facilitated by external
cues (for recent developmental evidence, see Girotto &
Gonzalez, in press).

2.5. Diagrammatic representations

Sloman et al. (2003, Experiment 2) explored whether
Euler circles, which were employed to construct a
nested set structure for standard non-partitive single-
event probability problems (e.g., Cosmides & Tooby
1996), would facilitate Bayesian inference (see Fig. 1
here). These authors found that 48% of the 25 respondents
tested generated the Bayesian solution when presented
non-partitive single-event probability problems with an
Euler diagram that depicted the underlying nested set
relations. This finding demonstrates that the set structure
of standard non-partitive single-event probability pro-
blems can be represented by Euler diagrams to produce
facilitation. Supporting data can be found in Yamagishi
(2003) who used diagrams to make nested set relations
transparent in other inductive reasoning problems.
Similar evidence is provided by Bauer and Johnson-
Laird (1993) in the context of deductive reasoning.

2.6. Accuracy of frequency judgments

Theories based on natural frequency representations (i.e.,
the mind-as-Swiss-army-knife, natural frequency algor-
ithm, natural frequency heuristic, and non-evolutionary
natural frequency heuristic theories) propose that “the

mind is a frequency monitoring device” and that the cog-
nitive algorithm that computes the Bayesian ratio encodes
and processes event frequencies in naturalistic settings
(Gigerenzer 1993, p. 300). The literature that evaluates
the encoding and retrieval of event frequencies is large
and extensive and includes assessments of frequency judg-
ments under well-controlled laboratory settings based on
relatively simple and distinct stimuli (e.g., letters, pairs
of letters, or words), and naturalistic settings in which
respondents report the frequency of their own behaviors
(e.g., the medical diagnosis of patients). Laboratory
studies tend to find that frequency judgments are surpris-
ingly accurate (for a recent review, see Zacks & Hasher
2002), whereas naturalistic studies often find systematic
errors in frequency judgments (see Bradburn et al.
1987). Recent efforts have been made to integrate these
findings under a unified theoretical framework (e.g.,
Schwartz & Sudman 1994; Schwartz & Wanke 2002;
Sedlmeier & Betsch 2002).

Are frequency judgments relatively accurate under the
naturalistic settings described by standard Bayesian infer-
ence problems? Bayesian inference problems tend to
involve hypothetical situations that, if real, would be
based on autobiographical memories encoded under nat-
uralistic conditions, such as the standard medical diagnosis
problem in which a particular set of patients is hypotheti-
cally encountered (cf. Sloman & Over 2003). Hence, the
present review focuses on the accuracy of frequency judg-
ments for the autobiographical events alluded to by stan-
dard Bayesian inference problems (see sects. 2.1, 2.2,
and 2.3) to assess whether Bayesian inference depends
on the accurate encoding of autobiographical events.

Gluck and Bower (1988) conducted an experiment that
employed a learning paradigm to assess the accuracy of
frequency judgments in medical diagnosis. The respon-
dents in the experiment learned to diagnose a rare
(25%) or a common (75%) disease on the basis of four
potential symptoms exhibited by the patient (e.g.,
stomach cramps, discolored gums). During the learning
phase, the respondents diagnosed 250 hypothetical
patients and in each case were provided feedback on the
accuracy of their diagnosis. After the learning phase, the
respondents estimated the relative frequency of patients
who had the diseases given each symptom. Gluck and
Bower found that relative frequency estimates of the
disease were determined by the diagnosticity of the
symptom (the degree to which the respondent perceived
that the symptom provided useful information in diagnos-
ing the disease) and not the base-rate frequencies of the
disease. These findings were replicated by Estes et al.
(1989, Experiment 1) and Nosofsky et al. (1992, Exper-
iment 1).

Bradburn et al. (1987) evaluated the accuracy of auto-
biographical memory for event frequencies by employing
a range of surveys that assessed quantitative facts, such
as “During the last two weeks, on days when you drank
liquor, about how many drinks did you have?” These ques-
tions require the simple recall of quantitative facts, in
which the respondent “counts up how many individuals
fall within each category” (Cosmides & Tooby 1996,
p. 60). Recalling the frequency of drinks consumed over
the last two weeks, for example, is based on counting the
total number of individual drinking occasions stored in
memory.
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Bradburn et al. (1987) found that autobiographical
memory for event frequencies exhibits systematic errors
characterized by (a) the failure to recall the entire event
or the loss of details associated with a particular event
(e.g., Linton 1975; Wagenaar 1986), (b) the combining
of similar distinct events into a single generalized
memory (e.g., Linton 1975; 1982), or (c) the inclusion of
events that did not occur within the reference period
specified in the question (e.g., Pillemer et al. 1986). As a
result, Bradburn et al. propose that the observed fre-
quency judgments do not reflect the accurate encoding
of event frequencies, but instead entail a more complex
inferential process that typically operates on the basis of
incomplete, fragmentary memories that do not preserve
base-rate frequencies.

These findings suggest that the observed facilitation in
Bayesian inference under natural frequencies cannot be
explained by an (evolved) capacity to encode natural fre-
quencies. Apparently, people don’t have that capacity.

2.7. Comprehension of formats

Advocates of the nested sets view have argued that the
facilitation of Bayesian inference under natural frequen-
cies can be fully explained via elementary set operations
that deliver the same result as Bayes’ theorem, without
appealing to (an evolved) capacity to process natural fre-
quencies (e.g., Johnson-Laird et al. 1999). The question
therefore arises whether the ease of processing natural fre-
quencies goes beyond the reduction in computational
complexity of Bayes’ theorem that they provide (Brase
2002a). To assess this issue, we review evidence that evalu-
ates whether natural frequencies are understood more
easily than single-event probabilities.

Brase (2002b) conducted a series of experiments to
evaluate the relative clarity and ease of understanding a
range of statistical formats, including natural frequencies
(e.g., 1 out of 10) and percentages (e.g., 10%). Brase dis-
tinguished natural frequencies that have a natural
sampling structure (e.g., 1 out 10 have the property, 9
out of 10 do not) from “simple frequencies” that refer to

single numerical relations (e.g., 1 out of 10 have the prop-
erty). This distinction, however, is not entirely consistent
with the literature, as natural frequency theorists have
often used single numerical statements for binary hypoth-
eses to express natural frequencies (e.g., Zue &
Gigerenzer 2006). In any case, for binary hypotheses the
natural sampling structure can be directly inferred from
simple frequencies. If we observe, for example, that I
win the weekly poker game “1 out of 10 nights,” we can
infer that I lose “9 out of 10 nights” and construct a
natural sampling structure that represents the size of the
reference class and is arranged into subset relations.
Thus, single numerical statements of this type have a
natural sampling structure, and, therefore, we refer to
Brase’s “simple frequencies” as natural frequencies in
the following discussion.

Percentages express single-event probabilities in that
they are normalized to an arbitrary reference class (e.g.,
100) and can refer to the likelihood of a single-event
(Brase 2002b; Gigerenzer & Hoffrage 1995). We therefore
examine whether natural frequencies are understood
more easily and have a greater impact on judgment than
percentages.

To test this prediction, Brase (2002b, Experiment 1)
assessed the relative clarity of statistical information pre-
sented in a natural frequency format versus percentage
format at small, intermediate, and large magnitudes.
Respondents received four statements in one statistical
format, each statement at a different magnitude, and
rated the clarity, impressiveness, and “monetary pull” of
the presented statistics according to a 5-point scale.
Example questions are shown in Table 4.

Brase (2002b) found that across all statements and mag-
nitudes both natural frequencies and percentages were
rated as “Very Clear,” with average ratings of 3.98 and
3.89, respectively. These ratings were not reliably differ-
ent, demonstrating that percentages are perceived as
clearly and are as understandable as natural frequencies.
Furthermore, Brase found no reliable differences in the
impressiveness ratings (from question 2) of natural fre-
quencies and percentages at intermediate and large

Figure 1. A diagrammatic representation of Bayes theorem: Euler circles (Sloman et al., 2003).
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statistical magnitudes, suggesting that these formats are
typically viewed as equally impressive. A significant differ-
ence between these formats was observed, however, at low
statistical magnitudes: On average, natural frequencies
were rated as “Impressive,” whereas percentages were
viewed as “Fairly Impressive.” The observed difference
in the impressiveness ratings at low statistical magnitudes
did not accord with the respondent’s monetary pull
ratings – their willingness to allocate funds to support
research studying the issue at hand – which were approxi-
mately equal for the two formats across all statements and
magnitudes. Hence the difference in the impressiveness
ratings at low magnitudes does not denote differences in
people’s willingness to act.

These data are consistent with the conclusion that per-
centages and natural frequency formats (a) are perceived
equally clearly and are equally understandable; (b) are
typically viewed as equally impressive (i.e., at intermediate
and large statistical magnitudes); and (c) have the same
degree of impact on behavior. Natural frequency formats
do apparently increase the perceptual contrast of small
differences. Overall, however, the two formats are per-
ceived similarly, suggesting that the mind is not designed
to process natural frequency formats over single-event
probabilities.

2.8. Are base-rates and likelihood ratios
equally weighted?

Does the facilitation of Bayesian inference under natural
frequencies entail that the mind naturally incorporates
this information according to Bayes’ theorem, or that
elementary set operations can be readily computed from
problems that are structured in a partitive form? Natural
frequencies preserve the sample size of the reference
class and are arranged into subset relations that preserve
the base-rates. As a result, judgments based on these
formats will entail the sample and effect sizes; the respon-
dent need not calculate them. To assess whether the cog-
nitive operations that underlie Bayesian inference are

consistent with the application of Bayes’ theorem,
studies that evaluate how the respondent derives Bayesian
solutions are reviewed.

Griffin and Buehler (1999) employed the classic
lawyer-engineer paradigm developed by Kahneman and
Tversky (1973), involving personality descriptions ran-
domly drawn from a population of either 70 engineers
and 30 lawyers or 30 engineers and 70 lawyers. Partici-
pants’ task in this study is to predict whether the descrip-
tion was taken from an engineer or a lawyer (e.g., “My
probability that this man is one of the engineers in this
sample is __%”). Kahneman and Tversky’s original find-
ings demonstrated that the respondent consistently
relied upon category properties (i.e., how representative
the personality description is of an engineer or a lawyer)
to guide their judgment, without fully incorporating
information about the population base-rates (for a
review, see Koehler 1996). However, when the base-
rates were presented via a counting procedure that
induces a frequentist representation of each population
and the respondent is asked to generate a natural fre-
quency prediction (e.g., “I would expect that __ out of
the 10 descriptions would be engineers”), base-rate
usage increased (Gigerenzer et al. 1988).

To assess whether the observed increase in base-rate
usage reflects the operation of a Bayesian algorithm that
is designed to process natural frequencies, Griffin and
Buehler (1999) evaluated whether participants derived
the solution by utilizing event frequencies according to
Bayes’ theorem. This was accomplished by first collecting
estimates of each of the components of Bayes’ theorem in
odds form6: Respondents estimated (a) the probability that
the personality description was taken from the population
of engineers or lawyers; (b) the degree to which the per-
sonality description was representative of these popu-
lations; and (c) the perceived population base-rates.
Each of these estimates was then divided by their compli-
ment to yield the posterior odds, likelihood ratio, and prior
odds, respectively. Theories based on the Bayesian ratio
predict that under frequentist representations, the likeli-
hood ratios and prior odds will be weighted equally
(Griffin & Buehler 1999).

Griffin and Buehler evaluated this prediction by con-
ducting a regression analysis using the respondent’s esti-
mated likelihood ratios and prior odds to predict their
posterior probability judgments (cf. Keren & Thijs
1996). Consistent with the observed increase in base-
rate usage under frequentist representations (Gigerenzer
et al. 1988), Griffin and Buehler (1999, Experiment 3b)
found that the prior odds (i.e., the base-rates) were
weighted more heavily than the likelihood ratios, with cor-
responding regression weights (b values) of 0.62 and 0.39.
The failure to weight them equally violates Bayes’
theorem. Although frequentist representations may
enhance base-rate usage, they apparently do not induce
the operation of a mental analogue of Bayes’ theorem.

Further support for this conclusion is provided by
Evans et al. (2002) who conducted a series of experiments
demonstrating that probability judgments do not reflect
equal weighting of the prior odds and likelihood ratio.
Evans et al. (2002, Experiment 5) employed a paradigm
that extended the classic lawyer-engineer experiments by
assessing Bayesian inference under conditions where the
base-rates are supplied by commonly held beliefs and

Table 4. Example questions presented by Brase (2002b)

Statement
It is estimated that by the year 2020, one of every 100 Americans

will have been exposed to Flu strain X [natural frequency
format of low magnitude]

It is estimated that by the year 2020, 33% of all Americans will
have been exposed to Flu strain X [single-event probability of
intermediate magnitude]

Questions
1. How clear and easy to understand is the statistical information

presented in the above sentence? [Clarity rating]
2. How serious do you think the existence of virus X is

[Impressiveness rating]
3. If you were in charge of the annual budget for the U.S.

Department of Health, how much of every $100 would you
dedicate to dealing with virus X? __ out of every $100
[Monetary pull rating]
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only the likelihood ratios are explicitly provided. These
authors found that when prior beliefs about the base-rate
probabilities were rated immediately before the presen-
tation of the problem, the prior odds (i.e., the base-
rates) were weighted more heavily than the likelihood
ratios, with corresponding regression weights (b values)
of 0.43 and 0.19.

Additional evidence supporting this conclusion is pro-
vided by Kleiter et al. (1997) who found that participants
assessing event frequencies in a medical diagnosis setting
employed statistical evidence that is irrelevant to the cal-
culation of Bayes’ theorem. Kleiter et al. (1997, Exper-
iment 1) presented a list of event frequencies to
respondents, which included those that were necessary
for the calculation of Bayes’ theorem (e.g., Pr(D j H))
and other statistics that were irrelevant (e.g., Pr(�D)).
Participants were then asked to identify the event frequen-
cies that were needed to diagnose the probability of the
disease, given the symptom (i.e., the posterior probability).
Of the four college faculty and 26 graduate students
tested, only three people made the optimal selection by
identifying only the event frequencies required to calcu-
late Bayes’ theorem.

These data suggest that the mind does not utilize a
Bayesian algorithm that “maps frequentist representations
of prior probabilities and likelihoods onto a frequentist
representation of a posterior probability in a way that
satisfies the constraints of Bayes’ theorem” (Cosmides &
Tooby 1996, p. 60). Importantly, the findings that the
prior odds and likelihood ratio are not equally weighted
according to Bayes’ theorem (Evans et al. 2002; Griffin
& Buehler 1999) imply that Bayesian inference does not
rely on Bayesian computations per se.

Thus, the findings are inconsistent with the mind-as-
Swiss-army-knife, natural frequency algorithm, natural
frequency heuristic, and non-evolutionary natural fre-
quency heuristic theories, which propose that coherent
probability judgment reflects the use of the Bayesian
ratio. The finding that base-rate usage increases under fre-
quentist representations (Evans et al. 2002; Griffin &
Buehler 1999) supports the proposal that the facilitation
in Bayesian inference from natural frequency formats is
due to the property of these formats to induce a represen-
tation of category instances that preserves the sample and
effect sizes, thereby clarifying the underlying set structure
of the problem and making the relevance of base-rates
more obvious without providing an equation that gener-
ates Bayesian quantities.

2.9. Convergence with disparate data

A unique characteristic of the dual process position is that
it predicts that nested sets should facilitate reasoning
whenever people tend to rely on associative rather than
extensional, rule-based processes; facilitation should be
observed beyond the context of Bayesian probability
updating. The natural frequency theories expect facili-
tation only in the domain of probability estimation.

In support of the nested sets position, facilitation
through nested set representations has been observed in
a number of studies of deductive inference. Grossen and
Carnine (1990) and Monaghan and Stenning (1998)
reported significant improvement in syllogistic reasoning

when participants were taught using Euler circles. The
effect was restricted to participants who were “learning
impaired” (Grossen & Carnine 1990) or had a low GRE
score (Monaghan & Stenning 1998). Presumably, those
that did not show improvement did not require the
Euler circles because they were already representing the
nested set relations.

Newstead (1989, Experiment 2) evaluated how partici-
pants interpreted syllogisms when represented by Euler
circles versus quantified statements. Newstead found
that although Gricean errors of interpretation occurred
when syllogisms were represented by Euler circles and
quantified statements, the proportion of conversion
errors, such as converting “Some A are not B” to “Some
B are not A,” was significantly reduced in the Euler
circle task. For example, less than 5% of the participants
generated a conversion error for “Some . . . not” on the
Euler circle task, whereas this error occurred on 90% of
the responses for quantified statements.

Griggs and Newstead (1982) tested participants on the
THOG problem, a difficult deductive reasoning problem
involving disjunction. They obtained a substantial
amount of facilitation by making the problem structure
explicit, using trees. According to the authors, the struc-
ture is normally implicit due to negation and the tree
structure facilitates performance by cuing formation of a
mental model similar to that of nested sets.

Facilitation has also been obtained by making exten-
sional relations more salient in the domain of categorical
inductive reasoning. Sloman (1998) found that people
who were told that all members of a superordinate have
some property (e.g., all flowers are susceptible to thrips),
did not conclude that all members of one of its subordi-
nates inherited the property (e.g., they did not assert
that this guaranteed that all roses are susceptible to
thrips). This was true even for those people who believed
that roses are flowers. But if the assertion that roses are
flowers was included in the argument, then people did
abide by the inheritance rule, assigning a probability of
one to the statement about roses. Sloman argued that
this occurred because induction is mediated by similarity
and not by class inclusion, unless the categorical – or
set – relation is made transparent within the statement
composing the argument (for an alternative interpretation,
see Calvillo & Revlin 2005).

Facilitation in other types of probability judgment can
also be obtained by manipulating the salience and struc-
ture of set relations. Sloman et al. (2003) found that
almost no one exhibited the conjunction fallacy when the
options were presented as Euler circles, a representation
that makes set relations explicit. Fox and Levav (2004)
and Johnson-Laird et al. (1999) also improved judgments
on probability problems by manipulating the set structure
of the problem.

2.10. Empirical summary and conclusions

In summary, the empirical review supports five main con-
clusions. First, the facilitory effect of natural frequencies
on Bayesian inference varied considerably across the
reviewed studies (see Table 3), potentially resulting from
differences in the general intelligence level and motivation
of participants (Brase et al. 2006). These findings support
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the nested sets hypothesis to the degree that intelligence
and motivation reflect the operation of domain general
and strategic – rather than automatic (i.e., modular) –
cognitive processes.

Second, questions that prompt use of category instances
and divide the solution into the sets needed to compute
the Bayesian ratio, facilitate probability judgment. This
suggests that facilitation depends on cues to the set struc-
ture of the problem rather than (an evolved) capacity to
process natural frequencies. In further support of this con-
clusion, partitioning the data into nested sets facilitates
Bayesian inference regardless of whether natural frequen-
cies or single-event probabilities are employed (see
Table 5).

Third, frequency judgments are guided by inferential
strategies that reflect incomplete, fragmentary memories
that do not entail the base-rates (e.g., Bradburn et al.
1987; Gluck & Bower 1988). This suggests that Bayesian
inference does not derive from the accurate encoding
and retrieval of natural frequencies. In addition, natural
frequencies and single-event probabilities are rated
similarly in their perceived clarity, understandability, and
impact on the respondent’s behavior (Brase 2002b),
further suggesting that the mind does not embody induc-
tive reasoning mechanisms (that are designed) to process
natural frequencies.

Fourth, people (a) do not accurately weight and
combine event frequencies, and (b) utilize event frequen-
cies that are irrelevant in the calculation of Bayes’ theorem
(e.g., Griffin & Buehler 1999; Kleiter et al. 1997). This
suggests that the cognitive operations that underlie Baye-
sian inference do not conform to Bayes’ theorem. Fur-
thermore, base-rate usage increases under frequentist
representations (e.g., Griffin & Buehler 1999), suggesting
that facilitation results from the property of natural fre-
quencies to represent the sample and effect sizes, which
highlight the set structure of the problem and make trans-
parent what is relevant for problem solving.

Finally, nested set representations facilitate reasoning in
a range of classic deductive and inductive reasoning tasks.
This supports the nested set hypothesis that the mind
embodies a domain general capacity to perform elementary
set operations and that these operations can be induced by
cues to the set structure of the problem to facilitate

reasoning in any context where people tend to rely on
associative rather than extensional, rule-based processes.

3. Conceptual issues

This section provides a conceptual analysis that addresses
(1) the plausibility of the natural frequency assumptions,
and (2) whether natural frequency representations
support properties that are central to human inductive
reasoning competence, including reasoning about statisti-
cal independence, estimating the probability of unique
events, and reasoning on the basis of similarity, analogy,
association, and causality.

3.1. Plausibility of natural frequency assumptions

The natural sampling framework was established by the
seminal work of Kleiter (1994), who assessed “the corre-
spondence between the constraints of the statistical
model of natural sampling on the one hand, and the con-
straints under which human information is acquired on
the other” (p. 376). Kleiter proved that under natural
sampling and other conditions (e.g., independent identical
sampling), the frequencies corresponding to the base-rates
are redundant and can be ignored. Thus, conditions of
natural sampling can simplify the calculation of the rel-
evant probabilities and, as a consequence, facilitate Baye-
sian inference (see Note 2 of the target article). Kleiter’s
computational argument does not appeal to evolution
and was advanced with careful consideration of the
assumptions upon which natural sampling are based.
Kleiter noted, for example, that the natural sampling fra-
mework (a) is limited to hypotheses that are mutually
exclusive and exhaustive, and (b) depends on collecting
a sufficiently large sample of event frequencies to reliably
estimate population parameters.

Although people may sometimes treat hypotheses as
mutually exclusive (e.g., “this person is a Democrat, so
they must be anti-business”), this constraint is not always
satisfied: many hypotheses are nested (e.g., “she has
breast cancer” vs. “she has a particular type of breast
cancer”) or overlapping (e.g., “this patient is anxious or
depressed”). People’s causal models typically provide a

Table 5. Percent correct for Bayesian inference problems reported in the literature (sample sizes in parentheses)

Information structure

Non-partitive Partitive

Study Probability Frequency Probability Frequency

Girotto & Gonzalez (2001; Study 5) — — — 53 (20)
Girotto & Gonzalez (2001; Study 6) 0 (20) 0 (20) — —
Macchi (2000) 6 (30)� 3 (30) 36 (30) 40 (30)
Sloman et al. (2003; Exp. 1) 20 (25)� — 48 (48)� 51 (45)
Sloman et al. (2003; Exp. 2) — — 48 (25)� —
Sloman et al. (2003; Exp. 4) — 21 (33) — —

Note. Studies that present questions that require the respondent to compute a conditional-event probability are indicated by�. The remaining
studies present questions that prompt the respondent to compute the two terms of the Bayesian solution.
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wealth of knowledge about classes and properties, allowing
consideration of many kinds of hypotheses that do not
necessarily come in mutually exclusive, exhaustive sets.
As a consequence, additional principles are needed to
broaden the scope of the natural sampling framework to
address probability estimates drawn from hypotheses
that are not mutually exclusive and exhaustive. In this
sense, the nested sets theory is more general: It can rep-
resent nested and overlapping hypotheses by taking the
intersection (e.g., “she has breast cancer and it is type X”)
and union (e.g., “the patient is anxious or depressed) of
sets, respectively.

As Kleiter further notes, inferences about hypotheses
from encoded event frequencies are warranted to the
extent that the sample is sufficiently large and provides a
reliable estimate of the population parameters. The effi-
cacy of the natural sampling framework therefore depends
on establishing (1) the approximate number of event fre-
quencies that are needed for a reliable estimate, (2)
whether this number is relatively stable or varies across
contexts, and (3) whether or not people can encode and
retain the required number of events.

3.2. Representing qualitative relations

In contrast to single-event probabilities, natural frequen-
cies preserve information about the size of the reference
class and, as a consequence, do not directly indicate
whether an observation and hypothesis are statistically
independent. For example, probability judgments drawn
from natural frequencies do not tell us that a symptom
present in (a) 640 out of 800 patients with a particular
disease and (b) 160 out of 200 patients without the disease,
is not diagnostic because 80% have the symptom in both
cases (Over 2000a; 2000b; Over & Green 2001; Sloman
& Over 2003). Thus, probability estimates drawn from
natural frequencies do not capture important qualitative
properties.

Furthermore, in contrast to the cited benefits of non-
normalized representations (e.g., Gigerenzer & Hoffrage
1995), normalization may serve to simplify a problem.
For example, is someone offering us the same proportion
if he tries to pay us back with 33 out of 47 nuts he has gath-
ered (i.e., 70%), after we have earlier given him 17 out
of 22 nuts we have gathered (i.e., 77%)? This question
is trivial after normalization, as it is transparent that 70
out of 77 out of 100 are nested sets (Over 2007).

3.3. Reasoning about unique events and
associative processes

One objection to the claim that the encoding of natural
frequencies supports Bayesian inference is that intuitive
probability judgment often concerns (a) beliefs regarding
single events, or (b) the assessment of hypotheses about
novel or partially novel contexts, for which prior event fre-
quencies are unavailable. For example, the estimated like-
lihoods of specific outcomes are often based on novel and
unique one-time events, such as the likelihood that a par-
ticular constellation of political interests will lead to a
coalition. Hence, Kahneman and Tversky (1996, p. 589)
argue that the subjective degree of belief in hypotheses
derived from single events or novel contexts “cannot be

generally treated as a random sample from some reference
population, and their judged probability cannot be reduced
to a frequency count.”

Furthermore, theories based on natural frequency rep-
resentations do not allow for the widely observed role of
similarity, analogy, association, and causality in human judg-
ment (for recent reviews of the contribution of these factors,
see Gilovich et al. 2002 and Sloman 2005). The nested sets
hypothesis presupposes these determinants of judgment
by appealing to a dual-process model of judgment (Evans
& Over 1996; Sloman 1996a; Stanovich & West 2000), a
move that natural frequency theorists are not (apparently)
willing to make (Gigerenzer & Regier 1996). The dual-
process model attributes responses based on associative
principles, such as similarity, or responses based on retrieval
from memory, such as analogy, to a primitive associative
judgment system. It attributes responses based on more
deliberative processing involving rule-based inference,
such as the elementary set operations that respect the
logic of set inclusion and facilitate Bayesian inference, to a
second deliberative system. However, this second system
is not limited to analyzing set relations. It can also, under
the right conditions, do the kinds of structural analyses
required by analogical or causal reasoning.

Within this framework, natural frequency approaches
can be viewed as making claims about rule-based processes
(i.e., the application of a psychologically plausible rule for
calculating Bayesian probabilities), without addressing the
role of associative processes in Bayesian inference. In
light of the substantial literatures that demonstrate the
role of associative processes in human judgment, Kahne-
man and Tversky (1996, p. 589) conclude, “there is far
more to inductive reasoning and judgment under uncer-
tainty than the retrieval of learned frequencies.”

4. Summary and conclusions

The conclusions drawn from the diverse body of empirical
and conceptual issues addressed by this review consist-
ently challenge theories of Bayesian inference that
depend on natural frequency representations (see
Table 2), demonstrating that coherent probability esti-
mates are not derived according to an equational form
for calculating Bayesian posterior probabilities that
requires the use of such representations.

The evidence instead supports the nested sets hypoth-
esis that judgmental errors and biases are attenuated
when Bayesian inference problems are represented in
a way that reveals underlying set structure, thereby demon-
strating that the cognitive capacity to perform elementary
set operations constitutes a powerful means of reducing
associative influences and facilitating probability estimates
that conform to Bayes’ theorem. An appropriate represen-
tation can induce people to substitute reasoning by rules
with reasoning by association. In particular, the review
demonstrates that judgmental errors and biases were atte-
nuated when (a) the question induced an outside view by
prompting the respondent to utilize the sample of category
instances presented in the problem, and when (b) the
sample of category instances were represented in a
nested set structure that partitioned the data into the com-
ponents needed to compute the Bayesian solution.
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Although we disagree with the various theoretical
interpretations that could be attributed to natural fre-
quency theorists regarding the architecture of mind, we
do believe that they have focused on and enlightened us
about an important phenomenon. Frequency formulations
are a highly efficient way to obtain drastically improved
reasoning performance in some cases. Not only is this an
important insight to improve and teach reasoning, but it
also focuses theorists on a deep and fundamental
problem: What are the conditions that compel people to
overcome their natural associative tendencies in order to
reason extensionally?
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NOTES
1. The respondent’s subjective degree of belief in the hypoth-

esis (H) that the patient has breast cancer, given the observed
datum (D) that she has a positive mammography (i.e., the pos-
terior probability, Pr(H j D)) can be expressed numerically as
the ratio between (a) the probability that the patient has the
disease and obtains a positive mammogram (Pr(H > D)), and
(b) the probability that the patient obtains a positive mammo-
gram (Pr(D)). To calculate this ratio, Bayes’ theorem incorpor-
ates two axioms of mathematical probability theory: the
conditional probability and additivity laws. According to the
former, (a) can be expressed by the probability that the patient
has the disease (i.e., the base-rate of the hypothesis) multiplied
by the probability that the patient obtains a positive mammo-
gram, given that she has the disease (i.e., the hit-rate of the
test): Pr(H > D) ¼ Pr(H) Pr(D j H). The additivity rule is then
applied to express (b) as the probability that the patient has the
disease and obtains a positive mammogram, plus the probability
that the patient does not have the disease and obtains a positive
mammogram: Pr(D) ¼ Pr(H > D)þ Pr(�H > D). The con-
ditional probability rule can be further applied to express this
latter quantity as the complement of the base-rate multiplied by
the probability that the patient obtains a positive mammogram,
given that she does not have the disease (i.e., the false alarm
rate of the test): Pr(�H > D) ¼ Pr(�H) Pr(D j � H). Thus,
according to Bayes’ theorem, the probability that the patient
has breast cancer, given that she has a positive mammography,
equals Pr(H j D) ¼ Pr(H j D) / Pr(D) ¼ Pr(H) Pr(D j H) /
Pr(H) Pr(D j H)þ Pr(�H) Pr(D j � H) ¼ (0.01)(0.80) /
[(0.01)(0.80)þ (0.99)(0.096)], or 7.8 per cent.

2. When estimated from natural frequency formats or
formats expressing numbers of chances, because they entail the
sample and effect sizes, posterior probabilities can be calculated
in a way that does not require that the probabilities be multiplied
by the base-rates. The following simple form can be used to
calculate the probability of a hypothesis (H) given datum
(D): Pr( H jD) ¼ [N(H > D)=N(H > D)þN(�H > D)], where
N(H > D) is the number of cases having the datum in the pre-
sence of the hypothesis, and N(�H > D) is the number of
cases having the datum in the absence of the hypothesis. This
form requires that the respondent attend only to the

N (H > D) and the N(�H > D), whereas estimating posteriors
with percentages requires transforming percentage values into
conditional probabilities by incorporating base-rates, making
the calculation more complex than under natural frequency
formats.

3. There may be an important relation between sensitivity to
nested-set structure and the law of the excluded middle that
appears in logic. By this rule, all propositions of the form
“p or not-p” hold. We apply the rule, for example, to infer that
everyone either has a disease or does not have the disease.
We use it again to infer that everyone has some symptom or
does not have it. Thus, the logical trees cited by natural fre-
quency theorists are consistent with this fundamental logical
rule (Over 2007).

4. Girotto and Gonzalez (2001) point out that the chance rep-
resentation of probability is commonly employed in everyday
situations, such as when someone says, “A tossed coin has one
out of two chances of landing head up” or that “there is one
out of a million chances of winning the lottery.” Chances preserve
information about the size of the reference class (i.e., the total
population of chances). Hoffrage et al. (2002) argue that
chances are just frequencies. This is false (see Girotto & Gonzalez
2002). Chances refer to the probability of a single event and are
based on the total population of chances rather than a finite
sample of observations. The chances, for example, of drawing
an ace from a standard deck of playing cards are “4 out of 52”:
There are four ways that an ace can be drawn from the deck of
52 cards. In contrast to natural frequencies, the size of the refer-
ence class represents the total population (i.e., the deck of
52 cards). We might observe, for example, that one out of 10
cards randomly drawn from the deck is an ace, but this method
of “natural sampling” would not represent the chance or
number of ways of drawing an ace from the full deck. Chances
cannot be directly assessed by “counting occurrences of events
as they are encountered and storing the resulting knowledge
base for possible use later” (i.e., natural sampling; Brase 2002b,
p. 384). Chances are thus distinct from natural frequencies.

5. The mind-as-Swiss-army-knife, natural frequency al-
gorithm, and natural frequency heuristic theories do not
concern the encoding of event frequencies under naturalistic
settings in general, but focus only on event frequencies that
have a partitive structure. Therefore, these approaches do
not address the encoding of non-partitive event frequencies
(e.g., the event frequency of naturally occurring independent
events). Given that both frequencies exist in nature, it is
unclear why only frequencies of the latter type are deemed
important.

6. Bayes’ theorem in odds form refers to the probability
in favor of a hypothesis (H) over the probability of an alterna-
tive hypothesis (�H), given observed datum (D) (i.e., the pos-
terior odds: [Pr(H j D) / Pr(�H j D)]. To compute the posterior
odds, Bayes’ theorem incorporates two factors: the likelihood
ratio and the prior odds. The likelihood ratio is a measure of
whether the datum is diagnostic with respect to the hypothesis
(H). If the evidence is diagnostic then the likelihood ratio
will be positive, demonstrating that the observed datum is
more likely to occur under the presence of the hypothesis
(H) than under the alternative hypothesis (�H). The prior
odds is the ratio of base-rate probabilities [Pr(H) / Pr(�H)].
Bayes’ theorem in odds form states that the product of
these quantities yields the posterior odds, Pr(H j D) / Pr
(�H j D) ¼ [Pr(D j H) / Pr(D j � H)] � [Pr(H) / Pr(� H)].
To directly estimate the relative weight of the likelihood
ratios and prior odds, Bayes’ theorem in odds form can be log-
arithmically transformed to yield log [Pr(H j D) / Pr
(�H j D)] ¼ log [Pr(D j H) / Pr(D j�H)]þ log [Pr(H) /
Pr(�H)]. Under this formulation, the likelihood ratios and
prior odds can be treated as independent variables in a
regression analysis to assess the relative contribution of each
factor in Bayesian inference.
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Abstract: The conclusions of Barbey & Sloman (B&S) crucially depend
on evidence for different representations of statistical information.
Unfortunately, a muddled distinction made among these representations
calls into question the authors’ conclusions. We clarify some notions of
statistical representations which are often confused in the literature.
These clarifications, combined with new empirical evidence, do not
support a dual-process model of judgment.

We disagree with Barbey & Sloman’s (B&S’s) claim that data on
Bayesian reasoning support their dual-process model of human
judgment. First, we clarify the dimensions along which statistical
information can be expressed, and then point to how this
common conceptual confusion can influence B&S’s interpret-
ation of existing data. Second, we explain how new evidence con-
tradicts this model.

1. Statistical representation. Statistical information can be
represented in multiple ways along two orthogonal dimensions:

the number of events and the numerical format. First, the
information may concern only one event (single-event probability)
or a set of events (frequency). For example, the probability that
a person has a positive test if she is ill is a single-event
probability, in contrast to the frequency of people having a
positive test among those who are ill. Second, the numerical
information can be represented as percentages (20%); fractions
(20/100); real numbers between 0 and 1 (0.2); or pairs of
integers (“20 chances out of 100” for single-event probabilities,
and “20 people out of 100” for frequencies).

Consider now a Bayesian task of computing the probability of
a hypothesis H, given the data D, such as the probability of being
ill, given the result of a test. In this context, there is yet another
orthogonal dimension along which the statistical information can
vary: the information can be expressed in a conjunctive or in a
normalized format. The conjunctive format gives the relevant
conjunctive information P (H & D) and P (not-H & D), or P (H
& D) and P (D). In this case the Bayesian computations are
rather simple (see Eq. 1):

P(H jD) ¼
P(H&D)

P(H&D)þ P(not-H&D)
¼

P(H&D)

P(D)
(1)

Alternatively, information can be expressed in a normalized
format giving the normalized information P (D j H) and P (D j
not-H), in addition to P (H) – and not giving the relevant con-
junctive information. The normalized format complicates com-
puting the Bayesian results (see Eq. 2):

P(H jD) ¼
P(D jH)P(H)

P(D jH)P(H)þ P(D j not�H)(1� P(H))
(2)

Because the number of events and conjunctive/normalized
format dimensions are orthogonal, one can give statistical infor-
mation in a Bayesian task in four possible ways, each of which
can be represented as percentages, fractions, real numbers or
pair of integers (see Table 1 for examples of Bayesian tasks,
each represented in different numerical formats).

Confusion among these three orthogonal dimensions is
common in the literature and poses particular problems in the

Table 1 (Barton et al.). Taxonomy of statistical information: examples of Bayesian tasks

Normalized format Conjunctive format

Single event
probabilities

A 40-year-old woman who participates in routine
screening has 10 out of 1,000 chances to have
breast cancer. [P (H)]

The probability of breast cancer is 1% for a 40-year-old
woman who participates in a routine screening. [P (H)]

If such a woman has breast cancer, she has 800
out of 1,000 chances to have a positive
mammography [P (D j H)]

The probability that such a woman has a positive
mammography and has breast cancer is 0.8% [P (H & D)]

If such a woman does not have breast cancer, she
has 96 out of 1,000 chances to have a positive
mammography. [P (D j not-H)]

The probability that she has a positive mammography and
does not have breast cancer is 9.5%. [P (not-H & D)]

Frequencies A proportion of 0.01 of women at age 40 who
participate in routine screening have breast
cancer. [P (H)]

(labeled Natural frequencies when represented as pairs of
integers)
10 out of 1,000 women at age forty who participate in
routine screening have breast cancer [P (H)]

A proportion 0.8 of women with breast cancer
will have positive mammographies. [P (D j H)]

8 out of these 1,000 women have a positive mammography
and have breast cancer [P (H & D)]

A proportion 0.096 of women without breast
cancer will also have positive
mammographies. [P (D j not-H)]

95 out of these 1,000 women have a positive mammography
and do not have breast cancer [P (not-H & D)]

Note. Each of the four numerical formats can apply to the four probability/frequency and normalized/conjunctive combinations. Here, we
arbitrarily assigned numerical formats for each cell.
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B&S target article, because the authors draw false conclusions on
this basis. First, they mention “natural frequency formats that
were not partitioned into nested set relations” (B&S, sect. 2.4,
para. 2). But non-partitioned frequency formats are simply fre-
quencies expressed in a normalized format; therefore, natural
frequencies must be partitioned into nested set relations. Conse-
quently, B&S’s critiques of the so-called non-partitioned natural
frequencies apply only to normalized frequencies (i.e., frequen-
cies in a normalized format). Second, a sentence like “33% of
all Americans will have been exposed to Flu” (target article,
Table 5) concerns a whole population, not a single individual;
therefore, it conveys frequencies, not single-event probabilities,
contrary to the authors’ equating of percentages (referring to
the numerical representation) and single-event probabilities
(referring to the number of events). B&S misinterpret a key
result of Brase (2002b), who showed that subjects perceived
simple frequencies (i.e., frequencies represented as pairs of inte-
gers) as clearer, more understandable, and more impressive than
single-event probabilities represented as non-integer numbers
(Brase 2002b, pp. 388–89).

B&S contrast what they call “theoretical frameworks” (sect.
1.2, para. 2) based on natural frequency representations with
the “nested set hypothesis” (sect. 2.10, para. 5). However, some
of these contrasts appear a bit artificial. Consider the Gigerenzer
and Hoffrage (1995) study, which predicted and showed that
natural frequencies facilitate Bayesian inference. B&S claim
this effect results from the clarification of the nested-sets struc-
ture of the problem. But Gigerenzer and Hoffrage (1995) had
already made a more specific, related argument, stating that
the facilitation of natural frequencies results from simplifying
the Bayesian computations by giving the relevant conjunctive
information. B&S’s idea that this facilitation results from the clar-
ification of the nested-sets structure of the problem stands more
in opposition to the use of an evolutionary argument (Cosmides
& Tooby 1996) to predict the facilitating effect of natural fre-
quencies, than in opposition to Gigerenzer and Hoffrage’s argu-
ment. However, some of the arguments used by B&S against this
evolutionary stance are not valid. For example, they say that since
both normalized and natural “frequencies exist in nature, it is
unclear why only frequencies of the latter type are deemed
important” (target article, Note 5). This is not true: Natural fre-
quencies “exist in nature” in the sense that, in a natural sample
of the population, counting the number of individuals belonging
to the groups H & D and not-H & D yields natural frequencies
(conjunctive information); whereas, counting in such a natural
sample cannot result in normalized information that does not
contain the conjunctive information. Therefore, normalized fre-
quencies, which only give the normalized information, do not
exist in nature in this sense. So, an evolutionary argument that
predicts the facilitating effect of natural frequencies, but no
such effect for normalized frequencies, can be defended
against this charge that both normalized and natural frequencies
exist in nature (even if one sees this evolutionary argument as
speculative and feels uncomfortable about making precise pre-
dictions on this basis).

2. Facilitating effects. B&S propose a general dual-process
model of judgment, which denies any facilitating effect of
frequencies per se, because “facilitation is a product of general-
purpose reasoning processes” (sect. 1.2.5, para. 1). As evidence
against such an effect, B&S cite Girotto and Gonzalez’s (2001)
facilitating effect when the information is given as “number of
chances” in a conjunctive format, which is a way of expressing
single-event probabilities. Recent work by Brase (2007),
however, demonstrates that many people interpret such chances
as natural frequencies, despite instructions to the contrary.
Moreover, those who interpret chances as natural frequencies
have higher rates of success than those who judge the
information as single-event probabilities. This suggests that
frequencies can have a facilitating effect in some circumstances,

in addition to the facilitating effect of computational simplicity.
If this facilitating effect of frequencies is confirmed, it would
make the dual-process model much more difficult to defend.

Conclusion. Though we do not dismiss the idea of a dual-process
model outright, we think that B&S have not made a robust
argument in support of such a model. The authors misinterpret
data used to reject alternatives to the nested-set hypothesis.
Further, the connection between the nested-set hypothesis and
the dual-process model of judgment is not as crisp as one would
like. Perhaps this is due to the rather vague nature of the dual-
process model itself (cf. the criticisms of Gigerenzer & Regier
1996). The general project of building such a model sounds
exciting, but we look forward to a more rigorous, clearly defined
(and therefore falsifiable) dual-process model of judgment.
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Abstract: The tendency to neglect base-rates in judgment under
uncertainty may be “notorious,” as Barbey & Sloman (B&S) suggest,
but it is neither inevitable (as they document; see also Koehler 1996)
nor unique. Here we would like to point out another line of evidence
connecting ecological rationality to dual processes, the failure of
individuals to appropriately judge cumulative probability.

Recent data in studies by McCloy and colleagues (McCloy et al.
2007; McCloy et al., submitted) show that judgment of cumulat-
ive, disjunctive risk (i.e., the probability of avoiding an adverse
event over a period of time during which one continually
engages in a risky activity) benefits from presentation in a fre-
quency, rather than a probability, format (McCloy et al., sub-
mitted). It does this in a similar manner to the way in which
judgments of conditional probability avoid the base-rate neg-
lect fallacy if presented in natural frequency format (Gigerenzer
& Hoffrage 1995). Further, training in translation from prob-
ability to frequency formats shows similar improvements rela-
tive to baseline for both types of judgment (McCloy et al.
2007). However, the effects of both format and training are
mimicked by presenting information in a partitive or “nested”
set structure (in our studies, diagrammatically represented by
probability trees rather than Euler circles). This suggests that
similar processes may be involved in both problem types, and
we applaud Barbey & Sloman (B&S) for attempting to break
down the nature of those processes rather than remaining satis-
fied with a “natural frequency” label. However, we do not
believe that B&S have (yet) produced a full and complete
account of the means by which dual processes may produce
rationality within certain given ecologies.

One worry is the assertion that people do not have an (evolved
or otherwise) capacity to encode frequency information. This is a
claim concerning a failure to observe a particular capability and
might reflect failures in the observational technique employed
as much as a failure in the capability itself. The data reviewed
by B&S are based upon individuals’ inability to produce, on
demand, explicit knowledge obtained of frequencies from epi-
sodes of incidental learning. This is known to be problematic
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(Morton 1968). This may – perhaps – explain why well-con-
trolled laboratory studies (e.g., Sedlmeier et al. 1998) have had
better success in showing accurate frequency judgments than
studies in naturalistic settings do, although, as B&S note, such
lab studies have typically not covered autobiographical events
to which a Bayesian inference structure can be applied.

A second concern is directly related to the issue of training indi-
viduals to translate from probabilities to frequencies (McCloy et al.
2007). In this study we examined whether training people to rep-
resent the data to themselves in a partitive structure allowed for
accurate responding to cumulative risk judgments. This was con-
trasted with equivalent judgment based on single-event probabil-
ities expressed relative to a single time period. Participants were
given statements such as: “Suppose that a person who drives fast
whilst using a cell phone has a 90% probability of not being
involved in a car accident in any one year. What is the probability
that they avoid being involved in an accident at all if they continue
to drive in the same way, over the same roads, for three years?”
This statement produced, on average, only 25% correct respond-
ing, although the statistical “rule” for disjunctive cumulative
probability (1 – pn) is considerably simpler in form than Bayes’
theorem. Following training in recoding this data into either a
probability or a frequency tree, however, performance improved
to approximately 67% correct, and stayed at this level after a
one-week interval. This suggests that problem structure is import-
ant for more than just base-rate neglect problems – but it also
begs the question of how problem structure is represented if not
in frequency terms. Our participants were taught to use tree-struc-
tures and proved reasonably able at learning and using these.
Sloman et al. (2003) employed Euler circles to likewise make
nested set relations transparent for Bayes’ theorem. Unfortunately,
although tree structures and Euler circles may be interchangeable
as aids to conditional reasoning, they are not necessarily equivalent
when applied to cumulative probability judgments, as the diagram
in Figure 1 makes clear.

With tree structures, the branching of different states of the
world over time can be represented within a single tree regardless
of whether the problem is conditional or cumulative (a fact that
caused our participants some difficulty when unexpectedly con-
fronted with problems of an unexpected type). In contrast, for con-
ditional probabilities the number of (or chances of) having a
disease, given a positive test, is represented by only one possible
set of Euler circles (see target article’s Fig. 1). Following Sloman
et al. (2003), the probability of avoiding a car accident over the
two-year period is 1 minus p (SC union DC) but the number of
(or chances of) avoiding a car crash over a two-year period is,
potentially, the complement of any one of three pairs of Euler
circles (a, b, and c in our Fig. 1). Although for any realistic prob-
ability values circle b is considerably more probable, this may not
be immediately apparent using solely partitive information.

Despite this difficulty, framing cumulative probability judg-
ments in such a way that nested relations are transparent
improves performance in a manner similar to making sorts (or
kinds) of relations transparent within Bayesian judgments. This
leaves us with the questions: If not all diagrammatic represen-
tations of nested relations are equal, what type of mental

representation(s) of such relations are being employed in order
to reason extensionally; and, crucially, when and how is this rep-
resentational system employed?

Kissing cousins but not identical twins: The
denominator neglect and base-rate respect
models
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Abstract: Barbey & Sloman’s (B&S’s) base-rate respect model is
anticipated by Reyna’s denominator neglect model. There are parallels
at three levels: (a) explanations are grounded in a general cognitive
theory (rather than in domain-specific ideas); (b) problem structure is
treated as a key source of reasoning errors; and most importantly,
(c) nested set relations are seen as the cause of base-rate neglect.

Science presents occasional examples of parallel development of
the same ideas to explain the same findings. I comment here on
such an example found in the psychology of judgment and decision
making: the dual-process model of base-rate neglect proposed in
the target article by Barbey & Sloman (B&S) and a dual-process
model of base-rate neglect that was developed in the 1990s by
Reyna (1991; Reyna & Brainerd 1993; 1994; 1995).

The key properties of the Barbey-Sloman model are its assump-
tions that (a) an explanation of base-rate neglect must be grounded
in a general cognitive theory (not domain-specific ideas), (b) struc-
tural features of base-rate problems are what cause errors, and
(c) set nesting is the structural feature that is directly responsible
for errors. These are also properties of Reyna’s dual-process
denominator neglect model. The research program that led to
Reyna’s theory was the first to develop a process model for
Tversky and Kahneman’s (1983) suggestion that set nesting pro-
duces errors in the conjunction fallacy, and was the first to elucidate
specific cognitive difficulties that nested sets foment in reasoners.

Concerning assumption (a), the aim of Reyna’s research
program was to identify cognitive mechanisms that cause
various classes of reasoning illusions. From the beginning, the
guiding principles were that models of reasoning illusions, such
as base-rate neglect, should be grounded in a general cognitive
theory and that domain-specific accounts are at best unparsimo-
nious and at worst untestable. This work produced a general fra-
mework, known as fuzzy-trace theory (FTT), that explains
reasoning illusions by focusing on relations between memory
processes and reasoning operations. FTT’s level of generality is
such that it has been widely used to explain basic memory pro-
cesses (e.g., FTT’s models of recognition and recall) as well as
reasoning illusions.

Figure 1 (Beaman & McCloy). Three situations (a, b, and c) representing the relationship between the set of car accidents in year 1
(solid circle, SC) and year 2 (dashed circle, DC).
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Concerning assumption (b), FTT explains reasoning illusions by
isolating structural properties of reasoning problems that interfere
with three general stages of cognitive processing: (1) storing the
correct problem representation (its “gist”), (2) retrieving that rep-
resentation and the appropriate processing operations on reason-
ing problems, and (3) executing the steps that are required for
the processing operations to deliver solutions. This approach is
exemplified in FTT’s explanations of many types of reasoning fail-
ures, such as arithmetic errors (Brainerd & Reyna 1988) and tran-
sitive inference errors (Reyna & Brainerd 1990).

Concerning assumption (c), extensive research was conducted
on the cognitive mechanisms that cause errors in the family of
illusions to which base-rate neglect belongs: inclusion illusions.
Much of that work involved a prototypical task that produces
such errors: Piaget’s class-inclusion problem. The mechanisms
that were identified were then generalized to base-rate problems,
conjunction problems, probability problems, expected-value pro-
blems, and other tasks in the inclusion illusions family. Class-
inclusion problems are structurally simple but cognitively
impenetrable: Children are presented with an array of objects,
subdivided into two (or more) familiar sets, such as 7 cows and
3 horses, that belong to a common superordinate set (10
animals), and are asked “Are there more animals or more
cows?” Young children consistently respond: “more cows.” This
error persists for many years, with the error rate at age 10 still
being 50% (Winer 1980), and adults routinely make the error
on slightly more complex versions of the problem (Reyna
1991). Why are such problems so difficult?

The answer that emerged, following many experiments (e.g.,
Brainerd & Reyna 1990; 1995), is that nested sets interfere mas-
sively with the aforementioned processing stages. Reyna (1991)
summarized the cognitive effects as follows: “processing
focuses on the subset mentioned in the question, the superordi-
nate set recedes, and the question appears to involve nothing
more than . . . a subset-subset comparison” (p. 325). These

effects were found to be rooted in the fact that problems in the
inclusion illusions family have two-dimensional structures, with
one dimension (the subset-subset) being salient and easy to
process and the other (the subset-superordinate set), which is
crucial to solution, being obscure. The obscurity is caused by
the containment relation, which creates “mental booking” pro-
blems in which subsets disappear whenever the mind focuses
on the superordinate set and the superordinate set disappears
whenever the mind focuses on the subsets. Yet, correct reasoning
demands subset-superordinate set comparisons. Reyna went on
to formulate the denominator neglect model, wherein this diffi-
culty was posited as the cause of base-rate neglect, the conjunc-
tion fallacy, and other errors that arise from comparing numerical
parts to numerical wholes. The term “denominator” referred to
the fact that denominator information is ignored because
denominators are obscure wholes of part–whole relations.

A last point that illustrates the deep parallels between the Reyna
and the Barbey-Sloman models is the centrality of formatting
manipulations in tests of the models. These are manipulations
that make problem structure more transparent and, crucially,
enhance the salience of subset-superordinate set relations.
Reyna noted that her model predicts that such manipulations
reduce the mental bookkeeping problem and, therefore, should
significantly reduce errors. A formatting manipulation called
tagging provided dramatic confirmation. Young children, who
failed problems such as the animal example across the board, per-
formed nearly perfectly when simple tags (e.g., a hat on each
animal’s head, a bow on each animal’s tail) were affixed to all the
members of each subset, so that the superordinate set was just
as salient as the subsets. Likewise, B&S stress the importance of
presentation formats that allow “accurate representation in terms
of nested sets of individuals” (target article, Abstract) in base-
rate problems. With respect to the most effective presentation
formats that they discuss, these formats, too, are ones that ought
to reduce the mental bookkeeping problem of nested sets.

Although the Barbey-Sloman model is anticipated to a remark-
able degree by the Reyna model, the dual-process frameworks
that lie behind the models are different. The Barbey-Sloman fra-
mework is the traditional System 1/System 2 approach, which
treats intuition as a primitive form of thinking that cognitive
development and expertise evolve away from. The Reyna frame-
work is FTT, which treats intuition as an advanced mode of think-
ing that cognitive development and expertise evolve towards.
That intuition is advanced by virtue of memory considerations,
though different ones than those which figure in the Barbey-
Sloman model (see Table 1).

Omissions, conflations, and false
dichotomies: Conceptual and empirical
problems with the Barbey & Sloman account
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Abstract: Both the theoretical frameworks that organize the first part of
Barbey & Sloman’s (B&S’s) target article and the empirical evidence
marshaled in the second part are marked by distinctions that should not
exist (i.e., false dichotomies), conflations where distinctions should be
made, and selective omissions of empirical results – within the very
studies discussed – that create illusions of theoretical and empirical favor.

Theoretical frameworks. The number of contrasting
theoretical frameworks that Barbey & Sloman (B&S) face
is impressive on the face of it – four against one.But are all
these distinctions appropriate or scientifically useful? The short

Table 1 (Brainerd). Memory advantages that make
intuitive reasoning advanced

Advantange Description

Memory availability Intuitive reasoning processes the types
of memories (gist) that are stable
over time. The types of memories
processed by logical reasoning are
not stable.

Memory accessibility The gist memories that intuition
processes are accessible by a broad
range of retrieval cues.

Memory malleability The sketchy nature of gist memories
makes them especially easy to
transform into solutions during
reasoning.

Processing simplicity The simplicity of gist memories makes
intuitive reasoning relatively
uncomplicated.

Processing accuracy Intuitive processing of gist memories is
usually just as accurate (and is often
more accurate) than logical
processing of more elaborate,
detailed memories.

Processing effort Intuitive processing of gist memories is
easier to execute than logical
processing of more elaborate,
detailed memories.
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way to demonstrate they are not is to simply note that the same
theorists (Gigerenzer, Cosmides, and Tooby) are repeatedly
invoked for all of the first three frameworks.

The longer demonstration is to dismantle these accounts
sequentially. There is the “Mind as Swiss army knife” framework
that is distinguished by unavailability to conscious awareness or
deliberate control (cognitive impenetrability), and then there is
the “Natural frequency algorithm” framework that is information-
ally encapsulated. But wait; those distinguishing characteristics are
actually imposed by others (e.g., Fodor 1983) and rejected by the
actual theorists under consideration here (e.g., Cosmides & Tooby
2003; Duchaine et al. 2001; Ermer et al. 2007; Tooby et al. 2005;
Tooby & Cosmides 2005). The first and second theoretical frame-
works therefore collapse into a third one.

The third framework (incorporating the previous two), is a
“Natural frequency heuristic” account, and is probably closest
to the one actual and appropriate opposing view for B&S. The
fourth framework (“Non-evolutionary natural frequency heuris-
tic”) suggests that an appropriate position is to willfully disregard
all evolutionary factors that have influenced the structure and
function of the human mind. One can question the nature of
the cognitive structures generated by evolutionary selection
pressures, but it is not scientifically legitimate to simply deny
evolution and replace viable evolutionary explanations with
“one way or another, people can appreciate and use [natural
sampling]” and that somehow “gives rise to” Bayesian reasoning
(sect. 1.2.4). Such vague descriptive explanations would have
effectively stagnated our understanding of visual processing or
language acquisition, and will have that effect on other cognitive
phenomena if unchecked.

This leaves us with two real frameworks, the final “nested sets/
dual processes” framework and an ecological rationality frame-
work – the two frameworks of the target article’s title. It is not
so much that there is no possibility of other frameworks, but
rather, that the ones described by B&S are not useful.

The empirical literature. Having constructed artificial required
properties for the theoretical frameworks of others, B&S then
tout the inability of those shackled frameworks to account for
empirical results. As easy as this should be, given such a set up,
it is nevertheless seriously flawed. Due to space constraints,
I focus here on how my own research is considered within this
target article. B&S use the findings of Brase et al. (2006) to
support a claim that “Bayesian inference depends on domain
general cognitive processes” that are strategically employed
(sect. 2.1). This was not the original purpose, findings, or
conclusions of our work – and for good reason. As B&S note in
that very same section, there have been differences in absolute
performance levels on Bayesian reasoning tasks, when
comparing across research programs. These different research
programs, however, had used different participants and
different methods for obtaining those participants (e.g., paid
versus classroom activity participation). Brase et al. (2006)
sought to determine the effects of participant selection and
recruitment methods on performance on such tasks, and found
that there were, indeed, significant effects that were capable of
accounting for all the differences in previous works. In
summary, B&S make a confusion between performance and
competence (Chomsky 1965) when they try to infer cognitive
abilities and structures from data showing that incentives affect
performance (see also Crespi 1942; 1944).

There also appears to be some confusion about the nature of
natural sampling and natural frequencies (i.e., naturally
sampled frequencies). The use of a consistent reference class
(sect. 2.3), also called using a partitive structure, nested sets, or
subset relations, are all linguistic twists on what is, in fact,
natural sampling (a point made many times by myself and
others; Brase 2002a; 2002b; Brase & Barbey 2006; Gigerenzer
& Hoffrage 1999; Hoffrage et al. 2002). Natural sampling
refers to the sequential acquisition of information (as in a

natural environment) along with categorization of that infor-
mation into meaningful, often overlapping, groups (see Brase
et al. 1998 for some limitations on easily constructible
categories.).

This confusion is starkly illustrated when B&S try to re-define
the numerical formats used in Brase (2002b). First, natural fre-
quencies are equated with simple frequencies by providing an
incorrect example of the former (this example belongs to B&S
and is not, as they claim, an inconsistency with the literature
on the part of Brase 2002b). In direct contradiction to B&S, a
single numerical statement such as the simple frequencies used
in Brase (2002b) cannot be identified as having a natural
sampling structure. Second, B&S point out – correctly – that
percentages can express single-event probabilities, but they
then carry this too far in concluding that this is the only thing
that probabilities can express. Indeed, as pointed out in Brase
(2002b), percentages are also referred to as “relative frequencies”
because they can be understood as frequencies that are normal-
ized to a reference class of 100 (e.g., as when one says “90% of my
students understand this topic”).

With B&S having misconstrued natural frequencies into
simple frequencies, and misconstrued relative frequencies into
probabilities, it is almost possible to claim that the results of
Brase (2002b) indicate that single event probabilities are per-
ceived equally well compared to natural frequencies. The
remaining necessary manipulation is for B&S to also completely
omit the other numerical format conditions used in Brase
(2002b), which included actual single-event probabilities (and,
no, these actual single-event probabilities were not understood
as well or clearly as simple frequencies and relative frequencies).

Why frequencies are natural
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Abstract: Research in mathematical cognition has shown that rates, and
other interpretations of x/y, are hard to learn and understand. On
the other hand, there is extensive evidence that the brain is endowed
with a specialized mechanism for representing and manipulating
the numerosities of sets – that is, frequencies. Hence, base-rates are
neglected precisely because they are rates, whereas frequencies are
indeed natural.

Barbey & Sloman (B&S) are to be congratulated for laying out
the explanations for base-rate neglect so clearly and systemati-
cally. However, to a researcher not from the field of normative
rationality research, but from the field of mathematical cognition,
it is surprising that none of the explanations make reference
to what is known about how we process numerical quantities
(Butterworth 2001). From this perspective, another type of
explanation can be proposed for base-rate neglect. It is in the
word “rate.” Rates can be expressed formally as x/y, and it is
well known from research in mathematical cognition and edu-
cation that humans are very bad at understanding x/y however
it is interpreted – as a fraction, as a proportion, or as a rate.
For example, it is well known that children find it hard to learn
and understand fractions and simple operations on them
(Bright et al. 1988; Hartnett & Gelman 1998; Mack 1995;
Smith et al. 2005). It has also been found that most third and
fourth graders cannot order fractions by size and cannot
explain why there are two numbers in a given fraction (Smith
et al. 2005). In particular, they seem to have trouble getting
away from whole numbers – for example, when they say that
1/56 is smaller than 1/75 because 56 is smaller than 75
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(Stafylidou & Vosniadou 2004). This has been called “whole
number bias” (Ni & Zhou 2005) and can be found in adults as
well as children (Bonato et al., in press). Whole number bias is
not simply a function of the symbolic form of the rate, for
example, 3/5, because it appears also in non-symbolic formats
such as arrays of dots (Fabbri et al., submitted).

The advantage of presentations in terms of frequencies, and
therefore of whole numbers, rather than rates, again is well sup-
ported by research in mathematical cognition. This has nothing
to do with the relative computational simplicity of representing
the problem in terms of frequencies as compared with rate-based
Bayesian formulations; rather, it has to do with the fact that the
human brain is configured from birth to represent sets and their
numerosities. Infants can discriminate small sets on the basis of
their numerosity (Antell & Keating 1983; Starkey & Cooper
1980; Wynn et al. 2002). This seems to be an inherited capacity
since other primates can do the same in the wild (Hauser et al.
1996), and can learn to do it relatively easily (Brannon & Terrace
2000). Indeed, monkeys readily learn to select the larger of two
numerosities (Brannon & Terrace 1998; Matsuzawa 1985).

These primate capacities are not merely analogous to those of
humans, but appear to have been inherited from a common
ancestral system. Evidence for this comes from recent research
showing that the primate brain areas for numerosity processing
are homologous to human brain areas. Studies have demon-
strated that the intraparietal sulcus (IPS) in humans processes
the numerosities of sets (Piazza et al. 2002). It has recently
been demonstrated that when monkeys are required to remem-
ber the numerosity of a set before matching to sample, the hom-
ologous IPS brain area is active (Nieder 2005). This is evidence
that we have inherited the core of our system from the common
ancestor of humans and macaques.

The concept of the numerosity of a set is abstract, because sets
logically contain any type of member that can be individuated.
Members need not be visible objects, and they need not be sim-
ultaneously present. It turns out that the human numerosity
system in the IPS responds when members of the set are distrib-
uted as a sequence in time or simultaneously distributed in a
spatial array (Castelli et al. 2006) and for auditory as well as
visual sets (Piazza et al. 2006). Indeed, the neural process of
extracting numerosity from sets of visible objects appears to be
entirely automatic, since repeated presentation of different sets
with same numerosity produces a reduction in neural firing in
the IPS, called “adaptation,” even when numerosity is task-irrele-
vant (Cantlon et al. 2006; Piazza et al. 2004; 2007).

“Frequency” is just a way of referring to this numerosity prop-
erty of a set, and so it too is natural. ”Natural sampling” can be
interpreted to be a way of making an estimate of numerosity
when the set is distributed in time or in space. Humans and
other species are born with the capacity to make these estimates
of the approximate size of a set, using a specialized brain system
probably related to the system for exact numerosities. This
system also responds to environmental stimuli in rapid and auto-
matic manner (Cantlon et al. 2006; Dehaene et al. 1999; Lemer
et al. 2003; Piazza et al. 2004). So natural sampling too is natural,
in the sense that it depends on an innate system.

B&S note that accounts involving specialized modules (Cos-
mides & Tooby 1996), specialized frequency algorithms (Giger-
enzer & Hoffrage 1995), or specialized frequency heuristics
(Gigerenzer & Hoffrage 1995; Tversky & Kahneman 1974)
appeal to evolution. However, these claims depend on general
arguments about ecological rationality rather than on specific
facts about the evolution of dedicated neural system. On the
other hand, there is a clear account, well supported by a range
of evidence, as I have indicated, for the evolution of numerosity
processing. Indeed, the evidence suggests that numerosity pro-
cessing is a classic Fodorian cognitive module: domain-specific,
automatic, with a dedicated brain system, and innate (though
Fodor himself cites the number domain as the responsibility of
classic central processes; cf. Fodor 1983). Therefore, the critical

difference between normative Bayesian reasoning and actual
human preferences for sets and their frequencies appears to be
rooted in the evolution of a specialized “number module” for pro-
cessing numerosities (Butterworth 1999). As far as I know, there
is no comparable evolutionary account of a specialized brain
system for x/y.

Base-rate is neglected because rates are neglected.

Nested sets and base-rate neglect: Two types
of reasoning?
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Abstract: Barbey & Sloman (B&S) claim that frequency formats and
other task manipulations induce people to substitute associative
thinking for rule-based thinking about nested sets. My critique focuses
on the substitution assumption. B&S demonstrate that nested sets are
important to solve base-rate problems but they do not show that
thinking about these nested sets relies on a different type of reasoning.

In the target article, Barbey & Sloman (B&S) argue against
various versions of the popular natural frequency heuristic and
claim that the best account of the data should be framed in
terms of a dual-process model of judgment. Base-rate neglect
with the standard problem format is attributed to the pervasive-
ness of the associative system. Frequency versions and other
reviewed task manipulations are argued to boost performance
because they would induce people to substitute associative
thinking for rule-based thinking. Although I am sympathetic to
the basic rationale behind the B&S framework, I want to
point out that it lacks support for the crucial substitution
assumption. The authors nicely clarify that representations in
terms of nested sets reduce base-rate neglect but they do not
show that thinking about these nested sets relies on a different
type of reasoning. Such a claim requires an examination of the
processing characteristics of the two postulated modes of
thinking.

One of the core characteristics of rule-based reasoning is that it
draws on executive, working-memory resources, whereas associ-
ative thinking is more automatic in nature (e.g., Stanovich &
West 2000). If the good performance on the frequency versions
is due to a switch to rule-based reasoning, one would at least
need to show that people recruit executive resources when
they solve the frequency versions. This would demonstrate that
the kind of thinking that is triggered by the frequency format
exhibits the hallmark of rule-based thinking.

The good news is that B&S’s model leads to some clear-cut,
testable predictions. It is not hard to see, for example, how the
substitution claim could be directly tested in a dual-task study
(e.g., see De Neys 2006a; 2006b, for a related approach). B&S
argue that in the vast majority of cases people rely on automatic,
associative thinking to solve the standard probability format pro-
blems. Hence, burdening peoples’ working-memory resources
while they solve the probability versions should hardly affect
their responses any further. However, if the frequency versions
indeed trigger executive-demanding, rule-based processing,
then the good performance on Bayesian inference problems
with frequency formats should decrease under concurrent
working-memory load (i.e., show a larger decrease than with
standard probability formats). Note that the natural frequency
accounts make the exact opposite prediction because they attri-
bute the good performance on the modified versions to the
recruitment of an automatically operating, module-based
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reasoning process. Hence, if the natural frequency theorists are
right and people rely on an automatic module to solve the fre-
quency versions, burdening peoples’ working-memory resources
should not hamper performance.

In theory, studies that look at the correlation between cogni-
tive capacity and use of base rates may also help to test the sub-
stitution claim. If people recruit resource-demanding, rule-based
thinking to solve the frequency versions, one expects that individ-
ual differences in working-memory capacity (or general intelli-
gence) will mediate performance. The more resources that are
available, the more likely that the correct response will be com-
puted. The operation of an automatic, encapsulated module, on
the other hand, should not depend on the size of a general cog-
nitive resource pool. Unfortunately, the little correlational data
we have is not conclusive. In their extensive research program,
Stanovich and West included two Bayesian inference problems
(i.e., so-called noncausal base-rate problems) with a standard
probability format (i.e., the notorious “Cab” and “Aids” problems
based on Casscells et al. 1978 and on Bar-Hillel 1980). In contrast
to the bulk of their findings with other reasoning tasks, Stanovich
and West did not find any systematic correlations with cognitive
capacity measures.1 However, they did not look at correlations
between cognitive capacity and performance on the crucial fre-
quency format versions. Brase et al. (2006) did observe that stu-
dents in top-tier universities solved frequency versions better
than students in lower-ranked universities. If we simply assume
that students in higher-ranked universities have a higher working
memory capacity, the Brase et al. findings might present support
for B&S’s position. However, this conclusion remains tentative
since Brase et al. did not explicitly test their participants on a
standardized cognitive capacity measure.

In summary, B&S present an innovative model that highlights
the central role of the set structure of a problem in the base-rate
neglect phenomenon. I have tried to show that the model leads to
some clear-cut predictions that might help to validate the frame-
work in future studies. Unfortunately, the bad news is that in the
absence of such processing validation, the central substitution
claim of B&S’s dual-system account remains questionable. Based
on the available evidence, one needs to refrain from strong
claims about the involvement of a rule-based reasoning system
as the key mediator of base-rate “respect.”
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NOTE
1. B&S write that Stanovich and West (1998a; 2000) found corre-

lations between intelligence and use of base rates. It should be clarified
that these studies concerned problems where statistical aggregate infor-
mation is plotted against a concrete case (i.e., so-called causal base-rate
problems) and not the type of Bayesian inference problem (i.e., so-
called noncausal base-rate problems) on which the debate focuses.
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Abstract: We agree that current evolutionary accounts of base-rate
neglect are unparsimonious, but we dispute the authors’ account of
the effect in terms of parallel associative and rule-based processes. We
also question their assumption that cueing of nested set relations
facilitates performance due to recruitment of explicit reasoning
processes. In our account, such reasoning is always involved, but
usually unsuccessful.

Barbey & Sloman (B&S) argue that evolutionary accounts
of base-rate neglect are unparsimonious, especially with regard
to the facilitatory effects of frequency formats. We agree.
They also propose that the phenomena can be best accounted
for with a dual-processing framework. Here we also agree, in
general, but not with the specific dual-processing account
offered by these authors. This is based upon Sloman’s (1996a)
proposal of two parallel systems for reasoning, one associative
and one rule-based. The impression that B&S give, that this
theory is representative of dual-process models of reasoning
and judgement in general, is not correct.

Parallel-form dual process theories occur commonly where
authors propose two forms of knowledge. This applies in
dual-process accounts of learning (Reber 1993; Sun et al.
2005) where implicit and explicit learning processes lead to
something like associative neural nets and propositional
rules, respectively. This form of theory is also common in social
psychology (see Smith & DeCoster 2000) where researchers
are often concerned to distinguish implicit stereotypes and
attitudes, inferable from behaviour, from their explicit
counterparts that are verbally stated. Other dual-process the-
ories of reasoning and judgement, however, have a sequential
form in which the implicit processing is pragmatic rather than
associative and serves to contextualise explicit analytic think-
ing. This is the type of account offered by Stanovich (1999)
and by Evans (2006). In these theories, System 2 monitors
default intuitions arising in System 1 and may intervene with
more effortful and abstract reasoning (see also Kahneman &
Frederick 2002).

We actually think it quite plausible, as Cosmides and Tooby
(1996) argue, that both humans and other animals would have
evolved mechanisms for processing frequency information
about their environments. What we find implausible is that any
such cognitive module would be applied to quantitative word
problems of the kind presented in experiments on Bayesian infer-
ence. In particular, we note that advocates of the frequency-
processing module do not ask their participants to engage in
experiential learning of frequencies, but present them with col-
lated frequencies instead. Under such circumstances, people
can only apply general-purpose procedures for reasoning by con-
struction and manipulation of mental models. As B&S demon-
strate in their review, this will only be successful when people
are cued to construct models which encode the nested set
relationships.

We can find no evidence in the target article for the authors’
assertion that base-rate neglect is due to associative processing.
What association is involved? That between the hypothesis and
the diagnostic information, presumably – which would be a
similar account to the one given in terms of representativeness
(Kahneman & Tversky 1973). However, although the majority
tendency may be to base an answer on diagnostic information,
a substantial minority give the base rate as the answer instead
(Cosmides & Tooby 1996; Evans et al. 2000). Also, when real-
world beliefs rather than stated probabilities are used to
convey Bayesian priors, they may have much stronger influ-
ence than the diagnostic data on the judgments made (Evans
et al. 2002, Experiment 5). What is common to all these
cases is a failure to integrate base rate and diagnostic infor-
mation, which should be equally weighted. Only when set-
inclusive mental models are cued, will analytic reasoning be
successful.

In this article, B&S clearly imply that application of System 2
reasoning will lead to correct responding. For example, they state
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that, “An appropriate representation can induce people to substi-
tute reasoning by rules with reasoning by association” (sect. 4,
para. 2). There has been a tendency for authors in the reasoning
and judgement area to equate heuristic responding with biases
and analytic reasoning with normatively correct responding,
but this is a mistake that has been corrected in more recent
dual-process accounts of reasoning (Evans 2007; Stanovich
2006). In these new accounts, biases can occur in System 2 as
well as System 1. The problem is that no psychologically plausible
definition of System 2 reasoning – say, as slow, effortful, and
engaging executive working memory – can immediately imply
that it will be successful in finding normatively correct solutions.
Even if it is correct to think of such reasoning as “rule based,”
people may access rules that are normatively unsound, or fail
to apply them in an appropriate manner. At best we could say
that System 2 reasoning is necessary for logical reasoning; we cer-
tainly could not say that it is sufficient.

The literatures on reasoning and decision making are marked
by confusion between competence or computational level
accounts of reasoning and accounts based on normative ration-
ality (see Elqayam 2007). Even if we compare people of high
and low cognitive ability, it is not universally the case that
higher ability participants give more normatively correct
answers. Recent experiments, for example, have shown that
the logically valid modus tollens in inference may be endorsed
less often by participants with higher ability (Newstead et al.
2004). More directly relevant in the current context is the
report by Stanovich and West (1998b) that participants who
incorporated base rates had lower intelligence scores than par-
ticipants who neglected them. It is clearly impossible to recon-
cile the following propositions: (a) System 2 necessarily
produces normatively correct responses; (b) attention to base
rate is a normatively correct response, and (c) System 2 is
more strongly employed by those of higher ability. Of these
three statements, (b) holds by definition, and there is over-
whelming empirical evidence for (c). The only possible con-
clusion is that (a) is false.

In our view, the literature on base-rate neglect is amenable to a
dual-processing account, but not of the kind proposed by B&S. We
suggest that university student participants, instructed to engage in
reasoning, will in fact do so but with varying degrees of conformity
to Bayesian inference. Without formal training they will have no
access to the rules of Bayesian inference and can therefore only
attempt to use general-purpose analytic reasoning procedures
which involve constructing and manipulating mental models to
represent the problem information. With standard presentations,
it will appear to them that either base rate or else (more com-
monly) diagnostic information is relevant, but they will have no
means of integrating the two. Only when problem design cues
them to construct set-inclusive mental models will they succeed
in computing the normatively correct solution.

Enhancing sensitivity to base-rates: Natural
frequencies are not enough
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Abstract: We present evidence supporting the target article’s assertion
that while the presentation of base-rate information in a natural
frequency format can be helpful in enhancing sensitivity to base rates,
method of presentation is not a panacea. Indeed, we review studies

demonstrating that when subjects directly experience base rates as
natural frequencies in a trial-by-trial setting, they evince large base-
rate neglect.

In many studies of base-rate use (or neglect), human partici-
pants are asked to judge the likelihood of an event on the
basis of information about past occurrences (base rates) and
present diagnostic case cue information. Base rates and case
cues are presented in a tabulated statistical format. As Barbey
& Sloman (B&S) point out in the target article, and as has
been found by various investigators, subjects are less likely to
neglect base-rate information when data presentation is trans-
parent with respect to the set relations involved. Natural fre-
quency presentation is transparent in this way. In fact, in daily
life humans experience base rates in terms of natural frequen-
cies; however, they experience them one example at a time.
We thought that an ideal way to assess people’s sensitivity to
base-rate information would be with a matching-to-sample
(MTS) procedure (Stolarz-Fantino & Fantino 1990). In the
typical MTS procedure selection of the comparison stimulus
that matches the sample is reinforced. But the procedure may
be modified to vary the “accuracy” of the sample, that is, the
degree to which it predicts the correct answer and the base
rates (the proportion of correct answers assigned to each of
the two comparison stimuli). This procedure is analogous to
Tversky and Kahneman’s “taxicab problem” (Tversky & Kahne-
man 1982a) and other problems of similar type. In the MTS
analog, the sample stimulus corresponds to the witness in the
taxi problem, or the case-cue information in other base-rate
neglect problems; the probabilities of reinforcement for select-
ing the comparison stimuli correspond to the base rates, or inci-
dence of taxi types.

Our procedure was simple. The sample in a MTS task was
either a blue or green light. After the sample was terminated,
two comparison stimuli appeared: these were always a blue
and a green light. Participants were instructed to choose
either. We could present subjects with repeated trials rapidly
(from 150 to 400 trials in a less than one-hour session, depend-
ing on the experiment), and we could readily manipulate the
probability of reinforcement for selecting either color after a
blue sample and after a green sample. In one condition, the
blue and green samples were equi-probable. Following a blue
sample, selection of the blue comparison stimulus was
reinforced on 67% of trials and selection of the green compari-
son stimulus on 33% of trials. Following a green sample, selec-
tion of the green comparison stimulus was reinforced on 33% of
trials and selection of the blue comparison stimulus on 67% of
trials. In other words, the sample in this case had no discrimina-
tive (or informative) function, just as the witness testimony has
no function in the cab problem when the witness is 50% accu-
rate. If our participating college students were responding opti-
mally, they should have come to select the blue comparison
stimulus on every trial, regardless of the sample color, thereby
obtaining reward on 67% of trials. In this condition, participants
showed a huge base-rate neglect, matching green on 56% of
trials. In fact, our human participants showed significant base-
rate neglect over hundreds of trials in this condition and in
several others, in a series of studies conducted primarily by
Adam Goodie (e.g., Goodie & Fantino 1995; 1996; 1999). In
contrast, Hartl and Fantino (1996) found that pigeons selected
optimally in a comparable MTS task, with no evidence of
base-rate neglect.

What might account for the drastic difference in the behavior
of pigeons and college students? We have speculated that
humans have acquired strategies for dealing with matching pro-
blems that are misapplied in our MTS problem (e.g., Stolarz-
Fantino & Fantino 1995). For instance, from early childhood
we learn to match like shapes and colors at home, in school,
and at play (e.g., in picture books and in playing with blocks
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and puzzles). If base-rate neglect is a learned phenomenon, we
should be able to eliminate it by using sample stimuli that are
physically unrelated to the comparison stimuli. Therefore, we
repeated our earlier experiment (Goodie & Fantino 1995)
with a MTS procedure in which the sample stimuli were line
orientations and the comparison stimuli were again the colors
blue and green. This change eliminated base-rate neglect in
keeping with the learning hypothesis (Goodie & Fantino
1996). Instead, participants’ choices were well described
as probability matching. To further assess the learning hypoth-
esis, we next introduced a MTS task in which the sample and
comparison stimuli were physically different but were related
by an extensive history: The samples were the words “blue”
and “green”; the comparison stimuli the colors blue and
green. A robust base-rate neglect was reinstated. These and
other experiments led us to conclude with some confidence
that pre-existing associations contribute to the tendency to
ignore or underweight base-rate information. Our human par-
ticipants were not sensitive to the frequencies of reinforced
choices, whereas pigeons, unfettered by prior associations,
were appropriately sensitive to the same frequencies.
However, Fantino et al. (2005) have shown that pigeons will
also neglect base-rate information if they are given sufficient
prior MTS training with a 100% reliable sample – that is, a
training history more similar to that of human subjects.

Whether or not we have evolved to process information in
terms of frequencies, there is evidence that trial-by-trial presen-
tation of information can be difficult for human participants to
process. For example, Jenkins and Ward (1965) found that par-
ticipants’ judgments of contingency were more related to the
number of successful trials (Response 1 followed by Outcome 1)
than they were to the actual degrees of association between
responses and outcomes. A second study (Ward & Jenkins 1965)
showed that, when statistical information was presented in
summary form, many more participants based their contingency
judgments on logical rules (75%) than when they received trial-
by-trial information (17%).

Stolarz-Fantino et al. (2006) found that even with base-rate
story problems (similar to the taxicab problem) in which stat-
istical information was presented in a probability format,
human participants attended appropriately to base-rate infor-
mation under certain conditions. For example, when they
made likelihood judgments on a series of problems, their esti-
mates of likelihood varied appropriately with base-rate and
case-cue values; this was not the case when participants
judged single problems. And when the case-cue information
was unreliable (as when the “witness” was described as being
correct 50% of the time), many participants ignored the case
cue in favor of the base rate.

Presumably, trial-by-trial experience emphasizes associative
processes (System 1), whereas information presented in tabu-
lated statistical form can cue associative and/or rule-based
(System 2) activity. A challenge for future research will be to
learn more about how information learned through experience
becomes the subject of rule-based reasoning. Like Goodie and
Fantino’s (1996) participants, people typically have more
immediate experience with case-cue information than with
base rates; appreciating the effect of base rates usually
means integrating information over a period of time. In tasks
involving tabulated statistical information, base-rate and
case-cue information are available simultaneously; however,
in life, as pointed out by Fiedler (2000), the base rates of
many important events are unknown. Therefore, past experi-
ence may lead people to put more emphasis on case cues
even when base-rate information is available.

As the target article suggests, there is more to performance
on base-rate problems than the question of whether infor-
mation is presented in the form of probabilities or frequen-
cies. In fact, other variables may dwarf the effects of
presentation.

Ecologically structured information: The
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Abstract: The general principle behind the effects of nested sets on the
use of base rates, we believe, is that the mind is prepared to take in
“ecologically structured information.” Without any need to assume two
cognitive systems, this principle explains how the proper use of base
rates can be facilitated and also accounts for occasions when base rates
are overused.

A picture speaks a thousand words. Barbey & Sloman (B&S)
demonstrate this ancient principle with research showing how
Euler circles efficiently convey complex information and clarify
relationships among nested sets. Many other examples would be
possible; tree diagrams, Venn diagrams, pie-charts, bar graphs,
and other familiar data representations frequently appear in pub-
lications ranging from the most revered scientific journals to the
pages of USA Today. As every successful speaker, writer,
teacher, or advocate knows, some ways of presenting information
are especially effective. The best way to teach an abstract concept
may be via concrete examples. Certain pictures as well as natural
frequencies appear to be especially useful ways to convey complex
information. According to Pinker, “graphic formats present infor-
mation in a way that is easier for people to perceive and reason
about. However, it is hard to think of a theory or principle in con-
temporary cognitive science that explains why this should be so”
(Pinker 1990, p. 73). We will introduce a concept that might
help to answer this question, while also helping to explain why
some diagrams support problem solving and others do not (see
Larkin & Simon 1987).

The general principle is that the human perceptual and cogni-
tive system uses certain kinds of information readily because it
has impressive evolved and learned capacities for pattern recog-
nition and automatic categorization. Hence, people can try to
reason through an intricate system of interlocking sets to deter-
mine a probability, or they can look at certain diagrams and see
the result literally at a glance. Similarly, natural frequencies and
other well-chosen representations can vastly simplify problems
and calculations that would otherwise be difficult, if not imposs-
ible. As Gigerenzer and Hoffrage (1995) observed, “Cognitive
algorithms, Bayesian or otherwise, cannot be divorced from the
information on which they operate and how that information is
represented” (p. 701). What effective representations have in
common is that they are ecologically structured, a term we
derive from the concept of ecological rationality, which stresses
the match between the human mind and the environment (Giger-
enzer et al. 1999). Ecologically structured information can simplify
apparently complex problems because it fulfills this match: It is
presented in a manner that exploits human capacities to recognize
relations in certain representations of complex problems (e.g.,
pictures and frequency counts). It is information received in the
same way that people have evolved to receive information over
the millennia: through vividly sensed images and experiences,
and via specific instances, rather than abstract descriptions.

There is no need to posit two cognitive systems, as B&S do, to
explain the advantages of ecologically structured information,
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and it is a serious mistake to describe the first of these systems as
something “to overcome” (sect. 4) and the second as the ideal of
sound reasoning. Ironically, if the pattern recognition capacities
exploited by Euler circles were assigned to one of these putative
systems, it would seem more reasonable to base them in the first,
more perceptually based one. B&S nearly acknowledge this point
when they conclude that “appropriate representations can induce
people to substitute reasoning by rules with reasoning by associ-
ation” (sect. 4, para. 2).

It is disappointing, therefore, that B&S rely on the traditional and
simplistic dichotomy between “abstract reasoning ¼ good” and
“heuristics ¼ bad.” A vast amount of evidence demonstrates how
heuristics can make us smart (e.g., Gigerenzer et al. 1999), and, in
particular, how fast and frugal processes of the sort B&S would
call “associative” are an important part of good performance. As
Chase and Simon (1973) commented, concerning chess experts:
“One key to understanding chess mastery, then, seems to lie in the
immediate perceptualprocessing, for it is here that the game is struc-
tured” (p. 56). Other examples include recognizing a visual pattern
(e.g., faces), listening to music, and acquiring a first language. Fur-
thermore, thinking more “extensionally” may even lead one astray,
depending on the environment (for an example from the domain
of probability learning, see Gaissmaier et al. 2006).

B&S characterize prior research on the importance of “ask(ing)
about uncertainty in a form that naı̈ve respondents can under-
stand” as “far too narrow” (sect. 1, para. 1). However, their
article focuses on a single phenomenon, the underuse of base
rates in probabilistic reasoning. Yet, early research on Bayesian
inference observed the opposite phenomenon: conservatism,
the overuse of base rates (e.g., Edwards 1968). A second phenom-
enon that can be seen as the opposite of base-rate neglect is
described in the social psychological literature on stereotypes.
Both base rates and stereotypes comprise beliefs about the preva-
lence of a characteristic in a population. But the current literature
on base rates generally concludes that such beliefs are underused,
whereas the stereotype literature almost uniformly concludes that
they are overused (Funder 1996).

We believe that the concept of ecologically structured infor-
mation can reconcile these two seemingly opposed phenomena.
In studies of stereotypes, the belief about the population is
vivid, accessible, and perhaps even emotionally tinged (e.g., the
racial stereotype held by a bigot). The factual information
opposed to that stereotype, by contrast, is typically rather pallid
(e.g., crime rate statistics). In studies of base rates, the opposite
pattern holds. The specific case information is vivid (e.g., a
woman with a positive mammogram), while the base rate is
pallid (e.g., the prevalence of disease in her demographic
group; see Funder 1995; 1996, for a more complete analysis).

A picture speaks a thousand words, and ecologically structured
information can communicate complex situations efficiently and
clearly because it exploits elementary perceptual and cognitive
capacities. The implications range far beyond the putatively
uniform underuse of base rates upon which B&S focus so
tightly; indeed, this principle can help to explain the apparently
opposite phenomenon, the cases in which base rates (in a litera-
ture where they are labeled as stereotypes) are overused.

The role of representation in Bayesian
reasoning: Correcting common
misconceptions
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Abstract: The terms nested sets, partitive frequencies, inside-outside
view, and dual processes add little but confusion to our original analysis
(Gigerenzer & Hoffrage 1995; 1999). The idea of nested set was
introduced because of an oversight; it simply rephrases two of our
equations. Representation in terms of chances, in contrast, is a novel
contribution yet consistent with our computational analysis – it uses
exactly the same numbers as natural frequencies. We show that non-
Bayesian reasoning in children, laypeople, and physicians follows
multiple rules rather than a general-purpose associative process in a
vaguely specified “System 1.” It is unclear what the theory in “dual
process theory” is: Unless the two processes are defined, this
distinction can account post hoc for almost everything. In contrast, an
ecological view of cognition helps to explain how insight is elicited from
the outside (the external representation of information) and, more
generally, how cognitive strategies match with environmental structures.

For many years researchers believed that people are “not Baye-
sian at all” (Kahneman & Tversky 1972, p. 450) and that “the gen-
uineness, the robustness, and the generality of the base-rate
fallacy are matters of established fact” (Bar-Hillel 1980,
p. 215). In 1995, however, we showed that Bayesian reasoning
depends on and can be improved by external representations
(Gigerenzer & Hoffrage 1995). This ecological approach led to
practical applications in medicine, law, and education; natural
frequency representations are now part of evidence-based medi-
cine, high-school mathematics textbooks, and cancer-screening
information brochures, helping people to understand risks
(Gigerenzer 2002; Hoffrage et al. 2000).

Our 1995 article was about the general question of how various
external representations facilitate Bayesian computations, not
about natural frequencies versus single-event probabilities, as
Barbey & Sloman (B&S) suggest. It contained four main predic-
tions (Gigerenzer & Hoffrage 1995, pp. 691–92):
Prediction 1: Natural frequencies (standard frequency formats)

elicit a higher proportion of Bayesian algorithms than standard
probability formats do.

Prediction 2: Short probability formats elicit a higher proportion
of Bayesian algorithms than standard probability formats do.

Prediction 3: Natural frequencies, whether in the standard or
short format, elicit the same proportion of Bayesian
algorithms.

Prediction 4: Relative frequencies elicit the same (small)
proportion of Bayesian algorithms as standard probability
formats do.

These predictions follow from Equations 1 to 3 in Gigerenzer
and Hoffrage (1995). If information is presented in the standard
probability format or in normalized (relative) frequencies, then
the following computations are necessary (H ¼ hypothesis,
D ¼ data):

p(H jD)¼ p(H)p(D jH)=½p(H)p(D jH)þp(�H)p(D j (�H)� (1)

If information is instead represented in natural frequencies (stan-
dard or short format), then Bayesian computations reduce to:

p(H jD)¼ a=(aþ b) (2)

Here, a and b are natural frequencies. If probabilities are
presented in short probability format, then the computations
reduce to:

p(H jD)¼ p(D&H)=p(D) (3)

B&S mistakenly present (i) experiments reporting facilitation
with probability representations (as in our Prediction 2) and
(ii) experiments finding no facilitation with relative frequencies
(exactly our Prediction 4) as if these were contradicting or going
beyond our position, without making any mention of our Predic-
tions 2, 3, and 4. The upshot is that the “nested set structure” expli-
cit in our Equations 2 and 3 – the observation that the numerator
is a subset of the denominator – is then presented as a new,
alternative explanation. The predictions in B&S’s Table 2 are
based on the erroneous idea that our computational analysis was
restricted to natural frequencies, as is the claim in their Table 1
that our computational analysis was only about a “cognitive
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process uniquely sensitive to natural frequency formats.” In the
remainder of this comment, we will clarify the key ideas for the
reader.

What are natural frequencies? Our Figure 1 shows the
differences between natural and normalized frequencies. Natural
frequencies leave the naturally occurring base rates intact,
whereas normalized frequencies standardize these. Note, first,
that all natural frequencies have a “nested set structure” in the
sense that they simplify Bayesian computations, as defined in
Equation 2. Hence, when B&S talk of “natural frequency
formats that were not partitioned into nested set relations” (sect.
2.4, para. 2), these are not natural frequencies but instead
normalized frequencies. This conceptual confusion makes the
notion of nested sets appear as a different and broader
explanation when it in fact simply paraphrases Equation 2.
Second, natural frequencies refer to joint events, such as H&D
events, as shown by the four numbers at the bottom of
Figure 1–1. It is the structure of the entire tree that
distinguishes natural from normalized frequencies. In contrast,
an isolated frequency statement, represented by one single
branch in the tree (such as 10 out of 1,000), could be part of a
tree with natural frequencies, or normalized frequencies, or – if
there is no second variable – no tree at all. Therefore, it is
misleading to call the isolated statement “one of every 100
Americans will have been exposed to Flu strain X” (Table 5 of
the target article) a natural frequency, as B&S do. In the same
table caption, the relative frequency “33% of all Americans” is

wrongly called a “single-event probability.” This incorrect use of
terms causes B&S to draw erroneous conclusions, such as that
“natural frequencies and single-event probabilities are rated
similarly in their perceived clarity, understandability . . . [etc.]”
(sect. 2.10).

Next, the term “single-event probability” is irrelevant to our
computational analysis (see Equations 1–3). A single-event
probability can refer to at least three different concepts: a con-
ditional probability p(DjH), which makes Bayesian compu-
tations difficult (Prediction 1 and Equation 1), a joint
probability p(D&H), which makes Bayesian computations
easier (Prediction 2 and Equation 3), and a simple single-
event probability, such as a “30% chance of rain,” which has
nothing to do with Bayesian inference but invites misunder-
standings, because, by definition, no reference class is speci-
fied (Gigerenzer et al. 2005).

B&S’s distinction between a “natural frequency algorithm,”
“natural frequency heuristic,” and a “non-evolutionary natural
frequency heuristic” is emphatically not ours. We cannot see
how these would lead to different predictions, since in each
case the algorithm computes Equation 2. We recommend not
using the term heuristic for a version of Bayes’s rule, since a
heuristic, like a shortcut, ignores information. However, the
term heuristics applies to shortcuts that approximate Bayes’s
rule under specific conditions such as rare events, where they
lead to fast and frugal Bayesian reasoning (Table 1). Martignon
et al. (2003) analyzed the connection between natural frequency
trees and fast and frugal trees.

Figure 1 (Gigerenzer & Hoffrage). Natural frequencies, chances, normalized frequencies, and conditional probabilities. Note that
B&S’s “chances” are exactly the same numbers as natural frequencies and lead to identical computational demands (see Eq. 2).
Contrary to B&S’s interpretation, chances are not mathematical probabilities, since these cannot be normalized over the interval
[0,1] – otherwise, chances would no longer facilitate Bayesian computations. The fact that “chances” refer to a single event does not
transform them into mathematical probabilities: not all statements about singular events are probabilities. Normalized frequencies
are derived from natural frequencies by normalizing the base rate frequencies to some common number (here: 1,000), and
conditional probabilities normalize to the interval [0,1]. Note that our distinction is neither that between frequencies versus
probabilities nor that between natural frequencies versus single-event probabilities, as B&S suggest; we distinguish between natural
frequencies which facilitate Bayesian computations and normalized frequencies and conditional probabilities which do not.
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B&S repeatedly refer to our evolutionary argument that natural
sampling characterizes the way people learned individually in
human history. But we did not – nor can one – use this general
argument to derive Predictions 1 to 4 or the seven results reported
in our 1995 article; these derivations were based solely on a com-
putational analysis. The evolutionary perspective, however, pro-
vides a general framework for finding the right questions.
Instead of asking what cognitive deficits explain reasoning that
deviates from Bayes’s rule (such as an error-prone System 1),
the question should be how and why reasoning depends on the
external representation of information. An ecological framework
postulates that thought does not simply emerge inside the mind.
Every theory of reasoning needs to specify both cognitive strat-
egies and the environmental structures under which these strat-
egies work well (just as with the shortcuts in Table 1).

The “nested sets” explanation originated from an oversight.

The authors credited by B&S as the originators of the “nested
set theory” missed the distinction between natural and
normalized frequencies, and implied that we had predicted that
any kind of frequencies would facilitate reasoning. For instance,
Johnson-Laird et al. (1999, p. 81) stated: “In fact, data in the
form of frequencies by no means guarantee good Bayesian
reasoning,” and referred to a study reporting that normalized
frequencies showed no facilitation. Since mental models theory
cannot account for the facilitating effect of natural frequencies or
“chances” (we discuss this further on), Johnson-Laird et al.
introduced a “subset principle” identical to our 1995 Equation 2,
without mentioning its source, and presented it as an alternative
explanation to ours.

Macchi and Mosconi (1998) seem to have been the first who
confused natural frequencies with any kind of frequencies and
concluded that the facilitating effect is not due to “frequentist
phrasing” (which they mistook as our explanation) but to compu-
tational simplification (our explanation, which they proposed as
their alternative one). Like Johnson-Laird et al., Macchi (2000)
independently rediscovered the proper explanation, and distin-
guished between “partitive” and “non-partitive” representations,
where “partitive” – like the “subset principle” – is a new label for
Equations 2 and 3. Lewis and Keren (1999) promoted the same
confusion. In Gigerenzer and Hoffrage (1999), we pointed out
that we had actually tested Prediction 4 about relative frequen-
cies with 24 Bayesian problems in Experiment 2 of Gigerenzer
and Hoffrage (1995). Nevertheless, Evans et al. (2000) embraced
the same misconception, concluding that “we are not convinced
that it is frequency information per se which is responsible for

the facilitation” (p. 200). All of these authors overlooked that
our predictions were not about frequencies per se.

To summarize, the “nested set theory” originated from an
oversight that reproduced itself like a meme through various
articles. It is identical to our Equations 2 and 3, rephrasing the
computational explanation we had proposed.

What is new about the “chances representation”? In our
1995 article, we tested two natural frequency representations,
three relative frequency representations, and three probability
representations. One of the probability representations had the
structure of Equation 1, another the nested structure defined by
Equation 3, and a third one demanded computations of in-
between complexity (Equation 4 in our article). Therefore, B&S’s
contention that “nested sets” would be more general than our
computational account – because it covers not only frequencies
but probabilities as well – ignores that we actually applied the
computational account to various probability representations.
Specifically, B&S present a “chances representation,” which
mimics the computational structure of natural frequencies
precisely (see our Fig. 1), but is verbally phrased in terms of a
single event. This representation is a new addition to the eight
representations we already tested, and it leads to the same
computational demands as in Equation 2. Hence, from our
computational analysis, the prediction is that “chances” facilitate
as well as natural frequencies because they involve exactly the
same computations (although the occasionally odd-sounding
wording may have a negative impact).

B&S call chances “single-event probabilities.” However, like
natural frequencies, these are not probabilities. Mathematical
probabilities have a range between 0 and 1. If chances were
expressed in this range, their facilitating effect would be gone
(like the conditional probabilities in Fig. 1). In the example B&S
give, one cannot express the chances “12 out of 96” as “1 out of
8” or .125, because chances are exactly like natural frequencies
in that they do not allow normalization. To summarize, “chances”
are the same numbers as natural frequencies and lead to the
same computational demands specified in Equation 2. The
“nested sets” notion does not seem to add anything further.

What processes underlie non-Bayesian judgments? B&S’s
answer is: the associative “System 1.” Yet we have taken a
closer look at non-Bayesian judgments and found that a
substantial proportion of them follow several rules rather than
one associative process. Specifically, 65% of all non-Bayesian

Table 1 (Gigerenzer & Hoffrage). Bayesian strategies and cognitive shortcuts for approximating Bayes’ rule. Based on the
experimental evidence in Gigerenzer and Hoffrage (1995, pp. 689–691). n(D&H) is the natural frequency of D&H cases. We suggest
that Barbey & Sloman consider these rules as mechanisms for their System 2, to be interpreted as an adaptive toolbox rather than a

single, general-purpose calculus

Strategy/Shortcut Formal Equivalent
Conditions in which the shortcut is
ecologically rational

Conditional Probability Representation
Bayesian Strategy p(H)p(D j H) / [p(H)p(D j H)þ p(2H)p(D j2H)]
Rare-Event Shortcut p(H)p(D j H) / [p(H)p(D j H)þ (D j2H)] p(H) is rare and p(2H) thus approaches 1
Big Hit-Rate Shortcut p(H)/[p(H)þ p(2H)p(D j2H)] p(D j H) is very large approaches 1
Comparison Shortcut p(H)p(D j H) / p(2H)(D j2H) p(D&2H) is much larger than p(D&H)
Quick-and-Clean Shortcut p(H)/p(D j2H) All 3 conditions above

Natural Frequency Representation
Bayesian Strategy n(D&H)/[n(D&H)þ n(D&2H)]
Comparison Shortcut n(D&H)/n(D&2H) n(D&2H) is much larger than n(D&H)
Pre-Bayes n(H)/[n(D&H)þ n(D&2H)] n(D&H) is close to n(H)
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judgments across children, laypeople, and experts resulted from
applying a rule, and our Table 2 shows the six most frequent ones.
These rules allow for a better understanding of non-Bayesian
reasoning than does the notion of base-rate neglect due to
“System 1.” In fact, one of these rules, base-rate only
(conservatism), does not even entail base-rate neglect, but an
over-reliance on the base rate. Moreover, a strategy such as the
Fisherian one (or representativeness, which amounts to
calculating p-values) ignores more than the base rate, namely,
also p(Dj-H). Ironically, when researchers use Fisher’s null
hypothesis tests to determine whether people follow Bayes’s
rule, they themselves use a non-Bayesian framework and
commit base-rate neglect. Does this mean that researchers’
“System 1” is in charge of hypothesis testing? In summary,
there is experimental evidence that a substantial proportion of
non-Bayesian judgments result from six rules; there is no
reason to ignore these results and invoke some unknown
general-purpose associative process instead.

What does the dual-processes notion explain?. Table 2
indicates that a handful of rules model non-Bayesian
judgments. In general, people rely on multiple cognitive rules
or heuristics, consciously or unconsciously, tending to switch
between these in an adaptive way. Models of these heuristics
and the environments in which they work have been published
(e.g., Gigerenzer 2004; Payne et al. 1993; Rieskamp & Otto
2006). What does a distinction between a “System 1” and
“System 2” add?

Sloman (1996a) proposed two systems of reasoning. Gigerenzer
and Regier (1996) responded that there is a certain amount of
slack in this distinction, that it collapses too many different
dichotomies, and that it needs be sharpened by overt reference
to explicit models of associative and rule-based processing.
Sloman (1996b) willingly admitted that he left room for further
precision and clarity in his dual-processes notion. Yet more than
ten years later, the notion is still vague. What is the mechanism

of “System 1”: the delta rule, fuzzy set theory, fast and frugal heur-
istics, constrained neural networks, or something else? Since B&S
assume a general-purpose process, there should be only one. And
what is the nature of the rule-based system: first-order logic,
Bayes’s rule, signal-detection theory, or expected utility maximiza-
tion? It cannot be all of these, since they are not the same. What
do we gain from a dual-processes theory that does not develop a
theory about the two processes?

Talking of two systems has become popular in some quarters.
The “inside-outside view” is another case in point. According to
Kahneman and Lovallo (1993, p. 25), an inside view focuses on
“the case at hand,” whereas an outside view focuses “on the stat-
istics of a class of cases.” Yet this distinction is too crude. For
instance, it fails to predict the differential effect of natural
versus normalized frequencies (Prediction 4), given that both
invoke an “outside view,” as well as the differential effects of
various single-event representations, such as in Prediction 2,
which all invoke an “inside view.” B. F. Skinner asked us to
refrain from building theories of cognition and to treat the
mind as a black box. B&S’s dual-systems notion is dangerously
similar to two black boxes. What about replacing the two black
boxes by an adaptive toolbox that contains multiple heuristics
and logical tools?

Towards ecological rationality. In their title, B&S include the
term ecological rationality. We have introduced this term to refer
to the study of how cognitive processes map onto environmental
structures. The Bayesian algorithms and shortcuts are part of this
larger enterprise. It extends to heuristics that solve problems
ranging from categorization to choice to inference, and from
catching fly balls to making coronary care unit allocations or
moral judgments (Gigerenzer 2007; Gigerenzer et al. 1999).
The study of ecological rationality requires computational models
of cognitive processes, in order to predict where they fail and
succeed. It may actually help define the notion of dual processes
more precisely.

Table 2 (Gigerenzer & Hoffrage).Six cognitive rules underlying non-Bayesian judgments. Values are percentages of people classified as
using a rule among all non-Bayesian judgments. The experiments with children (grades 4, 5, and 6) were conducted by Zhu &
Gigerenzer (2006), with laypeople (students with median age 21–22) by Gigerenzer & Hoffrage (1995), with medical students

(median age 25) by Hoffrage et al. (2000), and with physicians by Hoffrage & Gigerenzer (1998). Cognitive rules are reported here
for natural frequencies and conditional probabilities (standard format) only; for other representations and how rules depend on

representations, see the original studies. We suggest that Barbey & Sloman consider these rules as mechanisms for their System 1,
to be interrupted as an adaptive toolbox rather than a single, general-purpose associative process

Conditional Probabilities Natural Frequencies

Cognitive Rule
Formal
Equivalent

Psychology
Students

Medical
Students Physicians Children

Psychology
Students

Medical
Students Physicians

Joint occurrence p(H&D) 10.7 2.5 1.2 0.0 8.3 9.8 3.8
Fisherian (Sensitivity) p(D&H) 27.2 17.7 20.9 2.9 22.8 4.9 9.6
Positives Only p(D) 0.0 0.0 0.0 7.3 0.0 7.3 17.3
Pre-Bayes p(H) / [p(H&D)þ p(2H&D)] 0.0 0.0 0.0 18.3 5.4 2.4 0.0
Likelihood

substraction (DR)
p(D\H) 2 p(D j2H) 8.2 12.7 23.3 0.0 1.7 0.0 9.6

Base rate only
(Conservatism)

p(H) 1.6 3.8 1.2 8.5 5.4 29.3 28.8

Other non-Bayesian
strategies

19.5 32.9 19.8 0.0 19.5 22.0 5.8

Not identified 32.7 30.4 33.7 63.1 36.9 24.4 25.0
Total of non-Bayesian

(in %)
100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Abstract: Barbey & Sloman (B&S) conclude that natural frequency
theorists have raised a fundamental question: What are the conditions
that compel individuals to reason extensionally? We argue that word
problems asking for a numerical judgment used by these theorists
cannot answer this question. We present evidence that nonverbal tasks
can elicit correct intuitions of posterior probability even in preschoolers.

Barbey & Sloman’s (B&S’s) comprehensive analysis of the litera-
ture shows that, given an accurate set representation, naive indi-
viduals are able to evaluate posterior probability by performing
elementary set operations on various information types (e.g.,
natural frequencies or numbers of chance). We agree with
B&S’s conclusion that natural frequency theorists have raised a
deep and fundamental question: What are the conditions that
compel individuals to reason extensionally? However, we argue
that natural frequency theorists have not used the appropriate
methodology to answer this question.

It is ironic that the hypothesis “the mind is a frequency monitor-
ing device” has been tested almost exclusively by means of
complex word problems in which numerical information is con-
veyed by symbols. There are three reasons to doubt the suitability
of this approach. First, verbal expressions of frequencies are
potentially ambiguous. For instance, in some reputedly natural
frequency problems, the statements are stated in the future
tense: “8 out of every 10 women with breast cancer will get a posi-
tive mammography” (Gigerenzer & Hoffrage 1995). The point is
that statements of this sort express expected rather than observed
frequencies, and could be correctly interpreted as statements
about probabilities. For example, the above statement could
be understood as follows: “Women with breast cancer have
8 chances in 10 of getting a positive mammography.” To make
this point clearer, consider another statement that expresses
expected frequencies: “This coin will land heads up one out of
two times.” Given that it is stated in the future tense, this statement
does not mean that an individual has tossed the coin twice and
observed that one of the times it landed heads up, but rather,
that the coin has a priori one out of two chances of landing
heads up. If readers interpret predicted frequencies as probabil-
ities, answers based on information understood as chance data
could be mistaken for answers based on natural frequencies.
Second, Bayesian reasoning concerns the revision of probability
in the light of new evidence. However, the standard problems
used in the literature typically ask for a single judgment, rather
than for two successive judgments, the first one based on prior
information and the following one on posterior information.
Hence, these problems do not investigate the ways in which indi-
viduals actually revise their judgment in light of new information.
Third, word problems asking for a numerical judgment cannot be
used with individuals lacking basic verbal and numerical skills,
such as young children. In sum, despite their common use, stan-
dard word problems are not the best tool to seriously test
general hypotheses about the nature of human judgment.

Consider a situation in which participants are presented with a
bag containing four round chips (all black) and four square chips
(three white and one black). Before the experimenter draws a

chip from the bag, participants have to make a prior bet on the
drawing of a black versus a white chip. After this first bet, the
experimenter draws a chip and, keeping it in her hand, informs
participants that it is square, and asks them to make another, pos-
terior bet. A task of this sort does not present the aforementioned
three weaknesses. First, it does not have the potential ambigu-
ities of verbal statements: it certainly asks individuals to reason
about a set of prior possibilities, not about observed frequencies
in a series of actual draws. Second, it requires participants to
update their choice in light of new evidence. Third, it can be
used to investigate whether young children, who cannot tackle
complex word problems, are nonetheless able to use new evi-
dence for evaluating an uncertain event.

Testing whether children possess some intuitions of posterior
probability may sound paradoxical, given the difficulties of
adults’ reasoning discussed in B&S’s review. But, if reasoning
about uncertain events depends on the application of elementary
set operations, then even children should be able to solve pos-
terior probability tasks, at least from the age at which they are
able to compare and add quantities. Indeed, Girotto and Gonza-
lez (in press, Study 1) have shown that from the age of about five,
children perform correctly in the chip task. As found in previous
studies (e.g., Brainerd 1981), children first answered “black,” by
reasoning about the initial set of possibilities in which there were
five black and three white chips. Then they correctly updated
their initial choice, by considering the subset of possibilities com-
patible with the new piece of information (i.e., the four squares).
In sum, preschoolers are able to apply correct extensional pro-
cedures in reasoning about the random events produced by a
chance device. But they do so even when they have to reason
about a single, not repeatable event produced by an intentional
agent (Girotto & Gonzalez, in press, Study 3). For example, chil-
dren were presented with two boxes, each containing three
animals (two cats and one dog vs. two dogs and one cat). The
experimenter informed children that a troll secretly put one cho-
colate in the bag of one animal. Children had to choose a box in
order to find the animal with the chocolate. There was no
optimum choice, given that prior evidence did not favor one
box over the other. After they made their choice, children were
informed that a cat carried the chocolate and were asked to
make a new choice. As predicted by the extensional reasoning
hypothesis, children passed the test: even children who initially
did not choose the more advantageous box, now chose the box
favored by posterior evidence.

In sum, humans may be “developmentally and evolutionarily
prepared to handle natural frequencies” (Gigerenzer & Hoffrage
1999, p. 430). However, they are not blind to single-case prob-
ability. Even preschoolers correctly draw posterior probability
inferences about single events in nonverbal tasks asking for a
choice or a non-numerical judgment. And they do so in the
same situations in which adults succeed – that is, when they
have to make a simple enumeration of possibilities.
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Abstract: Manipulations that draw attention to extensional or set-based
considerations are neither sufficient nor necessary for enhanced use of
base rates in intuitive judgments. Frequency formats are only one part
of the puzzle of base-rate use and neglect. The conditions under which
these and other manipulations promote base-rate use may be more
parsimoniously organized under the broader notion of case-based
judgment.

Although we agree that the two-system nested set account pro-
vides a better fit to the data reviewed in the target article than
the alternative frequency-format accounts, we believe that the
nested set account is an overly narrow lens through which to
view base-rate use and its relation to probability and frequency
judgments. In particular, manipulations making nested set rep-
resentations more transparent may not be sufficient to improve
base-rate use and such manipulations are not necessary to
improve base-rate use. In terms of the dual systems model,
base-rate use is not improved solely by rule-based processes,
nor is base-rate neglect always driven by associative processes. By
focusing only on areas where frequency formats increase base-rate
use, the target article oversells the value of frequency formats – and
rule-based or System 2 processes more generally – in improving
intuitive judgment.

A case-based judgment account built on Kahneman and Tvers-
ky’s early theorizing (e.g., Kahneman & Tversky 1973) provides a
perspective on intuitive judgment that is compatible with yet
broader than the nested set account. The case-based account
provides a parsimonious explanation of patterns of base-rate
use and neglect across both probability reasoning tasks and
experience-based probability judgments, and also provides a
more realistic view of the debiasing value of frequency formats.
According to the case-based account, intuitive judgments focus
on assessing the strength of evidence relevant to the current
case at hand (Brenner et al. 2005; Griffin & Tversky 1992).
Strength of evidence is commonly evaluated by associative pro-
cesses such as similarity or fluency, but can also be evaluated
by rule-based processes. However, to the extent that both associ-
ative and rule-based processes focus on the strength of
impression favoring a particular hypothesis about the current
case, background evidence about class or extensional relations
is not included when the strength of evidence is mapped onto
a probability (or related) scale. This produces neglect of base
rates, as well as neglect of cue validity in intuitive judgments.

According to the case-based account, any evidence that influ-
ences the strength of impression regarding the case at hand will
affect probability judgment. This explains why base rates that can
be interpreted (associatively, via System 1 processes) as a propen-
sity of the single case are highly influential. Racial or gender
stereotypes, for example, can be interpreted as base rates but
also can yield a strong expectation about a particular individual.
Similarly, the win-loss record of a sports team can yield an
impression of the strength of that team (Gigerenzer et al.
1988). The debate about “causal” base rates can also be inter-
preted in this way (Tversky & Kahneman 1980). When provided
with a statistical summary of the number of blue versus green
cabs in a city, people rely on the testimony of a fallible accident
witness and disregard the base rate; however, when base rates are
given a causal significance by describing the differential likeli-
hood of accidents for the cabs, both the witness’s testimony
and the accident-proneness of cabs contribute to the strength
of impression for this particular accident. In these contexts, the
use of base rates per se does not indicate a System 2 rule-
based process.

Furthermore, improved judgment resulting from a diagram or
other aid to viewing a problem in terms of nested sets does not
necessarily implicate rule-based reasoning. Diagrams prompting
an immediate comparison of the size of circles may allow a low-
level perceptual computation to solve the problem. If wording or
outcome formats allow a judge to represent such relationships
visually or symbolically, the line between associative and rule-
based solutions becomes blurred. From the perspective of the

case-based account, such manipulations may operate through
their impact on the case-specific impression of evidence strength.
The results of the Girotto and Gonzalez (2001) study described in
the target article could be interpreted in this manner.

According to the evolutionary frequency module account, “our
hunter-gatherer ancestors were awash in statistical information in
the form of the encountered frequencies of real events: in con-
trast, the probability of a single event was inherently unobserva-
ble to them” (Cosmides & Tooby 1994, p. 330). In several recent
studies (Brenner et al. 2005; 2006), we have examined probability
judgment in a learning paradigm similar to the Gluck and Bower
(1988) study described in the target article. In this simulated
stock market study, case-specific evidence is provided in terms
of a company’s sales and costs. A participant’s task is to estimate
the probability that the stock price will increase, given the finan-
cial information and experience in the market which provide evi-
dence about the base rate of stock increases and the validity of
financial cues. Notably, participants were extremely accurate in
estimating the base rates that they had experienced. However,
despite this – and despite being awash in encountered frequen-
cies – participants’ probability judgments were largely unaf-
fected by base rates or cue validity. When juxtaposed with
case-specific information, apparently, such extensional consider-
ations can be readily available, yet be viewed as largely irrelevant
to the judgment. A more evolutionarily grounded outcome
measure would assess the resources that an individual is willing
to commit to a decision based on uncertain evidence. A natural
measure is thus the price one is willing to pay for a stock certifi-
cate for a particular company. When price is used as an outcome
measure in our learning paradigm, however, the neglect of base
rate and cue validity remains.

Barbey & Sloman (B&S) offer a helpful reappraisal of the
impact of frequency representations on base-rate use in prob-
ability reasoning tasks. We agree that the evidence clearly does
not support the strong claim that frequency formulations yield
effortless Bayesian reasoning. The view that base-rate use pro-
ceeds only or primarily through application of rules of set
inclusion, however, may also be too strong. On the one hand,
Bayesian solution rates are far from perfect when set relations
are explicitly highlighted (see Table 4 of the target article). On
the other hand, under the right circumstances, base rates may
be used effortlessly, if they are captured in the immediate
impression of the strength of evidence regarding the case at
hand.

One wrong does not justify another: Accepting
dual processes by fallacy of false alternatives
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Abstract: Barbey & Sloman (B&S) advocate a dual-process (two-system)
approach by comparing it with an alternative perspective (ecological
rationality), claiming that the latter is unwarranted. Rejecting this
alternative approach cannot serve as sufficient evidence for the viability
of the former.

The target article’s title suggests two messages to take home.
Current theories of ecological rationality rest on weak grounds
(we generally agree), and data patterns of base-rate neglect
provide empirical support for dual-process theory (we generally
disagree). Barbey & Sloman’s (B&S’s) analysis is mistaken on
two grounds.
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First, they commit the fallacy of false alternatives: Demon-
strating that 4 out of 5 theoretical accounts are false does not
necessarily imply the truth of the remaining one unless the list
of hypotheses is exhaustive, which it is not (we label the
5 accounts considered by B&S as T1–T5). T1–T5 do not instanti-
ate an exclusive set of (plausible) theoretical possibilities. This
becomes evident when analyzing T5 into its conjunctive parts:
(1) the hypothesis that explicating nested set relations facilitates
Bayesian reasoning (T-NESTED), and (2) the hypothesis that
the mind has a dual-process architecture with associative proces-
sing occurring in parallel with rule-based processing (T-DUAL).
Clearly, T-NESTED and T-DUAL are two distinct and separable
theoretical claims (hence we already have T1–T6 different ac-
counts, with T6 being equal to T-NESTED without T-DUAL).
There is no reason we can see – nor do the authors provide
one – for the nested set hypothesis to be married specifically to
a dual-process architecture of mind. It seems as plausible (a
priori at least) that a single-, or multi-process architecture can
implement the benefits from nested set representations.

This leads directly to B&S’s second fallacy: Even if the non-
rejected account (nested sets) has some merits, in no way does
it imply or support a dual process (two-systems) perspective. It
is well known that representation and computation can trade
spaces, in the sense that computation can be facilitated, or other-
wise affected, by changing between (logically equivalent) rep-
resentational formats (Clark & Thornton 1997; Marr 1982).
This general cognitive principle has been demonstrated in
areas as diverse as problem solving, memory retrieval, and
visual imagery. Also, the cognitive facilitation afforded by Venn
diagrams, and diagrams in general (Larkin & Simon 1987), is
well known (yet, unrelated to dual process theories). Framing
effects in decision making also illustrate how changes in rep-
resentational format affect cognitive judgments. The nested
sets facilitation hypothesis, reported by B&S, seems to be yet
another (potential) example.1 As such, the hypothesis, though
viable, is neither novel nor surprising. Because of its generalized
flavor it seems particularly ill-suited as a basis for conjecturing a
particular architecture of mind: almost any architecture of mind
(whether single-, dual- or multi-process; whether associative,
rule-based, both or neither) could accommodate the effect.

Apparently, B&S do consider evidence in favor of the nested
set hypothesis as also constituting support for the idea that
human minds have a dual-process architecture. Arguing for
such a general theoretical position, based on the available per-
formance data alone, is simply trying to do the impossible. This
is also illustrated by the target article’s Table 2. Close inspection
of the table shows that the available data cannot decide between
theories that assume modular or non-modular architectures
(predictions for T1 and T2 are identical), and cannot decide
between theories postulating evolutionary or non-evolutionary
adaptations (predictions for T3 and T4 are identical). In the
same vein, the available data cannot decide between theories
that postulate dual- or single-process architectures. Table 2
may seem to suggest otherwise because the predictions of T5
appear to be unique. However, it should be noted that the
table is missing a column and thus is incomplete. The authors
should have included a sixth column listing predictions for T6
identical to the predictions for T5 (granting that T5 is really
making the listed predictions – which seems questionable to
begin with, yet is insubstantial for our claim that the reviewed
findings cannot discriminate between T5 and T6). Including
such a sixth column may have highlighted that the dual process
assumption is superfluous in the authors’ explanation of base-
rate neglect.

Here B&S are confronted with the fact that theoretical frame-
works in science generally cannot be justified on the basis of a
small set of empirical phenomena (Lakatos 1977).2 Rather, theor-
etical frameworks derive their explanatory power from making
insightful a large corpus of seemingly unrelated findings that
would otherwise be puzzling or anomalous. B&S make no

attempt to argue for the explanatory superiority of dual-process
architectures (compared to other architectures of mind); and as
we have argued, effects of representational format (e.g. nested
set relations) on cognitive processing are not puzzling in any
event.

In short, B&S do not provide any argument for why support
for the nested-set hypothesis constitutes evidence for dual-
process (two-systems) theories. The presumed superiority of
dual-process architectures is presumably established by citing
other authors who advocate a two-systems theory (e.g., Evans
& Over 1996; Kahneman & Fredrick 2002; Sloman 1996a; Stano-
vich & West 2000). Indeed, there has recently been an upsurge in
theoretical frameworks alluding to the existence of two different
processing systems that supposedly operate according to differ-
ent rules. Recently, we (Keren & Schul, under review) have
pointed to the lack of robust and reliable evidence that would
support the two-systems architecture of the mind. The target
article seems to offer arguments that question the viability of
the natural frequencies approach, and more generally the eco-
logical rationality framework. Yet, it does not add any forceful
evidence in support of the alternative favored by the authors,
namely the dual-process approach. The possibility that both
theoretical frameworks (i.e., ecological rationality and dual pro-
cesses) are undefendable, cannot be ruled out.

NOTES
1. B&S’s attempt to rule out the possibility that explicating nested set

relations simply affords easier computation is questionable. They draw on
a study asking participants to judge ease of understanding of different
presentation formats. Whether participants have introspective access to
the nature and efficiency of their own cognitive processes is highly doubt-
ful (Nisbett & Wilson 1977).

2. Certainly when the phenomenon under discussion remains contro-
versial (Koehler 1996) on both theoretical and empirical grounds.

Implications of natural sampling in
base-rate tasks
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Abstract: The hypothesis that structural properties and not frequencies
per se improve base-rate sensitivity is supported from the perspective of
natural sampling. Natural sampling uses a special frequency format that
makes base-rates redundant. Unfortunately, however, it does not allow
us to empirically investigate human understanding of essential properties
of uncertainty – most importantly, the understanding of conditional
probabilities in Bayes’ Theorem.

Barbey & Sloman (B&S) disentangle and systematize the various
explanations of base-rate neglect/facilitation. They present
strong arguments in favor of the hypothesis that the nested
subset structure is responsible for facilitation effects. My com-
ments try to further clarify the implications of natural sampling.
Throughout the article, the authors adopt the terminology of
“natural frequencies” used by Gigerenzer and his group. The
adjective “natural” was transferred from “natural sampling.”
Let’s therefore start with the origin of the latter concept.

The notion “natural sampling” was introduced by Aitchison
and Dunsmore (1975) in their excellent book on statistical pre-
diction analysis. In estimating probability parameters, frequen-
cies are informative if and only if they are the outcome of a
random sampling process and there is no missing data. Sampling
is non-natural if, for example, sample sizes are planned by an
experimenter. I used the term “natural sampling” in the Bayesian
analysis of binomial sampling (Kleiter 1994) in the technical
sense of Aitchison and Dunsmore. For several Bernoulli
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processes and beta prior distributions for the binomial prob-
ability parameters, natural sampling results in a mathematically
nice property: The posterior distribution turns out to be also a
beta distribution, and, most important in the present context,
the distribution does not depend on the between-group frequen-
cies (base rates) but only on the frequencies within each group
(e.g., hit and false alarm rates). As the between-group frequen-
cies are estimators of base-rate probabilities, this result describes
a situation in which the base rates are irrelevant. Under properly
defined natural sampling conditions, base-rate neglect is rational.
The result was generalized to multinomial sampling in combi-
nation with Dirichlet priors (Kleiter & Kardinal 1995) and used
to propagate probabilities in Bayesian networks (Kleiter 1996).
Recently, Hooper (2007) has shown that some claims about the
generality of beta posteriors in Bayesian networks made in my
1996 paper are only asymptotically valid.

If base rates are irrelevant in a “normative” model, then base-
rate neglect in psychological experiments is not necessarily an
error but may be rational. If Bayes’ Theorem is written in “fre-
quency format,” even elementary school math shows that the
base rates in the numerator and in the denominator get cancelled
when the within-group frequencies add up to the between-group
frequencies. This property fitted extremely well within Gigeren-
zer’s approach. In the early 1990s when Gerd Gigerenzer was at
Salzburg University, during one of the weekly breakfast discus-
sions held among Gigerenzer and members of his group, the
mathematical result of base-rate cancellation was communicated
and it was immediately taken up and integrated into his work.
Natural sampling requires random sampling, additive frequen-
cies in hierarchical tree-like sample/subsample structure (i.e.,
complete data), and a few more properties that belong to the stat-
istical model. The notion of “natural frequencies” seems, in
addition, to involve sequential sampling and thus acquires an
evolutionary adaptive connotation.

The additivity in natural sampling goes hand in hand with the
subset structure, the favorite explanation in the target article. The
close relationship between natural sampling and the subset struc-
ture may have led to a confounding of the two in the past. If fre-
quencies (and not subset structures) are the cause of facilitation
effects, then critical experiments should investigate non-natural
sampling conditions (Kleiter et al. 1997). Frequencies should still
have a facilitating effect. Unfortunately, instead of non-natural
sampling conditions, often “single-case probabilities” are taken
for comparison to demonstrate the base-rate facilitation with
natural sampling conditions.

How common are natural sampling conditions in everyday
life? I have severe doubts about the ecological validity and the
corresponding evolutionary adaptive value. From the perspective
of ecological validity, it is important that the base-rate neglect has
often been demonstrated for categories with low prevalence,
such as rare diseases. Consequently, the prevalence of base-rate
neglect will also be low. Base-rate effect certainly depends upon
the actual numbers used in the experiments, a property not dis-
cussed in B&S’s review.

The cognitive system of an intelligent agent capable of uncer-
tainty processing and judgment requires competence in at least
six domains. (1) Perception and processing of environmental
information, such as numerosity, cardinalities of sets, relative fre-
quencies, descriptive statistics of central tendency, variability,
and covariation. (2) Understanding of randomness, of not directly
observable states, of alternatives to reality and hidden variables,
of the non-uniformities in the environment, and of the limited
predictability of events and states. (3) Introspection of one’s
own knowledge states, and weighting and assessing one’s own
incomplete knowledge by degrees of beliefs (subjective probabil-
ities). (4) An inference engine that derives conclusions about the
uncertainty of a target event from a set of uncertain premises.
Typical inference forms are diagnosis, prediction, or explanation.
The conclusions often concern single events. The probabilities
can be precise or imprecise (lower and upper probabilities,

or second order probability distributions). Recently, classical
deductive argument forms have also been modeled probabilisti-
cally (Oaksford & Chater 2007; Pfeifer & Kleiter 2005). (5) Mod-
eling functional dependencies/independencies which are basic
to causal reasoning. (6) Understanding of the knowledge states
of other persons – a prerequisite for the effective communi-
cation of uncertainty in social settings.

Many base-rate studies present frequency information
(belonging to item [1] in the list given above) and observe
whether the subjects use “Bayes’ Theorem” as an inference
rule (belonging to item [5]). Bayes’ Theorem degenerates to a
rule for cardinalities, formulated not in terms of probabilities
but in terms of frequencies (see Note 2 in the target article).
This can of course be done, but we should be aware that we
are dealing with the most elementary forms of uncertain reason-
ing, not involving any of the other items listed above. Moreover, if
the response mode requires frequency estimates and not the
probabilities of single events, another important aspect of uncer-
tain reasoning is lost. If subjects are poor in the judgment of
single event probabilities they have an essential deficit in uncer-
tainty processing.

Conditional events and conditional probabilities are at the very
heart of probability theory. Correspondingly, the understanding
of conditional events and conditional probabilities should be
central to investigations on human uncertain reasoning. Consid-
ering base-rate tasks in natural sampling conditions alone, misses
this point completely. The B&S structural subset hypothesis
shows that conditional probabilities are not needed in this case,
and that structural task properties are the main cause of facili-
tation effects.

Dual concerns with the dualist approach
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Abstract: Barbey & Sloman (B&S) attribute all instances of normative
base-rate usage to a rule-based system, and all instances of neglect to
an associative system. As it stands, this argument is too simplistic, and
indeed fails to explain either good or bad performance on the classic
Medical Diagnosis problem.

Barbey & Sloman (B&S) claim that an associative system is
responsible for errors in a range of probabilistic judgments.
Although this is plausible in the case of the conjunction fallacy
(where a similarity-based judgment substitutes for a probability
judgment), it is less applicable to the Medical Diagnosis base-
rate problem. What are the automatic associative processes that
are supposed to drive incorrect responses in this case? Respon-
dents reach incorrect solutions in various different ways (Brase
et al. 2006; Eddy 1982), many of which involve explicit compu-
tations. Indeed, the modal answer is often equal to one minus
the false positive rate (e.g., 95% when the false positive rate is
5%). This clearly involves an explicit calculation, not the output
of an implicit process. Thus, errors can arise from incorrect appli-
cation of rules (or application of incorrect rules), rather than just
brute association.

The key point here is that base-rate neglect in the Medical
Diagnosis problem provides little evidence for the exclusive
operation of an implicit associative system. Indeed, it is arguable
that adherents of classical statistics are guilty of similar base-rate
neglect in their reliance on likelihood ratios (Howson & Urbach
2006). Presumably this is not due to an implicit associative
system, but is based on explicit rules and assumptions.
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What about the claim that the rule-based system is responsible
for correct responses in frequency-based versions of the task?
This hinges on the idea that representing the task in a frequency
format alerts people to the relevant nested set relations, and thus
permits the operation of the rule-based system. In one sense, this
is trivially true – those participants who reach the correct answer
can always be described as applying appropriate rules. But what
are these rules? And what is the evidence for their use, as
opposed to associative processes that could also yield a correct
response?

B&S explicitly block one obvious answer – that once people
are presented with information in a format that reveals the
nested set structure, they use a simplified version of Bayes’
rule to compute the final solution. The authors’ reasons for
rejecting this answer, however, are unconvincing. The cited
regression analyses (Evans et al. 2002; Griffin & Buehler 1999)
were performed on a different task. And they were computed
on grouped data, so it is possible that those who answered cor-
rectly did weight information equally. Furthermore, it is wrong
to assume that a Bayesian position requires equal weighting – in
fact, a full Bayesian treatment would allow differential weights
according to the judged reliability of the sources.

More pertinently, if people are not using the frequency version
of Bayes’ rule, what are they doing? How do they pass from
nested set relations to a correct Bayesian answer? B&S offer no
concrete or testable proposal, and thus no reason to exclude an
associative solution. Why can’t the transparency of the nested
set relations allow other associative processes to kick in? It is
question-begging to assume that the associative system is a
priori unable to solve the task.

Indeed, there are at least two arguments that support this
alternative possibility. First, our sensitivity to nested sets
relations might itself rest on System 1 (associative) processes.
When we look at the Euler circles, we simply “see” that one set
is included in the other (perhaps this is why they are so useful,
because they recruit another System 1 process?). Second, it is
not hard to conceive of an associative system that gives correct
answers to the Medical Diagnosis problem. Such a system just
needs to learn that the correct diagnosis covaries with the base
rate as well as the test results. This could be acquired by a
simple network model trained on numerous cases with varying
base rates and test results. And a system (or person) that
learned in this way could be described as implementing the
correct Bayesian solution.

The dual-process framework in general makes a strong distinc-
tion between normative and non-normative behaviour. In so
doing, it embraces everything and explains nothing. One simply
cannot align the normative/non-normative and rule-based/
associative distinctions. True, rule-based processes might often
behave in accordance with a norm such as Bayes’ theorem, and
associative systems non-normatively (as in the example from
Gluck & Bower 1988); but, as argued above, it is also possible
for rule-based processes to behave irrationally (think of
someone explicitly using an incorrect rule), and for associative
systems to behave normatively (backpropagation networks are,
after all, optimal pattern classifiers).

Moreover, we know that without additional constraints, each
type of process can be enormously powerful. Imagine a situation
in which patients with symptom A and B have disease 1, while
those with symptoms A and C have disease 2, with the former
being more numerous than the latter (i.e., the base-rate of
disease 1 is greater). Now consider what inference to make
for a new patient with only symptom A and another with symp-
toms B and C. Both cases are ambiguous, but if choice takes
account of base-rate information, then disease 1 will be diag-
nosed in both cases. In fact, people reliably go counter to the
base rate for the BC conjunction (hence the “inverse base-
rate effect”), choosing disease 2, whereas they choose disease 1
for symptom A (Medin & Edelson 1988; Johansen et al., in
press). Thus, in one and the same situation, we see both

usage and counter-usage of base-rate information. But strik-
ingly, these simultaneous patterns of behaviour have been
explained both in rule-based systems (Juslin et al. 2001) and
in associative ones (Kruschke 2001), emphasizing the in-
appropriateness of linking types of behaviour (normative, non-
normative) to different processing “systems” (rule-based or
associative).

The crux of B&S’s argument, that a dual-process framework
explains people’s performance on probability problems, is uncon-
vincing both theoretically and empirically. This is not to dismiss
their critique of the frequentist program, but to highlight the
need for finer-grained analyses. A crude dichotomy between
the associative-system and the rule-based system does not
capture the subtleties of human inference.

Ordinary people do not ignore base rates
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Abstract: Human responses to probabilities can be studied through
gambling and through experiments presenting biased sequences of
stimuli. In both cases, participants are sensitive to base rates. They
adjust automatically to changes in base rate; such adjustment is
incompatible with conformity to Bayes’ Theorem. ”Base-rate neglect” is
therefore specific to the exercises in mental arithmetic reviewed in the
target article.

When participants are asked to reason about statistical data,
they tend to ignore base rates. But there is a problem with
the experiments that the target authors do not address. A
probability is a mathematical abstraction and cannot be pre-
sented as a stimulus (though it can be realised as a property
of an otherwise random sequence of stimuli). The research
reviewed in the target article substitutes values for probabil-
ities and presents participants with exercises in mental arith-
metic. ”Base-rate neglect” might therefore be either the
result of a failure to understand Bayes’ Theorem, or due to
insufficient ability in mental arithmetic. The authors do not
enquire which.

The same question can be presented at different levels of dif-
ficulty. The mammography example from Gigerenzer and Hof-
frage (1995), in probability format, requires participants to
multiply 0.01 by 0.8 and (1-0.01) by 0.096 and then compare
the two. In the frequency version, participants merely have to
compare 8 with the sum of 8 and 95. It is not surprising that
the latter version elicited a greater number of correct (Bayesian)
answers. The results summarised in Table 3 of the target article
suggest that a substantial proportion of incorrect answers are
consequent on difficulties in mental arithmetic. Performance
needs to be related to ability in mental calculation. But partici-
pants have been uniformly drawn from university populations
and the results lack generality. Except for Brase et al.’s (2006)
study, the matter of participants’ prior education has been
ignored.

The “probability” problem can be circumvented in two differ-
ent ways. First, as in gambling: Gamblers – not gamblers doing
mental arithmetic, not even in a casino (Lichtenstein & Slovic
1973), but real gamblers chancing their own real money – are
sensitive to “base rates” that do not even exist! ”Roulette
players believe that certain numbers are due, when they have
not come up for a long time” (Wagenaar 1988, p. 112). Gamblers
do not reason rationally, else there would be no bookmakers or
casinos in business. Moreover, the assessment of probability
divides into at most five categories (Laming 2004, Ch. 16).
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The alternative is to realise probabilities as the relative fre-
quencies of different stimuli in an otherwise random sequence.
Figure 1 reproduces signal-detection data from Tanner et al.
(1956). Different proportions of signal (SN) trials lead to differ-
ent probabilities of detections and false-positives. Two-choice
reaction times exhibit a similar phenomenon. The mean reaction
times to two signals are different; the more frequent signal elicits
a systematically faster response (see Laming 1968, Fig. 5.2). In

1994 the Public Health Laboratory Service (PHLS) in England
introduced a saliva test for rubella. When a doctor notified the
PHLS of a diagnosis, a kit was sent, and the swab, when returned,
was tested for the disease. Figure 2 (right hand scale) shows the
proportions of returned swabs that tested positive – this reflects
the incidence of the disease – and (left hand scale) the numbers
of notifications. Diagnoses of rubella followed the rise in inci-
dence after a lag of eight weeks.

So, people do not ignore base rates. But do they update their
expectations in line with Bayes’ Theorem? Green (1960) calcu-
lated an optimum (Bayesian) placement of the criteria for the
experiment in Figure 1, and found that the actual placements
of the criteria did not vary so widely as Bayes’ theorem pre-
scribes. A much better prescription of criterion placement is
provided by a scheme of probability matching suggested by
Thomas and Legge (1970). Under this scheme, the numbers
of different responses are adjusted to match the numbers of
different stimuli, or, what is equivalent, there are equal numbers
of errors of each kind, irrespective of the proportions of the
different stimuli. The two schemes are compared in Laming
(2001, Fig. 2).

An experiment by Tanner et al. (1970) reveals how this
scheme is effected. These authors partitioned their data
according to the event (detection, miss, correct rejection,
false positive) on the preceding trial. This analysis showed
that the effective operating point fluctuates; when there is
no feedback errors can be seen to occur chiefly at extreme
swings of the criterion (see Laming 2004, Fig. 12.4). But when
feedback is supplied, performance on the trial following an
error is different; that is, knowing one has just made an error
generates a correction to the criterion. Given feedback (as in
Fig. 1), participants adjust to the prevailing proportions of
signal and noise trials by means of a substantial correction to
criterion following each error. The effective criterion oscillates
around a value at which the numbers (not proportions) of
errors of each kind are equal. A second observer in the exper-
iment by Tanner et al. (1956; see Green & Swets 1966, p. 95)
displayed a highly asymmetric operating characteristic.
Green’s (1960) calculations no longer apply. But this second

Figure 1 (Laming). Signal detection data from Tanner et al.
(1956). (From Signal Detection Theory and Psychophysics by
D. M. Green and J. A Swets, p. 88. # 1966, J. A Swets. Adapted
with permission.)

Figure 2 (Laming). Numbers of reported diagnoses of rubella and percentage confirmed. (Data from Communicable Disease Report,
PHLS Communicable Disease Surveillance Centre, 1995–96.)
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observer’s data still showed approximate equality between the
numbers of each kind of error, irrespective of the proportions
of signal and noise trials (Laming 2001, Table 2). A similar
relationship is found in two-choice reaction experiments; the
variation of reaction time with signal probability can be
reduced to a common scheme of sequential interactions oper-
ating on signal sequences of different composition (Laming
1968, Ch. 8).

To sum up: In real life people do not ignore base rates. “Base-
rate neglect” is specific to exercises in mental arithmetic. People
do not use Bayes’ Theorem either. The nature of sensitivity to
frequencies of events means that people adjust automatically
to changes in base rate (e.g., Fig. 2), and automatic adjustment
to changes in base rate is incompatible with the use of Bayes’
Theorem itself. It follows that there is no reason why people
should learn anything about Bayes’ Theorem from natural experi-
ence – they learn only if they have (informal) lessons in prob-
ability theory. The research summarised in the target article
tells us only about the prior education of the participants. It
leads us astray in the matter of how people update their prior
expectations.

The underinformative formulation of
conditional probability
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Abstract: The formulation of the conditional probability in classical tasks
does not guarantee the effective transmission of the independence of the
hit rate from the base rate. In these kinds of tasks, data are all available,
but subjects are able to understand them in the specific meanings proper
to a specialized language only if these are adequately transmitted. From
this perspective, the partitive formulation should not be considered a
facilitation, but rather, a way of effectively transmitting the conditional
probability.

Consider the following two phrases:

1. The death-rate among men is twice that for women.
2. In the deaths registered last month there were twice as
many men as women.

Are these two different ways of saying the same or are these
different events? In fact, they are different events. (Lindley
1985, p. 44)

The two phrases presented by Lindley describe two completely
different probabilities which are connected to the same pair of
events (P[Death/Men] and P[Men/Death]). In the first phrase,
the probability is about the rate of mortality, given the gender;
in the second one, the probability is about the rate of gender,
given the mortality. Whereas the second phrase implies that
P(M/D) is equal to 2/3, the first does not.1 The confusion
between these two notions is a very common phenomenon, and
has great implications for reasoning and decision making.
According to Dawes (1988, p.80), “words are poor vehicles for
discussing inverse probabilities.” A main question is about the
nature of this confusion and, consequently, the understanding
and the use of the conditional probability.

We propose a pragmatic explanation of the phenomenon of the
confusion between inverse probabilities and of the base-rate
fallacy. In particular, concerning the kinds of problems con-
sidered in the literature on the base-rate fallacy, a pragmatic
analysis of the texts/problems allowed us to identify, as respon-
sible for the fallacy, the ambiguous formulation of a likelihood,
instead of an intrinsic difficulty to reason in Bayesian terms
(Macchi 1995; 2000; Macchi & Mosconi 1998).

Let us consider, for example, three kinds of problems formu-
lated as follows:

“If a woman has breast cancer, the probability is 80% that she will
get a positive mammography.” (Medical Diagnosis problem)

“The percentage of deaths by suicide is three times higher among
single individuals than among married individuals.” (Suicide
problem)

“The witness made correct identifications in 80% of the cases and
erred in 20% of the cases.” (Cab problem)

This sort of formulation does not seem to express the intrinsic
nature of a conditional probability, which conditions an event
(A) to the occurrence of another event (B). Nor does this sort
of formulation represent the cases in which, given the occurrence
of B, A also occurs. In other words, it transmits just a generic
association of events: A & B. For statistically naive subjects,
this kind of formulation is not informative even if all the data
were literally spelled out. The distinction between sentence
and utterance is at the core of Grice’s communication theory,
according to which phrases imply and mean more than what
they literally say (Grice 1975). What is implied is the outcome
of an inferential process, in which what is said is interpreted in
the light of the intentions attributed to the speaker and of the
context (unavoidably elicited and determined by any
communications).

Common language is ambiguous in itself. The understanding
of what a speaker means requires a disambiguation process, cen-
tered on the attribution of intention. Differently, specialized
languages (e.g., logical and statistical ones) presuppose an univo-
cal, unambiguous interpretation (the utterance corresponds to
the sentence).

The formulation of these kinds of problems uses common
language. Data are all available, but subjects are able to under-
stand them in the specific meanings proper to a specialized
language, only if they are adequately transmitted. Then, the par-
ticular interpretation of the data, required for a correct solution,
needs a “particularized,” marked formulation (see Grice 1975;
Levinson 1995; 2000).

In the sentences from Lindley (1985) quoted earlier, the effec-
tive transmission of the independence of the hit rate from the
base rate does not seem guaranteed. This is a crucial assumption
for proper Bayesian analysis (Birnbaum 1983), because the a pos-
teriori probability P(H/D) is calculated on the basis of the base
rate and is therefore dependent upon it. If the hit rate depended
on the base rate, it would already include it and, if this were the
case, we would already have the a posteriori probability and it
would be unnecessary to consider the base rate itself. This is
what often underlies the base-rate fallacy, which consists of a
failure to consider the base rate on account of the privileging
of hit-rate information. In our view, the confusion sometimes
generated between the hit rate and a posteriori probability is
due to an unmarked formulation of conditional probability, or,
in other words, to the absence of a partitive formulation.

If this is true, the partitive formulation should not be con-
sidered a facilitation, as Barbey & Sloman (B&S) argue, but a
way of transmitting a particular information, able to translate a
specialized language into a common, natural language, differ-
ently from the “step by step” question form used to compute
the Bayesian ratio (adopted by Girotto & Gonzalez 2001). An
example of partitive formulation of likelihood in the diagnoses
problem is: “80 per cent of women who have breast cancer will
get a positive mammography” (Macchi 2003).

The low performance with the Medical Diagnosis (MD)
problem has usually been considered as evidence of the acti-
vation of System 1, which operates associatively (fast, automatic,
effortless). Vice versa, the high performance with this kind of
problem is ascribed to System 2, which is able to process rule-
based inferences. However, in a recent study (Macchi et al.
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2007), statistically sophisticated subjects who solved the MD
problem (66% of 35 subjects) were not able to solve the compu-
tationally less complex Linda problem (only 14% of the subjects
did not commit the conjunction fallacy). So, the conceptual dis-
tinction between two reasoning systems, which explains the
biases recurring in System 1 and the normative performance as
the result of the activation of System 2, gives rise to some doubts.

According to us, the ability of statistically sophisticated sub-
jects to grasp the informativeness of the data and the aim of
the task in Bayesian tasks is a pragmatic ability. Also, when sub-
jects don’t give the logical-normative solution to the Linda
problem, they are again considering the informativeness of the
data, which, in this instance, hinders the intent of the exper-
imenter (concerning the inclusion-class rule), because of a mis-
leading contextualization of the task.

We could further speculate that, instead of having an ability for
decontextualizing the task (Stanovich & West 2000), those gifted
subjects who give the normative solution to the Linda problem
(14%) would have a high ability to understand which context
the experimenter intended, thereby revealing an interactional
intelligence.

NOTE
1. Except when the number of men and women is the same.
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Abstract: Consistent with Barbey & Sloman (B&S), it is proposed that
performance on Bayesian inference tasks is well explained by nested
sets theory (NST). However, contrary to those authors’ view, it is
proposed that NST does better by dispelling with dual-systems
assumptions. This article examines why, and sketches out a series of
NST’s core principles, which were not previously defined.

A voluminous literature documents the many shortcomings
people exhibit in judging probability. Barbey & Sloman (B&S)
focus on a subset of this research that explores people’s abilities
to aggregate statistical information in order to judge posterior
probabilities of the form P(HjD), where D and H represent
data and a focal hypothesis, respectively. Some of this literature
indicates that people neglect base rates, although some of the
findings are consistent with other judgment errors, such as the
inverse fallacy (Koehler 1996), which involves confusing
P(HjD) with P(DjH). For instance, Villejoubert and Mandel
(2002) observed that bias (i.e., systematic inaccuracy) and inco-
herence (i.e., nonadditivity) in posterior probability judgments
was well explained by the inverse fallacy, even though base-rate
neglect could not account for the observed performance decre-
ments. Thus, there is some question regarding exactly how
much of what has been called base-rate neglect is in fact base-
rate neglect. A safer claim is that performance on such Bayesian
inference tasks is often suboptimal and much of the error
observed is systematic.

B&S challenge a set of theoretical positions oriented around
the core notion that humans are better at judging probabilities
when the information they are provided with is in the form of
natural frequencies (Gigerenzer & Hoffrage 1995). They argue –
convincingly, I believe – that variation in frequency versus prob-
ability formats neither explains away performance errors, nor

does it account for errors as well as variation in the transparency
of the nested set structure of an inference task. I shall not repeat
their arguments here. Rather, my aim is, first, to sketch out some
key propositions of nested sets theory (NST), which have yet to
be described as a series of interlocking principles. Second, I
will argue that NST would be on even firmer theoretical
ground if the dual-systems assumptions that currently pervade
B&S’s version of it were jettisoned.

At its core, NST consists of a few simple propositions: First,
performance on a range of reasoning tasks can be improved by
making the partitions between relevant sets of events more trans-
parent. I call this the representation principle. Second, because
many reasoning tasks, such as posterior probability judgment,
involve nested set relations, transparency often entails making
those relations clear as well. I call this the relational principle.
Third, holding transparency constant, nested set representations
that minimize computational complexity will optimize perform-
ance. I call this the complexity principle. Fourth, the manner
in which task queries are framed will affect performance by
varying the degree to which default or otherwise salient rep-
resentations minimize task complexity. In effect, this is the flip
side of the complexity principle, and I call it the framing prin-
ciple. Fifth, improvements in the clarity of nested set represen-
tations can be brought about through different modalities of
expression (e.g., verbal description vs. visual representation). I
call this the multi-modal principle. Sixth, within a given modality,
there are multiple ways to improve the clarity of representation. I
call this the equifinality principle. This list is almost certainly
incomplete, yet it provides a starting point for developing a
more explicit exposition of NST, which up until now has been
more of an assemblage of hypotheses, empirical findings, and
rebuttals to theorists proposing some form of the “frequentist
mind” perspective. In the future, attempts to develop NST
could link up with other recent attempts to develop a compre-
hensive theory of the representational processes in probability
judgment (e.g., Johnson-Laird et al. 1999; Mandel, in press).

Although NST is not intrinsically a dual-systems theory (DST),
B&S have tried to make it “DST-compatible.” This is unfortunate
for two main reasons. First, although DSTs are in vogue (for an
overview, see Stanovich & West 2000) – perhaps because they
offer a type of Aristotelian explanation long favored by psycholo-
gists (Lewin 1931) – they are not particularly coherent theoreti-
cal frameworks. Rather, they provide a rough categorization of
the processes that guide reasoning and that influence perform-
ance through an effort-accuracy tradeoff. The second reason
for preferring “pure NST” to an NST-DST hybrid is that the
former is not only more parsimonious, it actually offers a better
explanatory account. According to the hybrid theory, when the
nested set structure of a reasoning task is unclear, people have
difficulty applying the rigorous rule-based system (also called
“System 2”) and fall back on the more error-prone associative
system (also called “System 1”). However, B&S say little about
how judgment biases arise from those associative processes, or
how system switching may occur.

Pure NST does not preclude the idea that impoverished rep-
resentations of nested set relations can shift judgment towards a
greater reliance on associative reasoning processes, but nor does
it depend on that idea either. A viable alternative explanation is
that impoverished representations lead to performance decre-
ments because they increase one’s chances of failing to access
the correct solution to a problem. This does not necessarily
mean that they switch to associative processes. It may simply
mean that they fail to apply the correct principle or that they
select the wrong information aggregation rule. Consider the
inverse fallacy: It seems more likely that the error stems from a
failure to understand how to combine P(D j : H) with P(D j H)
(and with the base rates of H and :H where they are
unequal) than that it follows from use of associative processes.

Improving the representational quality of nested sets may also
influence rule-based processes by simplifying the computations
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required to implement a normative information aggregation
strategy. Indeed, as B&S indicate, the performance decrements
on Bayesian judgment tasks that Girotto and Gonzalez (2001)
observed when participants were presented with “defective”
(but nevertheless transparent) nested sets, appear to be attribu-
table to the fact that such representations require at least one
additional computational (subtraction) step. That computation
itself may not be difficult to perform, but if it is missed the par-
ticipant’s judgment will surely be wrong.

In short, the types of errors that arise from impoverished rep-
resentations of nested set relations are generally consistent with a
rule-based system. NST should remain pure and single, unen-
cumbered by a marriage to dual-systems assumptions.

NOTE
1. The author of this commentary carried out this research on behalf

of the Government of Canada, and as such the copyright of the commen-
tary belongs to the Canadian Crown and is not subject to copyright within
the United States.
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Abstract: The article by Barbey & Sloman (B&S) provides a valuable
framework for integrating research on base-rate neglect and respect.
The theoretical arguments and data supporting the nested set model
are persuasive. But we found the dual-process account to be under-
specified and less compelling. Our concerns are based on (a)
inconsistencies within the literature cited by B&S, and (b) studies of
base-rate neglect in categorization.

Why so low? A striking feature of the data reviewed by Barney
& Sloman (B&S) is that the percentage of participants achieving
the correct answer in the Medical Diagnosis problem rarely
exceeds 50% (e.g., Table 3 of the target article). Thus, whether
it is presenting information as natural frequencies or making
nested set relations apparent that leads to improvements,
overall the levels of performance remain remarkably low.

Potential reasons for this low level of overall performance are
not discussed adequately in the target article. Although acknowl-
edging in section 2.2 that “wide variability in the size of the
effects makes it clear that in no sense do natural frequencies
eliminate base-rate neglect” (para. 2), B&S fail to apply the
same standard to their own proposal that “set-relation inducing
formats” (be they natural frequencies or otherwise) facilitate a
shift to a qualitatively different system of reasoning. The clear
message of the article is that by presenting information appropri-
ately, participants can “overcome their natural associative ten-
dencies” (sect. 4, para. 3) and employ a reasoning system which
applies rules to solve problems. Why does this system remain
inaccessible for half of the participants in the studies reviewed?
Is the rule system engaged, but the wrong rules are applied
(e.g., Brase et al. 2006, Experiment 1)? Or do these participants
remain oblivious to the nested sets relations and persevere with
“inferior” associative strategies?

B&S cite evidence from studies of syllogistic reasoning, deduc-
tive reasoning, and other types of probability judgment in
support of their contention that nested set improvements are
domain-general. In these other tasks, however, the improve-
ments are considerably more dramatic than in the base-rate
studies (e.g., Newstead [1989] found a reduction in errors from
90% to 5% for syllogisms with Euler circle representations).
The contrast between these large improvements in other

domains and the modest ones in the base-rate neglect problems
sits uncomfortably in a dual-process framework. Why doesn’t the
rule-based system overcome associative tendencies in similar
ways across different tasks? In essence, the issue is one of speci-
fication – one needs to be able to specify what aspects of a
problem make it amenable to being solved by a particular
system for the notion of dual systems to have explanatory
value. Why not simply appeal to “difficulty” and create a taxon-
omy or continuum of tasks differentially affected by various
manipulations (diagrams, incentives, numerical format). Such a
framework would not require recourse to dual processes or the
vague rules of operation and conditions for transition that
duality entails.

Incentives to “shift” systems? B&S report evidence from a
study by Brase et al. (2006) in which it was found that monetary
incentives improved performance on a base-rate problem. These
data might be useful in gaining a clearer understanding of the
factors that induce a shift between systems. It is difficult to
make clear predictions, but under one interpretation of the dual-
process position, one might expect incentives to have a larger
effect in problems for which the set relations are apparent. The
idea being that when the representation of information prevents
(the majority of) people from engaging the rule-based system
(e.g., when probabilities are used), no amount of incentive will
help – most people simply won’t “get it.” A simple test of this
hypothesis would be to compare probability and frequency
incentive conditions. Brase et al. did not do this, comparing
instead natural frequency conditions with and without additional
pictorial representations. One would assume that the pictorial
representations enhance nested set relations (target article, sect.
2.5) and increase the likelihood of shift to the rule-based system;
hence, incentives would be more effective in the pictorial
condition that condition. Brase et al.’s findings were telling:
there was a main effect of incentives but this did not interact
with the presence or absence of the picture; and indeed there
was no main effect of providing a pictorial representation.

Two processes or two kinds of experience? In evaluating the
B&S account we believe that it is useful to consider some of the
lessons learned from the study of base-rate respect and neglect in
category learning. In these studies people learn to discriminate
between the exemplars of categories that differ in their
frequency of presentation. The question is whether this base-
rate information is used appropriately in subsequent
categorization decisions, with features from more common
categories being given greater weight. The results have been
mixed. People can use base-rate information adaptively
(Kruschke 1996), ignore it (Gluck & Bower 1988), or show an
inverse base-rate effect, giving more weight to features from
less frequent categories (Medin & Edelson 1988). Note that
the issue of information format does not arise here, as all
learning involves assessments of feature frequency. Critically,
one does not need to invoke multiple processes to explain
these results. Kruschke (1996) has shown that sensitivity and
insensitivity to category base-rates can be predicted by a
unitary learning model that takes account of the order in which
different categories are learned, and allows for shifts of
attention to critical features. In brief, people only neglect
category-base rates when their attention is drawn to highly
distinctive features in the less frequent category. The moral
here is that before we resort to dual-process explanations of
base-rate respect and neglect, we should first consider
explanations based on the way that general learning
mechanisms interact with given data structures.

Conclusion. B&S provide a very useful overview of the base-
rate-neglect literature and provide convincing arguments for
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questioning many of the popular accounts of the basic
phenomena. The nested sets hypothesis is a sensible and
powerful explanatory framework; however, incorporating the
hypothesis into the overly vague dual-process model seems
unnecessary.

The logic of natural sampling
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Abstract: Barbey & Sloman (B&S) relegate the logical rule of the
excluded middle to a footnote. But this logical rule is necessary for
natural sampling. Making the rule explicit in a logical tree can make a
problem easier to solve. Examples are given of uses of the rule that are
non-constructive and not reducible to a domain-specific module.

Barbey & Sloman (B&S) have written a brilliant paper, but they
are not explicit about the logic of the elementary set operations
they appeal to. As Boolean algebra shows, this logic is the same
as elementary propositional logic. The set operations of taking
the complement, intersection, and union, which are necessary
for natural sampling, are the same Boolean operations (up to iso-
morphism) as negation, conjunction, and disjunction in prop-
ositional logic. In addition to making this general point, I
would give more prominence to the logical rule that the
authors relegate to the target article’s Note 3: the excluded
middle. This rule states that all propositions of the form “p or
not-p” are logically true. Its central place in natural sampling
cannot be explained by the Swiss-army-knife model of the
mind. This point reinforces B&S’s criticisms of that model.

In the “mind as Swiss army knife” model, the mind consists of
many domain-specific modules for reasoning and decision
making. There is, for example, supposed to be a domain-specific
module for inferences about cheaters in social arrangements
(Cosmides 1989), as well as a separate module for natural
sampling. The human mind is not supposed to have a content-
independent logical ability to reason about cheaters, natural
sampling, or other matters in general. Some supporters of this
model even deny that logic is a normative standard for judging
rationality, calling it useless “baggage” (Todd & Gigerenzer
1999, p. 365).

Logic is not, however, useless “baggage” for natural sampling
problems, which absolutely depend on the logic of the set oper-
ations, including the rule of the excluded middle. Problems that
appeal to this rule can be hard for people, but can become
easier when the relevance of the rule is made explicit. B&S also
refer to a difficult logical problem, called THOG, which
becomes easier when its logical form is made transparent using
logical trees that reveal nested sets (Griggs & Newstead 1982).
Consider the following problem (from Levesque 1986) that is
simpler to describe than the THOG set up, but which illustrates
the same points:

Jack is looking at Ann but Ann is looking at George. Jack is a
cheater but George is not. Is a cheater looking at a non-
cheater?
A) Yes B) No C) Cannot tell

We could call this the “Ann problem.” I have modified it to be
about cheating, but it could have any content. It is a hard
problem for most people. They respond with “Cannot tell,”
though the correct answer is “Yes “(Toplak & Stanovich 2002).
The Ann problem is difficult because the relevance of the
excluded middle rule is not transparent. It can, however, be
made easier by adding the rule explicitly: that Ann is either a
cheater or not a cheater. Logicians would say that the Ann

problem requires non-constructive inference. The non-construc-
tive step is the application of the excluded middle rule. Thanks to
the rule, we can know, from “above,” a priori and logically that
Ann is either a cheater or not a cheater, although we never
learn which she is in the reasoning – that is the non-constructive
aspect. We cannot reduce this reasoning to constructive proces-
sing from “below” by a domain-specific module (Over & Evans,
forthcoming). Such non-constructive inference is the purest
example of rule-based thought in a dual-process model, either
in the type that B&S endorse or in other types (Evans 2007).

The Ann problem could also be made easier by putting it into a
logical tree form, which is so often used to make probability pro-
blems easier in natural sampling (Over 2007). The tree would
begin with two branches, with one for the possibility of Ann as
a cheater and the other for the possibility of Ann as a non-
cheater. The tree would reveal that a cheater is looking at a
non-cheater in either case. This form of the Ann problem
would be closely analogous to a natural sampling problem.
Kleiter (1994) used logical trees in his seminal work on natural
sampling, and others have followed him in this, but not always
with the realization that the trees are purely logical constructions
(Kleiter realises this, but Zhu & Gigerenzer 2006 do not). Such a
tree necessarily depends on the rule of the excluded middle.

It is challenging to think of a context in which knowing
whether a cheater is looking at a non-cheater could tell us some-
thing important about cheating in the real world. With more
space, we could discuss possibilities. In any case, it is clear
that actual natural sampling could help us judge how far we
could trust someone not to be cheater, depending on the
number of times he has, or has not, cooperated with us in the
past. B&S specify the conditions under which natural sampling
can actually be useful and not merely an abstract exercise. Even
then, natural sampling presupposes that we can apply the rule
of the excluded middle to construct exhaustive subsets. True,
we may find it impossible in a practical sense to apply the rule
to a vague term, like “is depressed,” rather than a precise one,
like “has cancer.” But in that case, actual natural sampling
cannot be fully carried out. We could not actually complete
the task of constructing exhaustive subsets of the depressed
and not depressed. Since “is depressed” is vague, it has border-
line cases: people we cannot classify as either being depressed
or, alternatively, not being depressed. We cannot do without
the excluded middle and other logical rules in natural sampling
and in other general reasoning about cheating, probability, and
many other matters. We cannot adopt a Swiss army model of the
mind and call logic useless “baggage,” while relying on its rules
for natural sampling and constructing logical trees (as in Zhu &
Gigerenzer 2006). The alternative is a dual-process theory that
gives logic its proper place in our thought, which is limited but
still necessary (Evans & Over 1996).

The versatility and generality of nested
set operations
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Abstract: The target article makes an impressive case that nested set
operations (NS) facilitate probability computations by helping make
clear the relevant natural frequency partitions; however, NS can also
contribute to common errors. That NS constitute a general reasoning
process is supported by their role in deductive, modal, causal, and
other reasoning. That NS are solely a rule-based process is problematic.

Barbey & Sloman (B&S) observe that nested set operations (NS)
do not eliminate error, and point to the potential facilitating effect
of, for example, question form. Still, greater caution is in order:
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The commonest mistake in the medical probability case – answer-
ing with the “hit rate” – can utilize NS (have disease/have disease
and test positive/take test); it simply does not recognize which
nesting is critical (positive and have disease/test positive, including
false positives). So, what predictions concerning accuracy follow
simply from people’s use of NS?

Looking at the bright side, this situation underlines the general-
ity of NS, in that they can support not only good reasoning, but also
the bad and the ugly. Moreover, NS need not be restricted to rule-
based reasoning: they can support either complex rule-following
processes (as with more difficult syllogisms), or associative pro-
cesses (e.g., making category connections merely by keeping
track of similarity-based groupings). Further, NS can support
reasoning at different levels of determinateness: that of simple
subset relations, where these, in turn, represent elementary quan-
titative relations of greater, less, and equal; that of finer, but still
coarse, comparisons of size, as with Euler circles drawn more-
or-less “to scale”; that of determinate set size, with cardinality rep-
resented by numerals, grids, and so on. The medical probability
calculation requires the third level; others need only the first or
second. In sum, within any domain to which they may apply, NS
constitute a highly versatile instrument of thought. In the remain-
ing space I indicate some significant domains in which the role of
NS has (apparently) been under-explored.

Deductive reasoning. NS are central to many elementary
syllogistic inferences, and this area has been intensively studied
(Evans et al. l993). But at least one psychologically and
logically important item has not been sufficiently examined.
Traditional categorical syllogistic can be modified to produce a
system just as powerful as first-order logic (Sommers 1982).
Among other things, one may add the Leibnizean principle, “If
all As are Bs, then everything that is related in manner R to an
A is related in manner R to a B.” This allows one to formulate
many simple relational inferences not expressible in older
syllogistic. For example, “Since all natural disasters are acts of
god, all cases of damage caused by natural disasters are cases
of damage caused by acts of god.” (“The Leibniz Clause”;
check your insurance policy.) Combined with the provision that
no damage caused by god is insured, the company infers that
your earthquake damage is not covered. The gist of this
powerful principle is simple and intuitive; it directly exploits
elementary NS, and suggests a new angle for psychological
exploration of everyday relational inference.

Modal deductive reasoning. Aristotle invented modal syllogistic
in part to represent possible forms of human thought; yet it is still
largely terra incognita for the psychology of reasoning. In this
approach, people think in terms of (modally) different ways in
which predicates relate to subjects: All As are B; all As are
necessarily B; all As are possibly/possibly not Bs. Inferences
consist of any mix of modal and non-modal premises and
conclusions. One difficult issue would be how people represent
the difference between modalities de dicto (a statement [dictum]
is necessarily true, e.g., a law of nature, or a “definitional” truth
such as, “All bachelors are unmarried”), versus de re (a predicate
is necessarily true of some thing [res], as in, “Everything in the
barnyard is necessarily a chicken”). NS can handle the latter by
distinguishing the set of things possessing some property from
the subset of things necessarily possessing that property (and
from the coordinate subset of things contingently possessing that
property). An empirical point of entry would be the question of
whether people judge correctly the validity of these two modal
syllogisms (the notorious “Two Barbaras”; Patterson l985):

All As are necessarily Bs All As are Bs
All Bs are Cs (no modality specified) All Bs are necessarily Cs
Therefore, All As are necessarily Cs All As are necessarily Cs

One predictable source of error is confusion between de dicto
and de re understandings of the modal propositions. On the

former, both Barbaras are invalid; on the latter, only the
second is valid. There are literally thousands of modal and
mixed modal/non-modal syllogisms awaiting investigation, and
the most fundamental of these will be crucial to reasoning invol-
ving the modally distinct ways in which sets may be nested.

Causal reasoning. If one thinks of the “causal scenario” of an
event E as representing E and its causal effects (a set of events
branching into the future, say), NS can naturally capture causal
chains: If event A causes B, B causes C, and so forth, the
causal scenario of C is nested within that of B, and B’s within
A’s; therefore C’s scenario is nested within A’s, and causality
is transitive. If prevents is understood as causes the non-
occurrence of, prevention simply becomes another link in a
causal chain/nesting. NS can also support thought involving
“enablers,” where these are construed as background or normal
conditions in the presence of which something causes an event,
by nesting the set of situations in which the causal sort of event
occurs within the set of enabling-condition situations. (This is
admittedly a hotly contested issue.) Even causal thought via
simulation of concrete events will implicitly involve
NS – provided, as is often the case, the simulation is construed
as representing types of causal events (e.g., physical or
psychological forces acting in some manner to produce a given
sort of effect).

NS are also involved in simple deontic reasoning, classificatory
schemata and inferences of all sorts, essentialist (e.g., biological)
schemata in particular, and much more. B&S admirably marshal
evidence for the important role of NS in probabilistic reasoning,
and their claim of generality for NS is highly suggestive with
regard to avenues of future research.
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Abstract: Evidence favors the nested sets hypothesis, introduced by
fuzzy-trace theory (FTT) in the 1990s to explain “class-inclusion”
effects and extended to many tasks, including conjunction fallacy,
syllogistic reasoning, and base-rate effects (e.g., Brainerd & Reyna
1990; Reyna 1991; 2004; Reyna & Adam 2003; Reyna & Brainerd
1995). Crucial differences in mechanisms distinguish the FTT and
Barbey & Sloman (B&S) accounts, but both contrast with frequency
predictions (see Reyna & Brainerd, in press).

Although the evidence adduced by Barbey & Sloman (B&S)
clearly supports fuzzy-trace theory (FTT), there are key differ-
ences in the mechanisms used to explain base-rate effects. That
is, FTT’s prediction that “Base-rate neglect is reduced when pro-
blems are presented in a format that affords accurate represen-
tation in terms of nested sets of individuals” (target article,
Abstract) has been confirmed repeatedly. B&S’s account “attri-
butes base-rate neglect to associative judgment strategies”
(target article, Abstract), but it is questionable whether associat-
ive processes are implicated by the data, whereas distinct ideas
omitted from their account have been supported through rigor-
ous testing. Therefore, in the remainder, we briefly summarize
those differences in mechanisms used to explain the nested sets
prediction, note that each assumption in FTT has been separately
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tested empirically (unlike many competing claims which are phi-
losophical), and spell out some important next steps in theory
testing as well as further implications for rationality.

“Diagnosing whether a patient has a disease, predicting
whether a defendant is guilty of a crime, and other everyday as
well as life-changing decisions” and “people’s tendency to
neglect base-rates” (target article, sect. 1, para. 1) have been
explicitly investigated in the context of FTT (e.g., Reyna &
Adam 2003; Reyna & Farley 2006; Reyna et al. 2002; Reyna &
Lloyd 2006; Reyna et al. 2001; Reyna et al. 2006). Four factors
are essential to our explanation: (1) Confusion about which
classes are referred to (present for all ratio concepts, including
probability), defaulting to the focal classes in numerators and
consequently neglect of denominators; (2) the allure of a
salient gist or meaning relation that applies to the focal class
and that seems to answer the posed question, but does not; (3)
developmental and individual differences in the ability to
inhibit this salient gist; and (4) the presence or absence of cues
to retrieve known reasoning principles, such as the cardinality
principle that subsets cannot be more numerous (or probable)
than the sets that include them. Empirical evidence supports
each of these theoretical factors and, together, they predict the
nested sets findings discussed by B&S.

For example, using these assumptions, we, too, have shown
that “Facilitation in Bayesian inference . . . can be attributed to
the facilitory effect of prompting use of the sample of category
instances presented in the problem to evaluate the two terms
of the Bayesian ratio” (target article, sect. 2.3, para. 6), that this
effect extends to improving single-event probability judgments,
and that the form of the question matters (e.g., Brainerd &
Reyna 1990; 1995). Like Girotto and Gonzalez (2001), we also
showed that defective partitioning decreased the facilitative
effect of making nested sets transparent (Lloyd & Reyna 2001).
In addition, Girotto and Gonzalez (in press) provide develop-
mental evidence that echoes earlier developmental findings by
Brainerd and Reyna (e.g., 1995), and Sloman et al. (2003), Yama-
gishi (2003), and Bauer and Johnson-Laird (1993) provide evi-
dence of facilitation using diagrammatic representations that
also echoes our earlier findings (e.g., Brainerd & Reyna 1990;
Lloyd & Reyna 2001; Reyna et al. 2001), all of which support
FTT’s nested sets hypothesis.

These findings have been summarized by Reyna and Brainerd
(1995) as follows:

Class-inclusion reasoning, probability judgment, risk assess-
ment, and many other tasks, such as conditional probability,
conjunction fallacy, and various deductive reasoning tasks,
are subject to what has been called inclusion illusions (Reyna
1991; Reyna & Brainerd 1993; in press). Inclusion illusions
occur because part-whole relationships are difficult to
process, for children and for adults. (p. 34)

According to Reyna and Brainerd (1993), neglect of base rates
is a special case of denominator neglect: Because of the com-
plexity of processing nested classes, subjects focus on numer-
ators (e.g., joint probabilities or relative frequencies of
targets, depending on the task). (p. 35)

Processing can be simplified, however, by providing a nota-
tional system in which elements of parts and of wholes are dis-
tinctly represented. For example, Venn diagrams, used in
syllogistic reasoning, represent subsets and more inclusive
sets using a system of overlapping circles. Superordinate-set
tags can be used to similar effect in class inclusion. (p. 33)

As these examples illustrate, B&S’s evidence favoring “nested
sets and dual processes,” except for that presented in section
2.8, is a replication or extension of earlier findings derived
from FTT. Therefore, not surprisingly, their conclusions about
the nested sets hypothesis are virtually identical to earlier state-
ments. However, the mechanisms are not identical and the
characterization of System 1 (the intuitive system) as “primitive”
(sect. 1.2.5, para. 2) is the opposite of what is claimed in FTT

(and our claim has received repeated empirical support). We
offer a dual-processes account that encompasses the findings pre-
sented here, but also has been used to predict additional, coun-
terintuitive findings, some shown in Table 1.

In contrast to ecological and other perspectives on rationality,
FTT places unique emphasis on developmental data in informing
judgments of rationality. Evidence points to simplified, intuitive,
gist-based thinking as a key feature of advanced reasoning that
develops with age and expertise, but also accounts for increases
in gist-based biases. According to FTT, these cognitive biases
are irrational. However, FTT’s process model distinguishes
types of errors that vary in severity – that is, in degrees of ration-
ality. For example, errors caused by susceptibility to a compelling
(but incorrect) gist or by retrieving the wrong reasoning principle
are more severe than those caused solely by processing interfer-
ence from overlapping classes. This theoretical taxonomy maps
onto observed trends in development and in the acquisition of
expertise (Reyna et al. 2003).

In summary, although the target article’s account of base-rate
effects is consistent with FTT’s (supporting the nested sets hypoth-
esis and refuting an adaptive preference for frequency formats), the
proposed dual-processes model differs in important respects. FTT
stands in sharp contrast in its characterization of intuition (System
1) regarding rationality. Standard dual-processes models, such as
the one advocated by B&S, attribute successful performance on
base rate and other inclusion tasks to the operation of an advanced
(logical and quantitative) System 2 and the inhibition of a primitive
System 1. In contrast, in FTT, intuition is advanced, and focusing

Table 1 (Reyna & Mills). Examples of counterintuitive findings
that differentiate FTT from Barbey & Sloman’s

dual-processes approach

1. Intuitive reasoning increases with development and with
greater expertise (e.g., Reyna & Brainerd 1994; Reyna & Ellis
1994; Reyna & Farley 2006; Reyna & Lloyd 2006).

2. Reducing memory for verbatim problem information in class-
inclusion tasks improves reasoning performance because it
forces greater reliance on memory for gist (e.g., Brainerd &
Reyna 1990; Reyna 1991).

3. Increasing working memory load by adding more information
about more classes can improve class-inclusion reasoning by
making class-inclusion relations clearer (e.g., Brainerd &
Reyna 1995).

4. Base-rate neglect, disjunction fallacies and similar class-
inclusion biases reflect “garden path” effects of usually
adaptive reliance on high-level semantic gist rather than low-
level mindless associations (see Reyna et al. 2003, for examples
of cardiologists’ judgments of heart attack risk).

5. Independent verbatim and gist memories for frequencies can
lead to contradictory judgments from the same individuals
(e.g., Reyna 1992).

6. Class-inclusion illusions, as exemplified by base-rate neglect,
are predicted to persist late in development, and to be
independent of domain knowledge and expertise (e.g., Adam &
Reyna 2005; Lloyd et al. 2001; Reyna 2004; Reyna & Adam
2003; Reyna et al. 2001). Therefore, physicians exhibit base-
rate neglect at the same rate as high school students in judging
the post-test probability of disease.

7. FTT makes specific predictions about task variability
(displaying different levels of reasoning in tasks that tap the
same underlying competence), accounting for both early
precocity and late-persisting illusions in judgments of
probability (e.g., Reyna & Brainerd 1994).
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on quantitative minutia is primitive (lowering class-inclusion per-
formance). This surprising prediction, among others, is supported
by converging evidence from multiple tasks.
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Abstract: Though Barbey & Sloman (B&S) distinguish various
frequentist hypotheses, they opt rapidly for one specific dual-process
model of base-rate facilitation. In this commentary, I maintain that
there are many distinct but related versions of the dual-process theory,
and suggest that there is currently little reason to favor B&S’s
formulation over the alternatives.

I am in broad agreement with the general position defended in
Barbey & Sloman’s (B&S’s) excellent article. In particular, it is
plausible that the data on tasks involving base-rate information
are best explained on the following general assumptions:
Dual-process Thesis: Many kinds of reasoning, including those

involving base-rate information, depend on the existence and
interaction of two (sorts of) cognitive systems: call them
System 1 and System 2.

Nested Set Thesis: Set inclusion operations play a central role in
base-rate facilitation.

But although B&S painstakingly distinguish various frequentist
hypotheses, they opt rapidly for one specific construal of the
above pair of commitments. Specifically, they adopt a rule-utiliz-
ation hypothesis in which base-rate facilitation depends on the
use by System 2 of set theoretic rules. In what follows, I first high-
light that there are many alternative ways of combining the
dual-process and nested set theses. I then suggest that there is
currently little reason to favor the rule-utilization hypothesis
over some of the alternatives.

Varieties of nested set and dual process hypotheses. We
can distinguish different versions of the nested set and
dual-process theses in terms of how they address the following
issues:
Issue A: What kinds of cognitive structure are specialized for the

execution of set theoretic operations?’
Issue B: What specific role(s) does System 2 play in base-rate

facilitation?
Regarding Issue A: In a manner that mirrors B&S’s own dis-

cussion of frequentist hypotheses, we can distinguish (at least)
three variants of the nested set thesis:
1a. Set Inclusion Mechanism: Base-rate facilitation depends in

part on the activity of a specialized mechanism or “module”
for elementary set theoretic operations.

2a. Set Inclusion Algorithm: Base-rate facilitation depends in
part on the activity of an algorithm for elementary set theoretic
operations.

3a. Set Inclusion Rules: Base-rate facilitation depends in part
on the deployment of rules for elementary set theoretic
operations.

These options are not exhaustive; and nor are they mutually
exclusive. But B&S appear to endorse only 3a.

Regarding Issue B: Dual-process theories are ubiquitous in
cognitive science, and at least the following functions have
been assigned to mechanisms responsible for the sorts of con-
trolled, effortful, and relatively slow processing associated with
System 2:
1b. Censorship: System 2 censors the outputs from System 1 pro-

cesses thereby preventing them from becoming overt
responses.

2b. Selection: System 2 selects between the outputs of different
System 1 processes.

3b. Inhibition: System 2 inhibits the activity of System 1
processes.

4b. Allocation: System 2 allocates cognitive resources, such as
attention and information to System 1 processes.

5b. Rule utilization: System 2 computes solutions to judgmental
problems by executing rules of inference.

Notice that of these options only the last requires that System 2
compute solutions to judgmental tasks. In contrast, the other four
are broadly executive functions, in the sense that they involve the
regulation of cognitive resources, information flow and the flow
of control. Again, these options are neither jointly exhaustive
nor mutually exclusive. But while B&S endorse 5b – viewing
System 2 as a consumer of set theoretic rules – they remain
largely neutral on which, if any, of the other functions System
2 might perform.

Is there any reason to endorse the rule-utilization

hypothesis? So, there are different versions of both the nested
set and dual-process theses; and they can be combined in
different ways to produce distinct but related hypotheses about
the cognitive systems underlying base-rate facilitation. Perhaps
all B&S really want to claim is that some such account is
plausibly true. This would already be a substantial and
contentious hypothesis. But, as already indicated, another more
specific proposal is suggested by much of what they say: a rule-
utilization hypothesis that combines claims 3a and 5b. If this is
the hypothesis B&S seek to defend, however, then it’s far from
clear that it is preferable to other ways of combining the dual-
process and nested set theses.

First, the data cited in the target article do not settle the
matter. To explain these data within a dual-process framework
requires that: (1) Set theoretic operations are performed in
cases of base-rate facilitation. (This explains the pattern of facili-
tation.) (2) System 2 is involved when facilitation occurs. (This
explains, for example, the effects of incentives, and correlation
between intelligence and performance.) But it does not follow
that System 2 must itself perform these set theoretic operations.
For all the data show, it may instead be that System 2 only plays
an executive role while some System 1 mechanism is responsible
for performing set theoretic operations.

Suppose, for illustrative purposes, that there exists a mechanism
dedicated to set theoretic operations – a “set theory module,” if
you like (option 1a). Moreover, assume that System 2 performs
one or more executive function, such as allocating resources to
the set theory mechanism or inhibiting the operation of other
mechanisms (options 1b–4b). Such a proposal could accept
B&S’s contentions that: (1) an associative System 1 process is
responsible for base-rate errors, (2) facilitation involves System
2, and (3) it occurs when inputs make set theoretic relations trans-
parent. Thus, System 2 activity could still be invoked to explain the
influence of incentives and intelligence; and facilitation could still
be explained by reference to the performance of set theoretic
operations. But in contrast to the rule-utilization hypothesis,
System 2 would play some kind of executive function as opposed
to actually computing solutions to judgmental tasks. An account
along these lines might offer a possible explanation of the data,
while making claims that differ in important respects from those
enshrined in the rule-utilization hypothesis.
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But perhaps the rule-utilization hypothesis should be pre-
ferred on general theoretical grounds? In particular, one might
think that the alternatives are in tension with general assump-
tions of dual-process theory. Most obviously, one might think
the following:
Dual-process theories posit only two reasoning systems. In which

case, since System 1 is responsible for errors, System 2 is pre-
sumably responsible for successful responses.

System 1 processes are associative, whereas System 2 processes
are rule-based. In which case, set-theoretic operations
cannot be subserved by System 1 since they are not associative.
Therefore, System 2 must be responsible for the execution of
set-theoretic operations.
But it would be a mistake to adopt the rule-utilization hypoth-

esis on such grounds. Though some versions of the dual-process
theory incorporate these assumptions, they are at best highly con-
tentious and indeed have been the subject of much recent
debate. First, there is considerable debate among dual-process
theorists over whether “System 1” and “System 2” label individual
systems or kinds of systems. Indeed, there is a growing consensus
amongst researchers that there are many System 1 mechanisms
(Evans, forthcoming; Stanovich 2004). In which case, a mechan-
ism for set-theoretic operations is wholly consistent with the
claims dual-process theorists make about the plurality of reason-
ing systems.

Similarly, there is no reason to assume at this time that all
System 1 processes must be associative and System 2 rule-
based. Admittedly, many dual-process theorists, B&S included,
appear to make this assumption. (At any rate, B&S adopt the con-
vention of labeling them as such “in an effort to use more expres-
sive labels”; sect. 1.2. 5, para 1.) But once more, these
assumptions are highly contentious; and many prominent dual-
process theorists are happy to categorize non-associate mechan-
isms – including a hypothetical frequentist module – as com-
ponents of System 1 (Evans, forthcoming; Stanovich 2004). At
this time, the issue of whether System 1 processes are exclusively
associative should, it seems to me, be treated as an open empiri-
cal matter.

Of course, it may just be that B&S find the rule-utilization
hypothesis more attractive on grounds of parsimony since it
avoids any commitment to specialized mechanisms for set-theor-
etic inference. If so, I sympathize. But, given the current
widespread popularity of modularity hypotheses, such consider-
ations are unlikely to bear much weight. Even if B&S are right to
advocate the nested set and dual-process theses, much more
work is required to adjudicate between the various versions of
this general proposal.
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Abstract: Barbey & Sloman (B&S) attribute base-rate neglect to associative
processes (like retrieval from memory) that fail to adequately represent the
set structure of the problem. This commentary notes that associative
responses can also lead to base-rate overweighting. We suggest that the
difference between the two patterns is related to the distinction between
decisions from experience and decisions from description.

Barbey & Sloman’s (B&S’s) analysis of previous studies of the
effect of base rate information demonstrates that in many cases

the effect increases when the set structure of the problem is
made more transparent. As a result, the participants can
perform more complete analysis of the data. For example, the
reliance on base rates is enhanced by the following manipula-
tions: Partitioning the data into exhaustive subsets, using dia-
grammatic representation of all relevant sets, and formulating
the question in a way that encourages participants to compute
the two terms of the Bayesian ratio first, instead of direct compu-
tation of the probability.

The main goal of our commentary is to highlight an interesting
set of conditions that lead to the opposite pattern. Under these
conditions the presentation of information concerning the set
structure reduces the effect of the relevant base rates. For an
example, consider the task of reading the text in Figure 1.

This task was studied in Erev et al. (2007) following Bruner
and Minturn (1955; cf. Kahneman 2003). Their control condition
suggests that the participants are not likely to consider the possi-
bility the central stimulus is a number. About 90% of the partici-
pants read the central stimulus as the letter “B” (the remaining
10% read it as the number “13”). Thus, the vast majority
behaved as if they overweighted the base rate – that is, the fact
that a stimulus that appears between letters is more likely to be
a letter than a number. Erev et al. show that manipulations
that make the set structure of the problem more transparent
(e.g., the presentation of the possible hypotheses) decrease
such base-rate effects. In the example given here, the
presentation of the possible hypotheses (“B” or “13”) increases
the proportion of the low base rate responses (“13”) from 10%
to 50%.

We believe that the difference between the present example
and the situations examined by B&S reflects the difference
between decisions from description, and decisions from experi-
ence (see Hertwig et al. 2004). The main tasks analyzed by B&S
involve decisions (or judgment) from description. The decision
makers were presented with a description of the task that includes
the key factors. Hertwig et al. (2004; see also Erev et al. 2007) show
that in decisions from description people deviate from optimal
choice in the direction of giving equal weight to all the possibilities.
That is, the low base rate categories receive “too much” attention
and the objective base rate is neglected.

The example in Figure 1, in contrast, involves decisions from
experience. The participants did not receive a description of
the possible categories and/or their base rates. Recent research
(see review in Erev & Barron 2005) shows a bias toward
underweighting of rare events (low base-rate categories) in
decisions from experience. People behave “as if” they forget
to consider the low base-rate category. That is, in this case for-
getting and similar cognitive limitations imply a very strong
base-rate effect.

In summary, we propose that it is constructive to distinguish
between two ways in which base rates affect human behavior.
The first effect is likely to emerge in decisions from description
as a product of careful analysis. B&S focus on this effect and
note that it can be described as an outcome of the rule-
based reasoning. The second effect is likely to emerge in
decisions from experience as a product of forgetting and/or
neglect of the low base-rate categories. We assert that this
effect is rather common, and is likely to be decreased by
careful analysis.
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Figure 1 (Schurr & Erev). The text used in Experiment 1 of
Erev et al. (2007).
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Abstract: We believe that when assessing the likelihood of uncertain
events, statistically unsophisticated people utilize a coarse internal scale
that only has a limited number of categories. The success of the nested
sets hypothesis may lie in its ability to provide an appropriate set
structure of the problem by reducing the computational demands.

The target article by Barbey & Sloman (B&S) challenges the
natural-frequency based theories of human judgment and
decision making and, instead, supports a nested sets hypothesis.
The authors conclude that judgmental errors and biases in
Bayesian calculations are attenuated when problems are
represented properly through nested sets of individuals.
Although in general we agree with the authors’ claims, in this
commentary we would like to further examine, from a different
perspective, why the nested sets hypothesis might provide a
more adequate representational account than the natural fre-
quency representations.

We have recently hypothesized that when assessing the likeli-
hood of uncertain events, statistically unsophisticated people
utilize a coarse scale that only has a limited number of categories
(Sun et al., in press). The essence of the hypothesis is that,
without adequate anchors, people’s internal representations are
coarse and limited, and therefore do not map one-on-one onto
the continuously distributed external values, which can be
either probabilities (or percentages) or frequencies.

The coarseness hypothesis is based on the large body of beha-
vioral and neuroimaging research on mental presentations of
quantity and numbers. Miller (1956) suggested that the
number of levels of any variable that can be internalized is not
only finite, but also small. In psychometric research, many
researchers believe that the number of response alternatives
on a scale is quite limited (for a review, see Cox 1980). Recent
studies using brain-imaging techniques have provided neuro-
logical evidence indicating the existence of a coarse scale for
the internal representation of numerical values. Dehaene and
colleagues (e.g., Dehaene et al. 1999) suggest that there is a
coarse and analog mental number line, which is the foundation
of a “number sense” and shared by humans and animals. Par-
ticularly, Dehaene et al. show that exact calculations involve lin-
guistic representations of numbers and are controlled by the
speech-related areas of the left frontal lobe in the brain. In con-
trast, approximate calculations are language-independent and
rely on visuo-spatial representations of numbers controlled by
the left and right parietal lobes. Therefore, it is possible that
there are two different calculation processes involved in the
Bayesian inference. It might be too early to link this distinction
to the dual-process model (“associative” and “rule-based”)
suggested in the target article, but the theoretical relevance
appears to be evident. Particularly for lay persons, who do not
have the ability or enough information to carry out exact calcu-
lations, it is likely that their intuitive assessment of event likeli-
hoods is a “sense of approximation” based on a coarse internal
representation.

We conducted two experiments to test the coarseness
hypothesis (Sun et al., in press). In Experiment 1, participants
estimated event probabilities in a free format. The experiment
task was to estimate the winning probabilities of poker hands in
a one-deck-and-two-player “draw poker” game. Despite the
fact that the target probability has an even and nearly continu-
ous distribution of probabilities ranging from zero to close to
100% with relatively small increments, we found that subject

responses were highly clustered with approximately 5 clusters
each. In Experiment 2, participants made forced comparisons
using two different external response scales (a 3-level coarse
scale versus a 10-level fine scale). We found that their perform-
ance did not measure up to the requirement of the finer scale.
These findings indicate that besides the systematic biases, a
certain portion of human errors in probabilistic judgment
may be due to the low resolution of the internal represen-
tations. Further analyses of the experimental data and compu-
ter simulations implied that the number of internal categories is
about 5.

This coarseness model can be used to account for physicians’
overestimation of the probability of cancer, given a positive test
result. Specifically, probably to a physician, what matters most is
a dichotomy between a positive and a negative test result. No
matter how small the probability of a breast cancer can be
(due to the low base rate), a positive test result has to be
taken seriously. Thus, the test result would naturally serve as
an external cue to anchor two distinctive mental states. If the
number of options after a test is limited (e.g., two options
with one threshold), a large amount of discrepancy manifested
as the overestimation of cancer probability could be accounted
for by the mismatch between two different scales: one is an
approximate evaluation of the seriousness of a situation (e.g.,
classifying it as “dangerous”), and the other is an exact numeri-
cal value in a continuous distribution. Such discrepancy may not
be easily made to disappear by simply using a frequency rep-
resentation, since frequencies, normalized or not, are still con-
tinuously distributed.

B&S have demonstrated that diagrammatic representations
such as Euler circles, when employed to construct a nested
set structure, would facilitate Bayesian inference. This is con-
sistent with our hypothesis for a coarse scale of internal rep-
resentations. Figure 1 in the target article shows a probability
space nested in three levels: all possibilities, number of individ-
uals (or chances of) testing positive, and, finally, the number of
individuals (or chances of having) the disease. In this setting,
computations are facilitated by external cues. Most important,
these cues are represented hierarchically, so that at any
moment, human subjects would only need to divide the prob-
ability space into a limited number of categories. In effect,
when significant facilitation is found using natural frequency
representations, it is often the case that hypotheses are pre-
organized to facilitate a limited number of set operations
(such as the binary hypotheses used in Gigerenzer & Hoffrage
1995). Therefore, it seems that the key factor underlying facili-
tation is a structure with a limited number of sets at each com-
putation phase. The success of the nested sets model may well
lie in the “chunking” mechanism (Miller 1956) which reduces
the computational demands for human subjects. Other distinc-
tions, such as whether natural frequency is normalized to an
arbitrary reference class, do not address this issue. And it
would be no surprise that little or less facilitation is found
when natural frequencies are used but without transparent
nested set structure.

Implications of real-world distributions and
the conversation game for studies of human
probability judgments
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Abstract: Subjects in experiments use real-life strategies that differ
significantly from those assumed by experimenters. First, true
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randomness is rare in both natural and constructed environments.
Second, communication follows conventions which depend on the
game-theoretic aspects of situations. Third, in the common rhetorical
stance of storytelling, people do not tell about the representative but
about unusual, exceptional, and rare cases.

In this commentary, I do not directly argue against the findings of
Barbey & Sloman (B&S). However, I note that the range of base
rate discounting effects under nearly (apparently) identical cir-
cumstances is roughly as large as the effect itself. This strongly
suggests that important factors are not being addressed.
I provide three suggestions for what some of these factors
might be.

First, in the real world, people do not typically experience true
randomness. In the natural as well as the artificial world, things
are typically arranged in a “clumped” fashion. Given that the
natural world in which we have evolved as well as the world
that we have constructed are both non-random, it would be a
priori rather amazing if we humans somehow developed a
natural penchant for dealing with frequencies of randomly occur-
ring events. The conservatism shown in probability estimations is
consistent with a bias toward believing in the “clumpiness” of
distributions.

Not only do artifacts drawn from the natural and artificial
worlds tend to “start out” in non-random clumps, but many
mechanical and social processes are such that even if an explicit
attempt is made to produce randomness, any interruption or
incompleteness in that process is likely to result in something
that is less than truly random. To give a simple example, if one
takes a small canister of black balls, pours them into a larger
bin, adds a small canister of white balls on top, and then begins
shaking them together, at every point until randomness is
achieved, there are likely to be a disproportionate number of
white balls on top. Note that this process is very asymmetrical.
Therefore, if an experimenter who purports to present a
subject with a “random mixture” makes any reasonable kind of
error (does not shake long enough, shakes in such a way that
layers are not intermixed), the result is that some degree of
“clumpiness” will persist.

Second, in the social world, communication is not a mere
encoding of what is. More often, there is communicative
purpose to communications. Better than an “encoding-decoding”
model is a “design-interpretation” model of human-to-
human communication (Thomas 1978). How people relate to
propositions presented to them is complexly influenced by
the inferred motives of those who present the information. It
would be astounding if every subject in a psychological exper-
iment simply and naively believed everything an experimenter
presented about the purpose and context of the experiment.
Even if a subject presumes that they are engaged in a
“purely cooperative” effort with the experimenter, conversa-
tional postulates will still hold (Grice 1978). These imply
that the experimenter only presents data that are necessary
and sufficient for the task. Further, what a particular subject
views as “real news” depends on what they already know
(Clark & Brennan 1991). If an experimenter says that “the
earth has one natural satellite,” because subjects already
know this, they will tend to assume that this is a set-up for a
conversation about artificial satellites. When statements are
presented about cancer rates, tests, and so on, subjects may
evaluate these statements in light of what they already know
about these topics. In addition, subjects make some sort of
assessment of why they are being told. The “real” motive,
from the perspective of the experimenter – namely, to deter-
mine general characteristics of human cognition – may be a
common motive among the experimenter’s peers, but it is
not a motive widely shared in the larger society. Indeed, to
many subjects, this may seem to be a cover story for an assess-
ment of their personal capabilities. The assumptions of rhe-
torical purpose may well interact with the obviousness of the
representation. Mood and personality will tend to play a

bigger part in the interpretation of an inkblot than in
the interpretation of a relatively clear and unambiguous
stimulus.

Many of the specific findings reviewed in the target article are
understandable from this perspective. For instance, more con-
crete and specific statements are more believable and more
likely to be taken at face value because they are more subject
to verification or disproval. University prestige may well make a
difference in terms of source credibility, rather than the
general intelligence of the subjects. If subjects are paid, there
is more chance in our society of legal repercussions for lying or
deception, and awareness of this factor also increases source
credibility.

Third, a particularly common rhetorical context is storytelling.
People deal with stories both in personal interaction and in expli-
cit entertainment contexts such as television, movies, and novels.
Stories in these latter contexts are not typically told to communi-
cate about representative situations, but rather, concern the
“edges” of human experience, the exceptions, the rare and
unusual (McKee 1997). Therefore, it is natural that when one
is told a story, one tends to assume purposeful dramatic action.
In a movie, if someone goes to the doctor for a diagnostic test
for some rare disease, the person is much more likely to have
that disease than would be predicted by statistics. Furthermore,
writers choose details for rhetorical purpose. For instance, if
someone in a soap opera walks into a room and they look like a
professional football player, the chances are actually high that
they are a professional football player and not an accountant or
salesperson.

These three potentially confounding influences do not mean
that better predictability is impossible in this paradigm. There
may be an analogy with measuring sensory thresholds. Trying
to measure absolute thresholds by asking people whether or
not they hear a sound can be very sensitive to expectations,
set, and motivation. Asking subjects to specify in which of two
intervals a sound appeared is much less sensitive to these
social variables. A forced choice paradigm should also work in
this context to minimize the potentially confounding effects
recounted above.

Why the empirical literature fails to support or
disconfirm modular or dual-process models
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Abstract: Barbey & Sloman (B&S) present five models that account for
performance in Bayesian inference tasks, and argue that the data
disconfirm four of them but support one model. Contrary to B&S, I
argue that the cited data fail to provide strong confirmation or
disconfirmation for any of the models.

There is insufficient space here to comment on all of the models
for explaining performance on Baysian inference tasks that
Barbey & Sloman (B&S) ostensibly disconfirm, so I will focus
on what they consider to be the model that makes the strongest
claims – the idea that the mind comprises specialized modules
(see Barrett & Kurzban [2006] for a recent review). B&S’s strat-
egy is to list the prerequisites of the modular model and cite data
that contradict them. The listed prerequisites are cognitive
impenetrability, informational encapsulation, unique sensitivity
to natural frequency formats, transparency of nested set
relations, and appeal to evolution, the first three of which are
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contradicted by some of the cited findings. However, these find-
ings are not a problem for the modular model because research-
ers who espouse the modular view have long since moved away
from these three prerequisites and instead focus on “how
modules process information” (Barrett & Kurzban 2006,
p. 630). Although modules are considered to be domain specific,
a domain is not defined as a content domain, but rather, as any
way of individuating inputs. It is entirely possible that a
module will process information for which it was not originally
designed as a by-product if this other information conforms to
the properties that determine which inputs are processed.

Let us now consider transparency of nested set relations and
appeal to evolution. The former is featured by the model
favored by B&S, and so they clearly cannot mean to argue
against it, which leaves only the latter as a possible basis for dis-
confirmation. But few in the scientific world would argue that
evolution did not happen and so this is unlikely to be discon-
firmed; certainly B&S have not presented any evidence to dis-
confirm evolution. Consequently, the modular model is not
forced to make or not make any of the predictions listed in
Table 2 of the target article, and I am compelled to conclude
that B&S have failed to disconfirm the modular model (or any
of the weaker ones).

The foregoing comments should not be taken as arguments in
favor of mental modules. For one thing, the watering down of the
concept of modules, which renders it less susceptible to discon-
firmation, may have caused the informational content and
general utility of the model to also be watered down. In addition,
the auxiliary assumptions necessary to make the modular model
useful are extremely complicated and these complications may
be under-appreciated. As an example, consider an arm as a
module. Arms increase the ability to use tools, crawl, fight,
balance, climb, and many other abilities. In addition, the arm
might be said to comprise features (fingers, elbows, etc.) How
would one tease apart the functions for which arms evolved
versus those that are mere by-products, especially after taking
into account that the features may or may not have evolved for
very different reasons? Surely a mind is much more complicated
than an arm, and so the potential complications are much more
extensive. Perhaps these issues will be solved eventually but my
bet is that it will not happen soon. Until this time, the modular
model seems unlikely to provide a sound basis for Bayesian
theorizing or theorizing in any other area of psychology.

The data cited by B&S also fail to provide much support for
the dual-process model they maintain. It is doubtless true that
presenting Bayesian problems such that the set structure is
more transparent increases performance. But it is not clear
why this necessitates a distinction between associative and
rule-based processes, a distinction that has not been strongly
supported in the literature. In fact, Kruglanski and Dechesne
(2006) have provided a compelling argument that these two
types of processes are not qualitatively distinguishable from
each other; both processes can involve attached truth values,
pattern activation, and conditioning. Worse yet, even if the dis-
tinction were valid in some cases (and I don’t think it is), there is
very little evidence that it is valid in the case at hand. B&S seem
to argue that when the set structure is not transparent, then
people use associative processing; whereas they use a rule
when the set structure is more transparent. It could be,
however, that when the set structure is not transparent,
people use rules but not the best ones. Or, when the set struc-
ture is transparent, this transparency may prime more appropri-
ate associations. These alternative possibilities weaken the
evidentiary support for the distinction.

B&S provide a section titled, “Empirical summary and con-
clusions” (sect. 2.10) that illustrates what I consider to be the
larger problem with the whole area. Consider the empirical con-
clusions. First, the helpfulness of frequencies varies across exper-
iments and is correlated with intelligence and motivation. Who
would predict that there will be no variance and that intelligence

and motivation will be irrelevant to problem solving? Second,
partitioning the data so as to make it more apparent what to do
facilitates problem solving – another obvious conclusion. Third,
frequency judgments are guided by inferential strategies.
Again, who would predict that people’s memories of large
numbers of events will be so perfect as to render inferential pro-
cesses unnecessary? (To anticipate the authors’ Response,
modular theorists cannot be forced to predict this.) Fourth,
people do not optimally weight and combine event frequencies
and use information that they should ignore. Given the trend
in both social and cognitive psychological research for the last
quarter century or more, documenting the many ways people
mess up, this is hardly surprising. Finally, nested set represen-
tations are helpful, which is not surprising because they make
the nature of the problem more transparent. Trafimow (2003)
provided a Bayesian demonstration of the scientific importance
of making predictions that are not obvious. Hopefully, future
researchers in the area will take this demonstration seriously.
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Abstract: Ego-justifying, group-justifying, and system-justifying
motivations contribute to base-rate respect. People tend to neglect (and
use) base rates when doing so allows them to draw desired conclusions
about matters such as their health, the traits of their in-groups, and the
fairness of the social system. Such motivations can moderate whether
people rely on the rule-based versus associative strategies identified by
Barbey & Sloman (B&S).

Barbey & Sloman (B&S) provide a convincing account of the con-
tributions of associative and rule-based cognitive processes to
base-rate respect. Absent from their model, however, is a consider-
ation of the effects of psychological motivations on the use of stat-
istical rules. The sorts of motivations known to influence the use of
statistical rules fall into three general categories: ego-justifying,
group-justifying, and system-justifying (Jost & Banaji 1994).

Ego-justifying neglect of base rates occurs in evaluations of
medical diagnoses. For example, Ditto et al. (1998) told partici-
pants that they had tested positive for an enzyme (TAA) whose
presence was predictive of immunity or vulnerability to pancrea-
tic disease. Individuals in the “healthy consequences” condition
were told that TAA made it less likely they would get pancreatic
disease, whereas individuals in the “unhealthy consequences”
condition were informed that TAA increased their chance of
getting pancreatic disease. Participants were also told either
that the test was highly accurate (1 in 200 failure rate), or rela-
tively inaccurate (1 in 10 failure rate). Participants who were
told that their TAA levels put them at risk for pancreatic
disease and that the test was relatively inaccurate, perceived
the diagnosis as less accurate than participants in the high accu-
racy condition – a normatively defensible application of the base
rate. But participants who were told that their TAA levels
reduced the risk of pancreatic disease, and were further informed
that the test was inaccurate, were just as likely as participants in
the high accuracy conditions to perceive the diagnosis as
accurate.

Commentary/Barbey & Sloman: Base-rate respect

284 BEHAVIORAL AND BRAIN SCIENCES (2007) 30:3

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X07001756
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:05:04, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X07001756
https:/www.cambridge.org/core


Base-rate neglect can also be driven by bias in favor of one’s
social group (Ginossar & Trope 1987; Schaller 1992). In one
study, the male employees of an organization were described as
stronger leaders than the female employees (Schaller 1992).
However, there was an additional, much more predictive base
rate at work: participants were also told that male employees
were dramatically more likely than female employees to be
assigned to serve in an executive role. In other words, the
males were stronger leaders because more of them were assigned
to serve in leadership roles. Making the normatively rational
judgment, female participants took into account the base rate
of males and females in executive roles and concluded that
male and female employees were equally talented leaders. But
male participants neglected the assignment of male and female
employees into different organizational roles, concluding that
male employees were superior leaders. A separate experiment
revealed that female participants were likewise biased in favor
of their own group. These female participants ignored the base
rate of male and female executives when it led them to the (incor-
rect) conclusion that female employees were superior leaders. In
sum, participants neglected a base rate when it allowed them to
draw a conclusion favorable to their own gender.

The motivation to uphold the social hierarchy (i.e., system
justification) also plays a role in the application of base rates
about racial groups to individual group members (McDell
et al. 2006; Tetlock et al. 2000). Individuals who are non-pre-
judiced toward Black Americans make similar estimates of
group crime rates among White and Black Americans as pre-
judiced individuals do. However, only the prejudiced individ-
uals (i.e., those who have a motivation to uphold the social
hierarchy) endorse the use of base rates to discriminate
against an individual Black person. Individuals who endorse
social hierarchies based on groups competing for power (a
so-called “social dominance orientation”; Sidanius & Pratto
1999), are also more likely to endorse the application of base
rates to individuals.

These biasing psychological motives likely work through the
recruitment of the cognitive processes described by B&S. For
example, research has demonstrated that social-psychological
motives moderate whether associative or rule-based cognitive
processes are employed in the first place. Ditto et al. (1998) pre-
sented evidence that people expend little cognitive effort when
presented with information that favors a desired conclu-
sion – they quickly accept it with minimal deliberation. Conver-
sely, when presented with undesired information (that is,
information inconsistent with one of the aforementioned
motives), individuals seem especially likely to recruit rule-
based, deliberative thinking in an effort to discredit the undesired
information.

Ego-justification, group-justification, and system-justification
motives are difficult to defend as rational influences on the use
of statistical rules in social judgments. Although a person motiv-
ated by racial prejudice may make a “correct” judgment (i.e., a
close approximation to the answer Bayes’ Theorem would for-
mally provide) when assessing the probability that a member of
another race is a criminal, few would argue that this is due to stat-
istical reasoning. Here we can distinguish between the rationality
of the belief and the rationality of the process that led to that
belief. Because social motivations easily (and often) lead to
error, they make for suspicious guides to truth. Relying on
them to achieve a rational belief is like throwing darts to
choose stock winners. One may pick the best stocks, but surely
it was by accident. Indeed, many people would reject the influ-
ence of these biases if they were made aware of them (i.e.,
such motives fail the test of subjective rationality; Pizarro &
Uhlmann 2005).

An emphasis on social-psychological motivations may lead not
only to a more complete understanding of base-rate neglect, but
may also enrich a variety of cognitive theoretical approaches to
human judgment. The human mind may possess specific

mechanisms (e.g., in-group loyalty) that were adaptive because
they aided in the individual’s survival in an inherently social
environment. Therefore, it may be important to consider such
influences when accounting for phenomena that, at first,
appear to be non-social in nature. For example, basic cognitive
processes such as induction from property clusters contribute
to biological explanations for natural kinds (Gelman 2003, Keil
1989). Yet, recent studies demonstrate that system-justifying
motives may lead people to endorse biological explanations
such that explaining group differences as “natural” helps justify
their continued existence (Brescoll & Uhlmann 2007). Thus,
applying social-psychological motives to theories of cognitive pro-
cesses may lead to a more complex, but hopefully also more accu-
rate, portrait of human cognition.

Base-rate respect meets affect neglect
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Abstract: While improving the theoretical account of base-rate neglect,
Barbey & Sloman’s (B&S’s) target article suffers from affect neglect by
failing to consider the fundamental role of emotional processes in “real
world” decisions. We illustrate how affective influences are
fundamental to decision making, and discuss how the dual process
model can be a useful framework for understanding hot and cold
cognition in reasoning.

In the target article, Barbey & Sloman (B&S) do an admirable
job of demonstrating that a dual process model of judgment
provides a better account of base-rate neglect than the
various alternative accounts. We were struck, however, by a
curious dissociation in their article that is representative of
research on base-rate neglect in general. The examples pro-
vided to illustrate how research on base-rate neglect may be
important to “real world” decisions typically involve intrinsically
emotional contexts such as cancer diagnosis, pandemic infec-
tions, or judgments about the guilt of a defendant. Neverthe-
less, the target article continues the tradition of neglect of
affective factors in reasoning. This neglect is odd considering
the recent resurgence of interest in affect in cognitive neuro-
science and the increasing evidence that both hot and cold
cognition are involved in decision making (e.g., Lee 2006;
Sanfey et al. 2006). In fact, one of the most important advan-
tages of the dual-process model of reasoning may be that it
provides a coherent framework for understanding sources of
affective influences on reasoning. Before we turn to why the
dual process model is a useful framework for understanding
hot and cold cognition during reasoning, we first briefly
review some of the evidence that suggests that affective influ-
ences should be integrated into research on reasoning.

As one illustration of the central role of affect in decision
making and reasoning, consider the risk-as-feeling hypothesis
(Loewenstein 2005; Loewenstein et al. 2001). Loewenstein
and colleagues argue that, when in conflict, hot cognitive
factors will supersede cold ones in decision making, and that
the precedence of hot factors helps to explain some violations
of normative decision making in traditional theory. For
example, the certainty effect (e.g., Kahneman & Tversky
1979) is a commonly observed nonlinearity in the way probabil-
ities are weighted in decision outcomes. Although the differ-
ence in a very high probability event and certainty may seem
trivial from a cold cognitive perspective, real emotion may be
either absent or present in these two cases. A medical patient
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who is told that the risk of a specific form of cancer is zero, acts
and feels very differently from one who is told there is a non-
zero probability of the disease. Once the prospect of the
disease becomes real, the associated worry and dread become
vivid.

In a related area of research, Slovic and colleagues have
emphasized the role of an affect heuristic in judgment and
decision making (e.g., Finucane et al. 2000; Slovic et al. 2004).
According to this view, affect is central to reasoning because
the information used during decision making often carries affec-
tive tags. These affective tags can contribute to quicker and more
efficient decision making, but they pose a risk of constraining and
biasing decisions, as well. Slovic and colleagues have shown how
the affect heuristic is consistent with a wide range of data on
reasoning under uncertainty. For example, the affect heuristic
provides an explanation for why some medical risks may be over-
estimated. For instance, the mere knowledge that a chemical
could be carcinogenic will lead non-experts to overestimate
cancer risks from low-level exposure (Slovic et al. 2005).
Because of the emotional impact of cancer, the absence of
detailed knowledge of actual risks is ignored. The emotional
associations of a disease can have other, unintended conse-
quences. A cancer-screening procedure that reduces risk may,
ironically, lead to heightened perceptions of the likelihood of
contracting the disease as dread and worry are made more
emotionally salient.

A key point made by these and other researchers who have
examined affective influences on reasoning is that affect is
not a secondary consideration to take up once we have a
good “cold” model of reasoning. There are two main reasons
to consider affect as fundamental to the study of reasoning.
First, affective influences are pervasive. Even in the case of
formal logical reasoning with syllogisms, both incidental affec-
tive reactions during reasoning and manipulation of affective
dimensions of the stimulus material have powerful effects
(e.g., Blanchette 2006). Second, affective influences are not
simply distractions that perturb the functioning of a cold
rational system. Affect is part of the very nature of the reason-
ing process (e.g., Damasio 1994; Loewenstein 2005). Given
that research on hot and cold cognition in reasoning has
stressed the integration of multiple kinds of information in
explaining choice behavior (e.g., Hinson et al. 2006), modular
views of reasoning are theoretic non-starters. In contrast, the
dual process framework favored by B&S to explain base-rate
neglect can be integrated readily with the data on affective
influences on reasoning.

The most obvious way to integrate affective influences into
the dual process model is to assign affective influences to the
primitive associative judgment system (cf. Epstein 1994). This
idea embodies the classic notion that the primary influence of
affect in judgment is to cloud our otherwise efficient delibera-
tive cognitive system. However, this view, at the very least,
greatly oversimplifies the interaction of hot and cold factors in
reasoning. For example, one role for affective processing may
be to push the reasoning system either toward or away from
deliberative processing. In a positive affective context, the
simpler associative processing mode of judgment is more
likely to be used, whereas negative context can induce more
deliberative processing (see Fiedler 2001). In addition, there
is mounting evidence that there are specific affective influences
within the deliberative system itself. Particularly relevant to the
target article are data on why probability and frequency rep-
resentation of events often lead to different decision making
outcomes (Peters & Slovic 2000). For example, if people are
asked to provide a recommendation about release of prisoners,
they are far more likely to recommend release if told there is a
10% chance of reoffense, rather than being told than 10 out of
100 will reoffend. This difference in judgment in two identical
situations results from the ease with which the frequency rep-
resentation is associated with the affective consequences of

actual people committing real crimes. This example is one of
many that suggest that affect neglect is a suboptimal research
heuristic.

Adaptive redundancy, denominator neglect,
and the base-rate fallacy
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Abstract: Homo sapiens have evolved a dual-process cognitive architecture
that is adaptive but prone to systematic errors. Fuzzy-trace theory predicts
that nested or overlapping class-inclusion relations create processing
interference, resulting in denominator neglect: behaving as if one ignores
marginal denominators in a 2 � 2 table. Ignoring marginal denominators
leads to fallacies in base-rate problems and conjunctive and disjunctive
probability estimates.

In a pre-scientific era, the Greek philosopher Socrates “demon-
strated” that all learning is remembering, by leading an illiterate
slave step by step to prove the Pythagorean theorem simply by
asking him questions and drawing lines in the sand with a stick
(Plato 2006). Of course, such a demonstration reveals more
about the mind of Socrates than that of the slave. So it is with con-
temporary attempts to demonstrate that Homo sapiens are
“intuitive Bayesians” (e.g., Gigerenzer & Hoffrage 1995).
Researchers can encourage behavior somewhat aligned with
Bayes’ theorem by providing participants with natural frequen-
cies, posing questions that facilitate Bayesian computation, orga-
nizing statistical information around the reference class, or
presenting diagrams that highlight the set structure of problems
(see Table 2 in the target article). All of these tasks are useful in
illuminating our understanding of judgment and decision-
making; none of them demonstrate that people are essentially
Bayesian.

At its best, evolutionary psychology provides useful constraints
on theorizing and more closely aligns brain and behavioral
sciences with modern evolutionary biology. At worst, however,
claims about the environment of evolutionary adaptation
become “just-so stories” conferring scientific legitimacy on the
author’s initial assumptions rather than producing falsifiable
hypotheses. In the case of judgment under uncertainty, it is
obvious that our ancestors did not reason with percentages.
However, there is no evidence that the mind “naturally” pro-
cesses frequencies. Indeed, aesthetically, it may be seem more
“natural” to imagine our ancestors reasoning about “the chance
that this mushroom I just picked is poisonous” rather than
“what number out of 40 similar looking mushrooms picked
under similar circumstances are poisonous.” More to the point,
there is very good evidence that at least one contemporary
hunter-gatherer culture, the Pirahã people of Brazil, have no
words for numbers other than “one, two, and many” and that
on numerical cognition tasks, their performance with quantities
greater than three is “remarkably poor” (Gordon 2004). If
hunter-gatherer peoples of our own time can get by without
numeric concepts, why should we assume that proto-humans in
the ancestral environment developed hardwired mechanisms
that “embody aspects of a calculus of probability” (Cosmides &
Tooby 1996, p. 17; quoted in the target article, sect. 1.2.2,
para. 3) enabling us to automatically solve story problems in a
Bayesian fashion?

A more reasonable assertion is that Homo sapiens have
evolved a cognitive architecture characterized by adaptive
redundancy. In many areas of reasoning – problem solving,
judgment, and decision making – people make use of more
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than one kind of cognitive process operating on more than one
type of cognitive representation. The particular substance of
these processes and representations are developed through
learning in a cultural context, although the cognitive architec-
ture itself may be part of our biological inheritance. Dual-
process models are beginning to characterize the nuts and
bolts of this adaptive redundancy in human cognition. The por-
trait emerging from the research is of a human organism that is
generally capable and adaptive (the glass is half full) but also
prone to ignoring base rates and other systematic deviations
from normative performance (the glass is half empty). Barbey
& Sloman’s (B&S’s) careful review of the literature in the
target article clearly suggests that dual process theories best
account for the empirical evidence pertaining to base-rate
neglect.

B&S highlight the similarities between several dual process
theories, asserting that people reason with two systems they
label associative and rule-based. They attribute judgmental
errors to associative processes and more accurate perform-
ance with base rates to rule-based inferences – provided
that problems are presented in formats that cue the represen-
tation of nested sets underlying Bayesian inference problems.
As the authors note, this is the heart of the Tversky and Kah-
neman (1983) nested set hypothesis. It is here where differ-
ences among the dual process theories begin to emerge and
where the specific details of Fuzzy-Trace Theory (FTT;
Reyna & Brainerd 1995) shed light on intuitive probability
judgments.

The dual systems of FTT operate on verbatim and gist rep-
resentations. FTT asserts that vague impressions are encoded
along with precise verbatim information. Individual knowledge
items are represented along a continuum such that fuzzy and ver-
batim memory traces coexist. Gist memory traces are not derived
from verbatim representations but are formed in parallel using
different mechanisms. The result is the creation of multiple
traces in memory. Verbatim and gist traces are functionally
independent, and people generally prefer to reason with gist
representations for a given task.

FTT predicts that people have difficulty with conditional
and joint probabilities because it is hard to reason about
nested, hierarchical relationships between items and events.
Nested or overlapping class-inclusion relations create proces-
sing interference and confusion even in educated thinkers
who understand probabilities (Reyna & Brainerd 1995).
People prefer to reason with simplified gist representations
of problems (the fuzzy-processing preference), and one speci-
fic way of simplifying predicted by FTT is denominator
neglect.

Denominator neglect consists of behaving as if one is ignor-
ing the marginal denominators in a 2�2 table. Thus, in a 2�2
table the base-rate P(B) is the marginal total of P(B and
A)þ P(B not A). Ignoring marginal denominators such as
P(B) in estimating P(A and B) or P(A given B) can lead to
logical fallacies. The FTT principle of denominator neglect
allows for a priori and precise predictions about errors of con-
junction and disjunction as well as base-rate neglect. We have
found that ignoring marginal denominators can lead to sys-
tematic errors in problems involving base rates (Wolfe 1995)
and conjunctive and disjunctive probability estimates (Wolfe
& Reyna, under review).

Denominator neglect also explains conversion errors in con-
ditional probability judgments, that is, confusing P(A given B)
with P(B given A) (Wolfe 1995). When problems are presented
in a format that affords an accurate representation of nested
sets, conjunction and disjunction fallacies, as well as base-rate
neglect are generally reduced. Yet, improving performance is
one thing, proving that we are intuitive Bayesians is another.
The adaptive redundancy that gives us flexibility and cognitive
frugality can also lead to serious and systematic errors, a fate
shared by Socrates and the slave alike.

Authors’ Response

Base-rate respect: From statistical formats to
cognitive structures
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Abstract: The commentaries indicate a general agreement that
one source of reduction of base-rate neglect involves making
structural relations among relevant sets transparent. There is
much less agreement, however, that this entails dual systems
of reasoning. In this response, we make the case for our
perspective on dual systems. We compare and contrast our
view to the natural frequency hypothesis as formulated in the
commentaries.

R1. Introduction

Updating Koehler’s (1996) review of base-rate sensitivity
in probability judgment, the target article reviewed a
broad range of evidence in support of the nested sets
hypothesis. The hypothesis proposes that people’s ability
to estimate the probability of A, given B, in a way that is
consistent with Bayes’ theorem depends, in part, on the
transparency of the structural relations among the set of
events of type A, relative to the set of events of type
B. In particular, when the A set is perceived to be
nested within the B set, judgments are more coherent
than when the relation is not perceived (for an illustration,
see Figure 1 of the target article). We contrast this propo-
sal with the idea that facilitation reflects an evolutionary
adaptation to process natural frequencies. The responses
to our target article revealed a surprising degree of con-
sensus on this issue, demonstrating much agreement that
the transparency of structural relations is one important
variable in reducing base-rate neglect. We also observed
frequent doubt about the value of the dual systems
perspective.

Among several insights about the natural frequency
hypothesis and nested sets theory was the conclusion that
there is more to probability judgment than these approaches
address (Beaman & McCloy, Girotto & Gonzalez,
Griffin, Koehler, & Brenner [Griffin et al.], Laming,
Schurr & Erev, Sun & Wang, Thomas, Uhlmann,
Brescoll, & Pizarro [Uhlmann et al.], Whitney,
Hinson, & Matthews [Whitney et al.]). Indeed, by
framing the nested sets hypothesis within the larger dual
process theory of inference, judgment, and decision
making, our proposal supports a broader understanding of
probability judgment. We agree that the nested sets and
dual process theories deserve greater specification and
appreciate Mandel’s and Samuels’s efforts to unpack
some of the assumptions of our proposal.

We have organized our response into two general cat-
egories: (1) those that address properties of the dual
process hypothesis, and (2) those that concern the
natural frequency approach.
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R2. Dual process hypothesis

The dual process hypothesis has proved to be controver-
sial. A number of commentators point out that we don’t
really argue for the dual systems perspective. We acknowl-
edge that the target article relied primarily on earlier argu-
ments in support of the framework (Evans & Over 1996;
Sloman 1996a; Stanovich & West 2000), and we agree
with De Neys that this framework deserves more
careful testing especially with regard to its application to
base-rate neglect.

We begin by addressing a common misconception
about the hypothesis and reviewing our proposal that the
nested sets hypothesis entails dual systems of reasoning.
We then address the arguments of commentators who dis-
agreed with us and summarize evidence offered in support
of the dual systems framework.

R2.1. Rule-based versus associative==normative
versus counter-normative

Evans & Elqayam, Gaissmaier, Straubinger, &
Funder (Gaissmaier et al.), and Lagnado & Shanks
surprised us by attributing to us a claim that we did not
make. We never did and never would align the dual pro-
cesses of associative and rule-based reasoning with the
normative versus non-normative distinction. Indeed,
Sloman (1996a) explicitly denies such a parallel and
points out that normative rules are only one kind of rule
used by the rule-based system. Of course rules can lead
to errors and of course associations frequently lead to
correct responses; after all, people mostly do pretty well
at achieving their goals. The only claim we made in the
target article is that base-rate neglect can be remedied
when elementary rules of set theory are applied. This is
hardly a broad claim about how error prone each system is.

R2.2. On the relation between dual processes and
nested sets

Of course, whether or not there are two systems remains
an open question and, as Keren, van Rooij, & Schul
(Keren et al.), Mandel, Samuels, and Trafimow point
out, the claim is conceptually independent of the nested
sets hypothesis. Nonetheless, the dual process hypothesis
remains the simplest viable framework for motivating the
nested sets hypothesis for several reasons.

First, dual process theory offers a general framework
providing background assumptions to explain the variety
of phenomena addressed by the nested sets hypothesis
(see Table 2 of the target article). “Inaccurate frequency
judgments,” for example, result primarily from associative
processes (see sect. 2.6 of the target article and Fantino &
Stolarz-Fantino), whereas the facilitative role of set
representations in deductive inference depends primarily
on rule-based processes (see sect. 2.9 of the target
article). We know of no account of the variety of predic-
tions summarized in Table 2 that does not assume more
than one cognitive system. The associative versus rule-
based distinction has the advantage of providing a
common account of these diverse phenomena and has
proven useful for interpreting a variety of judgment
effects (Kahneman & Fredericks 2002), especially

probability judgment such as the conjunction fallacy
(Tversky & Kahneman 1982b; 1983; cf. Sloman 1996b).

Second, in the absence of systematic studies that assess
the role of associative and rule-based processes in prob-
ability judgment (a point made by De Neys), it can be
argued that the facilitative effect of nested set represen-
tations on Bayesian inference results from (1) different rule-
based processes, a possibility raised by Gigerenzer &
Hoffrage, Keren et al., and Mandel, or from (2) mul-
tiple associative processes, as Lagnado & Shanks argue.
These proposals represent logical possibilities but, in the
broad form in which they are stated, they have little
empirical content. Consider, for example, Lagnado &
Shanks’s proposal that one associative system results in
non-Bayesian responses, whereas another associative
system is engaged when people “see” the set inclusion re-
lations illustrated by Euler diagrams and draw the Bayesian
solution. Lagnado & Shanks do not specify the associative
processes that give rise to normative versus non-normative
responses. How do associative processes implement the
elementary set operations or whatever operations are
responsible for Bayesian responding? We suspect that if
the proposal were spelled out, they would end up with a
dual process theory that includes associative and rule-
based operations.

R2.3. Why rule-based and associative?

Various versions of a two-systems hypothesis have been
offered. Our claim (in contrast to Brainerd, Evans &
Elqayam, Reyna & Mills, and Wolfe) is that Sloman’s
(1996a) characterization of the associative system is con-
sistent with cases of base-rate neglect (people rely on
associations based on statistical regularities embodied by
events in experience), and that his characterization of
rule-based reasoning is consistent with reasoning during
nested sets facilitation (deliberative reasoning about set
relations based on rules of combination).

In support of our position, Evans & Elqayam point out
that there is an association (the one asserted by Kahneman
& Tversky [1973] in their original demonstration of the
phenomenon) that explains the majority response,
namely the association between the hypothesis being eval-
uated (the presence of breast cancer) and the case data
that provide diagnostic information about it (the prob-
ability of a positive mammogram given breast cancer).
Indeed, this observation supports our claim that associat-
ive operations often lead to base-rate neglect. In the
context of the Medical Diagnosis problem, this occurs
when judgments are based on the association between a
positive mammogram and breast cancer, or, in Kahneman
and Tversky’s terms, when judgments reflect how repre-
sentative a positive mammogram is of breast cancer (see
sects. 1.2.5 and 2.3 of the target article).

Of course not all responses that neglect base rates are
associative in this sense (as Gigerenzer & Hoffrage
show convincingly). Prior to their assertion that all reason-
ing on this task is associative, Lagnado & Shanks point
out that one response that is observed involves a rule:
Sometimes people report the complement of the false-
alarm rate. That is true. This response involves a subtrac-
tion from 1. People find the Medical Diagnosis problem
and related problems very difficult, and use a host of
different strategies in their struggle to generate a
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reasonable answer. Many of those strategies involve rules.
However, the appeal to a representative outcome does
partially account for their response. We actually agree
with most of Evans & Elqayam and Macchi & Bagassi’s
description of what goes on when people try to solve the
Medical Diagnosis problem. These commentators
suggest, however, that the process they describe implies
that errors are produced by a pragmatic system. We
cannot see what explanatory purchase this provides. All
systems of reasoning must be sensitive to pragmatics in
order for their output to be relevant to reasoners’ goals
and concerns.

An alternative dual process theory is advocated by
Griffin et al., who propose that “The conditions under
which . . . [nested set representations] promote base-rate
use may be more parsimoniously organized under the
broader notion of case-based judgment.” We find Griffin
et al.’s proposal intriguing but difficult to assess in the
absence of detail concerning the cognitive operations
that give rise to the “strength of impression of the case
at hand,” or in the absence of a proposal about how this
construct is measured and differentiated from alternative
accounts. The case-based theory does appear to be incon-
sistent with the large body of evidence we review demon-
strating Bayesian inference facilitation by virtue of
employing samples of category instances that would not
seem to strengthen single-case impressions (see sect. 2
of the target article).

Griffin et al. suggest that all forms of base-rate facili-
tation can be explained in terms of single-case impressions.
For instance, they argue that judgments drawn from Euler
diagrams depend on case-specific information (see sect. 2.5
of the target article). According to their view, “Diagrams
prompting an immediate comparison of the size of circles
may allow a low-level perceptual computation to solve the
problem.” We suspect that facilitation by nested sets takes
advantage of visual representations that allow us to see in
the world, or in our mind’s eye, the relation between rel-
evant sets. But the nested sets hypothesis requires a
number of additional steps involving symbol manipulation
in order to apply this representation to solving a base-rate
problem. First, each set must be labeled; second (as Patter-
son points out), the correct sets must be chosen; and third,
a symbolic response (a number) must be generated. Thus,
even in the context of diagrammatic representations, Baye-
sian inference cannot be reduced to “a low-level perceptual
computation,” without appealing to symbolic operations.
Whatever the right theory may be to explain base-rate
neglect and respect, these forms of symbol manipulation
require an account and Griffin et al.’s proposal does not cur-
rently offer one. The case-based theory may explain some
instances of facilitation that are outside the scope of the
nested sets hypothesis, but it does not seem to be a substi-
tute for it.

Brainerd and Reyna & Mills review evidence that
supports a dual process theory of judgment, and, in the
process, cover some of the history of the ideas that we
neglected. These commentators offer the denominator
neglect model of inductive inference, a special case of
fuzzy trace theory, as an account of base-rate neglect.
According to this view, errors in probabilistic inference
result from the failure to represent and attend to all of
the information present in a nested set relation, specifi-
cally the information captured by the denominator of a

Bayesian ratio. While we obviously agree with the claim
about nested sets, we are less comfortable associating
what is and what is not neglected with terms of a math-
ematical expression. As we do not believe that the mind
embodies a mental analogue of Bayes’ theorem (see sect.
2.8 of the target article), we also do not believe that
judgment errors correspond to neglect of terms of the
theorem. Rather, we believe that, in cases of base-rate
neglect, people are doing something other than trying to
map statistical information from the problem onto a math-
ematical equation. Specifically, we believe that errors
result from a failure to map the problem onto a mental
representation of the conceptual relations among sets.
According to the nested set hypothesis, representing con-
ceptual relations among sets affords a natural mapping to a
correct numerical response. In the case of rule-based pro-
cessing, this requires several forms of symbol manipu-
lation (e.g., combination rules) that operate from a
qualitative representation of structural relations among
sets (see sect. 1.2.5 of the target article).

Reyna & Mills distinguish their fuzzy-trace theory dual
process model from our dual process account by stating that
the former predicts that normative judgment results from
associative processes (System 1 operations), whereas
counter-normative judgment results from a focus on quan-
titative details (System 2 operations). This prediction
appears to be inconsistent with the large body of evidence
demonstrating that (a) under the right conditions, heuristics
can produce systematic errors in judgment (for a recent
review, see Gilovich et al. 2002), and (b) Bayesian facili-
tation is sometimes a result of deliberative, rule-based oper-
ations (see sect. 2 of the target article).

R2.4. Evidence in favor of dual process theory

Some of the commentaries provide strong arguments in
support of our perspective. Fantino & Stolarz-Fantino
show that base-rate neglect is well-captured by associative
principles in the context of trial-by-trial presentations
(they also provide additional support for our claim that
natural frequency formats are not sufficient to eliminate
base-rate neglect). On the flip side, Over shows that rep-
resentation via nested sets is equivalent to the logic of the
excluded middle. Taken together, these observations
suggest that very different inferential principles apply to
(at least some) cases of base-rate neglect and to cases of
facilitation via nested set representations. The fact that
different inferential principles apply does not entail that
different systems of representation and processing apply,
but the dual systems hypothesis does offer a simple expla-
nation that is consistent with this and a host of other data
(cf. Evans 2003).

Newell & Hayes, who offer several objections to our
proposal, also point to results that favor our perspective.
We agree that much can be learned from assessments of
base-rate usage in the category-learning domain. Those
data are well explained by an associative theory that
takes account of differential attention to features
(Kruschke & Johansen 1999). That is one reason why we
appeal to associative processes to explain performance in
the absence of additional structural cues. As Newell &
Hayes point out, there is nothing in studies of category
learning that corresponds to making nested sets
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transparent. Of course, only if there were would the need
arise to invoke the rules of nested set representations.

Patterson points to the generality of nested set rep-
resentations and their potential role in deductive, modal,
deontic, and causal reasoning. His proposal shares with
Johnson-Laird’s (1983) domain-general theory that these
forms of inference are represented in terms of sets of pos-
sibilities. The prediction that nested set representations
will facilitate deductive inference is supported by evidence
reviewed in the target article (see sect. 2.9). Patterson’s
suggestion of assessing the descriptive validity of the Leib-
nizean principle (If all As are Bs, then everything that is
related in manner R to an A is related in manner R to a
B) has already been explored in the context of category
induction (Sloman 1998). This research demonstrates
that the Leibnizean principle is obeyed only when the cat-
egory relation is made explicit – further implicating the
role of nested set representations in reasoning. Although
we agree with Patterson that representing subset relations
can facilitate probability judgment and deductive reason-
ing, we are not optimistic that the nested sets theory will
support a general framework for representing modal,
deontic, and causal relations (Sloman 2005).

Butterworth and Sun & Wang review evidence
addressing the cognitive and neural foundations of
numeric processing. Sun & Wang provide evidence that
the mind embodies a coarse number scale consisting of
qualitative categories. The reviewed neuroimaging evi-
dence demonstrates that exact calculations recruit the
language system, whereas approximate calculations rely
on visuo-spatial representations of numbers mediated by
parietal areas. Butterworth suggests that the latter reflects
a “classic Fodorian cognitive module,” whereas Sun &
Wang argue that together these systems may provide the
neural foundations for the proposed dual systems theory
(cf., Goel 2005). We agree that intuitive probability judg-
ment depends on qualitative representations and find
the cited neuroimaging evidence suggestive (for a recent
review of the neuroscience literature on reasoning, see
Barbey & Barsalou, in press).

Schurr & Erev and Thomas address the degree to
which the reviewed findings generalize to real-world
settings. Schurr & Erev raise an important distinction
between decisions from description versus experience. In
contrast to the underutilization of base-rates observed in
decisions from description (see sects. 1 and 2 of the target
article), Schurr & Erev argue that decisions from experi-
ence result in base-rate overweighting. Although Schurr
& Erev make a convincing case for their proposal, we are
not convinced that the cited example involves representing
structural relations among sets. It seems rather to involve
making alternative interpretations of a stimulus more avail-
able. It would be analogous, in the Medical Diagnosis
problem, to suggesting that the positive result has a differ-
ent interpretation. Although Schurr & Erev’s proposal
may not directly inform the nested sets hypothesis, the dis-
tinction they raise is certainly of value in its own right.

Uhlmann et al. and Whitney et al. offer important
insights that extend the proposed dual process theory to
include social-psychological and emotional factors. We
appreciate Uhlmann et al.’s suggestion that motivations
can moderate whether people rely on rule-based versus
associative processes and believe that these factors should
be incorporated into any complete theory of judgment.

Whitney et al.’s proposal that the dual process theory can
be integrated with the literature on affective influences on
reasoning offers a worthwhile theoretical challenge.

R3. Natural frequencies or nested sets?

Our review of the natural frequency hypothesis is orga-
nized into four subsections. In the first, we attempt to
clarify the intent and value of Gigerenzer and Hoffrage
(1995). We then review the natural sampling framework,
and address the definition of natural frequencies and
their proposed equivalence to chance representations of
probability.

R3.1. Clarifying the intent and value of Gigerenzer and
Hoffrage (1995)

As Kleiter makes crystal clear, our intent was to argue that
facilitation on base-rate problems often results from clar-
ifying the structural relations among the relevant sets
referred to in the problem. Gigerenzer & Hoffrage
and Brase seem to concur, suggesting (happily) that
there is wide agreement on this issue. Indeed, Gigerenzer
& Hoffrage and Barton, Mousavi, & Stevens (Barton
et al.) argue that this was always the intended meaning
of Gigerenzer and Hoffrage (1995) and that they have
been repeatedly misunderstood as having suggested that
frequencies of any type arising through natural sampling
are sufficient for facilitation. In fact, we were very
careful to distinguish normalized from non-normalized
frequencies, but we (like many others) believed that
Gigerenzer and Hoffrage (1995) were trying to say some-
thing other than that there are computational advantages
to what we have here described as the nested sets hypoth-
esis (Tversky & Kahneman 1983).

On reading Gigerenzer & Hoffrage, we find it intri-
guing that so many researchers are guilty of the identical
apparent misinterpretation of Gigerenzer and Hoffrage
(1995). It might have to do with passages like the following
one from Gigerenzer and Hoffrage (1995).

Evolutionary theory asserts that the design of the mind and its
environment evolve in tandem. Assume—pace Gould—that
humans have evolved cognitive algorithms that can perform
statistical inferences. These algorithms, however, would not
be tuned to probabilities or percentages as input format, as
explained before. For what information format were these
algorithms designed? We assume that as humans evolved,
the “natural” format was frequencies as actually experienced
in a series of events, rather than probabilities or percentages.
(p. 686, emphasis in original)

They also refer to the natural frequency hypothesis as “our
evolutionary argument that cognitive algorithms were
designed for frequency information acquired through
natural sampling” (Gigerenzer & Hoffrage 1995, p. 699).
Further quotes from that paper appear in our target
article.

Gigerenzer & Hoffrage point out that the evolution-
ary argument has nothing to do with deriving predictions
from the natural frequency hypothesis and here we
agree. But it does not seem unreasonable to infer from
their own language that these authors put scientific
weight on the claim that there exists an evolved fre-
quency-sensitive algorithm. Of course, our review also
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makes clear – pace Brase – that Gigerenzer & Hoffrage’s
own theorizing has not been entirely consistent over the
years (admittedly, neither has ours).

Nevertheless, we do not entirely agree that Gigerenzer
& Hoffrage’s most recent proposal completely converges
with the nested sets hypothesis. According to Gigerenzer
& Hoffrage, “the question is how and why reasoning
depends on the external representation of information.”
We believe that the critical question is: How and why
does reasoning depend on the internal representation of
information? Our hypothesis concerns mental represen-
tations. The natural frequency hypothesis, even in its
new form, is “about the general question of how various
external representations facilitate Bayesian computations”
(Gigerenzer & Hoffrage’s commentary). But the findings
we review suggest to us that different external represen-
tations (e.g., natural frequencies, chances) map onto the
same internal representation.

More specifically, Gigerenzer & Hoffrage’s theory is
that different textual formats map onto different
equations. We don’t believe that the mind is composed
of equations even in the form of algorithms. Rather, we
believe that people invoke different combination rules in
a highly context-specific way that depends on techniques
they have learned or figured out themselves. The critical
mapping process is not from text to mathematical
equation, but rather, in the case of rule-based processing,
from text to a qualitative representation of structural
relations among sets.

Nested set structures do not simplify Bayesian compu-
tations themselves; rather they suggest a cognitive rep-
resentation that affords simple computations. As a result,
the nested sets hypothesis cannot be reduced to the
equations cited in Gigerenzer & Hoffrage’s commen-
tary. Furthermore, the additional predictions cited in
their commentary do not bear on the reviewed findings
as they suggest. Predictions 2, 3, and 4 are not addressed
in our review because they do not distinguish between
competing theoretical accounts – nor do they directly
bear on the target article’s assessment of Gigerenzer and
Hoffrage’s (1995) “evolutionary argument that cognitive
algorithms were designed for frequency information”
(p. 699).

R3.2. Does natural sampling support the natural
frequency hypothesis?

Natural frequency theorists motivate the evolutionary
argument that the mind is designed to process natural fre-
quencies by appealing to the natural sampling framework
(Kleiter 1994). As Kleiter makes clear in his commentary,
however, the natural sampling framework is based on a
statistical model that is not consistent with the psychologi-
cal theory advocated by natural frequency theorists. In
particular, the natural sampling framework depends on
several assumptions that are rarely satisfied in the
natural environment, including complete data, “additive
frequencies in hierarchical tree-like sample/subsample
structure,” and random sampling (see also Kleiter 1994
and sect. 3.1 of the target article). Natural frequency the-
ories that appeal to sequential sampling and evolutionary
plausibility have little to do with natural sampling in Klei-
ter’s original sense. Kleiter points out in the commentary
that the assumptions of his framework are rarely satisfied

in the natural environment and, as a result, the compu-
tational advantage of natural sampling has nothing to do
with ecological validity.

R3.3. What are natural frequencies?

Barton et al., Brase, and Gigerenzer & Hoffrage argue
that the simple frequencies employed by Brase (2002b)1

do not represent natural frequencies. These commenta-
tors say that single numerical statements (e.g., 1 out of
2) are simple frequencies, whereas natural frequencies
necessarily represent the structural relations among the
operative sets, or, in their language, the structure of the
entire tree diagram. This view is inconsistent with the
description of natural frequencies in recent work such as
that of Zhu and Gigerenzer (2006), in which the authors
talk of “natural frequencies such as 1 out of 2” (p. 15).
Moreover, for binary events single numerical statements
can satisfy the definition of natural frequencies. Consider,
for example, the single numerical statement “I win poker 1
out of 10 nights.” This statement directly implies that “I
lose poker on 9 out of 10 nights” and therefore represents
the size of the reference class (e.g., “10 nights total”), in
addition to the relevant subset relations (e.g., “1 night I
win” and “9 nights I lose”), and thus the structure of the
event tree.

The clarification offered by Barton et al., Brase, and
Gigerenzer & Hoffrage is helpful of course, for it indi-
cates that the natural frequency theory, like nested sets,
concerns the representation of the structural relations
among the events. Both positions leave open questions
about the conditions of base-rate neglect and respect:
When should we expect judgments to be veridical? How
much can people represent and what are the compu-
tational demands of different problems? We do not
believe that ecological considerations or appeals to
problem formats provide an answer to these questions.
These questions require an analysis of internal mental rep-
resentations, their power and demands, as well as the con-
ditions that elicit them.

Brase raises a further objection concerning the con-
clusions drawn from Brase et al. (2006). He argues that
we “try to infer cognitive abilities and structures from
data showing that incentives affect performance.” In fact,
our conclusion about domain general cognitive processes
does not depend on the findings Brase mentions concern-
ing monetary incentives. Our claim is that “a higher pro-
portion of Bayesian responses is observed in experiments
that [. . .] select participants with a higher level of
general intelligence . . . [which is] consistent with the
view that Bayesian reasoning depends on domain
general cognitive processes to the degree that intelligence
is domain general” (target article, sect. 2.2, para. 5).

R3.4. Are natural frequencies and chances equivalent
representations?

By definition, chances refer to the likelihood of a single
event (see Barton et al.) determined by a distribution
of possibilities, not a sample of observations. Conse-
quently, as we have pointed out in Note 4 of the target
article, chances are not obtained by “counting occurrences
of events as they are encountered and storing the resulting
knowledge base for possible use later” (i.e., natural
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sampling; Brase 2002b, p. 384). In this sense, chances are
therefore distinct from natural frequencies. Yet Gigeren-
zer & Hoffrage and Brase propose that chances are
equivalent to natural frequencies and, as a consequence,
that the natural frequency hypothesis predicts that
chance representations will facilitate Bayesian inference.
We all seem to agree on what facilitates Bayesian infer-
ence, but broadening the definition of natural frequencies
to include chances appears to undermine the claim that
“cognitive algorithms were designed for frequency infor-
mation, acquired through natural sampling” (Gigerenzer
& Hoffrage 1995, p. 686; see target article sect. 1.2.2,
para. 3).

We welcome the recent articulation of the natural fre-
quency hypothesis and believe that the current formu-
lation is a roughly accurate characterization of some of
the conditions that lead to base-rate respect. By broaden-
ing the definition of natural frequencies to include
chances, Gigerenzer & Hoffrage’s proposal implies
that (1) cognitive algorithms were not designed over the
course of human evolution to process natural frequencies
rather than the likelihood or chance of a single event, (2)
the theory no longer appeals to the natural sampling fra-
mework (which cannot encode chances), and, finally, (3)
the findings are not motivated by the ecological rationality
program, which claims that our current environment rep-
resents statistical information in the form of natural fre-
quencies “as actually experienced in a series of events”
rather than conveying the likelihood or chance of a
single event (Gigerenzer & Hoffrage, 1995, p. 686). With
these clarifications, we agree with Gigerenzer & Hoffrage
and Brase that the natural frequency and nested sets
hypotheses are hard to distinguish. Of course, as the key
ideas have to do with structural relations among sets and
not with frequency counts, we believe the term “nested
sets” is more adequate descriptively.

R4. Conclusions

There are some real disagreements about how people
judge probability. Some theorists believe that the cognitive
machinery responsible for judgment is best described as
associative, others appeal to simple rules, and others
want to focus on the representation of single cases.
There are also different views about the value of dual
systems as a framework for theorizing. But what we have
learned from the commentators’ responses to our target
article is that there is far more agreement than disagree-
ment about the psychology of judgment and that much
of the rhetoric about judgment is programmatic, reflecting
pre-theoretic methodological commitments rather than
substantive empirical claims. Indeed, almost everyone
seems to agree that the empirical record supports the
nested sets hypothesis – under one terminological guise
or another – suggesting that the transparency of nested
sets is one important variable in reducing base-rate
neglect.

We wish there were such convergence in opinion about
the theoretical prospects of systems for associative and
rule-based reasoning, as well. We are still hopeful that
the dual systems perspective will gain further support in
time.

Beyond advocating a particular theoretical perspective
or attempting to resolve a long-standing controversy, we
hope that our target article helps propel research past
the medical diagnosis task and its relatives, and away
from pre-commitments to evolutionary theorizing or any
other conceptual framework without solid empirical
content. We hope instead to see more assessment of judg-
ment with a focus on the many important questions that
remain: What are the cognitive operations that underlie
probability judgment across a range of real-world decision
contexts and what cognitive, social, and emotional factors
mediate the resulting estimates of confidence and prob-
ability? What conditions enable people to adapt and
reason well in a world of change and uncertainty?

NOTE
1. Our motivation for reviewing the results of Brase (2002b) was to

assess the comprehension of statistical formats typically employed in
the Bayesian reasoning literature. As we state in the target article (sect.
2.7, para. 2), “Brase (2002b) conducted a series of experiments to evaluate
the relative clarity and ease of understanding a range of statistical
formats” (emphasis added). Our motivation was to assess natural frequen-
cies and percentages in the form employed by research in the Bayesian
reasoning literature (see sect. 2.7). Our summary of Brase (2002b) is
accurate, pointing to the equivalence in the perceived clarity, impressive-
ness ratings, and impact on behavior that Brase reports for two formats.
Brase notes in his commentary that “actual single event probabilities
[e.g., 0.33] were not understood as well or as clearly as simple frequencies
[e.g., 1 in 3] and relative frequencies [e.g., 33%].” That is true. But simple
frequencies are normalized (see Barton et al.) and absolute frequen-
cies – the “true” natural frequencies according to our reading of Brase –
were judged just as unclear as single-event probabilities on average in all
experiments but one (as far as we can tell; statistical tests were not
reported).
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