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Overview

Aims of the thesis

This thesis is on Maxwell’s Demon, the tiny and neat-fingered being that can
break the second law of thermodynamics at will. It was introduced by Maxwell
in 1867, in an attempt to shed light on the second law of thermodynamics in the
framework of statistical physics. Now, more than a century after its summoning,
the demon receives as much scholarly attention as ever. The impressive amount
of recent publications (see for instance the chronological bibliography in Leff and
Rex 2003, [20]) shows that the demon unabatedly creates controversy wherever
it goes. In addition, it creates confusion. Neither the aims of the debates
surrounding it, nor the rules by which success and failure in these debates ought
to be judged, are clear. This has been pointed out in considerable detail by
Earman and Norton 1998 & 1999 ([10], [11]).

One major aim of the present thesis has been to point out clearly what the
major questions are, how they should be approached and what role the demon
ought to play. My ideas concerning this are unfolded in the first part, The
contingent second law. Building on the basis thus laid, I argue that the
second law is contingent on some very specific features of our world: basically
(but not merely) on the fact there are no particles smaller than atoms which
can be used to build solid structures. The non-existence of Maxwell’s Demon
therefore cannot be proved on the basis of general principles.

Yet this is exactly what many schools of thought in the debate surround-
ing the demon claim to have done, either on the basis of fluctuations, or of
measurement, or information erasure. If the conclusions I reached in the first
part are correct, these claims must be incorrect. The second part of the the
thesis, Tales of the exorcists, tries to pinpoint the mistakes made in these
approaches by uncovering the hidden assumptions their proponents have made.
Most of this discussion revolves about the question whether there is a deep con-
nection between entropy and information. Special attention is devoted to the
Landauer-Bennett scheme, as it has been at the forefront of recent discussions.

Because the debates surrounding Maxwell’s Demon are so complex and of-
ten opaque, I have deemed it unprofitable to address specific positions in the
literature in the first part of the thesis. I felt that it was necessary to approach
the subject in as clear and straight a line as possible, without making detours to
complex issues full of poorly defined terms or what I deem misconceptions. Such
an approach enables me to create an image of the Maxwell’s Demon problem
that is relatively unproblematic, and from which I can approach the problems
surfacing in the exorcist literature. One needs a perspective before one can look;
in the first part of the thesis I create a perspective, in the second part I use it
as a vantage point to survey and judge existing debates.

The goals of the thesis are fourfold. First, to clarify the questions which
Maxwell’s Demon may help us ask and answer, and to detail the way in which
such an answer might be reached. Second, to establish the claim that the second
law does not hold on any ‘general’ principles, but as a result of very specific
features of our physics. Third, to explain how the schools of exorcism came to
the conclusion that the second law could be proved on general principles, even
though this is false. Fourth, to argue that there is no deep connection between
entropy and information. A more detailed chapter-by-chapter description of the
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thesis’s structure is given below.

Chapter-by-chapter overview

• In the Prologue: Birth of a Demon, a playful introduction to the
second law of thermodynamics and the properties of Maxwell’s Demon
is presented. This prologue can be skipped by anyone with rudimentary
knowledge of the demon.

• Chapter 1: The question of contingency discusses two strange fea-
tures of the second law. The first is its statistical nature, the second the
unclarity surrounding the question which laws and features of the world
it is contingent on. Then the role of the demon as a teacher on these two
subjects is scrutinised, and the conclusion reached that it can only clarify
the latter issue.

• In Chapter 2: Portrait of a Demon a phenomenal definition of Maxwell’s
Demon is developed. Attention is given to the question why and in what
manner the demon ought to operate in a cycle, as well as to the use of
ensembles and probabilities needed to characterise a successful demon.
Various definitions of entropy are presented as candidates for giving a
quantitative definition of Maxwell’s Demon, but are discarded in favour
of the phenomenal definition.

• Chapter 3: An argument for necessity discusses not only what I
believe to be the most appealing argument for the second law’s necessity,
but also a counter-argument which defeats it and shows – so I claim –
that the second law cannot be proved from classical mechanics. In order
to discuss these issues, the chapter starts with an investigation into the
ways in which thermodynamical quantities such as heat and work are
represented in models of classical mechanics.

• Chapter 4: Matters of scale and contingency argues that once the
microscopic/macroscopic dichotomy has been abandoned, we can see the
importance of matters of scale for the second law. It is shown that the
second law is contingent on facts that explicitly deal with the existence of
natural scales and the relative abundance of objects of certain sizes and
properties. It is thus proven that the second law is contingent.

• Interlude: An imaginary history sketches the history of exorcism as
perceived by recent exorcists: a succession of better and more insight-
ful attempts to banish the demon, culminating in the Landauer-Bennett
school.

• In Chapter 5: Doomed by fluctuations the first stage of exorcism
is discussed, including the well-known trapdoor of Smoluchowski and the
ratchet and pawl of Feynman. It is argued that the fluctuation-exorcisms
are based upon the ‘fundamental assumption’ that all parts of a system
can be assigned a comparable temperature. An extended version of this
assumption is the claim that all parts of a system must be described by
the canonical distribution function.
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• In Chapter 6: The details of measurement, Szilard’s suggestion that
measurements increase entropy and Brillouin’s arguments that this defeats
Maxwell’s Demon are inspected. It is found that there is a sound core in
these ideas, which can serve as a valuable addition to the fluctuation-
approach, from which it does not differ dramatically. Brillouin’s attempt
to defeat the demon by arguing that entropy and information are related
in a fundamental way is seen to fail.

• Chapter 7: Erasure: the new paradigm treats of the suggestion by
Rolf Landauer and Charles Bennett that information erasure always has
an entropy cost, and that this defeats the demon. We find two classes
of proofs: those that use the extended fundamental assumption, and are
therefore not very good exorcisms; and those that try to prove a deeper link
between exorcism and entropy. The latter are found to be surrounded by
confusion, but the valid core is exactly the State Space Contraction argu-
ment of chapter 3. The conclusion is that the Landauer-Bennett paradigm
is not an especially successful mode of exorcism.

• In Epilogue: Return of the Demon, another playful aside, the Demon
returns to earth to haunt the dreams of physicists once more.

• Finally, the Conclusion summarises the main points of this thesis, and
ends with a happy affirmation of the demon’s continued well-being.
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Prologue: Birth of a Demon

Scene I: The second law of thermodynamics

A sunny park in Heaven. James Clark Maxwell is sitting on a bench,
his eyes closed, enjoying the fine weather of the afterlife. He is
approached by a somewhat worried looking Saint Peter.

Saint Peter James, I hope I’m not coming at an inopportune moment. There
is a problem we truly need your help with.

Maxwell Opens his eyes. Good morning, Peter! You can call on me any
time of the celestial day, and your pleas will never go unanswered.
Although I must confess that I cannot imagine how saints or angels
can have troubles I can help with.

Saint Peter We need to call on your expertise and knowledge, wise friend. Do
you remember the demon you once summoned to earth? No, never
mind my stupid question; of course you do.

Maxwell Most certainly; my tiny friend and I have had many interesting
discussions after it was forced to leave Earth in the early 20th

century. That hurt me, it did – the cute little creature rejected
and exorcised by the physical community. It was like a son to me.
But they did not understand it, they feared it and thought it was
an enemy to be combatted.

Saint Peter The reason I’m calling on your knowledge is that the demon has
applied with the Celestial Office for readmittance to Earth. Its
possible existence has been the centre of heated debate in a part
of the physical community for quite some time now, and according
to the demon’s application form the strength of the exorcisms is
on the wane. Enough so, it says, that it should be permitted to
return to Earth. We are trying to evaluate this claim.

Maxwell I hope you will not ask me to decide the issue – I’m not even
remotely impartial! The demon simply belongs on Earth. I still
think its very purpose is to teach humanity about the second law.

Saint Peter What I would like you to do, my friend, is tell me all about the
demon. What is it like? How and why did you summon it? We
lack knowledge at the Celestial Office, and I need you to educate
me.
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Maxwell You want me to tell the story of the demon? Good, but we’ll have
to start at the beginning, decades before my summoning.

Saint Peter You have my complete attention.

Maxwell Good. I’ll first explain the second law of thermodynamics to you.
The latter half of the nineteenth century saw both the rise of
thermodynamics as an important subdiscipline of physics, and its
gradual and partial replacement by the later theory of statistical
mechanics. Thermodynamics was set up as a theory that could
describe quantities of macroscopic systems in equilibrium such
as temperature, heat and pressure and predict the behaviour of
gasses and other substances when heated, cooled, compressed, ex-
panded, stirred, and so forth. All of this was to be accomplished
without any theorising on the constitution of matter: thus, the
scientific results would not be based on such highly dubious and
debatable assumptions as the atomic theory.

Saint Peter But matter does consist of atoms, does it not?

Maxwell That is what we believe nowadays, but in the 19th century many
people were suspicious of the atomic theory. In any case, the re-
sults of thermodynamical research were many, the most important
of which were summarised in the two main ‘laws of thermodynam-
ics’. The first law asserted the conservation of energy; the second
the non-decrease of the rather abstract quantity called ‘entropy’.
This second law of thermodynamics was meant to be the expres-
sion of the world’s irreversibility, of the lamentable fact that en-
ergy always degrades from a form with which we can do work to
a form with which we can’t.

Saint Peter ‘Degradation of energy’ – that sounds like an ominous prelude to
the End of Times! What is the exact formulation of this second
law?

Maxwell In fact there are several. The German physicist R. Clausius, one of
the founders of thermodynamics, formulated the second law thus:

Second law, Clausius formulation: [I]t is impossible to con-
struct a device that, operating in a cycle, will produce no
effect other than the extraction of heat from a cooler to a
warmer body.1

Saint Peter I see. What are the others?

Maxwell A somewhat different formulation was given by Lord Kelvin, an-
other influential researcher of thermal phenomena:

Second law, Kelvin formulation: [I]t is impossible to con-
struct a device which, operating in a cycle, will produce no
effect other than the extraction of heat from a reservoir and
the performance of an equivalent amount of work.2

1Sklar, 1993 [28], p. 21.
2Sklar, 1993 [28], p. 21.

8



As long as we restrict ourselves to systems whose absolute tem-
perature is positive, these two formulations of the second law are
equivalent. They tell us that we cannot simply take one hot object
and use its heat to produce work: we always have to use two ob-
jects, one hotter that the other, and can only partially transform
the heat of the hotter object to work. They tell us that there can
be no machines which can take two vessels of gas of the same tem-
perature and transfer heat from one to the other without changing
the rest of the world.

Saint Peter I’m not at all an expert in physics, but I thought the second law
asserted the non-decrease of entropy. Why doesn’t the notion of
entropy appear in the two formulations you’ve given?

Maxwell I’m coming to that. What Kelvin’s and Clausius’s versions of the
law show us, is that we can define a state-function S (up to an
additive constant): ∫ B

A

dQ

T
= SB − SA, (1)

where A and B are two points in state-space, T is the absolute
temperature, dQ is the inexact differential of the heat Q and S is
the entropy. The second law of thermodynamics tells us that if a
system does not exchange heat with its surroundings – in other
words, if it is adiabatically isolated – no processes can take place
which lower its entropy S. Explicitly:

Second law, entropy formulation: Whenever an adiabatical-
ly isolated system evolves from equilibrium state A to equi-
librium state B, the following relation holds for the entropy:
SB − SA ≥ 0.

The Clausius and Kelvin formulations of the second law explicitly
forbid certain processes in which the entropy decreases to take
place.

Saint Peter And these results hold for any system whatsoever?

Maxwell Yes. Perhaps surprisingly, they are sufficiently general to imply
the non-occurrence of all such processes for any system you can
think of. It is exactly this generality which made the second law
one of the cornerstones of thermodynamics. But let’s walk to my
home while I continue the story. There is an old letter there which
I’d like you to see.

Saint Peter Certainly.

Scene II: Atoms in the void

A quiet road in Heaven. Maxwell and Saint Peter walk amiably
along it, now and then greeted by an angel or other inhabitant
of the Celestial City.
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Maxwell Time, however, leaves no things unchanged – not even fundamen-
tal physical laws. As the conception of matter as consisting of
discrete atoms was increasingly accepted, physicists tried to re-
place thermodynamics – which ignored the structure of matter –
with a science that would describe thermal phenomena in terms
of interacting particles. Because of the immense amount of these
contained in even the tiniest macroscopically visible systems, a
full description of the positions and velocities of all the atoms was
out of the question; instead, a statistical treatment was called for,
calculating average values rather than individual properties.

Saint Peter So you created a new theory to deal with the same phenomena,
only from a different perspective?

Maxwell Precisely. The new science which attempted to do this was called
statistical mechanics, and one of the main aims of its founders
– among whom I myself and especially Ludwig Boltzmann were
prominent – was to reproduce the results of thermodynamics, in-
cluding the second law.

Saint Peter Of course, because thermodynamics was so successful. Did you
succeed in this enterprise?

Maxwell Not quite, I must admit – but this failure was a kind of success.
Let me elaborate an example, which lies at the heart of the demon
matter.

According to thermodynamics, it is not possible that two objects
of the same temperature, when brought into contact with each
other but isolated from the rest of the universe, will evolve in such
a way that one becomes hotter while the other becomes colder.
What would such a process look like in a statistical mechanical
description? Both objects are thought to be composed of tiny par-
ticles which either vibrate about a fixed position (in solids) or can
move around more or less freely (in liquids and gasses). The tem-
perature of an object is proportional to the mean square velocity
of its particles, in such a way that the greater the velocity of the
particles that constitute an object, the greater its temperature.

Saint Peter Yes. The faster the molecules, the higher the temperature. I think
Ludwig told me that once.

Maxwell What is very important for the rest of my story, and what I want
you to understand very well, is that the atoms or molecules of a
gas do not all have the same velocity. For gasses I have shown that
the velocity distribution of the particles is the so-called Maxwell
distribution:

f(v)dv = 4π(
m

2kT
)3/2v2exp(−mv2/(2kT ))dv. (2)

In this formula f(v)dv is the chance that a certain particle has
an absolute velocity between v and v + dv, m is the mass of the
particles, k Boltzmann’s constant and T the temperature. This
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guarantees that although most particles have a velocity near to
the average velocity, a fair amount of them has velocities notably
higher or lower. Do you understand that?

Saint Peter Yes, I do. Some molecules are faster, some are slower, even within
a gas with a uniform temperature. What is so relevant about
that?

Maxwell That will become clear pretty soon, when I have finished my ex-
ample. Please be patient.

If we put two containers, A and B, next to each other, both con-
taining the same gas at the same temperature, and open a hole
between them, what will happen is the following. Molecules will
be able to pass freely through the hole, so some particles from A
will move to B, and vice versa. Because the temperatures of the
gasses are identical, so are the velocity distributions; on average,
the molecules going from A to B will have the same square velocity
as those going from B to A. As long as this happens the average
square velocity, and hence the temperature, of the containers will
not change. It is nonetheless possible that for a significant amount
of time more fast molecules move from A to B than from B to A,
and more slow molecules move from B to A than from A to B. In
that case, the temperature of B will rise and that of A will fall,
in a direct violation of the second law of thermodynamics. Statis-
tical mechanics thus allows violations of the second law. Because
of the huge amount of particles involved, the probability of such
a fluctuation which gives rise to a significant temperature differ-
ence is extremely small. The situation is somewhat analogous to
a box full of evenly mixed tiny red and blue balls. We can shake
the box and thus throw about the balls in a random fashion, but
chances are that this will not produce a nicely ordered configura-
tion in which most red balls are in the left side of the box, and
most blue balls are in the right side. The greater the number of
balls, the less likely this spontaneous sorting is – and two contain-
ers of gas can easily hold 1023 ‘balls’. In practice we can ignore
the chance that any significant fluctuations in temperature will
occur, because they are extremely unlikely. Although the second
law does not hold unconditionally in statistical physics – viola-
tions are possible – it holds probabilistically : significant violations
of the second law are, in general, highly unlikely.

Saint Peter Your example is very clear. I take it that when you spoke of your
failure to derive the second law of thermodynamics actually being
a kind if success, you were referring to this. By doing statistical
physics, you discovered that the second law of thermodynamics is
actually invalid.

Maxwell Precisely. And with that insight, we’ve reached my house. Please
enter.
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Scene III: Maxwell’s Demon

Maxwell’s study in the Celestial City. It is a spacious and light
room, cluttered with books. Maxwell and Saint Peter occupy two
arm-chairs in the centre, sipping a refreshingly cool white wine.

Maxwell I told you that significant violations of the second law are highly
unlikely. This is true, but with one qualification: these viola-
tions are only unlikely as long as the demon known on earth as
Maxwell’s Demon is not around. My tiny friend, you see, has
the ability to cool one gas and heat the other without changing
anything in the environment, violating the second law whenever
it wants and as badly as it wants.

Saint Peter So that ’s his trick! But how does he do it, violating this time-
honoured and – I might add – God-given law of nature?

Maxwell I first mentioned the demon in a letter to P.G. Tait in 1867.
Maxwell starts rummaging through a pile of old let-
ters next to his chair. Imagine two vessels of gas A and B,
I said. Let A be hotter than B, and the two vessels separated
by an isolating wall. In this wall is a small hole with a massless,
frictionless slide in front of it which can be used to open and close
the hole. Ah, here it is! He triumphantly shows a very old
piece of paper, and hands it to Saint Peter. Please, read
it aloud.

Saint Peter So this is the letter you spoke of. Let me see:3

Now conceive a finite being who knows the paths and
velocities of all molecules by simple inspection but who
can do no work except open and close a hole in the
diaphragm by means of a slide without mass.
Let him first observe the molecules in A and when he
sees one coming the square of whose velocity is less that
the mean square velocity of the molecules in B let him
open the hole and let it go into B. Next let him watch
for a molecule of B, the square of whose velocity is
greater than the mean square velocity in A, and when
it comes to the hole let him draw the slide and let it go
into A, keeping the slide shut for all other molecules.
The number of molecules in A and B are the same as
at first, but the energy in A is increased and that in B
diminished, that is, the hot system has got hotter and
the cold colder and yet no work has been done, only the
intelligence of a very observant and neat-fingered being
has been employed.
Or in short if the heat is the motion of finite portions
of matter and if we can apply tools to such portions

3Garber, Brush, Everitt, 1995 [14], p. 176-178. I have changed all abbreviations, such as
‘vel.’ for ‘velocity’, to their full counterparts for greater readability.
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of matter so as to deal with them separately, then we
can take advantage of the different motion of different
proportions to restore a uniform hot system to unequal
temperatures or to motions of large masses.
Only we can’t, not being clever enough.

Maxwell And so it is. Such a simple scheme.

Saint Peter Your demon, then, is a being which can observe molecules indi-
vidually, and can therefore sort them into faster and slower ones?

Maxwell Quite. The different motions of individual molecules, which are
useless to us since we can only control them en masse, can be
exploited by an observant and neat-fingered being because it does
have the ability to control them individually. Because he has such
neat fingers, my demon can control the atoms and molecules of
matter and break the second law whenever he feels like it!

Saint Peter I can imagine he created quite a stir. And. . . well, there he is! A
very small, friendly-looking demon jumps through the
window, walks up to Maxwell and settles on his lap.

Maxwell Quite a stir indeed! But maybe you’d like to tell Peter about the
enmity you encountered yourself.

Demon The demon speaks in a very high voice, but with an im-
peccable Oxford-accent. Certainly, old chap. It will be my
pleasure. But allow me to speak about the good things I’ve done
first, before I turn to my critics.

13



Part I

The contingent second law
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Chapter 1

The question of contingency

Throughout the centuries, physicists have formulated many ‘laws of nature’.
Among them are well-known ones such as Newton’s laws of inertia and grav-
itational attraction, and Einstein’s field equations of general relativity. The
two main laws of thermodynamics – the first, which expresses the conservation
of energy, and the second, which forbids the occurrence of entropy decrease –
also belong to the exalted temple of famous physical laws. Yet the second law,
which together with Maxwell’s Demon is the protagonist of this thesis, is a very
strange member of this company. This chapter will describe that strangeness,
which centres around two features: the statistical nature of the second law, and
the question whether it is a real law at all or merely a contingent generalisation.
At the end of the chapter, Maxwell’s Demon is introduced and the role it can
play in solving the problems concerning the second law is discussed. It is argued
that the demon cannot throw any light on the statistical nature of the second
law, but can help us to answer questions of contingency and necessity.

1.1 The statistical law

1.1.1 A false law?

As indicated in the prologue, the second law is – in its thermodynamical formu-
lation – simply false. In the Clausius formulation, the law is expressed thus:

Second law, Clausius formulation: [I]t is impossible to construct a device
that, operating in a cycle, will produce no effect other than the extraction
of heat from a cooler to a warmer body.1

The second law thus forbids absolutely the transport of heat from colder to
hotter bodies by any device ‘operating in a cycle’. The accuracy of this law
was not widely questioned until the atomic hypothesis of matter became widely
embraced by the physical community. When the theory of statistical physics
was developed by Maxwell, Boltzmann and others, it became clear very quickly
that the second law of thermodynamics could not hold unconditionally. I will
illustrate this with a thought experiment.

1Sklar, 1993 [28], p. 21.
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Suppose one has two containers, A and B, filled with the same gas at the
same pressure, A hotter than B, completely isolated from their surroundings ex-
cept for the fact that there is a tiny hole in the wall connecting them. Molecules
can move freely from one container to the other through the hole, but it is so
small that there is never more than one molecule making this transition at the
same time. In statistical physics, the thermodynamical, macroscopic quantity
temperature is equated – up to a constant of proportionality – with the ‘statis-
tical’, microscopical quantity average kinetic energy of the particles. Hence, the
average kinetic energy of the particles in A, m

2 v2
A, where m is the mass of the

particles and v2
A is the average square speed, is higher than that of the particles

in B, m
2 v2

B .
Let one particle with velocity v1 move through the hole from A to B, and

another with velocity v2 from B to A. It is clear that the average kinetic energy
of A is decreased and that of B is increased if and only if v1 > v2, whereas the
opposite effect takes place if and only if v1 < v2. In the first instance, heat is
transported from a hotter to a colder body, in accord with the thermodynamical
second law. In the second, heat is transported from a colder to a hotter body, in
violation of the thermodynamical second law. Now the speeds of the molecules of
an ideal gas at temperature T are described by the Maxwell-velocity distribution

f(v)dv = 4π(
m

2kT
)3/2v2exp(−mv2/(2kT ))dv. (1.1)

This is a distribution with tails extending to zero and infinity, so there will be
some molecules in B which are faster than some molecules in A, even though
A is at a (much) higher temperature than B. If there are molecules in B
which are faster than some molecules in A, the possibility that v1 < v2 in any
process of particle exchange is non-zero. The second process, then, in which heat
is transported from a colder to a hotter body, is not forbidden by statistical
physics. It can happen that – by sheer coincidence – an exceptionally fast
molecule from the colder gas is exchanged for an exceptionally slow molecule
from the hotter gas. This process is allowed and actually takes place, but it
contradicts the Clausius formulation of the second law. Thus, the second law of
thermodynamics is literally false. Literally – but there seems to be large grain
of truth in it. What is this grain, and how can the second law be reformulated
in statistical physics, so as to make it true once more?

1.1.2 The statistical formulation

Recapitulating: in thermodynamics, that claim was made that decrease of en-
tropy (or any of the effects associated with it, such as those forbidden by the
formulations of Clausius and Kelvin) is strictly forbidden and never occurs. The
development of statistical mechanics showed that this unconditional second law
does not hold; there is always a possibility, extraordinarily small though it may
be, that entropy will decrease. One might hope that the possibility for any
downward entropy fluctuation is so small that we will never be able to observe
one. Then, one might be tempted to adopt the following reformulation of the
law: although entropy decreases are possible, it is overwhelmingly likely for any
macroscopic system that no detectable violation of the second law takes place.
Unfortunately, these hopes are not fulfilled, and the proposed reformulation
is not successful: some macroscopic fluctuation phenomena, such as Brownian
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motion, are easily detectable, even though they constitute violations of the ther-
modynamical second law. We need to search for another way of improving the
second law.

Let us reconsider the thought experiment of the last subsection. If A is at
a much higher temperature than B and molecules for exchange are chosen at
random, the chance of the molecule leaving A being faster than that leaving
B is overwhelming; this can easily be seen from the Maxwell-distribution 1.1.
So chances are that the great majority of all particle exchanges will result in
a heat flow from the hotter to the colder body, and the opposite will happen
only relatively rarely. Hence, although many small downward fluctuations in
entropy take place, they are generally more than compensated for by a much
larger amount of interactions in which the entropy increases. And no processes
exist, as far as we know, which ensure that only the entropy decreasing exchanges
take place; no machines can be built, it seems, which create a situation where
the unlikely exchanges which lower the entropy become dominant and create
with high probability a major entropy decrease. Through these considerations,
Smoluchowski (1912, [30]) realised that although in almost any case decrease
of entropy is a possibility and may actually be observed, the chance of such
decreases going on for a significant time is very slim. Following his lead, we
might reformulate the second law thus:

Statistical second law, entropy formulation: Entropy is not forbidden to
decrease, but in all processes the probability of continuous and macro-
scopically significant entropy decrease is extremely small.

What is unfortunate about this formulation of the statistical second law
is that the concept of entropy is not uniquely defined in statistical physics:
instead, there are a number of different and competing definitions of entropy,
for some of which the above formulation is simply false. These formulations and
their relationship with the second law will be discussed at length in chapter 2.
Presently, it is more useful to describe the statistical second law in terms of the
processes we wish to forbid: those which take random molecular motion (heat)
and completely convert it to macroscopically useable work. Such a ‘Kelvin’
version of the second law was actually proposed in Smoluchowski 1912.

Statistical second law, ‘Kelvin’ formulation: It is impossible to construct
a device which with a high probability, operating in a cycle, will produce
no effect other than the extraction of a macroscopically significant amount
of heat from a reservoir and the performance of an equivalent amount of
work.

This formulation is, barring negative absolute temperatures, equivalent to
a ‘Clausius’ formulation which forbids a reliable device operating in a cycle to
do nothing else but transport heat from a colder to a hotter object. Neither of
the two, however, is equivalent with the entropy formulation of the statistical
second law, if only because the latter is ambiguous. In fact, I will later claim that
they are not equivalent for any of the non-ambiguous notions of entropy that
are generally used either. I suggest that the basic idea behind the second law
of statistical physics is best captured by the ‘Kelvin’ or ‘Clausius’ formulation.
Whenever I speak of ‘the statistical second law’ in the rest of the text I will mean
the (phenomenal) Kelvin/Clausius formulation, unless otherwise specified. I will

17



often simply call it ‘the second law’ if there is no need to specifically distinguish
the statistical from the unconditional thermodynamical version.

Let us take a closer look at the statistical second law. It contains one very
strange clause, one thing that distinguishes it from all the other laws of physics.
The second law speaks about devices which ‘with a high probability’ fail to
do something; it forbids certain things from happening very often, but allows
that they may happen occasionally. Every other law of classical physics,2 be
it Newton’s laws of motion, Einstein’s field equation, Maxwell’s theory of elec-
tromagnetism or anything else, forbids only absolutely. Newton’s laws tell us
that a body on which no forces work undergoes no acceleration; it does not
tell us that the body has ‘a very big chance’ of undergoing no acceleration.
Maxwell’s theory tells us that two positive charges far removed from any other
charge distributions will repel each other; not that they will repel each other
‘with high probability’. Somehow or other, then, probability and chance make
an appearance in the second law of statistical physics, although they make no
such appearance in the rest of classical physics. This is the first strange feature
of the second law.

1.2 Reduction and contingency

1.2.1 Reduction

We now turn to the other strange feature of the second law. It has been observed
that the law does not describe new physical interactions. Indeed, it says nothing
at all about microscopic processes. If I have a container of gas, the second law
tells me nothing about the interaction between the gas molecules, about the
ways in which they will collide or about the collisions between the molecules
and the walls of the container. The microscopic laws of motion are given to
us by mechanics and electrodynamics, and they are completely determined by
these theories.3 Statistical physics does not add one iota to our knowledge in
this respect. But if we know the detailed behaviour of every single particle of
the gas – what is there left to know? Is there still some independent feature
of the gas left undescribed which could be the subject matter of the second
law? Surely not. If we know the position and velocity of every molecule in the
gas and of every molecule of the container at every moment in time, then we
know everything which can be possibly known. We know whether temperature
differences are created or destroyed; we know whether heat is changed into work.
If we know the laws of microscopic behaviour, we seem to know everything.

But this puts the second law in a strange position. Anything it tells us about
the behaviour of systems must in some way be reducible to statements about
the microscopic evolution of these systems; and hence, the claims of the second
law must be reducible to those of the laws of microscopic behaviour. At least

2This thesis is not the place to discuss the probability-related aspects of quantum mechan-
ics. It ought to be remarked, however, that the probabilistic aspect of statistical physics has
nothing to do with quantum effects.

3Of course, we might actually need general relativity, quantum field theory and whatnot
to describe the gas with complete accuracy; and maybe not even these would be enough. But
just assume, for the sake of argument, that we have a complete and accurate theory of the
microscopic behaviour of the gas. It is clear in any case that the second law is irrelevant to
this description.
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at first glance, the statistical second law must be reducible to more basic, more
fundamental laws of nature.

There is at least one well known problems with this reduction. In the for-
mulation we gave of the second law, machines are forbidden which with high
probability continuously create work from heat. There is no similar prohibition
of a machine which changes work into heat – indeed, work changes to heat every
time there is friction. The second law is therefore time asymmetric: a process
wherein heat is converted to work is forbidden, but the time-reverse, a process
wherein work is converted to heat, is allowed. This becomes a problem for at-
tempts to reduce the second law to laws of microscopic motion, as all laws of
the latter type known to us are completely time-reversal invariant. And surely
a time-asymmetric law cannot be proven from completely time-symmetric as-
sumptions. The problem of squaring the time-asymmetry of the statistical sec-
ond law with the time-symmetry of the underlying dynamics has generated a
huge amount of literature – see, for instance, Reichenbach 1956 ([25]), Horwich
1987 ([16]), Sklar 1993 ([28]), Albert 2000 ([1]).

We will not enter into this debate. Questions of time asymmetry – Is the
second law really time-asymmetric? How does this relate to its possible reduc-
tion to more fundamental laws? Has entropy anything to do with the ‘arrow of
time’? – are not our concern in this thesis, and discussing them in any detail
will be studiously avoided. But this topic can nevertheless serve as a useful
illustration of the notions of necessity and contingency to which we presently
come.

1.2.2 Necessity and contingency

We may wonder what the status is of the statistical second law, given the
validity of the laws of microscopic motion. In the remainder of this part of the
thesis I will focus exclusively on models from classical mechanics, so I’ll likewise
restrict the discussion to the classical mechanical laws of motion. Thus, I’ll
ignore electrodynamics and other theories which in reality are very important
in describing the paths and interactions of particles in a gas. My main reason for
focussing on classical mechanics is that it furnishes us with a relatively simple
case in which all the major issues I want to talk about can already be discussed
in the necessary detail. Adding electrodynamics or quantum mechanics would
greatly increase the difficulty of most discussions, without yielding any real
benefit in terms of clarity and understanding.

We may, I repeat within the new context just defined, wonder what the
status of the statistical second law is, given the validity of the laws of classical
mechanics and their completeness concerning the detailed description of every
system. Do the laws of classical mechanics necessitate the validity of the sec-
ond law, or is the second law’s validity contingent on still further facts about
the world? The dichotomy can be spelled out as follows. Either the second
law is necessary, or it is contingent. We’ll say that the second law is neces-
sary if it follows from the universal validity of the laws of classical mechanics,4

supplemented if need be by some elementary considerations of probability, of
ensembles and suchlike. We’ll say that the second law is contingent if it does

4Remember that I’m restricting myself, in this first part of the thesis, to models of classical
mechanics.
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not follow from these things alone, but further facts about the world are needed
to derive it; if such facts exist, the second law is contingent on them. Thus,
if the second law only holds because there are no tiny intelligent creatures in
our world, but the existence of such creatures is merely a brute fact and not
necessitated by the laws of classical mechanics, then the second law is contin-
gent. It is contingent on the non-existence of tiny intelligent creatures. If, on
the other hand, such creatures are indeed the only possibility of breaking the
law but they are impossible given classical mechanics, then classical mechanics
alone is enough to save the day for the second law. In that case, it is necessary.

By way of further illustration, let me return to the subject mentioned in
the previous subsection. The dichotomy between necessity and contingency
plays a central role in the discussions about time-asymmetry. Many people,
for instance Paul Horwich (1987, [16]) and David Albert (2000, [1]), invoke a
kind of contingency to solve this problem. According to them, the initial state
of the universe was a very special state, with few correlations (Horwich) or
very low entropy (Albert). The only reason that we currently have entropy
rising wherever we look, instead of falling or being more or less constant, is
because of the special nature of the initial state of the Universe after the Big
Bang. According to them the Second Law is contingent on the occurrence of
this special state. Whether their reasoning is correct is a delicate and complex
question, and we will not venture onto this battle-scarred terrain.

1.2.3 Is the second law contingent?

Wondering about the contingency or necessity of the fundamental laws of nature
is something best left to theologians and metaphysicians of a speculative kind.
But in the case of the statistical second law, which for all the world does not look
like a fundamental law of nature, the question is a valid one for philosophers of
physics. Even leaving aside the questions of time asymmetry, it is not obvious
whether the second law can be derived from the fundamental laws of physics. In
our case, we want to know whether it can be derived from classical mechanics.
Is the statistical second law valid in all models of classical mechanics, or is
there a large class of models in which the law is simply false? This question is
very tricky. We have to be very precise about the criteria we use to determine
whether something is a ‘large class of models’; we have to spin some subtle
arguments about the introduction of ensembles and probabilities; and we have
to determine when the second law holds or fails to hold in a model of classical
mechanics – which is not trivial, as neither ‘entropy’ nor ‘heat’ are terms which
we customarily use in this theory.

This first part of the thesis is concerned with exactly this question about the
contingency of the second law. It will try to be precise, talk about ensembles,
present models of classical mechanics, formulate a notion of the validity of the
second law – and in the end, I will claim that the statistical second law is
contingent, not necessary. I propose that this discussion is at the heart of the
Maxwell’s Demon problem – although other authors have not, of course, shared
my self-imposed limitation to classical mechanics –, that the demon’s main
purpose is exactly to help us solve the question of necessity and contingency. I
will try to support that claim in the next section.
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1.3 What we learn from the demon

The demon is a thought experiment: Maxwell never believed that such beings
existed, or that men could make tiny machines that functioned like them. This
negative attitude towards the possibility of demons has been dominant in the
literature ever since, but it has been exemplified in two very different ways.
Some people saw the demon as a threat to an accepted and successful part of
physics – the statistical version of the second law of thermodynamics – and tried
to prove from physical principles that it could not exist. Such attempts will be
discussed in part II. Others, like Maxwell himself, accepted the non-existence
of demons as obvious or unproblematic, and wished to make use of them as
explanatory or pedagogical devices. But just what they can explain deserves
some clarification.

In the preceding sections, I discussed two strange features of the second law:
its statistical nature, and its possible contingency. Maxwell’s Demon can be
interpreted as a helpful thought experiment for understanding either of these
two features. I will presently attack the idea that the demo can teach us anything
about the second law’s statistical nature, and defend the view that it is a teacher
on contingency and necessity.

1.3.1 ‘Only statistical certainty’

In an undated letter to Peter Guthrie Tait, Maxwell reflects on the history of
his demon in a few short sentences5:

1. Who gave them this name? Thomson.6

2. What were they by nature? Very small BUT lively beings
incapable of doing work but able to open and shut valves which
move without friction or inertia.

3. What was their chief end? To show that the 2nd Law of Ther-
modynamics has only statistical certainty.

In this letter Maxwell suggests that the main point of his demonic thought
experiment is that it enables us to see clearly that the second law has only
statistical certainty. But what does he mean when he makes this claim? ‘Sta-
tistical certainty’ is an obscure notion, because its most obvious interpretation
has changed since Maxwell’s time. With the ‘statistical approach’ to physics,
Maxwell meant the practice of not asking questions about individual molecules,
but only about gross macroscopic averages. That the second law has only statis-
tical certainty would mean, for him, that the second law is only true if we limit
ourselves to these averages and ‘avoid all personal enquiries of molecules’. In
his letter to Tait, Maxwell restates in different words his original claim7 about
the demon: that it shows us that the second law does not hold for tiny-neat

5“Catechism on Demons”, Garber, Brush and Everitt, 1995 [14], p. 180.
6Maxwell conceived of a ‘very observant and neat-fingered being’. It was William Thomson,

also known as Lord Kelvin, who dubbed this creature a ‘demon’.
7See page 12: “Or in short if the heat is the motion of finite portions of matter and if we

can apply tools to such portions of matter so as to deal with them separately, then we can take
advantage of the different motion of different proportions to restore a uniform hot system to
unequal temperatures or to motions of large masses. Only we can’t, not being clever enough.”
– Garber, Brush, Everitt, 1995 [14], p. 177.
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fingered beings, but only for clumsy people like us who are not clever enough –
that is, who must use statistical methods.8

But today ‘statistical certainty’ means something different: a claim that the
second law has only statistical certainty will be interpreted by almost anyone as a
claim that it does not hold always, but only with a high probability. ‘Statistical’
no longer points to a method, but to a use of probabilities. For many modern
readers, it will appear to be obvious that Maxwell wishes to claim that the
thermodynamic version of the second law does not hold; only its statistical
version does. It is therefore of the highest importance to carefully distinguish
between these two interpretations of Maxwell’s words: the one in which it is
advocated that the second law holds only because we are limited to considering
and manipulating atoms en masse and the one in which it is claimed that the
second law only holds with high probability, not unconditionally. I will now
argue that using the second interpretation, Maxwell’s claim about the demon is
undefendable.

We can draw a distinction between three possible cases: the second law holds
in its thermodynamic version, unconditionally; the thermodynamical version
does not hold, but the statistical second law does; or not even the statistical
second law holds. Maxwell’s almost infinitely repeated letter can be construed as
claiming that the demon clarifies the distinction between the first and the second
possibility, showing that the statistical version of the law has to be preferred to
the unconditional one. Yet the demon is a creature which can break the second
law, even its statistical version. Wherever the demon is present, neither of the
first two options is correct and we would have to opt for the third.

In fact, the distinction between the first and second option can be made clear
if we just imagine two containers of gas, one hot and one cold, connected by a
small hole – but without a shutter or a demon. It is easy to see, once we have
knowledge of the Maxwell velocity distribution, that there is a non-zero chance
of fast molecules moving from the cold to the hot gas, and slow molecules moving
the other way; complemented with an explicit calculation of the probabilities
involved, this is all that is needed to show that the second law does not hold,
but only its statistical version does.9 Adding a shutter and a demon does not
just complicate the example unnecessarily, it positively destroys its ability to
show the statistical validity of the second law. If a demon can exist – and
it is not immediately clear that it cannot – the statistical second law is false.
Maxwell’s Demon is unfit to show that ‘the 2nd Law of Thermodynamics has
only statistical certainty’, if ‘statistical certainty’ is interpreted in the modern
way rather than the way Maxwell meant it to be understood.

Confronted with the two strange features of the second law which I identified,
its statistical nature (in the modern sense of the word) and its contingency,
the demon certainly cannot clarify the former. Ex hypothesi Maxwell’s Demon
breaks the second law in both its thermodynamic and its statistical form; it
does not tell us why or in what sense the second law has a statistical nature.
(Although an understanding of this aspect of the second law might be very
important for accurately discussing the demon – as a necessary preliminary of

8See for instance Heimann 1970 ([15], especially p. 62-67) for a discussion of Maxwell’s
thoughts on the ‘statistical method’.

9At least, such a calculation would show that the statistical second law is the strongest
law that can hold, and that the example does not give us any reason to doubt that it does
hold. It does not rigorously prove that the statistical second law is true.
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the discussion, not as a result of it.)
Unfortunately, Maxwell’s claim has been quoted very often without an ap-

propriate discussion of its meaning, leaving the unsuspecting reader in great
danger to misinterpret it. Two recent and representative examples are Leff and
Rex 1990 ([19], p. 5; also the 2003 renewed version, [20], p. 5) and Bub 2002
([9], p. 2). Leff and Rex quote Maxwell’s letter to Tait, which I cited above,
then fail to explain his notion of ‘statistical certainty’. This alone could all
too easily leave the reader with the wrong idea of Maxwell’s intentions. But in
addition, they claim in the preface of their book (p. vii) that the demon can
teach us about ‘the role of probability and statistics’. This is precisely what
it can not do. Describing the birth of the demon, Leff and Rex claim (p. 4):
‘Maxwell’s thought experiment dramatizes the fact that the second law is a sta-
tistical principle that holds almost all the time for a system composed of many
molecules’. It does not dramatise the fact that it holds almost all the time;
instead, it points the way to situations in which it does not hold at all. Jeffrey
Bub tells us that the point of the demon argument was to show that the second
law has ‘only statistical certainty’, without explaining that notion. But in the
next sentence, he speaks about ‘statistical fluctuations’, which reveals a use of
the modern meaning of ‘statistical’. Given this widespread lack of attention to
and confusion about the proper meaning of Maxwell’s claim, and the untenabil-
ity of its modern interpretation, I think it has been valuable to point out at
some length that the demon can not be used to show that only the statistical
second law holds.

1.3.2 Dissection: contingency and the demon

The proper purpose of the demon is to tell us about the necessity and contin-
gency of the second law. It is a thought experiment which can be used to decide
the question whether the law is contingent, and if it is, the demon can tell us
what the second law is contingent on. This point bears some explanation.

Suppose that all demons we can think of, all creatures and machines which
change heat into work seemingly effortlessly, violate the laws of classical me-
chanics. (Such demons are actually easy to construct – once we allow arbitrary
non-Hamiltonian force fields, the second law can be broken at will. See for in-
stance Zhang and Zhang 1992, [33].) In that case, the validity of the laws of
classical mechanics forbids the existence of demons, and hence necessitates the
validity of the statistical second law. The second law would be necessary. If, on
the other hand, we can construct a demon which is a model of classical mechan-
ics, the second law does not hold of necessity. Supposedly, this demon will not
exist in our world for some reason or another – I am assuming the statistical
second law may turn out to be contingent, but will not turn out to be false –,
some reason which is not implied by the laws of classical mechanics, such as a
very special initial state of the universe. We have then proven that the second
law is contingent on this reason. Hence constructing demons, or disproving the
constructibility of certain classes of demons, answers our questions about the
necessity and contingency of the second law.

In other words: Maxwell’s Demon can violate the second law by definition,
but we do not believe that the second law is violated in our world. Thus, those
features of the demon which are not exemplified by any real objects will be the
features that enable it to violate the second law. The validity of that law is
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contingent on the non-existence of those features in our world. In other words,
by dissecting a demon, by exploring the traits that enable it to violate the law,
we may discover why the second law holds: examining a demon is a case-study in
the ‘transcendental conditions of the validity of the second law’. Possibly there
is a large variety of demons around, which can break the second law because
of very different attributes; in that case, the validity of the second law holds
because of the non-occurrence in reality of all such attributes. What Maxwell’s
Demons can give us, when properly dissected, is potentially deep insight into
the foundations of statistical physics; in particular, they may provide us with
answers to the question: which properties of reality ensure the validity of the
statistical second law? Are these properties fundamental laws (in which case
the second law is necessary), or are they simply facts (in which case the second
law is contingent)?

I suggest that it was to provide answers to questions like these that Maxwell’s
Demon was first summoned. Maxwell wrote, in the letter quoted at length on
page 12:

[I]f the heat is the motion of finite portions of matter and if we
can apply tools to such portions of matter so as to deal with them
separately, then we can take advantage of the different motion of
different proportions to restore a uniform hot system to unequal
temperatures or to motions of large masses. Only we can’t, not
being clever enough.

The suggestion is that if we could only apply very tiny and well-made tools to
individual atoms, then we could break the statistical second law at will. Hence
the validity of this law rests upon the fact that we cannot make such tools,
that, in other words, we are not ‘clever enough’. What it means to be ‘clever’
is of course a matter of debate. But I think it is not far-fetched to construe
Maxwell’s letter as saying that the validity of the second law is contingent on
the non-existence of creatures with the ability to efficiently apply tiny tools to
molecules in motion. How this claim can be made precise and whether Maxwell
was right are the topics which will occupy us from now on.
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Chapter 2

Portrait of the Demon

Our quest is to understand the necessity or contingency of the second law by
looking at beings which can break it and examining their features. These be-
ings are called Maxwell’s Demons. Before we can investigate whether or not a
Maxwell’s Demon can be constructed in classical mechanics, we need to know
when a creature deserves this ominous name. We need to be able to sift the
pretenders from the bona fide demons. We need to sketch a portrait of the
Demon.

First of all, this means that we have to find a criterion for breaking the
second law. This is not as easy as it sounds, for merely saying that the demon
ought to ‘decrease entropy’ is too vague. Within statistical physics, there are
several notions of entropy, and not all of them are connected to the second law
in a clear way. The first aim of this chapter will therefore be to review the
possible criteria for violating the second law, making use of phenomenal con-
siderations, Boltzmann entropy, fine-grained Gibbs entropy and coarse-grained
Gibbs-entropy. I will decide in favour of the phenomenal criterion, as it is the
only one connected to the second law in an obvious way. That this choice is
very significant will become clear in chapter 4.

Secondly, the demon ought to be able to change heat into work when con-
fronted with any of a large class of systems. It is perhaps quite trivial to think
up a system which can act as a Maxwell’s Demon for one particular configu-
ration of a gas (a carefully timed trapdoor might do the trick – though some
reservations can be made), but we want our demon to be able of handle all
kinds of initial configurations. We will try and find a good formulation of this
requirement in section 2.4.

Thirdly, we have to take a look at the notion of cyclicity. The demon ought
to be able to change heat into work, ‘operating in a cycle’ – it is, for instance, not
good enough if the demon uses a battery to change heat into work, expending
lots of irrecoverable potential energy to make the change from heat into work.
But in what sense must the demon operate in a cycle? This question is discussed
in section 2.5.

These three points complete the portrait of the demon as it will be sketched
in this chapter. It will give us all the tools we need to get on with the real work:
constructing or disproving demons.
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2.1 Breaking the law: the phenomenal approach

2.1.1 Phenomena and entropy

Maxwell’s Demon is intimately connected to the statistical second law, as it is by
definition a being which can break this law. It is therefore of crucial importance
to understand when this law is broken, if we wish to be able to recognise demons
when we see them.

The thermodynamic second law claims that entropy cannot decrease, but
always has to increase. This suggests an equivalent formulation of the statis-
tical second law in terms of entropy: ‘no machine exists which can with high
probability lower the entropy of a system for a significant amount of time’, or
something like that. Unfortunately, there is no single universally accepted defi-
nition of entropy in statistical physics. The Boltzmann entropy, the fine-grained
Gibbs entropy and the coarse-grained Gibbs entropy are all used more or less
frequently, yet they are very different from each other both in letter and spirit.
The conclusions we will reach about the demon, and indeed about the contin-
gency or necessity of the second law, are very much dependent on the criteria
used to determine whether a potential demon does or does not break the second
law. It is therefore of prime importance to specify those criteria in advance,
or at least be as clear about them as possible. Presumably, as physicists we
are not really interested in the decrease or non-decrease of a mathematically
defined quantity, unless that quantity tells us something worth knowing about
the physical world. Hence, we are only interested in the behaviour of the three
competing quantities called entropy in so far as they inform us about the success
or failure of Maxwell’s Demon to do what it ought to do: produce large-scale
anti-entropic effects such as the demon in Maxwell’s original thought experi-
ment did. It is a good idea to specify what kind of effects would constitute
anti-entropic behaviour, and then subject the different definitions of entropy to
a critical test: can they provide us with a reliable indication of such behaviour?
So we will first establish a phenomenal criterion of violating the second law,
and then look at the possibility of supplanting it with a more mathematical and
formal criterion.

2.1.2 Phenomenology of demons

A violation of the second law of thermodynamics is easily seen to be possible
from within the framework of statistical physics. The law only holds ‘statis-
tically’, which we suppose to mean that there are no systems, operating in a
cycle, which reliably produce large scale violations of the second law of thermo-
dynamics. We start by repeating the Clausius and Kelvin formulations of the
thermodynamical law.

Second law, Clausius formulation: It is impossible to construct a device
that, operating in a cycle, will produce no effect other than the extraction
of heat from a cooler to a warmer body.

Second law, Kelvin formulation: It is impossible to construct a device that,
operating in a cycle, will produce no effect other than the extraction of
heat from a reservoir and the performance of an equivalent amount of
work.
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The two phenomena mentioned in these laws, when produced reliably and on
a large scale by a system in a cycle, would surely convince us that the system in
question is a Maxwell’s Demon. It should be noted that, using Carnot engines,
a temperature difference can be exploited to convert heat to work, and work
can be used to heat and cool objects. Therefore, any demon that produces one
of the two phenomena will, with some simple tools, also be able to produce
the other. Another useful example of an anti-entropic effect is the creation of
a pressure difference between two containers of gas which were initially at the
same pressure and temperature. This can be done by a somewhat less intelligent
sibling of Maxwell’s original demon: if it only opens the slide to let molecules
pass from A to B regardless of their velocity, but never allows molecules to
pass the other way, the pressure in A will drop while that in B will rise. This
pressure difference can be exploited by a little turbine, which will change the
gas’s kinetic energy (the heat) into work. A ‘pressure demon’ can, with some
simple tools, convert heat into work; as this can also be done the other way
around, a reliable producer of any of the three phenomena mentioned can be
easily turned into a system that can produce all of them at will. Phenomenally,
then, the following is a good characterisation of Maxwell’s Demons:

Maxwell’s Demon, phenomenal definition: A sufficient condition for a sys-
tem to be a successful Maxwell’s Demon is that, operating in a cycle, it can
produce, with high probability, at least one of the following phenomena
without making any other changes in the environment:

• Two systems at the same temperature evolve to one system at a
significantly higher and one at a significantly lower temperature.

• A significant amount of heat is converted completely into work.

• Two vessels containing the same gas at the same temperature and
pressure evolve to one vessel with a significantly higher and one vessel
with a significantly lower pressure, while the temperatures remain
equal.

This partial definition1 captures the basic idea behind the demon very nicely,
except for the vague clause about cyclicity, which is in need of further elucida-
tion, and the non-specification of the range of systems on which it has to operate
successfully. We will return to these points in sections 2.5 and 2.4 respectively.

The main advantage of the phenomenal definition of Maxwell’s Demon is
that it clearly captures the physically relevant processes. If the phenomenal
Maxwell’s Demon exists, we have all the wondrous machines at our disposal
that can furnish us with nigh unending amounts of useful energy. The main
disadvantage of the phenomenal definition is that it lacks the mathematical
clarity of more formal definitions. We will now try and find out whether any of
the mathematical notions of entropy used in statistical physics can adequately
capture the same physical effects as the phenomenal definitions.

1It is a partial definition, since it contains sufficient but no necessary conditions. For
instance, a system which can sort two mixed gasses while keeping both pressure and temper-
ature uniform, should also be seen as a Maxwell’s Demon. I assume that any demon can be
transformed into one of the above when it is equipped with some ‘simple tools’, but this last
notion is too vague to allow for strict definition.
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2.2 Breaking the law: Boltzmann entropy

2.2.1 Boltzmann entropy

The Boltzmann-entropy is explicitly constructed to reproduce the familiar ther-
modynamical fact that entropy almost always increases and almost never de-
creases.2 The basic idea behind it is that although the number of (microscopic)
states a macroscopic system can be in is enormous, most of these states cannot
be observationally distinguished. There is no way we can measure the position
and velocity of every molecule in a gas. Instead, our measurements give us ac-
cess to only a small amount of information about the system: we are, say, able
to measure its temperature and pressure as well as large internal fluctuations of
these variables. Assuming that our measurement resolutions are always finite
and the possible values of all our variables have both upper and lower bounds,
there is a finite number of possible outcomes of any set of simultaneous mea-
surements on a system. These sets of outcomes represent all we can know about
the system, and are said to define macrostates: every possible combination of
measurement results defines one macrostate. Any macrostate will correspond to
a large amount of microstates, namely all those microstates which will yield the
measurement results defining the macrostate. However, not every macrostate
corresponds with as many microstates as every other; in fact, some of them
will correspond with a vastly larger amount than others. Now imagine that the
system is wandering more or less aimlessly3 through the space of all its possible
microstates; we will then expect it to spend much larger amounts of time in
‘big’ macrostates than in ‘small’ macrostates. If it starts in a small macrostate,
chances are that it will evolve towards a big macrostate; and the second law
tells us that if a system starts in a state of low entropy, chances are that it will
evolve towards a state of high entropy. This analogy is the rationale for defining
the Boltzmann-entropy of a microstate as proportional to the logarithm of the
size of the macrostate it belongs to. The system will probably evolve from small
to big macrostates; hence, from low to high entropy.

We will shortly turn to a mathematical definition of the Boltzmann-entropy,
but now two important caveats need to be made. First, that deriving the sta-
tistical second law in the manner outlined above is not simple; in fact, it is one
of the most complicated problems in the foundations of statistical mechanics
and quite a lot of people (though by no means all) believe the effort to be fun-
damentally misguided. Second, that my reference to ‘amounts of microstates’
was misleading: because systems in statistical mechanics are mostly modeled
as having a continuous state space, every macrostate will correspond to a non-
denumerable infinity of microstates. To meaningfully speak about its size, we
need to define a measure µ on the state space, which is not trivial. In the math-
ematical treatment below, we will assume that a measure has been chosen, but
the reader is asked to keep in mind that this is not unproblematic.

Consider a system T with a state space Γ and a normalised measure µ
defined on this state space.4 At time t it has a microstate ~x(t) in Γ. A set of

2Whether it can achieve this aim is a very interesting and surprisingly hard problem.
3A notion which is, of course, unacceptably vague for any serious treatment of the question

whether real systems ‘wander aimlessly’. One way to make it more precise is to introduce the
notion of ergodicity, but a discussion of that concept would carry us too far from this thesis’
main subject.

4This mathematical discussion, as well as part of that of the other definitions of entropy,
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macrostates {M} is defined on Γ in such a way that every microstate belongs
to exactly one macrostate; in other words, the macrostates form a partition of
the state space. If ~x is a microstate, then M(~x) is the macrostate corresponding
to that microstate; more precisely, ∀~x : ∃M(~x) : ~x ∈ M(~x), M(~x) ∈ {M}. The
measure of a macrostate M(~x) ∈ {M} is µ(M(~x)). There is, therefore, a map
~x → M(~x) → µ(M(~x)) from Γ to R+. The Boltzmann entropy is defined as:

SB(~x) = kB ln[µ(M(~x))], (2.1)

where kB is Boltzmann’s constant. Since the logarithm of x is a monotonically
increasing function of x, the Boltzmann entropy of a system increases when it
evolves to a macrostate of greater measure and decreases when it evolves to a
macrostate of lesser measure.

2.2.2 Boltzmann and phenomena

What would a demon have to do if it wanted to lower the Boltzmann entropy of
a system? It would have to make the system evolve to a microstate associated
with a macrostate that is significantly smaller than the macrostate in which the
system started. And it would have to do this without creating a corresponding
increase in the Boltzmann entropy of itself or the rest of the world. Since
Boltzmann entropy is additive (the entropy of two systems together is the sum
of their respective entropies), this implies that the Boltzmann entropy of the
world5 must go down as the demon operates. Thus, the demon must ensure
that the world evolves from a macrostate with a large measure to a macrostate
with a lesser measure, and it has to succeed in doing this with high probability.
I will call the demons that can do this Boltzmann’s Demons.

Now what is the connection between Boltzmann entropy and the phenomena
listed in our phenomenal definition of the demon? It is not immediately clear
that measure in state space has anything to do with heat and work, pressure
differences and temperature differences; but such connections do exist, accord-
ing to those who advocate the use of Boltzmann entropy. As an easy example,
let us look at the pressure difference between two equally big containers, A and
B, which contain a total of N particles of an ideal gas. Furthermore, assume
that both containers are and remain at equal temperatures. The pressure in a
container increases monotonically with the number of particles in the container,
as we can see from the ideal gas law P = N(kBT/V ). In the initial situation
there are N/2 particles in A, and the same amount in B; obviously, they are
then at equal pressure. We now wish to show that creating a pressure differ-
ence (something a Maxwell’s Demon might do) constitutes the lowering of the
system’s Boltzmann entropy (something a Boltzmann’s Demon might do), and
vice versa.

To do this we first need to choose a partition of and a measure on the
state space. To simplify matters, we use a discrete state space Γ = [A,B]N ,
which is the set containing all sequences of A’s and B’s of length N . Assuming
the N particles in the gas to be numbered, an A on the i-th place of such
a sequence means that particle i is in container A, and the meaning of a B
is analogous. Every possible distribution of particles over the two containers

is loosely based on Lavis, 2003 [18].
5Well, that part of it which is in causal contact with the operating demon.
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A and B corresponds to one such sequence, and therefore to one state. The
measure µ(X) of a set X ⊂ Γ is the number of sequences in X divided by 2N .

We still have to identify the macrostates: how do we choose a partition on
this state space? The one observable we are interested in in this example is
pressure, and the pressure in A and B is only dependent on the number of
particles in those containers. Since the total number of particles is constant,
there is only one independent measurable variable: the pressure of A, or, equiv-
alently, the number of particles in A. We therefore define a set of macrostates
{M} = M0,M1, . . . ,MN , where x ∈ Mi if and only if the sequence x contains
exactly i A’s. Elementary combinatorics gives us that µ(Mi) = N !/(i!(N − i)!),
which attains a maximum for i = N/2 and monotonically decreases as the
number of A’s (or B’s) differs more from this equilibrium value. Hence, the
Boltzmann entropy of the system attains its maximum at equal pressures, and
becomes lower the more the pressures diverge. A Maxwell’s Demon that cre-
ates a pressure difference also lowers the Boltzmann entropy; and in the simple
model we are currently considering decreasing the Boltzmann entropy also im-
plies creating a pressure difference. The Boltzmann entropy functions exactly
as we would like it to.

However, this example does not prove that decrease of Boltzmann entropy is
an infallible indicator of phenomenal anti-entropic behaviour, nor that all such
behaviour must be accompanied by decrease of Boltzmann entropy. In order
to supply such a proof, we would need a clear method of cutting up the phase
space of any model of classical mechanics into macrostates, and a demonstration
that moving from a macrostate with a large volume to one with a small volume
always constitutes an anti-entropic phenomenon. I do not think this is a hopeless
project, but it is far from trivial and I will not attempt to carry it out here – nor
would I know how to do it. Furthermore, in subsection 4.2.4, I will formulate a
reservation towards this project. For these reasons, I propose not to adopt the
decrease of Boltzmann entropy as a substitute for the phenomenal definition,
because a lot of work has to be done to show its equivalence or non-equivalence.
Also, and perhaps undeservedly, the Boltzmann entropy has played almost no
role in the Maxwell’s Demon literature. The only discussion of the demon I
know of which uses lowering the Boltzmann entropy of a system as a criterion for
demonhood is Albert 2000, [1]. The phenomenal criterion of section 2.1 has had
a greater popularity, yet the literature has been truly dominated by references
to the Gibbs entropy, to which we now turn. Once again, our question will be
whether it can be molded into a substitute for the phenomenal definition of the
demon.

2.3 Breaking the law: Gibbs entropy

2.3.1 Fine-grained Gibbs entropy

The Gibbsian conception of entropy is radically different from Boltzmann’s con-
ception, both mathematically and conceptually. For Boltzmann, a system is
always in a well-defined state, and every state is associated with a value of the
entropy. Gibbs, however, asks us to think not of a state, but of a distribution.
Mathematically, it is a normalised density function on state space. Conceptu-
ally, there are several distinct ways of interpreting these distributions. One can
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think of them as ensembles, infinite sets of equally prepared systems, where the
density function gives the relative frequency of a state in the ensemble. Al-
ternatively, one can consider them as mere mathematical tricks which allow us
to calculate the behaviour of a single system; however, in this interpretation
an equivalence between ensemble averages and properties of a single system
would have to be proven, which is a complex and only partially solved problem.
A third interpretation of the density functions is as measures of our subjec-
tive knowledge; they represent our uncertainty over the system’s actual state.
These interpretational questions will be ignored for the moment and the density
function will be viewed as a measure of the probability for the system to be in
a certain state without further specifying what is meant with ‘probability’. A
further discussion of this important subject is undertaken in section 2.4.

Consider a system T with a state space Γ and a normalised, possibly time-
dependent, distribution function ρ(~x, t) on Γ, where ~x ∈ Γ is a microstate and
t ∈ R is the time-parameter. Then the fine-grained Gibbs entropy is defined
as:

SFGG(t) = SFGG[ρ(~x, t)] = −kB

∫
Γ

ρ(~x, t) ln{ρ(~x, t)}d~x. (2.2)

This entropy increases as the probability density becomes more ‘spread out’. If
ρ(~x, t) is concentrated in one point, the entropy is −∞, whereas a completely
uniform density distribution over Γ yields a maximum. The fine-grained Gibbs
entropy has some obvious advantages over the Boltzmann entropy, especially the
fact that it does not depend on a partition of the state space into macrostates.
Mathematically, it is much easier to apply, which is certainly one of the reasons
it plays such an important role in statistical physics. On the other hand, it is
conceptually less clear due to the use of density functions. But what really inter-
ests us is the question whether the fine-grained Gibbs entropy is an adequate and
reliable indicator of anti-entropic phenomena. Does lowering the fine-grained
Gibbs entropy always constitute a violation of the phenomenological criteria?

2.3.2 Fine-grained Gibbs and phenomena

It is instructive to look at the time-evolution of the fine-grained Gibbs entropy
of an arbitrary distribution. Let Tt be the operator on Γ which represents the
dynamical evolution of a system over a time t. We assume that this operation
is bijective. Then the time-evolution of ρ(~x, t) is given by:

ρ(~x, t) = ρ(T−t~x, 0). (2.3)

Accordingly, the time-evolution of the fine-grained Gibbs entropy is given by
the following equation:

SFGG(t) = −kB

∫
Γ

ρ(~x, t) ln{ρ(~x, t)}d~x (2.4)

= −kB

∫
Γ

ρ(T−t~x, 0) ln{ρ(T−t~x, 0)}d~x.

We apply a coordinate transformation T−t(~x) = y, which is allowed since the
time-evolution operator is bijective. The formula for the entropy now becomes:

SFGG(t) = −kB

∫
Γ

ρ(~y, 0) ln{ρ(~y, 0)}[∂T−t(~x)
∂~y

]d~y, (2.5)
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where only the determinant [∂T−t(~x)
∂~y ] is potentially time-dependent. But for

a Hamiltonian system – and classical mechanics, to which we limit ourselves,
is Hamiltonian – Liouville’s equation tells us that a volume element is pre-
served under time-evolution; in particular, d~y = dT−t(~x) = d~x, and therefore
[∂T−t(~x)

∂~y ] = 1. In other words, for Hamiltonian systems the fine-grained Gibbs
entropy is constant in time!

Hamiltonian equations of motion conserve volume in state space, with an
initial distribution (such as ρ(~x, t)) behaving like a incompressible fluid. The
distribution can change its shape, but cannot contract or expand: here lies
the reason for the fine-grained entropy’s constancy. Thus, to lower the fine-
grained Gibbs entropy of a classical mechanical system, the demon must itself
be non-Hamiltonian: fine-grained demons must not conserve volume in phase
space. But we want our demons to be models of classical mechanics; hence
Hamiltonian; hence, conserving volume in phase space.

We want to have an entropy function which decreases when physical pro-
cesses occur which violate the phenomenal second law. But the fine-grained
Gibbs entropy is a constant of motion. It does not change with time. This is
very strange, as it means that the evolution from a pressure difference to equal
pressures, or a temperature difference to equal temperatures is not accompanied
by a rise of fine-grained Gibbs entropy. Neither is there a logical implication
from the creation of a pressure or temperature difference to a decrease of the
fine-grained Gibbs entropy. In the light of these facts it may be somewhat
surprising that the fine-grained Gibbs entropy has been perhaps the dominant
definition of entropy used in recent literature on Maxwell’s Demon – prima facie
it is utterly useless. We will see later, in chapter 7, that it has not been applied
in the straightforward way of using it as an indication of certain phenomena.
Instead its main application has been in the Landauer-Bennett tradition where
the fine-grained Gibbs entropy has been seen as ‘distributed’ over two distinct
quantities: heat and information. In this context, the constancy of the entropy
function is the very feature which makes it useful. But it is evident that since
the fine-grained Gibbs entropy itself is not connected to the phenomena we are
interested in, that essential connection has to be made by the distinction be-
tween information and heat. Whether this task can indeed be accomplished will
be one of the central questions in the second part of this thesis.

For our present purposes, however, any further discussion of the fine-grained
Gibbs entropy seems beside the point. Its value does not change, therefore it
cannot act as an indicator of the occurrence of anti-entropic phenomena.

2.3.3 Coarse-grained Gibbs entropy

Because the fine-grained Gibbs entropy remains constant through time, another
function has been thought up within the framework of the Gibbsian view. This is
the coarse-grained Gibbs entropy, which unites certain characteristics of its fine-
grained brother with the central feature of the Boltzmann approach: dividing
state space into a countable (often, but not necessarily, finite) number of ‘grains’,
being observable states. The idea is this. Suppose that the distribution starts
in a small part of state space, concentrated entirely in one or perhaps a few
grains. As time moves on, if the dynamics of the system are of an appropriate
kind (‘mixing’), it will become more and more spread out as different points
in the initial distribution evolve in very different directions. Now suppose we
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are restricted to observing the average distribution over a grain. What we
will see from this coarse-grained perspective is a distribution that started out
concentrated in a few grains evolving to a very evenly spread out distribution
with more or less the same value in all grains. From a fine-grained perspective no
such thing happens: on a finer scale (in the limit perhaps an infinitely fine scale)
the distribution is still not uniform at all. But with our knowledge appropriately
restricted, the distribution seems to reach near-uniformity.

Consider once again a system T with a state space Γ and a normalised,
possibly time-dependent, distribution function ρ(~x, t) on Γ, where ~x ∈ Γ is a
microstate and t ∈ R is the time-parameter. Furthermore, there is a partition
of Γ into denumerably many cells ωi. The coarse-grained distribution function
ρ(i, t) is given by:

ρ(i, t) =

∫
ωi

ρ(~x, t)d~x∫
ωi

d~x
(2.6)

=
1
Vi

∫
ωi

ρ(~x, t)d~x. (2.7)

And the coarse-grained Gibbs entropy is defined as:

SCGG(t) = SCGG[ρ(i, t)] = −kB

∑
i

ρ(i, t)Vi ln{ρ(i, t)}. (2.8)

It can be shown that the coarse-grained entropy is always higher than or
equal to the fine-grained entropy of the same distribution, where equality holds
only if the distribution is uniform over all grains in which it has a non-zero
value.

2.3.4 Coarse-grained Gibbs and phenomena

What can we say about decreases and increases of the coarse-grained Gibbs en-
tropy? First of all, there is a clear limit on any lowering of a distribution’s coarse-
grained entropy, as it can never drop below its fine-grained entropy (which is
constant for Hamiltonian systems, remember). So unless a coarse-grained de-
mon is also a fine-grained demon, it cannot lower the coarse-grained entropy of a
density function which is uniformly distributed over a certain number of grains.
This means that a proper coarse-grained demon (where ‘proper’ indicates that
it cannot lower fine-grained Gibbs entropy) can only work on non-uniform dis-
tributions in state space, which it has to rearrange into a uniform distribution
over a smaller part of state space. It must, in other words, lower the amount of
macroscopically distinguishable states over which the distribution has a non-zero
value. Does this have a connection with anti-entropic behaviour? Answering
that question can only be done after an interpretation of distributions has been
chosen, which we will do in section 2.4. So we postpone a judgement of coarse-
grained Gibbs entropy to subsection 2.4.2. Until and unless it turns out that the
coarse-grained Gibbs entropy is a viable candidate for appearance in a definition
of Maxwell’s Demon – which it will not turn out to be – none of the proposed
measures of entropy, neither the Boltzmannian nor the two Gibbsian definitions
of entropy, is usable “as is” in this definition. Then, we will have to stick with
the phenomenal characterisation of Maxwell’s finite being.
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2.4 Probability, distributions, ensembles

2.4.1 Ensembles and the demon

Our definition of Maxwell’s Demon – given in subsection 2.1.2 – contains the
clause that Maxwell’s Demon has to produce anti-entropic effects ‘with high
probability’. Why would such a clause be necessary? Indeed, how could the no-
tion of probability creep up in a discussion of systems from classical mechanics;
after all, classical mechanics is deterministic and makes no use of probabilities.
The current subsection will try to explain first how the introduction of ensem-
bles of systems generates a need to speak about probability, and then why this
introduction is justified and even necessary.

Maxwell’s Demon will always be confronted with a single physical system in
a single physical state. Unless we wish to give up the basic ontology of classical
mechanics, there is little else we can believe it to come in contact with. Every
system has one and only one state (even though we may not know it), and when
the demon starts working on a system there is one and only one time-evolution
which can take place: the time-evolution which follows from the initial condi-
tions through the laws of classical mechanics. Therefore, the demon will either
succeed or fail, and it is completely determined which of the two will happen.
But suppose that we consider not a system with a single initial condition, but
rather an ensemble of similar systems, all with different initial conditions. This
ensemble could be described by a density function ρ(~x) on the basic system’s
state space, where ρ(~x)d~x is the fraction of systems in the ensemble with an
initial function in the volume element d~x. Now for every system in the ensem-
ble, the demon either fails or succeeds, and failure is completely determined by
the initial conditions of the system. But looking at the ensemble as a whole,
the demon may fail when working on some systems, and succeed when working
on others. It is possible, for instance, that the demon succeeds in its entropy
lowering labour for 80% of the systems, while failing for the remaining 20%. If
the density function ρ(~x) is a reliable measure of the probability that the demon
will come into contact with a system of a certain sort, we can say that the demon
has an 80% chance of success, and a 20% chance of failure. Thus it becomes
meaningful to demand of the demon that it succeeds ‘with high probability’ –
in other words, ‘for a large part of the ensemble’.

But why would we want the demon to be able to operate on an entire en-
semble, and not just on a single system? Let’s start by pointing out that it is
trivial to think up a demon which can create a temperature difference for one
given initial condition of a system. Just program the shutter normally operated
by Maxwell’s temperature demon to open and close on certain predefined times;
for almost every initial condition of the gas6 there is a sequence of openings and
closings which will create the maximum pressure difference. We humans may not
be able to find this sequence, but it nevertheless exists. Such a pre-programmed
machine is certainly not forbidden by our laws of nature. Therefore, the ques-
tion of accepting or not accepting the condition that a demon ought to operate
on an entire ensemble is a very important one; if we decide against acceptance,
demons can exist. We should demand that that neat-fingered being be able to
create a temperature difference not just when confronted with one particular

6The exception are initial conditions which lead to an evolution in which some of the
molecules never hit the shutter.
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initial condition of the system, but for a large class of those conditions. But
once again: why is this demand justified?

First of all, we might continue our argument, the number of systems which
exist in the world, the state of which is very near to any certain specific initial
condition, is probably very small if not zero. But what use has a demon if it
cannot operate successfully for lack of systems with the right initial conditions?
Such a demon could not be put to work; hence, it would not result in the
creation of anti-entropic phenomena. Secondly, there is the problem of outside
interventions. No system is completely isolated, so even if we have found or
created a system with exactly the right initial condition – a remarkable feat
–, interaction with the world outside would soon change this state. But this
would spell disaster for a demon which works only on a very small set of initial
conditions; even a small deviation destroys the possibility for the all too specific
demon to operate. What use a demon if even the thermal movements of the
atoms of the container walls, a kind of influence from the outside world which
can hardly be prevented from changing the paths of the gas’s molecules, will
almost certainly stop it from operating? So what we need is a demon which can
operate on a system not only when the systems has one single initial condition
or a very small set of them; it should be able to operate successfully for a large
class of possible initial condition, and, if at all possible, its operation should be
robust under small external interventions.

This is where ensembles come in. We should interpret the initial ensemble
as characterising the class of initial conditions with which the demon can be
confronted. Imagine the following: a collection of infinitely many systems, where
the distribution function ρ(~x) describes the frequency with which certain states
appear. Now an infinity of demons, all faithful copies of the original demon,
approach the ensemble, one to each system. They spit in their tiny claws, flex
their neat fingers and start opening and closing shutters as needed. Some will
succeed, others will fail: and it will depend on the ensemble what their average
rate of success is and how well they succeed on average. A too-specific demon
will fail almost all of the time, whereas a real Maxwell’s Demon will succeed in
almost every situation. To understand and hopefully quantify this, ensembles
are needed; therefore, using ensembles is not only justified, but very important.
This is reflected in the definition of Maxwell’s Demon by the clause that it has
to succeed with high probability.

2.4.2 Distributions and coarse-grained entropy

Now we return to the question whether we can replace the phenomenal definition
with one which uses a quantitative measure of entropy. We already saw that
the fine-grained Gibbs entropy was not a serious candidate, and the Boltzmann
entropy was too besieged by problems to fulfill the role of definition without
much more work being needed. This still left the coarse-grained Gibbs entropy
as a possibility; to judge it, we need to find out what the distribution ρ(~x)
actually signifies. So: what are these distributions?

One influential line of thought is the idea that the distribution is a mea-
sure of our subjective probabilities that a system is in one state or another.
This does not seem to be a very useful idea in a discussion of demons, as in
this interpretation, the demon would have to change our belief rather than the
physical system – counterintuitive to say the least. Whatever the merits of this
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idea may be, it is so at odds with both our phenomenal definition of entropy
and the general approach taken in this thesis that it is safe to ignore it; for us
phenomenal demonologists it can be of no use.

Another interpretation is that ensembles are measures of the frequency (in
the infinite-time limit) with which a single system visits certain places in state
space – in other words, the frequency with which the system attains certain
states. But we are not interested in a demon which can change frequencies in
the limit of infinite time; we want our demon to change heat into work right
now.

The third major approach is to interpret the distribution as the character-
isation of an ensemble of systems, an infinite, imaginary collection of systems
where the distribution gives us the relative frequency in the ensemble of systems
in a certain state. We have already seen in subsection 2.4.1 that such a ‘space
ensemble’ – as opposed to a ‘time ensemble’, which is a collection of systems in
subsequent states of a single system’s evolution – is a necessary tool in defining
what Maxwell’s Demon actually is. If the Gibbs entropies are to tell us anything
useful, we would make a wise choice in equating the distribution function which
appears in them with the distribution function that describes an ensemble. Of
course, I already rhetorically anticipated this equivalence when I named both
of them ρ(~x).

Given this use of ensembles, we may try and find answers to the questions
we still had concerning the Gibbsian entropy functions. The value of the fine-
grained entropy is completely determined by (and always equal to) its initial
value; and this initial value is something like a measure of the diversity within
the ensemble. The more variety in initial conditions for the systems in the en-
semble, the more spread out in state space ρ(~x, t) and the higher the entropy.
It was already clear that change in the fine-grained entropy could not tell us
anything about the behaviour of a system, since it is nonexistent (whereas a
system can, of course, exhibit some determinable behaviour). In addition, we
can now see that the value of the fine-grained entropy doesn’t tell us anything
about a system either, but merely about the ensemble to which it belongs.7 The
coarse-grained entropy does not say anything about a single system either, as
it too tells us something about the variety exhibited by the ensemble instead of
the features of a single system. Where the fine-grained entropy is a measure of
the overall variety in initial conditions, the coarse-grained entropy indicates the
macroscopic variety, the distribution of systems over different macrostates (in
the Boltzmannian sense). An army of identical coarse-grained demons would
have to take, to lower the entropy, an ensemble of systems with widely differ-
ent macrostates, and shape it into an ensemble where almost all systems are
in a few macrostates. But this is hardly demanded of Maxwell’s Demon. A
creature which takes an ensemble concentrated in a single macrostate, that in
which two containers of gas are at the same temperature, say, and transforms
it into an ensemble of systems with all kinds of macrostates, in many of which
there is a sizeable temperature difference between the two containers, would be
a successful Maxwell’s Demon. But it might not have lowered, but rather raised
the coarse-grained Gibbs entropy. So a connection between the coarse-grained

7I would like to stress that this is a feature of the specific interpretation of the probability
distribution which I am currently using. In other interpretations, the fine-grained Gibbs
entropy can say something about a single system; but those interpretations do not justify the
use of ensembles in the discussion of Maxwell’s Demon.
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Gibbs entropy and the phenomena we are interested in cannot be readily dis-
cerned. This is no proof that such a connection does not exist, but together
with the fact that there has been little interest in it in the Maxwell’s Demon lit-
erature it is my justification for ignoring the coarse-grained Gibbs entropy from
now on. We will adopt, from now on, a phenomenal definition of Maxwell’s
Demon.

I will now try to elucidate what is hopefully the only remaining unclarity in
our definition of Maxwell’s Demon, which is the ‘operating in a cycle’ clause.

2.5 The cyclicity condition

2.5.1 Defining cyclicity

In subsection 2.1.2 I presented a phenomenal definition of Maxwell’s Demon,
which contained a clause about the demon having to operate ‘in a cycle’. It
is easy to show with an example why some such clause is needed. Suppose we
have a system which has an internal source of work, such as a weight raised in
a gravitational field, two volumes of gas at unequal temperatures or a chemical
battery. Obviously, such a system could reliable produce any of the phenomena
mentioned in the phenomenal definition of subsection 2.1.2: by using its internal
source of work it can create a pressure or a temperature difference, or ‘create’
work from heat. But it cannot go on doing this indefinitely. The weight will
reach the ground (or the centre of the earth), the temperature difference will
decrease to zero, or the battery will run out of power. The system is not a valid
demon because it ‘cheats’: it uses a hidden source of available energy to make
it appear as if it creates available energy from useless energy. If we demand
the system under scrutiny to operate in a cycle, we exclude such cheating:
obviously, the height of the weight, the temperature difference between the
gasses or the chemical potential difference in the battery is not the same at the
start of operation as it is at the end. Using an internal source of work which is
not replenished during the process implies that the system operates acyclically.
Therefore, cyclicity is a sufficient condition if we wish to exclude such systems;
imposing cyclicity on the demon ensures that it does not cheat.

But the requirement of cyclicity is in need of some further clarification, as
it can be enforced with different degrees of severity. One possibility would be
to require that at the end of a cycle the system must be in a state which is
exactly identical in every physical detail to the state from which it started.
This, however, would be quite unreasonable. There is most certainly no system
in the world, and there will never be one, which operates in a cycle in this
strict fashion. Using the strictest possible cyclicity condition, Maxwell’s Demon
will not exist in reality, but trivially so. The strict condition is too strong;
we only have to forbid relevant changes, and can allow the demon to undergo
non-relevant changes.

But what are the relevant changes? These, a first guess might be, include
changes in two groups of properties: mechanical variables (such as the posi-
tions and speeds of macroscopic objects and the volumes of containers) and
thermodynamical variables (such as pressures, temperatures and chemical po-
tentials, which are only well-defined for macroscopic collections of particles).
But this characterisation of relevant changes is at once too strict and not strict
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enough. It is too strict in the sense that some mechanical variables should not
be deemed relevant; for instance, changing the position of a block of concrete
without altering its temperature, kinetic or potential energy, or any other of its
original properties which might be used to do work, hardly seems ‘cheating’.
Yet it may not be strict enough because some microscopic alterations – which
are neither mechanical nor thermodynamical changes – may stop the demon
from functioning after one or a few cycles because they somehow interfere with
its operation. Wouldn’t this show that the demon is using a hidden source of
energy, is somehow ‘cheating’?

Therefore, two sub-conditions which we group under the name of cyclicity
seem to be the following: the candidate-demon may not use reserves of read-
ily usable energy stored within it (such as raised weights or batteries); and it
may not undergo any changes that stop it from functioning in the future. When
evaluating a candidate-demon we should not enforce cyclicity in the strict sense,
but wonder whether the deviations from strict cyclicity – which are bound to
take place – are irrelevant, or relevant. And a deviation is relevant if it uses a
reserve of ‘readily available’ energy or endangers the demon’s continued oper-
ation. These two kinds of deviation can be subsumed under a single heading.
Confining ourselves to finite beings, cheating implies a breakdown in the future
– at some point the weight will have reached its lowest position, the battery has
run out of charge, etcetera. So the relevant condition to impose on the demon
is that its operation should not cause changes which endanger its continued
operation. Plugging these results into our phenomenal definition, we obtain:

Maxwell’s Demon, clarified phenomenal definition: A sufficient condi-
tion for a system to be a successful Maxwell’s Demon is that it can pro-
duce, with high probability and without endangering its own continued
operation, at least one of the following phenomena without making any
other changes in the environment:

• Two systems of the same temperature evolve to one system at a
significantly higher and one at a significantly lower temperature.

• A significant amount of heat is converted completely into work.

• Two vessels containing the same gas at the same temperature and
pressure evolve to one vessel with a significantly higher and one vessel
with a significantly lower pressure, while the temperatures remains
equal.

2.5.2 Is continued operation too restrictive?

In his book Time and Chance ([1], p. 109-110, footnote 12) David Albert ques-
tions the need for a cyclicity condition. He points out that the second law is
broken when the total (Boltzmann) entropy of the system is lowered, and that
whether its subsystems do or do not return to the macrostates they started in
is irrelevant. In his usual flamboyant style, he writes:

The first thing to say is that macroconditions of isolated systems
which are overwhelmingly likely to lead to evolutions in the course
of which the entropy of the system in question decreases are abso-
lutely and unambiguously and straightforwardly in violation of the
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second law of thermodynamics – completely irrespective of whether
any particular component of that systems happens to return to the
macrocondition it starts out in or not – period, end of story.

But the story has not yet come to a close – not even for Albert, but certainly
not for us. I suggested in the last subsection that the reason to enforce cyclicity
was to exclude ‘cheating’ demons. Albert is in the happy position that he needs
no such clause: false demons which use a battery or a raised weight in order to
create temperature difference – think of a refrigerator – may be creating anti-
entropic phenomena, but they are not lowering the Boltzmann entropy. (If, as
Albert assumes, Boltzmann entropy turns out to be a good measure of entropic
behaviour.) Cheating demons are not possible if the criterion used to judge
them is the decrease of a reliable and quantitative measure of entropy. But
we, who are not convinced that the Boltzmann entropy is as yet usable as such
a measure, we, who rely on a phenomenal criterion, do need something along
the lines of a cyclicity condition to exclude cheaters. The mere occurrence of
an anti-entropic phenomenon can never prove that the demon is successful; if
another phenomenon which ‘raises the entropy’ occurs at the same time, the
demon might actually fail.

An alternative for the cyclicity condition is to enumerate all anti-entropic
phenomena and define a demon as a system which can, with high probability,
ensure that at least one phenomenon from the list takes place while at the same
time none of the listed phenomena takes places in reverse. Creating a tem-
perature difference is good, but not by exploiting an already existent pressure
difference. Unfortunately, this alternative suffers from a fatal weakness: we do
not have an exhaustive list of all anti-entropic phenomena, and it is not likely
that we can construct one without begging important questions. For what cri-
terion will we use to judge admittance on the list? It is certain that “Its reverse
can be used to create phenomena on this list” can not be used, as it would
indiscriminately disqualify all demons as cheaters. Perhaps a good criterion can
be devised, but currently I am not able to imagine one.

What is true for cyclicity is also true for the clause that the demon must be
able to operate continuously. As far as I can see there is no deep reason to be
dissatisfied with a demon which would stop operating after a while, as long as
we were sure it was not a ‘cheating’ demon. But we have no reliable criterion for
cheating which is weaker than the requirement of continuous operation. This is
the only reason I insist on using the requirement of continuous operation: not
because it is intrinsically necessary for demons to keep going, but because it is
the only way I have to exclude cheating demons. As a requirement it may be
too strong, it may even be more vague than is desirable, but it is the best I have.
It is a definite weakness in my account, and the price I have to pay for using a
phenomenal definition. (For had I used a mathematical definition of entropy, I
could just have demanded that the demon lower the total entropy of the world
– not a problem in sight.)

This concludes our sketching of the portrait of the demon. None of the
available measures of entropy was seen to be able to replace the phenomena in
a definition of Maxwell’s Demon. In addition, we highlighted and explained the
importance of cyclicity – not to be adhered to in the strictest sense – and the
use of ensembles, which introduces the notion of probability. Now that we have
come to know it, we can turn to the necessity or contingency of the nonexistence
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of this neat-fingered being. In chapter 3 we will look at an important argument
for necessity; in chapter 4 I will present my case for the contingency of the
demon’s nonexistence.
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Chapter 3

An argument for necessity

In this chapter, one simple but powerful and initially convincing argument for
the necessity of the Second Law is presented. This argument tries to show that
because the laws of classical mechanics are Hamiltonian, no successful demons
– as defined in subsection 2.5.1 – can exist. I believe it to capture one of the
main ideas of the Maxwell’s Demon literature, an idea which forms the only
half-articulated core of many more complex and specific arguments made by
exorcists; it should be stressed, however, that I have nowhere found it in exactly
the form presented here. I will therefore not attribute it to anyone. Chapter 7
will discuss arguments taken from the literature which I believe to be very close
to the one presented here.

3.1 Heat and work in statistical physics

Let us first repeat the definition of Maxwell’s Demon which we chose in the
preceding chapter:

Maxwell’s Demon, clarified phenomenal definition: A sufficient condi-
tion for a system to be a successful Maxwell’s Demon is that it can pro-
duce, with high probability and without endangering its own continued
operation, at least one of the following phenomena without making any
other changes in the environment:

• Two systems of the same temperature evolve to one system at a
significantly higher and one at a significantly lower temperature.

• A significant amount of heat is converted completely into work.
• Two vessels containing the same gas at the same temperature and

pressure evolve to one vessel with a significantly higher and one vessel
with a significantly lower pressure, while the temperatures remains
equal.

In order to apply this definition to models of classical mechanics wherein a
gas is presented by a multitude of tiny particles, we need to establish a con-
nection between this atomistic description and at least one of the phenomena
which occur in the definition. That is, we must make clear what ‘tempera-
ture’, ‘heat’ and ‘work’ mean in the context of classical mechanical models of
statistical physical systems.
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3.1.1 Temperature

The temperature of a gas, object or other collection of particles is related to the
average kinetic energy of its constituents. For a gas in n dimensions (n = 3 in
most realistic cases) which consists of identical particles of mass m, the correct
formula is:

Ekin =
n

2
kBT, (3.1)

with, of course, the kinetic energy of a particle being

Ekin =
1
2
m~v2. (3.2)

Very simple algebra yields:

T =
1

nkB
m~v2. (3.3)

Actually, this definition is not quite correct, as it implies that a system in which
all the particles are at rest with respect to each other, but which moves very fast
as a whole, has a high temperature. This is not the case: if all particles are at
rest with respect to each other, the object’s temperature is zero. Macroscopic
movement does not count for temperature. The remedy for this problem is to
stipulate that all ~v’s are to be measured in the rest frame of the gas’s centre of
mass.

This is not a simple procedure which enables us to compute the temperature
of any classical mechanical system. As a counterexample, imagine a system
which consists of two equally heavy collections of particles which are both at
zero temperature, but are moving away from each other. In the rest frame
of this system’s centre of mass, all particles have a kinetic energy; hence, the
temperature would be positive according to our formula. In order to make a
correct calculation, we would have to look at the subsystems individually, and
observe them in their respective rest frames. But how does one carve up a
system? If we do not carve it up into small enough pieces, compound systems
such as the two balls are unfairly treated as one. But if we carve systems up in
pieces which are too small, say individual molecules, our procedure will always
yield a zero temperature. There is no easy answer to this problem; we will return
to it later. For now, we’ll confine ourselves to volumes of gas which we postulate
can be seen as one single system for purposes of computing their temperature
from the movement of their constituent particles. In effect, we assume that
there is a clearly defined macro-realm (the gas, the container), and a clearly
defined micro-realm (the individual molecules).

3.1.2 Heat and work

Energy occurs in two forms in thermodynamics, as heat and as work. As a
first approximation to the truth, we can say that heat is energy in the form
of molecular (or atomic) movement, whereas work is energy in a macroscopic
form, such as the position of a weight in a gravitational field, or the velocity of
a macroscopic body. Thus, the kinetic energy of a gas’s molecules is heat, and
the potential energy of a weight somehow attached to it is work.

Our definition of Maxwell’s Demon says that a system is a demon if it can
change heat completely into work. The ‘completely’ clause is meant to exclude
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normal physical systems such as steam engines, which use the heat of hot water
to create work. In order to do this, however, they must have access to a reservoir
of cold water (or some other cold substance). By transporting heat from a hot
object to a cold object, we can change part, but only part, of it into work.
But it is not normally possible to change heat into work without making use of
some temperature difference; without, that is, transporting part of the heat to
a cold object. A being that can do this, that can change heat into work without
sending part of it to a colder object, deserves to be called a Maxwell’s Demon.
It could make ships run on the heat of the ocean, no fuel needed.

So, something is a Maxwell’s Demon if it can change microscopic kinetic
energy into some macroscopic form of energy. Unfortunately, this definition is
not as clear a one as we could hope for. Once again we are faced with a gap
between microscopic and macroscopic that we have to draw ourselves – classical
mechanics will not draw it for us. Which degrees of freedom are microscopic?
Which are macroscopic? If ten billiard balls simultaneously and from the same
direction hit a larger ball, transferring all their kinetic energy, have we trans-
ferred energy from a microscopic to macroscopic level? We are haunted by a
problem identical to that which haunted us in our classical mechanical defini-
tion of temperature. We will adopt the same ‘solution’: “for now, we’ll confine
ourselves to volumes of gas which we postulate can be seen as one single sys-
tem for purposes of computing their temperature from the movement of their
constituent particles. In effect, we assume that there is a clearly defined macro-
realm (the gas, the container), and a clearly defined micro-realm (the individual
molecules).” Under these assumptions, heat and work can easily be defined.

3.2 Spinning the argument

Now we move to the argument for the second law’s necessity which is to be
the core of this chapter. We are working under the assumption – introduced in
the previous section – that there are clearly separated microscopic degrees of
freedom and macroscopic degrees of freedom. Heat is assumed to correspond to
energy divided among the many microscopic degrees of freedom, work to energy
contained in the macroscopic degrees of freedom.

The argument, which I will call the ‘state space contraction argument’, or
SSC for short, proceeds in two steps. In the first, it is proved that completely
changing heat into work corresponds to a contraction of the ensemble in state
space. In the second, it is proved that a contraction of the ensemble in state
space is impossible for a system of classical thermodynamics. If successful,
the argument shows that at least one of the phenomena from our phenomenal
definition cannot possible occur, given only the truth of classical mechanics.
Since we claimed that temperature and pressure differences can easily be used
to change heat into work, a proof that the latter effect cannot take place will
force us to agree that the others cannot either. Hence, for as far as we’ve
specified it, Maxwell’s Demon is shown to be impossible if SSC succeeds. It
would show that the second law is not contingent on classical mechanics, but
necessitated by it. Let us turn to the argument.
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3.2.1 Stage one: why contraction is necessary

Changing heat into work means transferring energy from microscopic to macro-
scopic degrees of freedom. Presumably, there are many more microscopic degrees
of freedom than macroscopic ones. Suppose that we wish to lift a weight using
the kinetic energy of a gas with N + 1 particles. The number of macroscopic
degrees of freedom is 1, that of microscopic ones 3(N + 1).1 This means that
if we have a positive amount of energy E0 to divide among the macroscopic
degrees of freedom and zero to divide among the microscopic ones, there is only
one possible state our system can be in. The weight is in the position in which
it has an amount E0 of potential energy, and all of the molecules lie still. But
if we have a positive amount of energy E0 to divide among the microscopic
degrees of freedom and zero to divide among the macroscopic ones, the possible
states of the system form an entire (3N + 2)-dimensional plane in state space.
Thus a much larger part of state space correspond with the second distribution
of energy than with the first one.

Assume an (N + 1)-particle gas with particles of mass m has a total kinetic
energy (heat) Eh. What volume in state space do the possible states which
exhibit this characteristic have?2 For ease of calculation, we will assume the
particles have a velocity in only one direction.3 Let the particles be numbered
1 to N + 1, and their momenta p1 = mv1 to pN+1 = mvN+1. Then we have

Eh =
N+1∑
i=1

1
2
mv2

i (3.4)

=
N+1∑
i=1

1
2m

p2
i . (3.5)

This is exactly the formula for the positive quadrant of the surface of an N +1-
dimensional ball in position-momentum space with radius

r =
√

2mEh. (3.6)

The surface area of such a quadrant is

A = cE
N/2
h , (3.7)

where c is a constant not relevant for our purposes. What is relevant is the
insight that the volume in state space of all states with energy Eh scales as
E

N/2)
h – in other words, the volume in state space greatly increases as the kinetic

energy distributed among the molecules increases. In sharp contradistinction,
the number of states accessible to the weight if it is to have a potential energy of
Ew is always one; there is one height and one height only at which the weight will
have a particular potential energy. The total volume in state space accessible
to our toy system – a container of ideal gas and a single weight we wish to

1There are an additional 3N degrees of freedom for the positions of all the N particles of
the gas, but these do not bear any energy. We therefore neglect them.

2We use a velocity-position space with the standard measure on Cartesian space.
3This does not invalidate our conclusions. Using x dimensions ensures that in formula 3.7

the energy scales with E
x(N+1)
h instead of E

(N+1)
h . My subsequent argument works for any

x ∈ N.
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lift – is therefore proportional only to E
N/2
h , where Eh is the amount of energy

distributed among the molecules; in other words, the amount of heat present in
the system. It is thus easily seen that changing heat into work decreases the
number of states the system can be in.

For the general case with N +1 molecules of gas and M +1 weights, the total
volume in state space will scale with E

N/2
h EM

w .4 In addition, the total energy
is fixed: E = Eh + Ew. With these two constraints, we can calculate at which
value of Eh the volume in state space accessible to the system is greatest. The
volume is V = cE

N/2
h EM

w , with some constant c, which we can rewrite as

V = cE
N/2
h (E − Eh)M . (3.8)

Differentiating this equality to Eh, we obtain

dV

dEh
= cE

([N/2]−1)
h (E − Eh)(M−1)[−MEh +

N

2
(E − Eh)], (3.9)

which leads to the following result for the maximum of V , which is also the only
local maximum:

Eh =
N

N + 2M
E. (3.10)

If N + 1, the number of molecules, is much larger than M + 1, the number
of weights, – if, in other words, there are much more microscopic degrees of
freedom than macroscopic degrees of freedom – then N

N+2M is almost unity. The
maximum volume in state space is reached for an energy distribution among the
gas and the weights in which almost all energy is possessed by the gas; and the
volume decreases monotonically as the energy distribution is removed farther
and farther from this maximum. This proves that no significant transfer of
energy from microscopic to macroscopic degrees of freedom can ever take place
without (greatly) decreasing the amount of accessible states. At least, no such
transfer can take place if M � N , a supposition which we will scrutinise in
section 3.3.1.

3.2.2 Stage two: why contraction is impossible

We will now show why contraction of an ensemble in state space is impossible.
Actually, this proof is very simple, and we will need to spend more time showing
why it is relevant than proving it. We recall from 2.3.2 our exposition of the con-
stancy in time of the fine-grained Gibbs entropy. The most important ingredient
of this discussion was the fact that classical mechanics is Hamiltonian, and that
Liouville’s theorem shows that in a Hamiltonian system, volumes in state space
cannot contract or expand during time evolution. Recalling this is giving the
proof we need. Classical mechanics is Hamiltonian; hence, an ensemble in state
space cannot possible contract. Hence, by the results of the previous section,
the kinetic energy of a gas cannot ever be used to raise a weight. Such a process
would correspond to an enormous decrease of the ensemble’s volume in state

4It can be easily seen that the volume in state space accessible to a system of M +1 weights
in a uniform gravitational field scales with EM : the accessible states form an M -dimensional
plane which is stretched by a factor a in every direction when the energy is increased with a
factor a.
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space, and this is absolutely forbidden by classical mechanics itself. Therefore,
the validity of the second law is necessitated by classical mechanics. QED.

Well, perhaps not quite. First of all, we should notice that our argument
does not prove that it is impossible that a system starting in a state with much
molecular kinetic energy evolves towards a state with less molecular kinetic
energy and more energy stored in the potential energy of the weight; in other
words, we have not proven – and could not prove, since it is false – that heat
cannot be changed into work. The fact that classical mechanics is Hamiltonian
does not, as such, forbid the evolution from any particular initial state to any
particular final state. Such an evolution is not accompanied by a change of
volume in state space, since at any moment there is merely one state. Volumes,
Hamiltonianism and SSC only come into the picture when we start looking at
ensembles.

We can return to subsection 2.4.1 for arguments for the necessity of using
ensembles. The demon is supposed to operate on a large class of systems, that
is, on all the members of a big ensemble. If we present to it a container full of
gas at a certain temperature, we want it to be able to do its job, and succeed
with a high probability. We do not want the demon to fail when presented
with almost any initial configuration; we want it to do its job reliably. Of the
entire ensemble, it must take the great majority of systems to a final state
where work has been done using only the gas’s heat. This criterium for success
means that the combined system of the demon and the gas must evolve from
an initial ensemble where the gas is spread out over a large part of state space
and the demon is in its (single) initial state, to a final ensemble where the gas is
spread out over a significantly smaller part of state space. And because classical
mechanics is Hamiltonian, this is impossible – unless the demon can end up in
many different states, unless, that is, its ensemble expands in state space to
make up for the decrease of the gas’s. The demon can only work if it has the
possibility to end up in many different states when presented with different
initial states of the gas.

This is where the cyclicity condition of section 2.5 enters. We settled there
for the demand that the demon do not endanger its own continued operation;
that, in other words, its final state be, with high probability, a state from which
it can still function. This demand now translates into the following requirement:
the great majority of the states the demon can end up in, must themselves be
possible initial states from which the demon can work when presented with a
gas. Unfortunately, this is impossible. For it would mean that in the joint
ensemble of all the possible initial demon states and all the possible initial gas
states, the great majority of the states would end up, after evolution, in a
much smaller ensemble, namely that of the possible final demon states – more
or less identical in size to that of the possible initial demon sates – combined
with that of final gas states – much fewer than possible initial gas states, if the
demon is to be successful. Algebraically, where Di is the volume in state space
of the demon’s initial ensemble and the other terms should be clear, this can
be expressed as follows: Di = Df , Gi � Gf , and therefore DiGi � DfGf .
But this is impossible, since Liouville’s theorem tells us that DiGi = DfGf .
This algebraic equation should not be taken too literally, since in general the
final ensemble can not be written as a product of a Demon-ensemble and a
Gas-ensemble – there will be correlations between the state of the gas and that
of the demon. Having a product ensemble as final ensemble is, however, the
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best possible outcome for the demon; any other form of the final ensemble only
increases the diversity of its final states. By reductio ad absurdum, then, we
have shown that if the demon can end up in many possible states, the great
majority of these cannot be good initial states for it to continue operating. So,
if the demon is to be successful, it endangers its own continued operation. But
to be successful, the demon may not endanger its own continued operation.
Contradiction. Conclusion: the demon is not successful.

Please note that we nowhere assumed that the demon is ‘in an ensemble’, or
that it must ‘confront an ensemble of systems’. The demon is a single system
in a single state, working on a gas in a single state. But what we did show is
that if the demon can operate both reliably and ‘cyclicly’, then the ensembles
we constructed must behave in a way which they cannot possibly behave. The
ensembles are not to be interpreted realistically, they are a way of presenting
our requirements mathematically and deriving a contradiction from them.

One may worry about the asymmetry of the present argument. If it shows
that Maxwell’s Demon cannot lower the entropy, should it not also show that
it cannot raise the entropy? The answer to this question is negative: taking
the states of a small part of state space via Hamiltonian evolution to all the
states of a larger part is, of course, impossible. But taking all the state of a
small part of state space via Hamiltonian evolution to a subset of a larger part
of state space is quite feasible – and it is enough. The State Space Contraction
argument is asymmetric in exactly the same way as an argument showing that
you cannot put a bucketful of water into a teacup. You can put a teacupful of
water into a bucket; it just won’t fill it up.

This completes SSC. As far as I am able to tell, the argument is sound.
It makes no illegal use of the cyclicity condition, and it does not use illicit
ensembles. If its presuppositions can stand the test of criticism, it shows that
the second law is necessitated by classical mechanics.

I will, of course, argue that they cannot.

3.3 Counterarguments

In this section, two counterarguments to SSC – the State Space Contraction
argument – will be presented. The first calls into question the assumption that
there must always be more microscopic than macroscopic degrees of freedom.
It is developed in subsection 3.3.1, and I claim it defeats SSC. Indeed, because
no physical differences between microscopic and macroscopic degrees of freedom
seem to follow from classical mechanics, it is suggested that it is impossible to
derive the second law from classical mechanics. The second counterargument
calls into question the assumption that the dichotomy between microscopic and
macroscopic degrees of freedom is justified and illuminating in the present dis-
cussion. This counterargument is introduced in subsection 3.3.2, but discussed
in the next chapter, where it will be elaborated in an attempt to paint a lucid
picture of the second law and its relations with classical mechanics, Hamiltoni-
anism and the constitution of matter.
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3.3.1 Macroscopic multiplicity, microscopic sensitivity

We assumed in subsection 3.2.1 that the number of microscopic degrees of free-
dom is much greater than that of macroscopic degrees of freedom. This as-
sumption was absolutely crucial, since only by setting M � N in equation 3.10
could we conclude that any significant transformation of heat into work would
be accompanied by a decrease of the ensemble’s volume in state space. And
only thus were we able to infer that Maxwell’s Demon would need to break
Liouville’s theorem, which is of course impossible. This assumption has been
called into question by David Albert ([1], p. 107 and further), whom we already
met in subsection 2.5.2. Why couldn’t we have a system with many macroscopic
degrees of freedom? For instance, why can’t we have a system which consists
of a container with N particles of gas and much more than 3N heavy, rigid
weights suspended in a gravitational field? Because there are less microscopic
than macroscopic degrees of freedom, with a sufficiently ingenious mechanism
we might be able to convert a very sizable portion of the gas’s kinetic energy
into potential energy. This mechanism should ensure that different initial states
of the gas will result in different final states of the weights – that’s all. Let
us call it the Too Many Weights Machine, abbreviated TMWM. Against this
contraption, SSC is powerless.

There can be several responses to this counterargument. A first, very bad,
one is pointing out that as a matter of fact there are much more molecules in
even a modest amount of gas than there are weights available to us. This is
true, but indeed as a matter of fact – in other words, contingently. Classical
mechanics does not tell us anything about the number of weights in the world.
This response is irrelevant, as is any response like it.

A second line of attacking the current counterargument starts by noticing
that the TMWM has a very special property, namely microscopic sensitivity.
Albert defines it as follows:

And we have learned something interesting (by the way) about what
sorts of physical things those demons are going to need to be. They
are going to need to be microscopically sensitive: they are going to
need to be capable of tailoring their macroscopic behaviors to the
particular microcondition of the system they happen to be operating
on; they are going to need to be the sorts of systems (that is) whose
final macrocondition is not predictable, and not even approximately
predictable, from the initial macrocondition of the larger isolated
system of which it forms a part.5

We can go on to ask whether there might not be some reason or another
why microscopically sensitive devices cannot exist. Unfortunately for this line of
thought, it is ridiculously easy to think up a model of classical mechanics which
is microscopically sensitive. Imagine, for instance, a container, the vertical walls
of which consist of many (much, much more than N) very thin rods of metal
which extend to such a height that they have to be considered macroscopic
objects. Since they are standing on their ends, they are in a highly unstable
equilibrium position, and whenever a gas molecule hits one of the rods, it absorbs
(part of) the molecule’s kinetic energy and falls over. As it reaches the ground,

5Albert 2000, [1], p. 108-109.
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it hits a ball to which it transfers its energy, and the ball merrily rolls away into
infinity over a frictionless plane. Obviously, this device’s final macroscopic state
is highly dependent on the initial microcondition of the gas. Still, we may be on
to something here, and there are some tricky questions left to ask. Maybe all
microscopically sensitive devices must break the ‘continued operation’ clause?
It seems, at first glance, that the container with the walls of rods breaks this
demonic requirement – after all, its walls disintegrate as the rods fall down –, and
perhaps all microscopically sensitive devices must. Is there a reason to suspect
that the TMWM cannot continue to operate after changing heat into work one
or several times successfully? The only difference between the TMWM after
several successful runs and the TMWM before is that there is a larger amount
of energy divided amongst its weights. Reconsidering formula 3.10:

Eh =
N

N + 2M
E, (3.11)

we see that if
Eweights >

2M

N
Egas, (3.12)

we are already past the maximum and we would actually decrease the ensemble’s
volume in state space by converting heat into work.6 If the ratio of the weights’
energy to that of the gas exceeds the ratio of twice the number of macroscopic
to the number of microscopic degrees of freedom, the TMWM stops working.
There is, however, an easy remedy for this problem: increase the number of
weights. By making it arbitrarily large, we can go on changing heat into work
arbitrarily long; and if there are many more macroscopic weights than micro-
scopic particles in our universe, the clause of continued operation is only broken
in an uninteresting way (namely, when there is no more heat).

It is time to make an important observation. We have divided the world into
microscopic and macroscopic degrees of freedom, but we have not introduced
any physical differences between the two except for size. Furthermore, classical
mechanics is scale invariant: ‘size does not matter’. Relative sizes might mat-
ter, but in constructing our demons we have not yet seen that they do, and I
know of no demonstration. The important observation is that if there are no
physical differences between microscopic and macroscopic degrees of freedom,
then we cannot possibly derive an asymmetric relation between them. If mi-
croscopic and macroscopic degrees of freedom are only different in physically
uninteresting ways, there cannot be a second law. So if there is a second law, a
necessary ingredient for deriving it is some law of nature or some fact about the
world which establishes an asymmetry between microscopic and macroscopic
degrees of freedom. Classical mechanics does not seem to supply us with such
an asymmetry. Therefore, almost as a matter of logic, the second law cannot
be derived from classical mechanics.

Perhaps all microscopically sensitive devices in our universe will be defeated
because – as a merely contingent fact, given only classical mechanics – all macro-
scopic objects consist of many microscopic objects. There are always more
microscopic degrees of freedom in our world than macroscopic ones, because
our large objects are made of small atoms; and the interaction between the

6These formulae are for a 1 dimensional gas, but changing N to nN makes them valid for
an n dimensional gas.
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molecules of the gas and the atoms of the Too Many Weights Machine may
defeat the contraption. This line of thought might be combined with the ex-
orcisms of Chapters 5 and 6 to argue that the TMWM cannot exist in our
world. But presently, we seem to have defeated the State Space Contraction
argument. The fact that classical mechanics is Hamiltonian can never prove the
second law, because it does not establish an asymmetry between microscopic
and macroscopic degrees of freedom.

3.3.2 Dissolving the microscopic/macroscopic dichotomy

In the previous subsection, SSC was defeated from within the conceptual scheme
it had established, a conceptual scheme where the world was divided into the
microscopic and the macroscopic, each with its own distinct phenomena. The
microscopic world stores its energy as heat, the macroscopic world as work. But
we already saw in section 3.1 that this distinction is not unproblematic. Firstly,
there are no clear cut boundaries between the microscopic and the macroscopic
world (at least not in classical mechanics in general, though these boundaries
may be easily drawn in our particular world). Secondly – something upon
which we did not touch before – there is no a priori reason to assume that
the world falls apart into two realms instead of three, four, five, seventy-two,
or infinitely many. Neither does classical mechanics furnish us with such a
reason. Recognising and exploiting especially this latter reason for rejecting
the presuppositions of SSC as begging the question, will lead us to a simple
argument which shows that not only is the second law contingent given only
classical mechanics, but we do not even need microscopically sensitivity devices
in order to change heat into work. This argument will be presented in the next
chapter.
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Chapter 4

Matters of scale and
contingency

We have seen in Chapter 3 that the State Space Contraction argument fails
to establish a necessary connection between the second law and classical me-
chanics. The reason that it failed to do so is that classical mechanics as such
introduces no relevant asymmetry between microscopic and macroscopic de-
grees of freedom. We also deduced that every Maxwell’s Demon ought to be
microscopically sensitive, in the sense that its final macrostate must depend
very sensitively on the gas’s initial microstate; and that we need an ungodly
amount of weights or other macroscopic objects in order to drain even a modest
amount of gas of its kinetic energy, because the number of macroscopic degrees
of freedom must exceed that of the microscopic ones. Together, these conclu-
sions suggest that the reason that the second law seems to hold in such a strong
sense in our universe has something to do with the fact that we cannot build
macroscopic objects which do not consist of microscopic ones; perhaps with the
fact that all interactions between macroscopic and microscopic bodies in our
world are through the interaction between those microscopic bodies which are
free and those which are the constituent parts of the macroscopic ones. Such
suggestions will be looked at in Part II of this thesis.

In this chapter, we will take a closer look at matters of scale, and I will argue
that microscopic sensitivity is not needed to defeat SSC. Maxwell’s Demon could
use zillions of weights, but does not have to do so. I will demonstrate once more
that the second law is not necessitated by classical mechanics, but in addition I
hope to indicate the kind of facts (or laws?) that the second law is contingent
on in our universe.

First, in section 4.1, we will momentarily leave the perspective we’ve built
so labouriously in the previous chapters, and look at four machines which will
lead us to important insights concerning the nature of the second law. A model
of classical mechanics is constructed which is a successful Maxwell’s Demon but
is not microscopically sensitive and has only very few ‘macroscopic’ degrees of
freedom. As a prelude to this construction, three other machines will pass in
review: Smoluchowski’s famous one-way valve, which fails to break the second
law because it is ‘doomed by fluctuations’; a macroscopic equivalent of the one-
way valve which does work – although it does not break the second law in a strict
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sense; and a macroscopic equivalent of the one-way valve which does not work.
Together, these four models set the stage for a discussion in section 4.2 of the
role different scales play in thermal physics, and how the validity of the second
law is tied up with considerations concerning these scales. The last section, 4.3
concludes Part I of the thesis by affirming the contingency of the second law,
and summarising the kinds of fact it is contingent on.

4.1 Four models of the pressure demon

4.1.1 Smoluchowski’s one-way valve

Now we embark on an exposition of several models – easy to visualise and ‘get
a feel for’ – which will give us insight in the subtleties of the second law. For
the moment, we will leave the world of volumes in state space behind, and focus
on thermodynamical quantities such as temperature, pressure and heat as they
appear in simple systems of classical mechanics. In section 4.2, we will project
our conclusions back into the language of state spaces, Hamiltonianism, and so
forth.

We start by discussing one of the most famous models from the literature
on Maxwell’s Demon, Smoluchowski’s one-way valve, and his refutation of this
design. Smoluchowski 1912 [30], one of the early classics of the exorcist liter-
ature, contains a very short description of perhaps the simplest example of a
mechanical demon: a one-way valve. Take two containers of gas at equal tem-
peratures with a little hole between them, and instead of a shutter, put a valve
on it which opens only one way, say into B. The easiest way to visualise the
valve is as a little trapdoor held closed by a very weak spring. Every time a
molecule in A hits the trapdoor, it opens (we assume the spring is very weak)
and lets the molecule pass. But whenever a molecule from B hits the valve, it
remains shut, because it is pressed against the container wall. In this way, a
pressure difference between A and B will build up without any change in the
environment or the demon taking place, which qualifies the valve as a Maxwell’s
Demon.

Smoluchowski, however, does not accept this prima facie correct reasoning.
He points out that the valve will be at the same temperature as the gas. That
means it will be subject to thermal fluctuations: its kinetic energy will randomly
change by amount of – on average – 1

2kT . There are two possible scenario’s,
depending on the strength of the spring which holds the trapdoor closed. Either
the spring is so strong that the thermal fluctuations can hardly get the valve
to move; but in that case, no molecules will be able to pass either. (After all,
the kinetic energy of the molecules in any direction is also of the order kT .) Or
the spring is so weak that molecules from A can push aside the trap door and
enter B, but then the door will be a constant victim of thermal fluctuations
which make it jump one way, then the other, and stop it from functioning as
a pressure demon. Thus, the fact that the trapdoor has the same temperature
as the gas, and therefore the same average kinetic energy fluctuations, defeats
Smoluchowski’s design.

One may wonder whether the trapdoor would not still function as a demon,
if somewhat less efficient than originally envisaged. It is open part of the time,
in which case it does nothing; but it is closed another part of the time, in which
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case it does work. Therefore, it would create at least somewhat of a pressure
gradient, although not as efficiently as we could have hoped. Bennett 1987 [3]
attempts to remove this objection. Indeed the trapdoor will stop some molecules
in B from entering A (namely when it is closed). But this is compensated for
by the fact that every time it bangs shut, any molecule in B which is in its path
will actively be pushed into A, and molecules just passing from A to B may
be bounced back. An analytical solution of this problem is quite involved, but
computer simulations with a similar valve have confirmed Bennet’s result; see
Skordos & Zurek 1992 [29]. It appears that Smoluchowski’s victory over this
particular demon is final – I know of no authors who wish to contest it.

4.1.2 Macroscopic gas: a demon that works

I suggested in subsection 1.3.2 that the demon was used by Maxwell to show that
the validity of the second law hinges on the fact that neither we nor any tools
we can make have the ability to ‘trace’ and ‘seize’ molecules at will. In order to
better understand this inability of ours, it is helpful to examine a situation in
which we can trace and seize ‘molecules’ at will – better yet, a situation in which
a mechanical quasi-demon does this for us. So let us examine a macroscopic
model, modeled after Smoluchowski’s microscopic one. We will make something
akin to, but not quite the same as, a scale-transformed version of the one-way
valve.

Imagine two very large containers A and B of equal size, placed in space far
enough from heavy bodies to make gravitational forces negligible. A multitude
of heavy, hard, macroscopic balls continually bounce through these containers,
colliding with the walls and each other in a dissipationless and nonelastic way.
Initially, the balls are divided evenly among the two containers. But a one-way
valve is present in the wall connecting them. This is a trapdoor consisting of
a rigid metal sheet normally closed by a spring weak enough that the energy
needed to open the trapdoor is much smaller then the average kinetic energy of
the balls. If a ball from A hits the door, it can push it open against the force
of the spring and enter B. But a ball from B will only succeed in pushing the
rigid metal sheet against the equally rigid container wall – it cannot enter A.

Thus, more balls will go from B to A then the other way around. The number
of balls in A will fall, and that in B will rise. If we install a tube between A
and B with a turbine in the middle, this difference can be exploited by having
the turbine raise a weight whenever it is turned in the preferred direction. The
net effect of the machine will be that the average kinetic energy of the balls
is lowered and a weight is raised. In a sense, but only ‘in a sense’, we have a
Maxwell’s demon at work.

Three complaints may be raised against the claim that we have just con-
structed a Maxwell’s Demon at work. The first is, of course, that we have not
really changed heat into work, but have changed the kinetic energy of macro-
scopic balls into potential energy. This is true, and it is the reason I said we only
have a Maxwell’s Demon in a certain sense. But whether the distinction be-
tween heat and kinetic energy of macroscopic balls is really so fundamental, is a
question which will receive more attention in section 4.2. The second complaint
is that we have neglected the fluctuation phenomena which must defeat this
machine as they defeated Smoluchowski’s one-way valve. Actually, this com-
plaint is unjustified. The machine described above works, and it is interesting
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to point out the differences between it and Smoluchowski’s demon which make
the analogy break down. We will do this shortly. The third complaint is that
the net effect of the macroscopic demon is more than what has just been stated:
there must also be a heating up of the trapdoor, the spring or the container
walls. This complaint is justified. I’ll come back to it after I’ve discussed the
previous one.

The only interactions between the balls and the metal door are the collisions
which happen when either a ball in A or one in B hits the door. If a ball in
B hits it, nothing happens to the metal sheet: it stays in places, is completely
rigid and there is no energy exchange between the ball and the sheet. If a
ball in A hits the door, something does happen: it opens. A small amount
of energy, ε, is imparted first as kinetic energy to the door, then as potential
energy to the spring, then once again as kinetic energy to the door until it
bangs shut, at which point the energy is dissipated as heat in the door and the
container wall. When no collision is taking place, the metal sheet has no kinetic
energy, except for that given to it by random fluctuations in accord with its
temperature. But for every temperature below the metal’s melting point, we
can be quite certain that the average kinetic energy of the sheet will be much
less than the average energy of the macroscopic balls! Macroscopic objects in
our world do not experience thermal energy fluctuations on macroscopic scales
– one’s furniture never spontaneously moves around. Hence, the macroscopic
machine we are talking about is not defeated by fluctuations.

To return to the third complaint, it is indeed true that a process of dissipation
is taking place whenever the door bangs close against the container wall. This
defeats our demon if and only if this breaks the cyclicity condition in some way.
We’ll return to that issue in subsection 4.2.3. For now, notice one important
fact: the demon does succeed in the sense that it uses the kinetic energy of the
balls to do work. To find out what features of the machine enable it to do so,
what makes it different from Smoluchowski’s device (except for its size) we’ll
consider another macroscopic model: one which does not work.

4.1.3 Macroscopic gas: a demon that fails

Imagine the very same machine, but with this difference: instead of rigid steel
plates the containers consist of metal balls held together with springs. These
balls are exactly the same size as those which are to be used to do work. When-
ever one of those hits the wall, it exchanges energy with the balls in the wall. In
the equilibrium situation all balls in the entire machine have the same average
kinetic energy; there is no energetic difference between those that are held fast
by springs and those that fly through space. In addition, the machine is fitted
with a one-way valve, which is still made of a normal rigid metal sheet and a
spring, as well as a turbine, a weight, and so forth. This contraption does not
work.

It does not work because the one-way valve can no longer operate. In order
to let molecules pass from A to B, the energy needed to open the trapdoor
must be far less than the average kinetic energy, kT , of the balls: ε � kT . But
then the trapdoor cannot be at rest against the container wall, since this wall
consists of balls with an average kinetic energy of kT . When in contact with
the wall, the sheet will experience energy fluctuations of order kT , and thus be
defeated. But if the sheet cannot come into contact with the wall, it cannot
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dissipate its own kinetic energy after a collision – and it will be defeated too.
To make things worse, imagine that the trapdoor itself and the spring which
constrains it consist of the kind of ball that the rest of the machine is made
of. If they come into contact with their surroundings – and in order to operate
they’ll have to – all these balls will soon have an average kinetic energy of kT .
So if the spring is weak enough to allow any balls to pass at all, it is also too
weak to keep the door in place. It is clear that this trapdoor is defeated by the
same phenomena that defeated Smoluchowski’s one-way valve.

Indeed, it cannot but be defeated by the same phenomena, since it is a
faithful copy of the one-way valve. It is Smoluchowski’s machine, after a scale
transformation. (All right, we have changed inter-atomic forces to springs; but
the idea is the same.) In Smoluchowski’s device the little trapdoor consists of
atoms, the walls of the containers consist of atoms, and the particles whose
kinetic energy are to be exploited to do work are atoms too.1 The situation is
analogous in all important respects to that of our second macroscopic machine,
where the trapdoor consists of balls, the walls of the containers consist of balls
and balls are the particles to be manipulated too – only the scale is different.
Because any interaction with a ball that is flying around involves energies of
order kT , the trapdoor must be sensitive to those energies – and preferably
to ones quite a lot lower too. But at the same time, every interaction involves
energies of order kT , so if the trapdoor is in contact with its environment – which
it must be – it constantly experiences fluctuations large enough to prevent its
operation.

As already remarked, the present contraption is a scaled up version of the
original one-way valve. We know that classical mechanics is scale-invariant,
and therefore, what is true about Smoluchowski’s device is just as true about
the present macroscopic one. But that being said, it is immediately clear that
we can create a working Maxwell’s Demon which changes atomic motion into
potential energy by scaling down the machine from subsection 4.1.2. We will
do that now.

4.1.4 The tinyon machine

Suppose that a new class of particles, tinyons, is discovered which are much
smaller than atoms; the difference in size between a tinyon and an atom is
the same as that between a molecule and one of our macroscopic balls. These
tinyons behave almost the same as molecules: they can be used to create rigid
sheets of tiny-metal and all other kinds of rigid structures. In short, they can
be used to make molecule-size rigid tools in exactly the same way that atoms
and molecules can – and macroscopic balls held together by springs cannot – be
used to make macroscopic rigid tools.

If the containers, the trapdoor, the spring of the trapdoor, the turbine and
the weight are all created of tinyons, and the containers are filled with molecules,
we have a situation analogous in all relevant respects to that of our first macro-
scopic machine. Since classical mechanics is scale invariant, there can be little
doubt that it works, as everything we said about that big machine must also be
true about this new, small machine, given the appropriate substitutions. But
that means that the kinetic energy of molecules can be exploited to do work. I

1Well, molecules. The difference is small enough not to matter.
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repeat: if we can build tools of tinyons, we can change heat into work; just as
we can change the kinetic energy of macroscopic balls into work because we can
make tools of atoms and molecules. The reason such a thing does not happen
in reality is not that everything must fluctuate; it is not that measurements
have an intrinsic entropy cost; it is not that memory erasure has an intrinsic
entropy cost – as the exorcists we’ll meet in Part II would have us believe. The
reason that heat cannot be transformed into work is merely that there are no
such things as tinyons.

But we’re going too fast. There was dissipation in our first macroscopical
model, and there will be dissipation in the tinyon machine too. Does this not
defeat the demon after all? It is time to return to our previous terminology, our
definition of Maxwell’s Demon, considerations of volume in state space, and use
the imagery of the section we now bring to a close to round off the arguments
for the second law’s contingency.

4.2 Scale and thermal physics

4.2.1 Temperature or temperatures?

We retrace our steps to section 3.1, where we took some pains to define tem-
perature within the context of classical mechanics. We had to assume that the
world could be carved up into definite macroscopic objects, and temperature
was then defined using the average kinetic energy of the constituent particles
of such a macroscopic object relative to the rest frame of the object’s centre of
mass. But, as we have seen, classical mechanics is scale invariant, and there
is no reason to restrict this definition to the ‘microscopic’ and ‘macroscopic’
levels as we generally define them. Nor is the definition of temperature so re-
stricted. For instance, astronomers regularly speak about the temperature of
star clusters. This temperature is a measure of the average kinetic energy of the
stars in the star cluster, in the reference frame defined by the cluster’s centre
of mass. The temperature so defined has nothing to do – nothing at all – with
the temperature of the stars; the latter being a measure of the average kinetic
energy of the atomic and subatomic particles that are the constituents of the
star, measured in the rest frame of the star’s centre of mass. In the same way,
two different temperatures can be ascribed to our macroscopic machine from
subsection 4.1.2: one is a measure of the average kinetic energy of the big balls,
the other of the average kinetic energy of the atoms which make up both balls,
container and trapdoor-mechanism. These temperatures can be – indeed, will
be – wildly different; and this difference allows the machine to operate.

There is no such thing as temperature. Or, to say it more clearly, there
are many temperatures. At each scale we can introduce a new temperature;
and if there were no recognisable scales in the world but a continuity of sizes of
natural objects ranging from the infinitely small to the gigantically huge, there
would be no natural measures called ‘temperature’ at all. And, by the same
token, no such things as ‘heat’ and ‘work’. The validity of the second law thus
hinges on the fact that in our world it is – so it seems – possible to identify
‘natural scales’. Why is that possible? To see how intricate the answer to this
question can be, we only need to return to our example of the star cluster: the
fact that there are such easily definable things as ‘star clusters’ which are made
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up of objects that all have roughly (very roughly) the same size, is presumably
a result of the law of gravitation, certain facts about the Big Bang, and many
complicated and perhaps poorly understood details of star formation and cluster
formation. It is certainly not a consequence of anything as clean and simple as
the Hamiltonianism of our world!

So if the second law is to hold, there must be natural scales to make the
terms ‘heat’ and ‘work’ meaningful. But this is not enough the establish its
validity, as we will see in the next subsection.

4.2.2 Scale non-invariance

Every argument for the second law which makes no use of special facts con-
cerning scales in our universe, is faced with the following inescapable dilemma:
it does not establish the second law as saying that the kinetic energy of atoms
and molecules can never be changed into work; it rather establishes a scale in-
variant version of the second law which claims that kinetic energy at any scale
cannot be transformed into work. But the scale invariant second law is simply
false. Its falsity is illustrated by the macroscopic machine of subsection 4.1.2.
This contraption transformed the kinetic energy of macroscopic balls into work.
Thus, the second law did not hold on that scale. If classical mechanics were the
only relevant part of physics, this would simply imply that the second law does
not hold on any scale.

So how is it possible that the second law does hold on some scales – namely,
the scale where temperature is used as a measure of the kinetic energy of
molecules and atoms? The four models we reviewed furnish the answer to this
question: we saw that if the container and the trapdoor were made of particles
on a scale lower than that of the particles we wished to take the heat from, the
machine worked; this was the case with both the first macroscopic machine and
the machine using tinyons. And we saw that if every part of the machine was
made of particles on the same scale as those we wished to take heat from, the
machine did not work: this was made plain by both Smoluchowski’s original
device and my macroscopic equivalent. The explanation I gave was that the
trapdoor must fluctuate with smaller energies than the kinetic energies of the
particles that it has to stop or let through; and this is only possible if its con-
stituent particles are either at a comparable but lower temperature – in which
case they will warm up, which will defeat the demon – or are at an incomparable
temperature, at a lower scale.

But we already have the tools to understand this fact in a manner abstracted
from the specific operations of the one-way valve. We know that classical me-
chanics is Hamiltonian, and that this means that volume in state space is pre-
served. In chapter 3 it was shown – assuming that there were only two scales,
dubbed ‘microscopic’ and ‘macroscopic’ – that under the constraint of Hamil-
tonianism the second law could only be broken if there were many macroscopic
degrees of freedom compared to microscopic ones. But dropping the assumption
of two scales, we can now see that there is another possibility: using ‘micro-
microscopic’ degrees of freedom to ‘absorb’ the volume in state space, while
changing a large part of the kinetic energy on the microscopic level into work
on the macroscopic level. Thus the macroscopic balls in the first macroscopic
machine can yield their kinetic energy to a weight without breaking Hamiltoni-
anism, because a very small amount of energy dissipates as micro-heat on the
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atomic scale. And the molecular gas in the tinyon machine can be made to give
up its heat in order to do work because the tinyons can use a tiny amount of
energy in order to expand their volume in state space. (Please remember that
all talk about volume in state space is actually disguised talk about ensembles
and time evolutions of these.)

Why does the second law hold in our universe on the scale where ‘temper-
ature’ refers to the kinetic energy of atoms and molecules? In chapter 3 we
concluded that a necessary condition was the non-existence of vast amounts of
macroscopic objects which were not made up of microscopic constituents. But
this condition is not sufficient, for the same holds for macro-macroscopic ob-
jects, and yet the second law holds no longer once we scale it upwards. We
can now add another necessary condition: the non-existence of tinyons, that is
of tiny particles, much smaller than atoms, which can nevertheless be used to
build tools and instruments to be used by Maxwell’s Demon.

4.2.3 Cyclicity revisited

We are left with one question: there was dissipation in our tinyon machine
and in our working macroscopic machine. In each case, a tiny amount of the
transformed kinetic energy is not changed into work, but is transferred to the
level of the smallest particles. As the Demon continues its operation, more and
more energy will be transferred to this level – even though it need be only a
very small fraction of the energy extracted as work. Does this break the cyclicity
condition?

After much discussion, we decided at the end of chapter 2 that the cyclicity
condition ought to be understood as the requirement that Maxwell’s Demon op-
erate “without endangering its own continued operation”. Whether the tinyon
machine does or does not break this requirement depends on further assump-
tions about the universe. If the tinyons reach a temperature (defined on their
scale) above which their structures fall apart – like the melting of metal on the
atomic scale – the machine will stop functioning. If tinyonic structures never
fall apart, the machine will stop functioning once the kinetic energy of a tinyon
is on par with that of an atom – once that happens, the trapdoor and all sim-
ilar devices will stop functioning for familiar reasons. But such processes only
have to take place if the amount of tinyons in the relevant part of the universe
is smaller than or of roughly the same size as the amount of atoms. If there
are many more tinyons than atoms, their kinetic energy never has to rise to a
temperature which is too high for the machine to function. If there are enough
tinyons, cyclicity as we defined it is not broken.

I already pointed out in chapter 2 that my version of the cyclicity condition
is far from perfect, although it is the best I can think of. I stress at this point
that adopting another version of this condition may disqualify Demons like the
tinyon machine; it does not, for instance, obey the condition of strict cyclicity.
To me, this disqualification seems a major disadvantage of such versions of the
cyclicity condition. If we had tinyons, enough tinyons, we could run ships on
the heat of the sea for as long as we would like. This is exactly the sort of thing
the second law forbids. If we had tinyons, we could break the second law both
in letter and in spirit. That ought to be captured in our definition of Maxwell’s
Demon.
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4.2.4 Other measures of entropy

We have shown how the second law can be broken, at least in the sense that
anti-entropic phenomena take place, if there exists a class of particles we called
tinyons. An intriguing question is whether this result can be replicated using
any of the quantitative measures of entropy discussed in chapter 2.

The Boltzmann entropy is lowered whenever the system enters a macrostate
with a smaller volume in state space. These macrostates are defined by specific
values for macroscopical quantities as well as thermodynamical quantities such
as pressure and temperature – temperature on the atomic scale, that is. A first
question we have to ask is whether changes in the tinyon-temperature are re-
flected by a change of macrostate. This seems mostly a matter of definition, so
let us look at both ways of deciding the issue. If temperature changes on the
tinyon scale do not affect the macrostate of the system, the possible states of
the tinyons form merely a constant factor of multiplication in calculations of a
macrostate’s volume in state space. This means we can simply neglect tinyonic
changes, and focus exclusively on the volume in state space that macrostates
have due to the temperatures and pressures on the atomic scale. In this case,
the tinyon machine of section 4.1.4 evidently lowers the Boltzmann entropy: it
lowers the temperature of the gas without effecting any balancing processes, and
thus the systems ends up in a much smaller macrostate. So the Boltzmann en-
tropy rightfully indicates that anti-entropic phenomena are taking place. If we
take the other side on the issue of tinyonic relevance, and claim that temperature
differences on the tinyonic scale lead to different macrostates, we reach a dif-
ferent conclusion. For in that case, we move from a macrostate with relatively
little volume in state space due to tinyonic degrees of freedom and relatively
much volume in state space due to atomic degrees of freedom, to a macrostate
where this is reversed. Indeed, considerations of Hamiltonianism will quickly
persuade us that the volume of these macrostates will often be equal – hence,
no change in the Boltzmann entropy has taken place. In this case, Boltzmann
entropy does not indicate that anti-entropic phenomena have taken place.

It would stand to reason to adopt the first of the two choices and move
on with the Boltzmannian project, were it not for a nagging doubt. The
macrostates are supposed to capture all that is macroscopically detectable. But
tinyonic temperature may be macroscopically detectable, depending on the ex-
act physics of the tinyons. Suppose tinyonic structures expand when they be-
come hotter, just like atomic structures. If we built a macroscopically large rod
of tinyons, this would be an apparatus that could accurately measure tinyonic
temperature. As I said before, in subsection 2.2.2, there is a lot of work to do be-
fore the Boltzmann entropy can fulfill the same role as pre-defined anti-entropic
phenomena.

The fine-grained Gibbs entropy is now imbued with a truly tantalising qual-
ity. Of course, if the ensemble ρ(~x) is defined on a state space spanned by
both atomic and tinyonic degrees of freedom, the fine-grained Gibbs entropy
is constant; being a mathematical truth, Liouville’s theorem is not easily bro-
ken. But if we cut away all tinyonic degrees of freedom and let ρ(~x) range only
over the atomic ones, the fine-grained Gibbs’s entropy can change and indeed
is lowered whenever anti-entropic phenomena take place. For it now measures
the ‘multiplicity’ divided among the atomic degrees of freedom only, and this is
lowered whenever heat is converted into work (or anything else, for that mat-
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ter). The prize is of course that ρ(~x) is no longer a complete description of an
ensemble. Does this mean we now have a quantitative measure of entropic phe-
nomena? No. No law forbids atomic heat to be changed into tinyonic heat, not
even the second; this is not an anti-entropic phenomenon, even though it does
decrease ρ(~x). But the present discussion does show us that the fine-grained
Gibbs entropies on state spaces which are spanned by the degrees of freedom
of single scales, might be fair candidates for indicating when entropic and when
anti-entropic phenomena take place. Introducing matters of scale into the fine-
grained Gibbs entropy in this manner might make it relevant to the topic of
Maxwell’s Demon; as is to be expected, for a topic so closely linked to matters
of scale. I wish to indicate how the fine-grained Gibbs entropy could thus be
used to formulate a generalised second law in appendix A. In any case, the nor-
mal, standard fine-grained Gibbs entropy defined on the whole of state space
remains as useless as it ever was for demonic purposes.

In subsection 2.4.2 I promised to ignore the coarse-grained Gibbs entropy. It
is a promise I will keep, but for saying here that the argument advanced against
it in that subsection are still in force, and that most interesting things which
can be said about it have already been said in this subsection about either the
Boltzmann entropy or the fine-grained Gibbs entropy.

Neither Boltzmann nor Gibbs entropy is as such unfit to capture the matters
of scale discussed in this chapter, but in both cases considerations are needed
which have not hitherto been made in the general literature. In Boltzmann’s
case, one has to say more about how different scales influence the partition of
state space into macrostates. In Gibbs’ case, detailed considerations of all scales
have to be made.

4.3 Conclusion: the contingent law

It is now time to summarise our findings and conclude this first part of the
thesis. We tried to find out whether the statistical second law, familiar from
statistical physics, was a necessary consequence of classical mechanics; and if
not, what requirements we were to add in order to derive the second law. We
have concluded that the second law does not follow from classical mechanics;
that Hamiltonianism may provide a framework for discussing the law, but does
not in any way prove its validity. In standard discussions of the second law, the
world is divided into microscopic and macroscopic objects, and heat and work
are defined along the lines of this dichotomy; but classical mechanics introduces
no asymmetry between these two realms. Without such an asymmetry, there
can be no second law. It was shown that if there were many more macroscopic
than microscopic objects, the second law would not hold.

Once we left the above-mentioned dichotomy, it became clear that the sec-
ond law could be formulated at any of a vast number of scales: heat could
be identified not only with the movement of molecules, but also with that of
macroscopic balls, stars, or tinyons. Surprisingly, the scaled up versions of the
second law do not hold; and consideration of a concrete pressure demon but
also arguments concerning volume in state space made it clear what is different
about the scale of atoms and molecules: there is no lower scale beneath it, there
are no tinyons which can be used to build a Maxwell’s Demon on the atomic
scale. If there were enough tinyons, we could break the second law as much
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as we wished. There might be a new ‘second law’ looming at the horizon: one
which said that the kinetic energy of tinyons could never be used to do work.
And this law would hold, unless there were even smaller particles. . . and so on.
But for the second law to hold at any level, a contingent fact about lower levels
is needed; and if there were an infinity of descending scales, the second law
would not hold at all, in any guise.

We can now see what kind of facts the second law is contingent on. Even
within the framework of Hamiltonian physics, both the existence of and an
asymmetry between different scales has to be postulated. The relevant asym-
metry appears to be the fact that the atomic scale is the smallest relevant scale
in our universe – nucleons and such being irrelevant because one can only build
atoms from them, and thus not make any tools of them that can be manipulated
but through their constituting atoms – and that the number of degrees of free-
dom on this scale vastly outnumbers that on higher scales. We recall Maxwell’s
words from section 1.3.2:

[I]f the heat is the motion of finite portions of matter and if we
can apply tools to such portions of matter so as to deal with them
separately, then we can take advantage of the different motion of
different proportions to restore a uniform hot system to unequal
temperatures or to motions of large masses.

He can be interpreted as being right on track: if only we had tools the size
of atoms but made of much smaller particles, we could create machines like
the pressure demon. But we haven’t and we can’t, not being clever enough.
Hopefully, the preceding chapters have shown what this cleverness would have
to consist in, and have provided Maxwell’s words with a sound backing based
on the presupposed Hamiltonian nature of the world.

These results furnish us with a point of view from which we can judge reasons
advanced by the exorcists for the non-existence of Maxwell’s Demon. Is it true
that the demon must do measurements, and that every measurement increases
entropy? Is it – more relevant to recent discussions – true that the demon
must erase its memory, and that this process of erasure must induce an entropy
increase? That there is a deep and significant connection between entropy and
information, and that understanding this connection is the key to understanding
Maxwell’s Demon? These questions will be tackled in the second part of the
thesis.
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Interlude: An imaginary
history

The twentieth century has been an eventful epoch for Maxwell’s Demon. Started
in the second half of the nineteenth as a thought experiment by James Clerk
Maxwell to elucidate the second law, before long it was perceived as a threat to
a beloved bulwark of physical truth. The second law had to be protected against
the malicious attempts of the infernal rascal to violate it; the lofty foundations
of thermodynamics had to be secured once and for all by providing a definite
and unassailable proof of the demon’s non-existence. Thus began the exorcist
tradition.

The history of exorcism can be divided into three main phases, in which ther-
mal fluctuations, measurement and erasure of information were the consecutive
notions thought to contain the key to any successful exorcism. The protagonist
exorcists of every phase naturally saw the earlier attempts as well-meant but
insufficient, and their own pet idea as the final piece of the puzzle, which at
last made everything fit together and had the power to banish the demon for
all eternity. Because the erasure-type exorcism is nowadays the predominant
position among Maxwell’s Demon scholars, the tale which displays the history
of exorcism as one of gradual improvement is nowadays somewhat of an ortho-
doxy. It is told with zeal by Leff and Rex (2003, [20]), and by Charles Bennett
(1988, [5], and very funnily in 1998, [5], figure 3). We will now present this ex-
orcist version of the history of Maxwell’s Demon, both as an introduction to the
different kinds of exorcism and as a prelude to the different history which will
unfold in part II – a history in which there is certainly no constant improvement
detectable.

For some time after its creation by Maxwell, there were no attempts to ex-
orcise Maxwell’s Demon. But then Brownian motion of mesoscopic particles
was observed and recognised as violations of the second law. This led people to
wonder whether these phenomena might not be used to convert heat to work.
Maxwell’s Demon suddenly didn’t seem as impossible as before, and attempts
were made both to construct and to exorcise it. A large variety of intricate
devices which could use the motions of individual molecules to produce macro-
scopic work were thought out, critically examined, and shown to be defective.
Thus was the first stage of exorcism. Smoluchowski argued in his important
papers Smoluchowski 1912 ([30]) and 1914 ([31]) that all machines which try to
transform heat into work by exploiting thermal fluctuations, must themselves
also be defeated by thermal fluctuations. The paradigmatic example is the one-
way valve, in which the trapdoor starts jumping up and down at random and
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stops functioning due to the thermal fluctuations which it was meant to exploit.
This stage of exorcism gave us several insightful descriptions of the failure of
specific systems, but unfortunately no general proof that no Maxwell’s Demon
is possible.

The second stage of exorcism started in 1929 with the publication of Szilard
1929 ([32]). In this paper, Leo Szilard claims that Maxwell’s Demon is really
defeated by the fact that it has to do measurements, and these measurements
have an irreducible entropy cost which exactly nullifies any entropy-decreasing
actions the demon could possibly undertake. Putting it more succinctly: the de-
mon must acquire information in order to operate, and information acquisition
generates entropy. There was, however, nothing really resembling a proof in
Szilard’s paper. Later, Brillouin 1951 ([7]) furnished such a proof for Maxwell’s
original demon, equipped with a torch, trying to sort slow and fast molecules.
He showed that, indeed, doing measurements would cost the demon more than
it could gain; according to Brillouin himself, this was a consequence of quantum
mechanics, but later authors casted doubt on this idea. At this stage of exor-
cism, we were already much farther than Maxwell, who had not considered the
measurements his demon would have to do at all, but not yet far enough: there
was no general proof that information acquisition implies entropy generation.
And there would not be one, because it is simply false: one can do measurements
without any entropic cost.

The last step towards clearing up the mystery of the demon was taken by Rolf
Landauer, in his Landauer 1961 ([17]). Here he showed that the only information
processes which required entropy generation were logically irreversible ones.
Now all operations can be made logically reversible, except for one class of them:
information erasures. Information erasure always implies entropy generation.
And this is the final clue about Maxwell’s Demon: because it has to operate in
a cycle, it must erase its own memory of what it has measured at the end of a
cycle. And this erasure will always, this can easily be shown, generate at least
as much entropy as the tiny hellion could have gained. Thus, recognising this
cost of information erasure defeats Maxwell’s Demon. Better still, we can prove
Landauer’s Principle – the claim that erasing one bit of information generates
k ln 2 units of entropy – and use it to get a completely general exorcism, no
longer limited to a few special examples. Thus, the third stage of exorcism has
been a more or less complete success.

This is the imaginary history which exorcists have told us. In the second
part of the thesis, I will argue that the real history of Maxwell’s Demon is
fundamentally different.
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Part II

Tales of the exorcists
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Chapter 5

Doomed by fluctuations

5.1 Aims and claims

Part II of this thesis has two main aims. The first is to show that the exorcists,
who claim to have banished the demon on necessary grounds, have done no such
thing. Such a demonstration is necessary to uphold the conclusions of part I.
The second, more important, aim is to present and refute several claims that the
exorcists have made about Maxwell’s demon. Foremost among these is the idea
that somehow, entropy and information are inextricably linked. I will presently
give an overview of what I will do in the next three chapters.

In chapter 5, we will look at the first stage of exorcism, in which the de-
mon was thought to be defeated by thermal fluctuations. I will claim that this
idea contains much truth, but that any demonstration of this principle needs
an assumption (the assumption that all parts of the contraption are to be de-
scribed by the canonical distribution function) which is comparable in strength
to the facts identified in part I as those on which the second law is contingent.
Thus the exorcism, though sound, does not succeed in defeating all Maxwell’s
Demons. In addition, there is a gap in its argumentation concerning the doing
of measurements.

Measurements therefore take centre stage in chapter 6. Here, two claims of
the exorcists are examined and found wanting. The first is that the measurement-
account is a completely new stage of exorcism. Most of its sound physical core
is reducible, so I argue, to the fluctuations-account. The only difference is that
some important but quite peripheral considerations of measuring have been
added to the basic ideas of Smoluchowski and his contemporaries. Their second
claim is that there is a deep connection between entropy and information acqui-
sition. I counter Brillouin’s arguments to this effect, and propose that adding
talk about information to the fluctuation/measurement-account of the demon
adds not one iota to our understanding.

Then, in chapter 7, information returns, this time in the guise of Landauer’s
Principle and the claim that considering the effects of information erasure is
the key to defeating Maxwell’s demon. I argue that as far as the Landauer-
Bennett scheme is successful, it reduces to either the claim that all systems
must be described by a canonical distribution function, or to a version of the
State Space Contraction argument from chapter 3. Neither of these two has
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anything to do with information. The idea that entropy and information are
closely linked is not defendable, I claim, and Landauer’s Principle is not the
butter and bread of exorcism.

Ironically, the history which emerges from these polemics is one of gradual
decline rather than of constant improvement.

5.2 Doomed by fluctuations

5.2.1 The one-way valve

Before commenting on the scheme as a whole, we will look at some examples
of exorcisms within the fluctuation tradition. Smoluchowski’s one-way valve
has already been described in section 4.1.1. Let us take a quick look at the
basic idea behind this device. In order to be a one-way valve, the machine
must ensure that (almost) no molecules from B can enter A, whereas those
from A can enter B. The hole in the container wall, then, has to be closed
most of the time – so that no molecules from B will pass – and must be opened
whenever a molecule in A tries to pass. The molecule in A has an average
kinetic energy of 1

2kT in a given direction, so the trapdoor must be sensitive
to energies that high, and preferably lower energies as well. But the trapdoor
has the same temperature as the molecules; it is, after all, in contact with
them. That means it has fluctuations of kinetic energy of the same size as the
molecules; that is, on the size of kT . The trapdoor must be sensitive to energies
of order kT , and it itself is plagued by fluctuations of order kT . So it is sensitive
to random fluctuations, and there will be no correlation between the openings
of the trapdoor and the arrival of molecules from A. This reasoning not only
works for pressure demons, it is just as valid for temperature demons. Such a
demon must be a sorting device, sorting hot and cold molecules. But in order
to sort it must be sensitive to kinetic energy differences of order kT , and the
story repeats itself.

But couldn’t we use a trapdoor, or a sorting device, which is cooled? If
it were colder than the gas, it would not have to be defeated by fluctuations.
This is true, and it is very important to realise that a trapdoor could work that
way – but only at a price. During its contact with the gas and the rest of its
environment, the cold parts of the machine would invariably heat up. There is
a transfer of heat from a hotter to a colder body, from the gas to the device.
This is an entropy increasing process. The demon uses a temperature difference,
that between the gas and the device, in order to do work; this is what we called
‘cheating’ in Part I. The recognition of this possibility of cheating is central to
the next example.

5.2.2 Ratchet and pawl

Perhaps the best known example of a system supposed to violate even the
statistical second law of thermodynamics is the ratchet and pawl device made
popular by Feynman in his famous lectures on physics.1 Imagine a box A full
of gas at a certain temperature TA, and another box, B, at temperature TB .
In box A there is a set of vanes fastened onto one end of an axle in such a way

1Feynman et al., 1963 [12], chapter 46.
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that pressure fluctuations can move the vanes and turn the axle. Assume that
we make this device so small and light that it can actually be set into motion
by the kind of pressure fluctuations regularly occurring in the container. What
is going to happen is that the vanes and the axle will turn back and forth, now
going one way, then the other, without any average rotation to be expected. We
cannot, therefore, lift a weight through the turning of the axle. In order to do
this, we would have to restrict the turning to one direction. This is were box B
comes in: the axle goes out of box A and into box B, where a wheel which can
turn only one way is fastened onto it: the ratchet and pawl. Now whenever the
axle turns one way, the wheel will turn with it, lifting the pawl until it reaches
the top of a tooth and snaps back into place, preventing the wheel from turning
the other way.

Let us consider the machine in a little more detail. The pawl, in order to be
able to snap back whenever it has passed a tooth of the wheel, must be fitted
with a spring which pushes against it. We will call the energy needed to raise
the pawl to the top of a tooth against the force of the spring ε. Furthermore,
this energy must be dissipated when the pawl snaps back. If it weren’t, the
pawl would collide elastically with the wheel and rebound, allowing the wheel
to reverse its motion. The energy ε has to be dissipated when the pawl and
the wheel collide; therefore, the pawl, the wheel and the gas in box B will
heat up. Still, this does not refute the ratchet and pawl device as a successful
Maxwell’s Demon: whatever the values of TB and TA, our current analysis
would predict that TB would rise and TA fall. For TB < TA, this would be
an example of a cheating demon: heat is transported from a hotter to a colder
body, which implies raising the entropy. For TB > TA, this would mean that
heat is transported from a cold to a hot object, an anti-entropic effect.

But alas, it is not to be. The probability of a statistical mechanical system
with temperature T being in a state with energy E1 is proportional to e−E1/kT –
this is just the well-known canonical distribution function. Thus, the probability
of the system gaining enough energy through pressure fluctuations in container
A to turn the pawl over a tooth is proportional to e−ε/kTA . And the probability
of the pawl gaining enough energy to jump up by itself, allowing the wheel to
turn the wrong way, is proportional (with the same constant of proportionality)
to e−ε/kTB . Evidently, for the device to work the first event should happen more
often than the second; mathematically e−ε/kTA > e−ε/kTB . But this implies:
TA > TB . So the device can only work if the temperature in container A is
higher than that in container B; but as we have seen, then the device is just a
machine using a temperature difference to do work, which is not a violation of
the statistical second law. To violate that law, we need TA 6 TB . But in that
case the pawl, because of fluctuations in container B, is bouncing up and down
so frequently that it no longer fulfills its appointed role.

5.2.3 Three hot bodies

A third and last example – we could go on almost indefinitely if we wanted
to – is discussed by Smoluchowski 1914 ([31], p. 118-119). When two bodies
are brought into thermal contact, they will exchange heat. Thermodynamics
tells us that the hotter body will cool off while the colder body heats up, until
both have the same temperature and equilibrium is attained. In statistical
physics, however, fluctuations will arise in the temperatures; big fluctuations
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are more rare than small ones, but if we wait long enough even moderately
sized temperature differences between the two bodies will arise.

Smoluchowski proposes a machine which will exploit this fact to reliably
create an arbitrary temperature difference between objects originally at the
same temperature. Imagine three bodies, A, B and C, all at temperature T .
The machine will use B to transport heat from A to C. First, B is brought into
contact with A, until a lucky fluctuation occurs in which the temperature of B
rises ∆T above that of C. At this moment we break the contact between A and
B, and bring B into contact with C. Now we wait until a fluctuation has arisen
in which B cools below the temperature of A. We disconnect B and C, and
bring B once again into contact with A, to start another cycle. If successful,
every cycle will transport some heat from A to C, never the other way around.
Thus, we will have a successful Maxwell’s Demon, which invariably takes two
bodies of equal temperatures, A and C, then transports heat from one to the
other.

But one step of the operation of this automatic machine has not yet been
specified: measuring the temperature of B in order to decide when it should
move to the other body. We’ll equip B with a thermometer and a mechani-
cal device coupled to it, such that it moves B to A whenever the temperature
falls below one threshold, and moves B to C whenever the temperature rises
above another (higher) value. The reader will have anticipated the problem
that Smoluchowski now raises: this auxiliary device becomes a victim of fluc-
tuations. Smoluchowski stresses that these fluctuations in the auxiliary device
are not correlated with the thermal fluctuations between the two bodies in con-
tact. Therefore, B will start moving regardless of its actual temperature, thus
destroying the machine’s ability to function properly.

Smoluchowski does not support his conclusion with a detailed analysis of
the fluctuations arising in the thermometer and the auxiliary device, which will
depend on their exact constitution. There may be problems lurking here; we
will return to this in the next section, and especially in chapter 6.

5.3 Critical discussion

5.3.1 The fundamental assumption

The mechanism by which the one-way valve was defeated is easy to understand.
It is in thermal contact with its environment, since molecules constantly collide
with it. Because of the random motion thus imparted to it, the valve jumps
back and forth, nullifying its ability to act as intended. Something similar hap-
pened to the pawl in the ratchet and pawl device. Whenever the temperature
of container B is higher than that of A, the kinetic energy obtained by the pawl
through thermal interactions will regularly cause it to jump up spontaneously,
letting the wheel turn the wrong way. This is simply the same mechanism that
was at work in the first example. But as we had two containers with potentially
different temperatures here, another step was needed in the argument: a proof
that if the temperature of B were lower than that of A, it would rise until equi-
librium had been attained. This behaviour was ensured by an energy exchange
(through mechanical means rather than direct thermal contact) that took place
every time the vanes lifted the pawl.
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These exorcisms are correct, given two assumptions. The first is that cooling
the crucial parts of a device must always nullify its creation of work. Rhetor-
ically, I claimed that an energy exchange from a hot to a cold body was to
be considered cheating, and would disqualify a demon. But this is not quite
correct. Suppose that the the cold parts of the machine are constantly cooled,
and the excess energy is pumped back into the gas. This would ensure that the
machine could go on operating indefinitely, if there was enough work available
to keep this cooling process running. So we have a machine which on the one
hand needs work for cooling, but on the other hand produces work through its
operation. As yet we have not seen a proof that the work produced cannot out-
weigh the work needed for cooling – if it does, the machine is a working demon,
fluctuations notwithstanding. I must confess that I do not have a general proof
either, but the State Space Contraction argument of chapters 3 and 4 makes
it quite plausible that no Maxwell’s Demon can be successful, and a forteri-
ori that the assumption holds, for all atom-based Maxwell’s Demons with few
macroscopic degrees of freedom.

The second assumption is that the valve and the pawl are indeed subject to
fluctuations in kinetic energy in accord with the temperature of their surround-
ings. This is not proven from a detailed consideration of the microstructure of
the valve or the pawl and its interactions with the environment; it is derived
from the canonical distribution function, which is assumed to hold for every
system including the valve and the pawl. This may seem to be a very trivial
requirement: of course they too must obey the fundamental laws of statistical
mechanics! But this attitude is indefensible: the assumption that every part of
the demon is described by the canonical distribution function is both essential
to the previous exorcisms, and very significant. It is certainly not a distribution
that holds for all physical systems – consider for instance the planets of our solar
system. And, more relevantly, it is not a distribution that holds for the parts
of the tinyon machine of subsection 4.1.4 either. They are not described by a
canonical distribution function using the T of the atoms, but – probably – by
a canonical distribution function using a different ‘temperature’, τ say, which
is only defined on the tinyonic scale. The tinyonic trapdoor does not fluctuate
with the same kinetic energy fluctuations as the molecules it is meant to stop
or let pass do, because it is not described with the same canonical distribution
function. It does not even have a temperature akin ot that of the molecules,
just as the atoms of the working macroscopic machine did not have a tempera-
ture akin to that of the balls which bumped around in it, and the particles in a
star have nothing whatsoever to do with the ‘temperature’ of the star cluster.
What the assumption of the canonical distribution governing all parts of the
machine actually says is that the temperature it talks about describes every-
thing – that, in other words, the scale on which this temperature is defined is the
definite scale, the only important scale, the point where our investigation can
stop. Thus, the tinyon machine is excluded by assumption, not by argument. I
will call the assumption that all physical systems must be described as having
a temperature which can easily be compared to all other temperatures – the
assumption, in other words, of only one relevant scale of thermal phenomena –
the fundamental assumption. The fluctuation school of exorcism may teach
us very well why certain actual machines fail to work, but it does not prove –
I repeat, it does not prove – that Maxwell’s Demon is forbidden by the laws of
nature. It needs the very strong fundamental assumption to get off the ground.
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Furthermore, the two assumptions identified together imply that a working
demon must be at the same temperature as its surroundings – because cooling
is not efficient, and the normal temperature scale is applicable to it. Within
the framework of thermal physics, this can be interpreted as the claim that
if a working demon is in an environment with temperature T , then it and all
it surroundings must be describable by a canonical distribution function for
temperature T . I will call this the extended fundamental assumption. It
will return in the next chapter.

Using either of the fundamental assumptions might be enough to disprove
the possibility of Maxwell’s Demon. Such a proof would then be sound, in the
sense that it would be a valid deductive argument, but it would not be profound,
in the sense that its assumptions are so strong that we have not really learnt
whether Maxwell’s Demon can or cannot exist – we would still need to know
whether the assumptions do or do not hold. John Earman and John Norton
have claimed that all purported proofs of the demon’s nonexistence are either
unsound (not valid deductive arguments) or not profound (based on assumptions
too strong to be believed by the demon’s proponents). We will return to their
claim in subsection 7.1.3.

5.3.2 The issue of measurement

The third system, Smoluchowski’s three-body machine, appears to be based on
the same principles as the previous examples: defeat by unintended fluctuations.
And the apparent dissimilarity that it uses temperature fluctuations to perform
its task instead of pressure fluctuations is of little importance. Nevertheless,
there is a remarkable difference. In the first example, the one-way valve was
in thermal contact with the gas it had to sort. Because the molecules of the
gas imparted energy to it, it heated up and stopped functioning. In the second
example, the ratchet and pawl where in direct mechanical contact with the
vanes, having the responsibility to prevent their turning in the wrong direction.
And the vanes, in return, had to impart an amount of energy ε to the pawl
whenever they wished to turn. But in the third case, no such exchange of
energy seems to be necessary. The mechanical moving of B can be done by
an adiabatically isolated machine, which would not receive any energy from B.
That still leaves the temperature measurement; does this involve an exchange
of energy that would somehow destroy the ability of the machine to work?
Wouldn’t it be possible simply to look at system B, without heating up? Or
consider Maxwell’s original demon. It does not have to fail like the one-way
valve did, since it never has to come into contact with the molecules. If it
just looks at them, and opens its shutter accordingly, why would it need to
become hot like the one-way valve and the ratchet and pawl? Obviously, what
is needed here is an analysis of the Demon’s measurements: do they in some
way or another have the same effect as the energy exchanges taking place in the
one-way valve and the ratchet and pawl? This analysis will be carried out in
chapter 6.
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Chapter 6

The details of measurement

6.1 The cost of measurement

The previous chapter ended with the claim that an analysis of measurement is
needed if we wish to complete the fluctuation account of exorcism. This project
has indeed been taken up by several people, but it led to the much more far-
reaching conclusions that all measurements had an entropy cost, and that this
was the key to understanding the demon. Going yet further, it was argued that
entropy and information acquisition where very closely linked, and one needed
to pay attention to information

6.1.1 Szilard’s engine

The first attempt to connect measuring and entropy was made by Leo Szilard in
Szilard 1929 [32], one of the most influential papers in the history of Maxwell’s
Demon. Instead of discussing his original machine, I’ll describe the simplified
‘Szilard engine’ which is now almost exclusively used in the literature. Imagine
a cylinder with a volume V1, which contains exactly one molecule of gas. This
cylinder is in contact with a heat bath of temperature T1, which ensures that
the molecule has an average kinetic energy corresponding with this tempera-
ture. An ensemble of these systems is described by the canonical distribution
function e−ε/kT1 . The demon now places a partition in the middle of the cylin-
der, dividing it into two equal chambers with volume V1/2. It takes a look at
the molecule, finding out in which half of the cylinder it has been trapped, and
places a piston in the other half, with a small weight attached to it with a string.
After this procedure, the demon removes the partition and the molecule of gas
will start doing work on the piston until it has been moved to one side entirely
and the molecule can once again occupy the entire volume. The weight has
been raised making use of the thermal energy of the heat bath. (Obviously, this
scheme only works if the weight is so light that the gas pressure is high enough
to overcome the pull of gravity on the weight.) Now the piston is removed, and
the system has gone through a complete cycle, ready to begin anew.

There are three ways of attacking this demon. The first is to deny that the
system has gone through a cycle at the end of the described operations. The
demon, one can claim, has memorised the result of his measurement; this result
must be erased before the cycle has been completed. And memory erasure,
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the claim goes, must always lead to an entropy increase. Hence, a careful
analysis of the demon’s mnemonic faculties will show that the engine does not
work as promised. This very popular argument will be discussed in chapter 7.
The other two ways to attack the demon focus on the process of measurement.
They involve the claim that during its measurement something has happened
which nullifies its successes (the second way) or stops it from operating (the
third way). The latter option tries to show that measuring leads to the kind of
fluctuations in the measurer which defeated the valve and the ratchet and pawl
device; I will discuss this possibility in subsection 6.1.4. The former option,
which encompasses the idea that measuring increases entropy by as much as the
machine’s cycle can lower it, is that which Szilard chose; he wrote:

One may reasonably assume that a measurement procedure is funda-
mentally associated with a certain definite average entropy produc-
tion, and that this restores concordance with the second law. The
amount of entropy generated by the measurement may, of course,
always be greater than this fundamental amount, but not smaller.1

There are two things we would like to know. One is what Szilard means
with ‘entropy’, the other how doing a measurement generates this entropy.

Actually, for entropy we are just going to use the thermodynamical defini-
tion. Let us calculate the amount of work done on the weight by the molecule as
it expands. The formula that gives us the work done by an ideal gas expanding
from volume V1 to V2 at pressure P is:

W =
∫ V2

V1

PdV. (6.1)

Using the ideal gas law
PV = NkT (6.2)

and the fact that N = 1, we arrive at the following result:

W =
∫ V1

V1/2

kT1

V
dV (6.3)

= kT1 ln(
V1

V1/2
) (6.4)

= kT1 ln 2. (6.5)

This energy comes from the heat bath in the form of heat, so the amount of
heat Q extracted from it is −kT1 ln 2. Using formula 1 from the Prologue:∫ B

A

dQ

T
= SB − SA, (6.6)

it is easy to show that the entropy of the heat bath has been changed by an
amount

∆S = −k ln 2. (6.7)

The use of the thermodynamic entropy in this derivation is unobjectionable:
we are simply talking about objects exchanging heat and performing work on

1Szilard, 1929 [32]; from [19], p. 127.
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each other, which is what thermodynamics is all about. So presumably when
Szilard claims that the measurement must – on average – produce entropy, he is
still talking about thermodynamic entropy. Somewhere in the measuring pro-
cess, heat must flow from a hotter to a colder body, or a weight must be lowered
to produce heat, or some other entropy-increasing thermodynamic process must
take place. Perhaps something similar to what happened in the ratchet and pawl
device is going on, where the decrease of entropy in the box with the vanes was
compensated by an increase of entropy in the box with the pawl – the former
cooled, but the latter heated up, and the device only worked if the latter was
colder than the former. In order for Szilard’s entropy increase to be possible
at all, our demon and the devices he uses must be ordinary thermodynamical
objects with well-defined temperatures between which heat exchange and simi-
lar operations can take place. This is, in effect, the fundamental assumption I
pointed out in subsection 5.3.1.

Anyway, we are by now very interested in the way in which all of this works
in actual measuring processes. Unfortunately, Szilard does not really analyse
these in terms of thermodynamical operations; he merely concludes that an
entropy increase of −k ln 2 must be associated with a measurement, because
otherwise the second law doesn’t hold. As an exorcism his article is a failure: it
assumes the validity of the second law. As a dissection, it does not fare much
better: we still don’t know which facts about measurements save the second
law. But it nevertheless proved to be a very good starting point for further
research into the connections between entropy, information and measurement.
The first major step forward was made when Brillouin and other researchers
gave detailed analyses of concrete measurements. We turn to that subject now.

6.1.2 Brillouin’s torch

In 1951, more than two decades after Szilard wrote his paper, Léon Brillouin
published2 an analysis of Maxwell’s Demon which focussed on the way in which
it was to do measurements. Brillouin took literally the idea that the demon
has to ‘see’ the molecules it is working with, and calculated the entropy cost
associated with their visual detection. Recall the original thought experiment by
Maxwell, in which a demon functions as a doorkeeper which lets some molecules
pass and stops others. If it has no tools to help it, Brillouin remarked, it will
not be able to see the molecules. The container and the gas within it are at a
uniform temperature T , and thus all of the space surrounding the demon will
be filled with a homogeneous blackbody radiation. There is no difference in
photon density between a container full of molecules and one which is empty,
let alone that individual molecules can be seen. Therefore, the demon cannot
operate unless it is equipped with a torch which emits photons of a wavelength
considerably different from the most common wavelengths as specified by Wien’s
law:

λmax =
0.002898

T
, (6.8)

where T is in Kelvin, and λ in meters. Brillouin provides the demon with a
charged battery and an electric bulb, which together act as a source of blackbody
radiation at temperature T1. The gas is at temperature T0, and to obtain

2Brillouin, 1951 [7].
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light which can be distinguished from the background radiation, we must have
T1 � T0. The average energy hν1 of a photon emitted by the bulb is of the
order of kT1, so:

hν1 � kT0. (6.9)

Now assume that during the demon’s operation the battery yields an energy
E and no entropy to the filament. In turn, this radiates a total energy E,
therefore decreasing its entropy by Sf = E/T1. If there were no demon making
use of this light, it would be absorbed by the gas, giving an entropy increase of
S = E/T0 > Sf . Thus, the total entropy would increase.

But this is where Maxwell’s Demon comes in. To detect a molecule, at least
one quantum of light must scatter on it and enter the Demon’s eye, which has
a temperature of T0. This represents an increase of entropy

Sd = hν1/T0 = kb, (6.10)

where
b = hν1/kT0 � 1. (6.11)

So for every seen molecule, the demon must pay a price of kb units of entropy.
Now assume that Maxwell’s Demon, operating on two containers A and B, has
already succeeded in creating a temperature difference ∆T :

TB = T + 0.5∆T (6.12)
TA = T − 0.5∆T. (6.13)

The demon must observe one molecule in both of the containers, allowing a
fast one from A to enter B, and a slow one from B to enter A. The entropy
cost of these two detections is 2kb. Now assume that the molecule from A
has a kinetic energy 1.5kT (1 + ε1), and the molecule from B a kinetic energy
1.5kT (1− ε2). This results in an energy, and hence a heat, transfer of

Q = 1.5kT (ε1 + ε2) (6.14)

from A to B, which corresponds to an entropy decrease of

∆Si = Q(
1

TB
− 1

TA
) (6.15)

= −Q
∆T

T 2
(6.16)

= −1.5k(ε1 + ε2)
∆T

T
. (6.17)

Since the demon cannot choose before measurement which molecules he is
going to use, the quantity ε1 + ε2, representing the deviation of the molecules
from the mean kinetic energy in the gasses, will generally be rather small, reach-
ing a few units only exceptionally. Furthermore, the coefficient ∆T/T will be
much smaller than unity. Hence,

∆Si = −1.5kη, η � 1. (6.18)

Therefore, the total entropy change of the gas is:

∆Sd + ∆Si = k(2b− 1.5η) > 0. (6.19)

The thermodynamic entropy, which we have been using throughout, has in-
creased; so no anti-entropic phenomena have taken place. Maxwell’s Demon
has been defeated by the measurements it had to make.
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6.1.3 Critique of Brillouin’s argument

The argument given in the previous subsection is intriguing and suggestive; but
is it correct? The physics is relatively clear, but I perceive several questions left
unanswered by Brillouin’s account. First, however, let me discuss two possible
unclarities.

The role of the battery has not been discussed properly.
Does it not constitute an external source of power of the
kind we forbade in section 2.5?

If the demon has a battery which it uses to heat up a filament, it has an
external source of power which could have been used to do work directly. One
might think that this is an immediate refutation of the demon (remember section
2.5), but that is too hasty. If the amount of work which could have been done
by the battery is lower than the amount of work that has been extracted from
the gasses by the demon, one can recharge the battery and still have some work
remaining. Therefore, using a battery is not something a demon may not do;
but recharging the battery should be part of its cycle. We now turn to the
second possible unclarity.

Has an entropy increase associated with the heating of the
filament not been ignored?

If we start out with a cold filament and a full battery, the heating of the
filament indeed constitutes an entropy increase, since work is transformed into
heat. But let us consider the very similar case in which the filament starts out
at temperature T1 � T0, and the task of the battery is to add as much energy
to the filament as it sends away in the form of photons. This raises the entropy,
which seems to be ignored by Brillouin; but actually it is not. Adding energy
hν1 to the filament at temperature T1 increases the entropy by hν1/T1. Sending
a photon with energy hν1 from the filament to the demon corresponds with an
entropy increase of

∆Sf→d =
hν1

T0
− hν1

T1
. (6.20)

So the total entropy increase of the process is merely the sum of these two,
hν1/T0 – which is exactly the value used by Brillouin when he discusses the
entropy cost of detecting one photon. This should satisfy us that nothing is
wrong with the way Brillouin uses a battery in his argument.

Now that these unclarities have been dealt with, let us ask several critical
questions that may threaten our belief in the validity of Brillouin’s argument.

Can’t the demon use light of a lower, instead of a higher,
frequency than that at which the black-body radiation peaks?

In order to be able to distinguish the photons reflected by the molecules
from those of the background radiation, they must have a different energy. But
why should the demon choose to use photons of a higher, rather than of a lower
frequency than that dominant in the background radiation? In that case, b
would be much smaller than 1, instead of much larger, and Brillouin’s argument
would not work.
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Leff and Rex (1990 [19]) give two arguments for preferring higher frequencies
over lower frequencies. The first is that the power of a lamp is proportional to
AT 4, where A is the radiating surface – this is the law of Stefan-Boltzmann.
So if we choose a temperature T1 = 0.5T0 instead of T1 = 2T0, the surface
of our lamp would already have to be 256 times bigger to achieve the same
output. The second is that high frequency radiation leads to more pronounced
diffraction effects, enlarging the resolving power of the demon.

Since resolving power does not enter Brillouin’s analysis at all, it is hard
to see how the second argument could save him unless it was backed up by a
discussion of the demon’s need to resolve – which might well turn out to be a
very complicated matter. The first argument is not sufficient as it stands either
– why should we care about surface area? – but points the way to something we
have forgotten to take account of: the absorbtion of background radiation by
the filament. Assuming that the filament is both a ideal radiator and an ideal
absorber (the definition of a black body), its emitted energy is σAT 4

1 , with σ
Stefan’s constant, and the energy it absorbs is equal to σAT 4

0 . In that case the
energy flux from the filament to its surroundings is:

∆E = σA(T 4
1 − T 4

0 ). (6.21)

In the case of T1 � T0, this is approximately equal to σAT 4
1 , and Brillouin’s

analysis applies: the entropy decrease which is the result from photons of the
(colder) gas hitting the (hotter) filament can be neglected. But in the case of
T1 � T0, there is a significant entropy increasing process as yet unaccounted
for: the hot gas is heating the cool filament. For every photon radiated by the
filament, and thus of use to the demon, many photons from the gas are absorbed
by the filament. So for every measurement of a molecule, the demon must pay
the cost associated with this heating of the filament, which is:

∆Sg→f =
nhν0

T1
= kb, (6.22)

where n is the amount of photons hitting the filament for every photon it absorbs
and

b =
nhν0

kT1
. (6.23)

Obviously, hν0 = kT0, so if T0 = T1 we have b = 1. The average energy of a
photon increases linearly with the temperature of the body (Wien’s law); but
its emitted power increases with T 4. Thus, the number of photons emitted
increases with T 3. Define η = T1/T0; then n = η−3. So we have for T1 � T0

(in other words, η � 1):

b =
nhν0

kT1
(6.24)

=
nhν0

kηT0
(6.25)

= nη−1 (6.26)

=
1
η4

(6.27)

� 1. (6.28)
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This is the same result which was reached in formula 6.11 for T1 � T0, and
from this point on the same reasoning applies to the problem. So, even when
the demon uses a black body at a much lower temperature than that of the gas,
the entropy cost which must be paid per photon used defeats all his attempts.

Why must the demon rely on black-body radiation?

But a more devastating problem looms ahead. Our calculations indicate
that a demon using a black body to supply it with photons cannot operate
successfully. But why should it use a black body? Since the demon must be
able to see the difference between its scattered photons and the photons of the
background radiation, its light source must have an emission spectrum different
from that of a T0 black body. One way to achieve this is by taking a black body
radiator at T1 6= T0. But another way is to use a light source which does not
emit a black-body spectrum, but perhaps a sharply peaked one. If this peak
– say, an emission line – were to be at a frequency considerably less than the
top of the T0 black-body spectrum, it is hard to see how Brillouin’s analysis
can be used to defeat the demon. Neither his original argument that b � 1,
nor the argument for the same conclusion given in the last paragraphs would be
straightforwardly applicable. We can imagine a demon equipped with a small
glass box full of a gas which is at the same temperature T0 as its surroundings,
but has a characteristic low-frequency emission line. It has not been shown that
this ‘torch’ is not good enough. But unless that is shown, Brillouin’s exorcism
is not good enough: he has not proven that the demon cannot operate by using
a suitable source of light. (However, see subsection 6.1.4, where I suggest that
what is really important in the story of measurements is the fact that there
must be a way to exchange energy between the demon and the system, and that
the details of measurement are not all that important. If such considerations
are correct, low-frequency emission lines and other special sources of light will
not help the demon.)

Must de demon absorb the photons? Can’t he simply reflect
them?

Brillouin’s argument is based on the idea that the demon absorbs the photon
when he makes a measurement, and can therefore be described as a system at
temperature T0 gaining an amount of heat hν1. It might be suggested that the
demon does not have to absorb the photon: perhaps he can reflect it with a
simple mirror. But this would not help, as the photon would still be absorbed
by the gas or the container, resulting in exactly the same entropy increase.
(Not so, of course, when the photon would be re-absorbed by the filament. But
this chance is very small, as the demon – being ignorant of the next photon’s
direction of incidence – cannot position his mirror in the right way to accomplish
this.)

Does the demon have to be at temperature T0?

The entropy cost of the measurement is hν1/T0, where T0 is assumed to be
both the temperature of the gas and that of the demon. The reasoning behind
this is clear: if the demon has another temperature, there will be heat exchange
between it and the gas, which is an additional source of entropy. In the end,
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putting the demon at a temperature TD > T0 would not help. But it should be
noted that it is an essential presupposition of Brillouin that the demon is a ther-
modynamical system which can be assigned a definite temperature. Without
this, his analysis cannot come off the ground; the thermodynamic entropy of a
process can only be calculated when every system is a thermodynamic system.
Brillouin needs the fundamental assumption as much as any other exorcist.

6.1.4 Relation to fluctuations

A lot has been made of the role of measurement in the Maxwell’s Demon thought
experiment. Brillouin’s analysis has been widely hailed as a proof that the
demon is actually defeated by the fact that it has to acquire information about
the molecules on which it wishes to operate. Later writers such as Bennett and
Leff and Rex, who disagree with Brillouin that the entropy cost is associated
with the measurement, still claim that Szilard and Brillouin were the first to
understand that the key to exorcising Maxwell’s Demon lay somewhere in its
use of information. But such a radical division between Smoluchowski on the
one hand and Szilard and Brillouin on the other is a figment of the imagination.
In fact, I would like to suggest that Brillouin’s exorcism is closely related to
that of the one-way valve and the ratchet and pawl, an exorcism in which
information and measurement play no role whatsoever. I will use the idea
which I pointed out as the fundamental assumption in all fluctuation-based
attempts at exorcism: every system can be assigned a temperature on the same,
commensurate, scale. Thus, we can claim that every systems is is described
by the canonical distribution function associated with the temperature of its
immediate surroundings.

Therefore, Maxwell’s Demon, which is at a temperature T0, is a victim of
thermal fluctuations of order kT0. In order to detect the photons emitted by the
torch and reflected by the molecules, the demon needs a detection mechanism
with two energy levels. The characteristic frequency of the photons is hν1,
so except for an arbitrary additive constant the two possible energies of the
detection mechanism ought to be E0 = 0 and E1 = hν1. There are two possible
cases: hν1 � kT0, and hν1 & kT0. Suppose that hν1 & kT0. In order to
re-use the detection device, this energy must be dissipated in the demon or
its environment, both of which have a temperature T0. This corresponds with
an entropy increase of hν1/T0, which is more than the demon can hope to
compensate for by sorting. (As has been shown by Brillouin’s analysis of the
average entropy benefit of sorting.) On the other hand, suppose that hν1 � kT0

– as it will be when the demon uses the low-frequency light source we devised
for it in the last section. In that case, the system will constantly switch between
the two possible states of the detection apparatus (and everything set in motion
by it) because of thermal fluctuations. The demon’s ‘eye’ is useless – doomed
by fluctuations. It will open and close the shutter at random, and no sorting
takes place.

If we assume that the demon is a thermodynamical system at the same tem-
perature as its surroundings, its detection mechanism is subject to fluctuations.
If the energy threshold for detection is too low, the detector (and the rest of
the mechanism) doesn’t work because of these thermal fluctuations. But if the
energy threshold is too high, detection involves a heat transfer which raises the
demon’s entropy more than it can lower that of the gas. What we have to
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keep from Brillouin’s analysis is the calculation of the average entropy gained
from sorting and the insight that the measurement is a relevant step in the de-
mon’s operation. But what we do not need is a detailed discussion of the actual
measurement process: merely thinking about the detector and its fluctuations
does the job quite nicely. This suggests that the paradigm of exorcism is still
the fluctuation account of Smoluchowski, and not the measurement account of
Brillouin.

And there is something else which we have learned from Brillouin. The fact
that the demon must do measurements implies that it must exchange energy
with its surroundings: it cannot be completely isolated. Therefore, it cannot
operate at an arbitrarily low temperature where it would not experience any
relevant fluctuations: because of the necessary interactions (such as the absorb-
tion of background radiation), the demon must operate at the temperature of
its surroundings or pay an entropy cost to remain cool – and this entropy cost
would be too high for it to continue functioning. This is a valuable insight:
even a demon which does not make physical contact with the gas exchanges en-
ergy with it because it has to do measurements. Brillouin’s argument could be
reinterpreted as an attempt to show that if the fundamental assumption of sub-
section 5.3.1 holds for a demon and every part of its surrounding, the extended
fundamental assumption must hold too.

The conclusion of this section is that Brillouin’s account of measurements
is not an entirely new way of approaching the demon, but a valuable addition
to the older account in two ways. First, it points to the fact that an accurate
measurement made by a demon at the same temperature as its surroundings
involves an entropy cost. Second, it stresses that every demon must have inter-
actions with its surroundings and therefore, must be at the same temperature
as its surroundings or pay an entropy cost. These two insights are an important
supplement to Smoluchowski’s account. But they are no more than a supple-
ment – in many cases Smoluchowski-style exorcisms which make no reference to
measurements are still the right ones. One cannot – yet – speak of a new stage
in the history of exorcism.

It is also important to notice that not every demon can be described in terms
of measurements. In the case of the Smoluchowski trapdoor or the Feynman
ratchet and pawl, speaking of measurements would be contrived – the trapdoor
can hardly be said to ‘measure’ the atoms in order to obtain the ‘information’
whether it has to open or not. And in the case of Zhang and Zhang’s demon
(Zhang & Zhang [33], 1992), which is simply a non-Hamiltonian force-field,
terms like ‘information’ and ‘measurement’ are certainly not applicable. Their
demon works because it is non-Hamiltonian, and not because it is sensitive to
the microscopic state of the gas it works on. Reference to measurements is
only useful when the demon under consideration is one which tries to create a
correlation between its own microscopic behaviour and that of the gas.

6.2 Information as negentropy

We have seen in the last section that neither Szilard nor Brillouin established
a deep connection between measurement and entropy. Nevertheless, their work
gave rise to a conception of entropy as somehow opposed to information. The
intuition underlying this conception is the following. If Maxwell’s Demon only
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knew the positions of all the molecules, it would not have to do any measure-
ments. Hence, it would not be exorcised by Brillouin’s analysis, and could do
its sorting work. So information can be converted into a decrease of entropy.
On the other hand, gaining information about the molecules increases the total
entropy. These relations are very suggestive, and it is tempting to postulate a
conservation law like

∆ Entropy - ∆ Information = 0,

or, more in the spirit of the Second Law,

∆ Entropy - ∆ Information ≥ 0.

Another incentive was the mathematical form which C.E. Shannon had given
to his measure of amounts of information in his pioneering work on information
theory. I will give a brief exposition of his ideas first, before looking at the early
application of information theory in connection with Maxwell’s Demon. Along
the way, it will become clear that the relation between entropy and information
which is supposed to be pointed out by the negentropy-analysis is mostly a
fiction. Incidentally, information theory will stay with us all the way through
chapter 7, where a more recent application of information theory to the demon
takes centre stage.

6.2.1 Information and Shannon entropy

In his seminal article (1948, [26]), Claude Shannon set forth a definition of
information-theoretic entropy. Consider a set S = {S1, S2, . . . , Sn} of n possible
events, which are mutually exclusive and exhaustive. The chance of event Si

happening is pi, with the obvious constraints

n∑
i=1

pi = 1 (6.29)

and
∀i : pi ≥ 0. (6.30)

Can we find a measure of our uncertainty about the outcome? Obviously, if
one of the pi is 1, we have complete certainty. On the other hand, if all of the
pi are equal, the uncertainty is maximal. We wish our measure of uncertainty
to have these same properties. Using these and similar constraints,3 Shannon
arrives at the following form for the measure:

H(p1, p2, . . . , pn) = −K
n∑

i=1

pi log pi. (6.31)

Here K is an arbitrary constant, and we are using the logarithm base-2. It is
easily checked that H has all the intuitive features of uncertainty. H is also ad-
ditive: if two independent sets of events, S1 and S2, have separate uncertainties
H1 and H2, the set of joint events S1&2 has uncertainty H1&2 = H1 + H2.

At this point in his article, Shannon points out an interesting analogy:
3See his article for details.
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The form of H will be recognized as that of entropy as defined in
certain formulations of statistical mechanics where pi is the proba-
bility of a system being in cell i of its phase space. [...] We shall call
H = −

∑
pi log pi the entropy of the set of probabilities p1, . . . , pn.4

Indeed, this is the case. Both Gibbs entropies have the general form S =
−k

∑
x log x, with an integral replacing the sum for the fine-grained Gibbs

entropy. Since the Shannon-entropy, which is the name Shannon gave to H, of
a continuous distribution ρ(~x) is defined as

H = −
∫ ∞

−∞
ρ(~x) log ρ(~x)d~x, (6.32)

the similarity between Shannon-entropy and statistical mechanical entropy ex-
ists for both continuous and discrete distributions. The only difference is that
Shannon sets the constants K to 1, whereas in statistical mechanics it is Boltz-
mann’s constant k.

Now suppose that we get some more information about S; perhaps we are
told the outcome, or we are told that the outcome lies in a restricted subset
of S. Whatever the information may be, if it is non-trivial it will change the
values of the pi. For example, if we are told that outcome j obtains, pj is set
to 1 and all the others to 0. What we would like is a measure of the amount of
information which is imparted to us. It is very intuitive to say that the amount
of information contained in a message is equal to the decrease of uncertainty.
Let PA be the set of pi before the information is known, and PB the set of the
pi after it becomes known. Then

∆I = H(PA)−H(PB) = −∆H. (6.33)

Which leads to:
∆(I + H) = 0. (6.34)

Given this tantalising equation linking entropy with information, it is hardly
a surprise that physicists – Brillouin foremost among them – tried to apply it to
Maxwell’s Demon. They supposed this lithe being to be defeated by measure-
ments; in other words, by gaining information. Would a careful consideration of
the role of information in statistical mechanics perhaps constitute an exorcism
of a very general sort?

6.2.2 Information and physical entropy

We now follow Brillouin’s discussion (1962, [8]; especially chapters 1, 12 and 13.)
of the ‘negentropy principle of information’.5 His treatment differs conceptually
from that given in the last subsection, so please read on carefully. Brillouin’s
basic idea is that initially, we have a system which can be in P0 states; then,
we gain some information about the system, after which it can only be in P1

states. Assume, says Brillouin, that all states are equally probable, and that in
4[26], p. 11. In the line replaced by dots in this quote, Shannon claims that H is, for

instance, the Boltzmann entropy. It is evidently not: the Boltzmann entropy is defined for
one single state, not for a class of states with associated probabilities.

5I ignore his distinction between free and bound information, which is both quite unclear
and not very relevant for my purpose.
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the initial situation we have no information about the system: I0 = 0. Then
the final information I1 is given by:

I1 = K log(
P0

P1
). (6.35)

Let’s motivate this equation with an example. Suppose I have a string of
n bits, all of which can be 0 or 1 with equal probability. I do not yet know
anything about the string, so I have no information: I0 = 0. The number of
possibilities P0 = 2n. Setting K to 1, formula 6.35 becomes an accurate measure
of the number of bits of information I have when I discover more facts about
the string. For let me read the first m < n bits; this reduces the number of
possible states to P1 = 2n−m. So my information in bits is:

I1 = log(
2n

2n−m
) = log(2m) = m, (6.36)

which is exactly right. Working out further examples will convince the reader
that the above definition of information agrees with our intuitions. By the way,
notice what it measures: it measures the information which I have about the
system. When I have complete information, I know everything there is to know
about the system – namely, in which one state it is.

If we wish to apply these results to thermodynamics, we must set K = k.
Thus, if I0 = 0

I1 = k log(
P0

P1
), (6.37)

and in general6

I = I1 − I0 = k log(
P0

P1
). (6.38)

The entropy is defined thus:
Si = k log Pi. (6.39)

From formulae 6.38 and 6.39 the following relation between the information I
have obtained about a system and the system’s entropy is readily deduced:

S1 = S0 − I, (6.40)

and also7

I = −∆S. (6.41)

Brillouin’s reasoning up to this point is easy to follow, except for one thing:
what does he mean with ‘entropy’? It appears to have the form of the Boltz-
mann entropy, formula 2.1, for a discrete state-space where the measure of a
macrostate is the number of microstates it contains. But notice that Brillouin
is not worrying about macrostates very much: he does not claim that the set
of all ‘possible outcomes’ has to be a macrostate. Nor can he, because presum-
ably it does not have to be – the information one has about a system is not
necessarily limited to macrostates. But the sets of possible outcomes, unlike
the macrostates, do not form a partition of the state space. The S defined by
Brillouin is therefore not equivalent to any measure of physical entropy known

6We are still assuming equiprobability of all possible states.
7This formula is not given by Brillouin, but it seems a trivial consequence of the last one.
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to man. And yet he calls it entropy, and will equate it with thermodynamic
entropy a few steps later in his argument. This is conceptually very sloppy.

What does Brillouin himself say about the meaning of ‘entropy’? Appar-
ently, it is something which changes whenever information about the system is
obtained. According to Brillouin ([8], p. 160):

Entropy is usually described as measuring the amount of disorder in
a physical system. A more precise statement is that entropy mea-
sures the lack of information about the actual structure of the sys-
tem. This lack of information introduces the possibility of a great
variety of microscopically distinct structures, which we are, in prac-
tice, unable to distinguish from one another. Since any one of these
different microstructures can actually be realized at any given time,
the lack of information corresponds to actual disorder in the hidden
degrees of freedom.

The problem is that entropy has now become an epistemic notion: it mea-
sures ignorance. But we are interested in raising weights by cooling objects; we
wonder why a ship cannot simply use the heat energy of the sea to get moving;
we would like to know why we cannot exploit Brownian motion to do macro-
scopic work. If entropy is an epistemic notion, it is unclear how it can have
anything to do with the occurrence or non-occurrence of such phenomena. One
can suggest that perhaps we could create anti-entropic phenomena if we knew
precisely the microscopic state of a system. That is a valuable suggestion which
will be discussed in subsection 6.3.2. But what Brillouin claims, and what is
essential for his linking of entropy and information, is not that information
can be used to lower entropy, but that entropy simply is a measure of lack of
information as defined by his formula 6.39. Interested as we are in Maxwell’s
Demon as the creator of objective phenomena, it is hard to see how Brillouin’s
ideas about ‘entropy’, information and their interplay is going to tell us anything
useful. But let’s return to his discussion.

6.2.3 Enter negentropy

Brillouin now remarks that, leaving the system alone after we have gained some
information, Carnot’s principle states that

∆S1 ≥ 0. (6.42)

Using formula 6.40, we obtain

∆(S0 − I) ≥ 0. (6.43)

This must be one of the most bizarre conclusions ever reached in the physical
literature. First of all, although Carnot’s principle (the thermodynamical second
law) tells us that the thermodynamical entropy cannot decrease, it says no such
thing about the measure of ignorance Brillouin is pleased to call ‘entropy’. In
fact, given the fact that our world is Hamiltonian, one would expect that entropy
as defined by Brillouin remains constant as long as we don’t make measurements
– volume in state space is, after all, conserved. S1, S0 and I are not functions
of time. S0 measures the entropy of the system just before the observer gains
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information I, and S1 is the value of the system’s entropy just after that. It is
as meaningless to speak of ∆S1, ∆S0 or ∆I as it is to speak of ∆3.

We now have two incompatible but simultaneously used conceptions of en-
tropy, and three time-independent constants evolving through time. We are
ready for anything. At this point Brillouin introduces N , the negentropy of the
system, defined by the rather simple relationship

N = −S. (6.44)

Together with formula 6.43 this yields

∆(N0 + I) ≤ 0. (6.45)

I invite anyone who thinks he still understands what is going on to compare
this result with formula 6.41. Whether it is incomprehensible or not, according
to Brillouin this discussion and several physical examples which can be found
in his book make clear that ‘information can be changed into negentropy, and
[...] can be obtained only at the expense of the negentropy of some physical
system’.8 This relation can be written as:

I � N, (6.46)

although the quantity I +N is not conserved, but can decrease in time as shown
by formula 6.45.

This last formula establishes the conceptual connection with Brillouin’s torch.
The non-equilibrium situation of the hot filament and the cold gas is a state of
non-maximal entropy. Left to itself, the filament will radiate its excess energy
into the gas, until thermal equilibrium has been achieved. As long as equi-
librium has not been achieved, the total system has an amount of negentropy
which can be converted into information. Because the system is not in its lowest
negentropy (highest entropy) state, the demon can get information about the
system – but only at the cost of lowering the negentropy, or in other words,
raising the entropy. The somewhat plausible idea that information can only be
obtained in a non-equilibrium situation, in which case the entropy increase will
always keep up with the amount of information gained, is half of the physical
intuition underlying Brillouin’s ideas about negentropy. It will be discussed
in subsection 6.3.1. The other half is the idea that, given enough information
about the system, we can lower its entropy: information can be used to break
the second law. This will be discussed in subsection 6.3.2.

But Brillouin wants to do more than point out these ideas; he wants to
supply us with a rigourous proof of formula 6.45. He wants to show that the
acquisition of information always implies a corresponding entropy increase; not
just in the case of his carefully analysed torch, but in every case conceivable. I
have already leveled some criticisms against this proof: it equates two different
definitions of entropy, one of which is very hard if not outright impossible to
understand physically, and its use of quantities like ∆S0 defies the imagination.
But let me point out some additional problems.

8[8], p. 154.
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6.2.4 Critique of Brillouin’s proof

What elements enter his proof as premisses? Only three: a definition of infor-
mation in terms of the number of possible cases; a definition of entropy in terms
of the number of possible cases (whatever they may be); and Carnot’s principle
– also know as the second law of thermodynamics.

But wait – the second law of thermodynamics enters as a premiss? Indeed
it does, which disqualifies Brillouin’s proof as an exorcism of Maxwell’s Demon.
It is hardly surprising that one can prove that measuring and making use of
information cannot lower the entropy of the world, if one uses as premiss that
one cannot lower the entropy of the world at all. As Earman and Norton (1999
[11], p. 9) point out, Brillouin’s proof exorcism succeeds because he assumes
what he wishes to prove - but that means that it fails.

There is another task which might be performed by the proof, even though it
fails as an exorcism: providing insight in an interesting connection between en-
tropy and information. But it does not carry this task to a successful completion.
It is true, of course, that the mathematical equalities between I and S which he
writes down at the beginning of his analysis hold. But his S is not a measure
of the entropy; in fact, it is totally unclear what the ‘number of possible states’
of a system is, and thus what S is supposed to mean. If ‘the number of possible
states given some information’ is meant, the connection between information
and S is clear – but S becomes an epistemic notion rather than an indicator
of interesting phenomena. If, using a line of thought going back to Boltzmann,
we speak of ‘the number of possible microstates given the macrostate’, there is
a clear connection with the Boltzmann entropy; unfortunately, it is hard to see
what this has to do with information. Yes, all the information we can get about
a system with macroscopic measurements is in which macrostate it is; but we
certainly do not wish to limit the demon to macroscopic measurements! I admit
that I cannot imagine a way to interpret Brillouin such that I is an acceptable
measure of information and S one of physical entropy. I do not think Brillouin
has provided us with a compelling reason to believe information and entropy to
be closely linked.

The possibility that a better exposition of Brillouin’s basic ideas would give
us this compelling reason remains. There is, however, one very deep reason to
be worried about Brillouin’s analysis and despair of the possibility of recast-
ing it in a better form. It is the fact that physical reality hardly enters into
it. Is it not strange to believe that a link between information-gathering and
information-using processes on the one hand, and between temperature, heat
and work on the other, can be shown to exist without considering which kind of
processes can take place in our world and how they are connected with temper-
ature and other thermodynamical quantities? Suppose that the original demon
were not confronted with any background radiation, and could use a very re-
liable detection-mechanism which involved arbitrarily low amounts of energy
exchange. Surely it could gain a lot of information without raising the entropy
of the gas or itself – notice that it can stay at an arbitrarily low temperature,
since it does not exchange energy with its surroundings. But when Brillouin
links entropy and information, background radiation and detection mechanisms
play no role whatsoever. In fact, no physical considerations come into it. My
suggestion is that he is playing an almost trivial game of definition, and forgets
to look at the physics which is really relevant. Such a strategy cannot possibly

85



be a success.

6.3 Lessons of measurement and information

As a whole, Brillouin’s attempt to formulate a generalised Carnot principle in
terms of information and negentropy must be judged a failure. His discus-
sion does not, I believe, establish a deep link between information theory and
thermodynamics. Nevertheless, it does draw attention to two interesting ideas
concerning information, which I wish to distill from his remarks – as the gold
seeker labouriously sifts particles of gold from the mud.

6.3.1 Entropy of measurement

Brillouin’s analysis of Maxwell’s Demon showed that a torch which emitted
black-body radiation is a tool which no self-respecting demon can use. But
why would such a statement be generalisable to all measurements? Underly-
ing it is perhaps the following idea: “Information can only be obtained in a
non-equilibrium situation; but in a non-equilibrium situation, there must be an
ongoing entropy increase. This increase is always bigger than the entropy de-
crease that can be created with the information gained.” If we use the terms of
Brillouin: “Information can only be obtained by lowering the negentropy of a
certain system – for instance, the negentropy readily seen to exist in the case of
a cold gas and a hot filament. This negentropy cost defeats the demon, as it is
always higher than the entropy reduction he can create with the information.”
Is it true that acquiring information is only possible by using up some amount
of negentropy? Let’s split this question into two: is it possible to do a measure-
ment without using an amount of negentropy? And, is it possible to make the
measurement apparatus that does this a reliable device? I think the answer to
the first question must be a firm ‘yes’, whereas the answer to the second is less
clear but probably negative.

Consider the demon I described which uses a source of radiation at the same
temperature as the gas, but with a characteristic peak in intensity at a low
frequency. It has been shown that there is simply no entropy increase associated
with the detection of an atom using this device. The problem is rather, as I
pointed out in subsection 6.1.4, that the detection device using these photons
would be subject to thermal fluctuations which defeat it. So it is possible to
do a measurement; it is just not possible to do it reliably. This may seem an
academic point, but it clarifies the fact that the entropy cost of measurement is
not so much an intrinsic property of measuring, as it is a result of the need to
differentiate true information from thermal fluctuations.

Let me spell this out again, for it is an important point. Suppose the detect-
ing device has two energy levels, E = 0 and E = ε. It is at a temperature T ,
in thermal equilibrium with the surroundings,9 so the respective probabilities
of the lower and the higher energy level stand in the proportion 1 : e−ε/kT .
If the detecting device is to be reliable at all, the energy of the higher level

9Remember that it is a fundamental assumption of the entire approach I am discussing
that the demon is a system describable with the same kind of temperature as its surroundings.
Combined with the inefficient cooling assumption, this implies that it will – after some time
– come to be in thermal equilibrium with those surroundings.
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must be given by ε � kT . We also know that two systems in thermal equilib-
rium exchange, through fluctuations, amounts of energy of order kT . But the
detector receives larger amounts of energy from the object which supplies the
‘negentropy’ to do the measurement (the filament, for instance): so there is a
heat transfer to the detector. Thus, the demon heats up and endangers its own
operation.

This, I think, captures the truth contained in Brillouin’s idea of the entropy
cost of measurement as expressed in his formula N � I: if we wish to do
reliable measurements in order to obtain reliable information, the detector must
be heating up. It is essentially the insight arrived at in section 6.1, cast into the
form of a potentially misleading terminology. Brillouin does not succeed to prove
the second law without assuming the fundamental assumption of subsection
5.3.1, and therefore, he does not succeed in invalidating the conclusions of Part
I.

6.3.2 Information and entropy

If Maxwell’s Demon had a lot of information about the system on which it
has to work, it could work without a problem. This has already been pointed
out in section 2.4: if a shutter is programmed to open and close at specific
times, there are always some possible initial conditions of the gas for which
that sequence is exactly right. If the gas begins in that initial condition, the
demon will work. Conversely, for every initial condition of the gas, there is a
program which will create the desired reduction of entropy.10 In a sense, then,
having information about the system (knowing its initial condition) enables us
to program the shutter in such a way that it operates as intended.

There is a distinction to be made between having the information ‘in ad-
vance’ or gaining it ‘through measurement’. A pre-programmed demon can be
said to have the information in advance, but it only works on a very specific set
of initial conditions. Such demons are not fit to be called ‘Maxwell’s Demon’, we
judged earlier. We are therefore interested in demons which, so to speak, start
with an open mind about the initial condition of the gas, and gain information
about its true state by doing measurements. If a demon can obtain information
about the system’s state in this way, it can program the shutter accordingly and
lower the gas’s entropy. In this way there is a clear link between information
and entropy. But to obtain reliable information, the demon must do accurate
measurements, which involve an entropy cost as discussed in the last subsec-
tion. It is harder to show that this costs outweighs the benefits in all possible
situations, but the present chapter contains arguments which make this result
plausible in the case of the temperature-demon. Other demons may follow suit
when investigated carefully.

So in the end the real, physical connection between entropy and information
comes down to the ability to do accurate measurements. The information-
account of the demon’s failure gives us, as far as I can see, no insights which
were not already contained in the measurement-account; which in turn was
only an extension of the fluctuation-account. Specifically, the mathematical

10This is not quite true. For some initial conditions, almost no gas molecules may come
near to the hole at all, no matter how long one waits. This set of initial conditions is assumed
to be of negligible size.
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equations of Brillouin and others are highly misleading, as they equate very
different conceptions of entropy without an adequate justification.
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Chapter 7

Erasure: the new paradigm

In the preceding chapter I argued that Brillouin’s attempt to pinpoint a con-
nection between measurement, information and entropy was not a success. My
diagnosis is that his concrete analysis of measurements using a hot torch is im-
portant because it reminds us of the energy exchange that has to take place
between any measuring device and its surroundings. That some exchange has
to take place is clear; that it has to be so big that it defeats the demon only
follows when we make the assumption that every part of the demon and its
surroundings is a canonical thermodynamical system. In connection with this,
I have suggested that the resolutions of the Szilard-engine and related machines
are best sought within the fluctuations-approach. Because of the sensitivity
which the measuring instrument must necessarily possess, it either fluctuates
wildly and uncontrollably, or it must use entropy-creating sources of energy like
Brillouin’s filament. In my opinion, there is neither need nor justification for
exorcisms which link information processing and entropy in any way but that
which I have just described.

This is a minority position. Over the last decades a paradigm has emerged in
demonic studies wherein information-processing takes centre stage in exorcisms.
This new approach was initiated by Rolf Landauer and staunchly defended by
Charles Bennett. Its central claim is that information can be gained without
dissipation, but that the demon is defeated in a further stage of its operation:
when it resets its memory of the measurement in order to complete the cycle it
has to go through. Information erasure must always involve increase of entropy;
and this increase always compensates any entropic benefits that one may expect
to gain from the measurement done.

In this chapter, we will first look at Landauer’s thesis that information era-
sure leads to entropy increase, and the way in which his principle has been used
to exorcise demons. Then we will look into two kinds of proofs of Landauer’s
principle. The first are explicitly thermodynamical, and are found to be based
on the fundamental assumption of subsection 5.3.1. The second try to define
a link between information and entropy, an attempt which fails. At best, the
proofs of the second class reduce to the State Space Contraction argument of
chapter 3. We then discuss an argument by John Norton which tries to show
that all attempts to prove Landauer’s principle using anything like SSC make
a fundamental mistake. The final conclusion will be that the erasure-account of
exorcism is not particularly enlightening.
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7.1 Information erasure

7.1.1 Landauer’s principle

Landauer (1961, [17]) first claimed that information erasure, the resetting of
a physical memory to a chosen initial situation, is necessarily accompanied by
an increase of entropy. A computer-scientist working for IBM, Landauer was
interested in dissipation in computing devices. It had been suggested that every
step in a computation generated heat, thus increasing the temperature and the
entropy of the computer. According to Landauer, however, every computational
step can – in principle – be done in a dissipationless way, except for those that
are logically irreversible.

A computational step is reversible if its input can be reconstructed from its
output. The negation is reversible: if the result of a negation is 1, the input
was 0; if it is 0, the input was 1. An AND-operation is not reversible: its output
is merely one bit, from which its two input bits can never be reconstructed. It
is possible to do every computation in a logically reversible way if a sufficient
amount of memory is available. In the case of the AND-operation, which takes
two bits as input, one would need three bits of output: the first containing the
result of the AND-operation, the other two containing for instance the original
bits. From these it would be trivial to recreate the input: hence, the augmented
AND-operation is logically reversible.

At the end of such a computation, if the computer is supposed to work in a
cycle, it should erase its memory. It can easily be seen that this is a logically
irreversible step. After erasure, the memory is in one predesignated state, per-
haps all zeroes. The erasure procedure maps every state in which the memory
could possibly be onto this ground state, so the state before erasure cannot be
calculated from the state after erasure. Erasure is logically irreversible.

According to Landauer, there is a connection between logical irreversibility
and entropy increase. In particular, he asserts

Landauer’s principle: The erasure of one bit of information is accompanied
by a minimum average entropy increase of kT ln 2.

To see the initial plausibility of the idea that logically irreversible operations
must generate entropy, imagine a particle in a double well potential, where
the two minima are labeled ZERO and ONE. Between the minima is a potential
barrier of height akT , with a � 1 to ensure that the memory is reliable. The
temperature T is that of the bit’s environment – the computer, say – which is
thought of as an infinite heat bath. Suppose we wish to apply the operation
‘Restore to ZERO’, which takes the particle to ZERO no matter where it is now.
There are two possibilities: either we apply a different force on the particle
depending on its current position, or we apply the same force to the particle
independently of its current position.

In the first case, dissipation is not necessary. If the particle is at ZERO already,
we simply apply no force at all. If it is at ONE, we can apply a force to push
it over the boundary which separates the two minima, then apply a retarding
force so the particle will not have any kinetic energy left when it reaches ZERO.
During the particle’s descent we can regain all energy we put into it during its
ascent, and there has been no increase of entropy.
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But this first case is not an example of true memory erasure. A computer
which resets its memory must do this in a manner independent of the exact data
being handled. For suppose the erasure procedure to be sensitive of the data
it works on. This means that the device that carries out the erasure must take
one of two possible courses of action, depending on the bit it is erasing. But
then the erasing device is itself a memory, the path it takes exactly representing
the original bit of data. This means that at the end of the resetting operation,
the erasing device itself contains the information we wished to erase, and must
itself be reset – perhaps by some second device, and we end up with an unending
chain of erasing devices.

Can memory erasure be done in a dissipationless manner? Reconsider the
way in which we brought a particle from ONE to ZERO. First we applied a force
to get it to the top of the potential barrier. At that point is has a potential
energy akT . Then, as it moves downwards towards ZERO, the potential energy
is changed into kinetic energy, which in turn drops as the particle moves against
the force – now applied the other way – so that it comes to rest at the bottom
of the well. What happens if we apply this same force to a particle already at
ZERO? First, it will climb the leftmost infinite potential barrier to a height akT .
Then the force towards the left is changed into a force towards the right, and
the particle will have gained an amount of kinetic energy higher than akT when
it reaches ZERO; it will spend the rest of dissipationless eternity oscillating back
and forth between ZERO and ONE. The erasure is clearly not successful.

In a dissipationless environment there is no force which erases the informa-
tion yet can be applied to the particle regardless of its current position. This
is true because in a non-dissipative system governed by Hamiltonian equations
of motion, volume in state space is conserved. The set of particle-states corre-
sponding to ZERO or to ONE cannot be mapped onto the set containing only the
states corresponding to ZERO in a conservative way. Such a mapping would be
a compression of the accessible volume in state space by a factor of two. This
is impossible without dissipation.

In the example we discussed, the amount of energy to be dissipated is akT .
The amount which has been accepted as the theoretical minimum average dis-
sipated energy for any bit-erasure whatsoever is kT ln 2, with an associated
entropy increase of k ln 2. Alleged proofs of this minimum entropy increase will
be discussed in sections 7.2 and 7.3. First, we will describe how Landauer’s
principle can be used to exorcise the demon.

7.1.2 The erasing demon

We return to the Szilard engine described in subsection 6.1.1. Using the one-
molecule gas to push a piston and raise a weight, the demon is able to extract an
amount of heat kT1 ln 2 from a heat bath at temperature T1, transforming all of
it to work. This process lowers the entropy of the heat bath by k ln 2, seemingly
without raising the entropy of anything else in the world. Szilard claimed that
measuring the position of the particle has an intrinsic entropy cost of k ln 2
associated with it, which saves the second law. The advocates of Landauer’s
principle deny that measurement generates entropy: according to them it is a
logically reversible transformation which therefore can, in principle, be carried
out without any entropy cost. The demon is defeated in a different way. After
it has made a measurement, the memory of the demon contains the result of the
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measurement. This is one bit of information: either the particle is on the left or
it is on the right. The demon must erase this bit at the end of his cycle. And
this is where Landauer’s principle comes in: erasing this bit is accompanied by
an entropy increase of k ln 2, exactly enough to save the second law from the
demon.

One may wonder why the demon cannot simply forgo erasing its memory-
bit, and let it be overwritten by the next measurement it makes. The process
of overwriting, however, is effectively an erasure. Suppose the demon finds the
particle in the left half of the box. Then it has to perform the operation ‘Set
to LEFT’, regardless of its current state. This is the equivalent of an erasing
procedure, and carries the same entropy cost. There are no two ways about
it: the demon must reset its memory, so if Landauer’s principle is correct, it
constitutes an effective exorcism of the demon. But is it correct? Most of the
rest of this chapter will be dedicated to answering this question.

7.1.3 Exorcist XIV: the dilemma

In the second part of their critical assessment of the Maxwell’s Demon litera-
ture Exorcist XIV: The Wrath of Maxwell’s Demon (Earman & Norton 1999,
[11]), John Norton en John Earman argued vehemently against the information-
theoretic exorcisms using Landauer’s principle.

Our thesis in this paper is that information theoretic analyses pro-
vide largely illusory benefits: they are either essentially trivial re-
statements of earlier presuppositions or posits without proper foun-
dation.1

To ‘sharpen’ the thesis, they formulated a dilemma. Any information-
theoretic exorcism must choose between two horns of the dilemma: the ‘sound’
horn and the ‘profound’ horn. Consider the combined system of the Demon and
the system on which it is to operate. Either this combined system is a canonical
thermal system, or it is not. If it is, the second law obtains for the combined
system, so the Demon cannot succeed and is defeated trivially. No discussion of
information erasure is necessary, and the exorcism is sound, but trivial rather
than profound. If, on the other hand, the combined system is not a canoni-
cal thermal system, then the information theoretic exorcisms might be able to
become profound: they would have to prove a new and independent principle
strong enough to exorcise Maxwell’s Demon. Unfortunately – so say Earman
and Norton – no such proof can be found in the large quantity of material writ-
ten about Landauer’s principle and related subjects. Thus, all discussion to
date fail because they are either unsound (not proven), or not profound (trivial
extensions of earlier assumptions).

Before we can assess the plausibility of this dilemma actually obtaining, we’ll
have to look at a number of proposed proofs for Landauer’s principle. These can
be divided into two classes: those based on thermodynamics alone, and those
which invoke principles of information or volume in state space which are not
found in orthodox thermodynamics. It is my contention that these two classes
correspond, at least in a rough an ready way, to Earman and Norton’s sound

1[11], p. 2.
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and profound horns of the dilemma. We will look at the first kind of proof in
section 7.2, at the second kind in section 7.3.

7.2 Proofs of the first kind

7.2.1 Landauer’s proof

The first kind of proof concerns itself with thermodynamical models only, with-
out formulating and trying to prove deeper lying, completely universal principles
connecting information and the Demon. Nevertheless, according to Leff and Rex
(2003, [20], p. 34.) they do provide the answer to the dilemma of Earman and
Norton. Earman en Norton were “evidently unaware of the proof of Landauer’s
principle by Shizume (1995)”, and their work “also preceded the proofs (classical
and quantum mechanical) by Piechocinska (2000)”. We will shortly investigate
these alleged proofs, and wonder whether they are sound, and whether they are
profound. But let us start by taking a look at the original article by Landauer.
Rolf Landauer’s 1961 paper ([17]) contains a discussion of a particle in a bistable
potential well. Memory erasure is effected by creating a potential difference be-
tween the two minima and letting the Brownian motion of the particle take it
to the side with the lowest potential. The argument for Landauer’s principle –
not yet so called, of course – is surprisingly short and simple:

Consider a statistical ensemble of bits in thermal equilibrium. If
these are all reset to ONE, the number of states covered in the en-
semble has been cut in half. The entropy therefore has been reduced
by k loge 2 = 0.6931k per bit. The entropy of a closed system, e.g.,
a computer with its own batteries, cannot decrease; hence this en-
tropy must appear elsewhere as a heating effect, supplying 0.6931kT
per restored bit to the surroundings. This is, of course, a minimum
heating effect, and our method of reasoning gives us no guarantee
that this minimum is in fact achievable.2

Immediately evident is that Landauer assumes the validity of the second law
of thermodynamics: ‘the entropy of a closed system cannot decrease’. If used as
an information-theoretic exorcism it evidently chooses the ‘sound’ horn of the
dilemma, renouncing all claims to profoundness. Unless Landauer’s principle is
supported by arguments which do not assume what an exorcist wishes to prove
– that the second law is safe from demons – it cannot be used in a profound, in-
teresting, or even non-trivial way to exorcise the demon. The task that Shizume
and Piechocinska took upon themselves was to furnish such arguments.

7.2.2 A thermodynamical proof

Shizume 1995 ([27]) aims to show that for “a system including a particle making
the Brownian motion in a time-dependent potential well” Landauer’s principle
holds rigourously “if the random force acting on the particle is white and Gaus-
sian”. Piechocinska 2000 ([24]) derives Landauer’s principle microscopically “for
a classical system with continuous space and time, with discrete space and time,

2Landauer 1961, [17]; reproduced in Leff and Rex 2003, [20], p. 152.
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and for a quantum system”. Both articles are quite dense, and it seems of little
use to recapture all arguments here, especially since the details are not of great
importance to us. Therefore, we will only look at Barbara Piechocinska’s first
proof, for a classical system with continuous space and time.

We have a double well potential, symmetric around x = 0 described by the
function U(x). The state ONE corresponds with x > 0, and the state ZERO with
x < 0. We are going to look at an ensemble of bits, and assume that they are in
contact with a thermal reservoir of temperature T . Then, the initial ensemble
can be described by:

ρI(x, p) =
1
Z

exp{−β[U(x) +
p2

2m
]}, (7.1)

where β = 1/(kBT ). The ensemble after erasure will be:

ρF (x, p) =
{

2
Z exp(−β[U(x) + p2

2m ]) for x > 0
0 for x < 0.

(7.2)

The total system – bit and heat reservoir – is isolated and classical, so it evolves
according to the Hamiltonian

H(x, p, ~xT , ~pT , t) = H(x, p) + HT (~xT , ~pT ) + Hint(x, p, ~xT , ~pT ), (7.3)

where the time t is suppressed in every term on the right side of the equation,
H(x, p) denotes the Hamiltonian of the bit, HT that of the heat reservoir, and
Hint is the interaction term. We define ζ = (x, p, ~xT , ~pT ). Then ζ(t) is a
trajectory that described the evolution of all degrees of freedom of a combined
system. Assume the erasure process takes a time τ , and define ζ0 = ζ(0) and
ζτ = ζ(τ). We now define the function Γ:

Γ(ζ0, ζτ ) = − ln[ρF (xτ , pτ )] + ln[ρI(x0, p0)] + β∆E(~x0
T , ~p0

T , ~xτ
T , ~pτ

T ), (7.4)

where ∆E(~x0
T , ~p0

T , ~xτ
T , ~pτ

T ) = HT (~xτ
T , ~pτ

T ) − HT (~x0
T , ~p0

T ) is the change in the
internal energy of the heat reservoir. Γ has no easy intuitive meaning, it is just
so defined for computational purposes. Because the evolution is deterministic,
ζτ is actually a function of ζ0, and Γ can therefore be seen as a function of ζ0

alone.
In order to prove Landauer’s principle, we must find an inequality about the

average heat released into the environment in a transition from the ensemble
ρI to ρF . To get there, we will compute 〈exp(−Γ)〉, where the angular brackets
denote the ensemble average.

〈exp(−Γ)〉 =
1

ZT

∫
ρI(x0, p0) exp

(
−HT (~x0

T , ~p0
T )

kBT

)
× exp(−Γ)dζ0 (7.5)

=
1

ZT

∫
ρI(x0, p0)

ρF (xτ , pτ )
ρI(x0, p0)

× exp
(
−HT (~x0

T , ~p0
T )

kBT

)
× exp

(
HT (~x0

T , ~p0
T )

kBT
− HT (~xτ

T , ~pτ
T )

kBT

)
dζ0 (7.6)
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=
1

ZT

∫
ρF (xτ , pτ ) exp

(
−HT (~xτ

T , ~pτ
T )

kBT

)
dζτ (7.7)

=
ZT

ZT
= 1. (7.8)

We changed the integration variable from dζ0 to dζτ , but because the evolution
is Hamiltonian the associated Jacobian is 1. We now have 〈exp(−Γ)〉 = 1, which
implies, because of the convexity of the exponential function:

−〈Γ〉 ≤ 0. (7.9)

Explicitly, this becomes:

〈ln[ρF (xτ , pτ )]〉 − 〈ln[ρI(x0, p0)]〉 ≤ 〈β∆E〉. (7.10)

If we put the distribution functions of formulae 7.1 and 7.2 into this equation,
and take several mathematical steps which I shall spare the reader, we arrive at

ln(2) ≤ β〈∆E〉. (7.11)

We assume that the interaction energy is negligible, so that we can write the
law of conservation of energy thus:

W = ∆E + ∆EB , (7.12)

where W is the work done in the combined system, ∆E is the change in internal
energy of the heat reservoir, and ∆EB is the change in internal energy of the
bit. Because U(x) is symmetric, erasure will not change the average energy of
the bit: 〈∆EB〉 = 0. So, equations 7.11 and 7.12 together give us:

kBT ln(2) ≤ 〈W 〉. (7.13)

The work performed on the combined system, which is the total heat added to
the heat reservoir, must on average be at least equal to kBT ln(2) per bit of
information. We have derived Landauer’s principle.

7.2.3 Critical discussion

Deriving Landauer’s principle is quite a feat. Two questions of the highest
importance must be answered about the proof presented in the previous section:
Is it sound? And what are the presuppositions which are needed to derive it?
We will tackle the second question first. The great worth of Piechocinska’s
article lies not only in her elegant proof of Landauer’s principle, but also in her
explicit statement of the presuppositions needed to derive it. She identifies the
following assumptions:

1. Our system is classical.
2. The memory state is a symmetric double potential well where

the states “zero” and “one” have the same energy before and
after the erasure.

3. The input is randomly distributed (the number of “zeros” and
“ones” is equal and there are no correlations between the bits).

4. During erasure the system is in contact with a thermal reservoir
with initial states chosen from a canonical distribution.

5. The interaction term in the Hamiltonian is negligibly small.3

3[24], p. 062314-6.
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Of these, the first is uninteresting, since it delimits the domain of physics to
which we restrict ourselves. The second is a description of the memory-device
under consideration; it threatens the generality of the proof. But I know of
no reasons why the equal-energy bistable potential well would be particularly
misleading. So while it is good to keep in mind that Piechocinska’s proof is less
than completely general, if successful it is nevertheless remarkable. The third
assumption actually says that the ‘bit’ indeed contains one bit of information –
unequal numbers of zeroes or ones, or correlations between bits, would diminish
the information content of the system to less than a bit per double potential
well. Since Landauer’s principle states that the erasure of one bit of information
must be accompanied by an entropy increase of k ln 2, assuming that we are
actually talking about one bit of information is making not a restrictive, but a
necessary, assumption. The fourth is the most significant assumption, to which
we will return shortly. As to the fifth, not neglecting the interaction energy will
change formula 7.12 to

W = ∆E + ∆EB + ∆Eint, (7.14)

and therefore formula 7.13 to

kBT ln(2) ≤ 〈W −∆Eint〉. (7.15)

If ∆Eint is negative – that is, if the interaction energy is higher before than
after erasure – Landauer’s principle can be broken. But it is actually hard to see
why it matters much to Piechocinska’s discussion whether ∆E, the change in
internal energy of the heat bath, is furnished by the environment doing work, the
interaction energy decreasing, or some combination of the two. If ∆E changes
by at least kBT ln 2, this counts as an energy of kBT ln 2 being dissipated into
the environment of the bit. And this conclusion is already reached in formula
7.11. I conclude that assumption 5 is not crucial to Piechocinska’s purposes.

That leaves assumption 4 as the most important one. “During erasure the
system is in contact with a thermal reservoir with initial states chosen from a
canonical distribution,” she writes. But actually it is a little stronger: “During
erasure the system is in contact with nothing but a thermal reservoir obeying the
canonical distribution, since the combination of the two follows a Hamiltonian
evolution”. One may wonder how external work can be done upon the system
if it is completely isolated, but we will cover that minor inconsistency with the
cloak of charity. It is more important to recognise that the stronger version
of assumption 4 is simply a guise for the extended fundamental assumption of
subsection 5.3.1; and the extended fundamental assumption assumed all the
contingent facts I have been pointing out in Part I. Barbara Piechocinska, then,
has produced a beautiful proof of Landauer’s principle, but only at the cost of
making the extended fundamental assumption. Her proof is sound, but only
profound within a limited context. It cannot be hailed as a general proof of the
non-existence of Maxwell’s Demon.

7.3 Proofs of the second kind

It is now time to turn to a second kind of proof, which makes more explicit
use of general statements on information and its relation with heat or entropy,
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and relies less on pure thermal physics. No single argument for the connection
between information erasure and the defeat of Maxwell’s Demon has been ac-
cepted by all proponents of Landauer’s principle. I will therefore present three
slightly different positions. First, Bennett 1982 ([2]) bases Landauer’s principle
on the idea that a compression of the occupied volume in state space of a system
must be accompanied by an entropy increase elsewhere. Then, Bennett 2003
([6]) introduces the distinction between information bearing degrees of freedom
and non information bearing degrees of freedom, which he exploits to justify
Landauer’s principle. But he also, in silent conflict with his earlier remarks,
interprets entropy as a measure of ‘subjective’ knowledge. I will argue that the
underlying idea of these attempts at exorcism is the State Space Contraction
argument of chapter 3, which was refuted in Part I of this thesis. Embellishing
it with the concept of information does not help; adding the notion of knowledge
to the mix only serves to dissolve the discussion into incoherence.

7.3.1 State space compression

The simplest argument for Landauer’s principle appears in part 5 of Charles
Bennett’s 1982 article ([2]). He asks us to imagine Szilard’s engine, as described
in subsection 6.1.1. A single molecule flies about in a container which is always
in contact with a heat bath at temperature T . The container has two sides, a
left side and a right side, which have the same size. We will call the part of
the molecule’s state space accessible to it V . V = VL + VR, where VL and VR

correspond to the left and the right side of the box, respectively. The demon’s
memory is in a single state, S, at the beginning of the cycle. It’s memory has
two other states, L and R, for a total of three possible states. We will use the
notation (X, Y ) to designate the part of the total state space spanned by X in
the molecule’s state space and Y in the memory’s. Szilard’s engine now operates
in the following five steps.

1. The molecule wanders freely through the container, while the demon’s
memory is in state S, indicating that it does not know where the molecule
is. The system is in (V, S).

2. A partition is inserted into the container, effectively trapping the molecule
in either the left or the right half, with a 50% change of either. The system
is still in (V, S), so there is no change of volume in state space.

3. The demon performs a measurement on the particle to find out where it
is. If it is on the left side, the demon’s memory will be set to state L, if
it is on the right side, to state R. The system is now in (VL, L)∪ (VR, R),
which still has the same volume.

4. The demon uses his knowledge of the molecule’s position to put a piston
on the other side of the box, and raises the partition. The molecule will
now do work against the piston, until is expanded to its original volume
again, transforming kT ln 2 Joule of heat from the heat bath into work.
At the end of this phase, the molecule can once again be anywhere in the
container, but the demon’s memory has not yet been erased. The system
is in (V,L) ∪ (V,R), which is twice as big as the part of state space from
which it started out.
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5. In order to complete the cycle, the demon must reset its memory, which
implies a twofold compression of the occupied volume in state space. This
“cannot be made to occur spontaneously except in conjunction with a
corresponding entropy increase elsewhere. In other words, all the work
obtained by letting the molecule expand [in step 4] must be converted into
heat again in order to compress the demon’s mind back into its standard
state.”4

Bennett’s treatment of the Szilard engine in unproblematic, and his talk
about ensembles also makes sense in the light of our discussion of ensembles in
subsection 2.4.1. It shows that if a demon operates Szilard’s engine, its memory
erasure is equivalent to a compression of the ensemble’s volume in state space
by a factor two. But as a proof that memory erasure must be accompanied by
entropy increase, this story is still severely lacking. That compression of volume
in state space must be accompanied by an entropy increase is by no means clear.
That all the work obtained by letting the molecule expand must be reconverted
into heat is even less clear. What justification does Bennett offer for his claims?

Actually, he does not offer any justification. The nearest he comes to it is
by saying that “logically irreversible operations must be avoided entirely in a
ballistic computer, and for a very simple reason: the merging of two trajectories
into one cannot be brought about by conservative forces.”5 Barring the part
about ballistic computers, this reminds us of the way in which the State Space
Contraction argument used the Hamiltonian nature of the world as an argument
for demanding that volumes in state space remain conserved. Such reasoning
could be applied to Bennett’s argument as well. It would prove that if the
memory is erased, the volume in state space of some other system must be
increased. But this is far weaker than Bennett’s claim that memory erasure
must be accompanied by a corresponding entropy increase. To prove this latter
claim, we would need a definition of entropy which is relevant for purposes of
judging the demon, and a proof that this measure of entropy always increases
if the volume in state space of an ensemble increases. Neither can be found in
Bennett’s paper.

7.3.2 Information bearing degrees of freedom

Bennett 2003 ([6]) remedies the most apparent weaknesses of his earlier account
by creating a connection between information and a version of the State Space
Contraction argument. Just as there are macroscopic and microscopic degrees
of freedom in statistical physics, he notes, so can one speak about two sorts
of degrees of freedom in a computer. There are information bearing degrees of
freedom, IBDF, which are used to encode the logical state of the computation.
By design they are sufficiently robust that the computer’s logical state evolves
deterministically as a function of its initial value, regardless of small fluctuations
in the computer’s environment or its other degrees of freedom. These latter are
called non-information bearing degrees of freedom, NIBDF. By definition every
degree of freedom of the computer is either an IBDF or an NIBDF. We will
quote Bennett:

4[2], p. 307.
5p. 300.
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While a computer as a whole (including its power supply and other
parts of its environment), may be viewed as a closed system obey-
ing reversible laws of motion (Hamiltonian or, more properly for a
quantum system, unitary dynamics), Landauer noted that the logi-
cal state often evolves irreversibly, with two or more distinct logical
states having a single logical successor. Therefore, because Hamil-
tonian/unitary dynamics conserves (fine-grained) entropy, the en-
tropy decrease of the IBDF during a logically irreversible operation
must be compensated by an equal or greater entropy increase in the
NIBDF and environment. This is Landauer’s principle.6

In a few simple sentences, Bennett has connected information with entropy,
and proposed an elegant and simple proof of Landauer’s principle. Let us take
it apart one bit at a time.

First, the computer’s degrees of freedom are distinguished as either informa-
tion bearing or non-information bearing. For a typical memory device such as
we have seen in discussions of Maxwell’s Demon, this division is rather clear. It
does restrict the applicability of the erasure-approach to exorcism to the class
of systems for which the division between IBDF’s and NIBDF’s can be easily
drawn, but this is not necessarily a problem. It merely shows that Landauer’s
principle cannot be the final answer to questions of exorcism, and cannot be
used to banish every type of demon.

Second, the computer is seen as a closed system which is governed by Hamil-
tonian (or unitary, but this does not really matter) dynamics. It is then argued
that fine-grained entropy is conserved by Hamiltonian evolution, and that any
decrease of it in the IBDF’s must be compensated by a corresponding increase
in the NIBDF’s. This reminds us of SSC, see section 3.2, but with two major
differences. These differences will be commented upon in points three and five.

Third, instead of using volume in state space and the fact that this is con-
served, the argument uses the fine-grained Gibbs entropy and the fact that it
too is conserved. For the validity of the argument, this does not matter, but
Bennett wishes prove something about the non-occurrence of what I have called
‘anti-entropic phenomena’. The fact that the fine-grained entropy is conserved
or distributed among certain degrees of freedom implies in itself nothing about
phenomena, as has been argued in section 2.3. Using the word ‘entropy’ may
seem to make the discussion relevant for the demon, but until it has been shown
how the fine-grained Gibbs entropy in this argument hangs together with phe-
nomena, this relevance is not established.

Fourth, Bennett says that there must be “an equal or greater entropy in-
crease” as compensation. This is technically true but in practice misleading,
since the entropy increase is necessarily equal, never greater. It is, after all, con-
served. Since we know that the thermodynamical entropy can in fact increase,
this shows once again that there is a discrepancy between the fine-grained Gibbs
entropy and the thermodynamical entropy we would rather have. A malicious
interpreter might think Bennett tries to conceal this by the sly trick of changing
equality to ‘equal or greater than’. We are not malicious interpreters.

Fifth, instead of using microscopic and macroscopic degrees of freedom like
SSC, Bennett’s argument uses information bearing and non-information bearing

6[6], p. 502
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degrees of freedom. Unfortunately, where the microscopic/macroscopic distinc-
tion could easily be linked to the phenomenal definition of entropy (more energy
in the microscopic degrees of freedom means more heat), this is not so clear for
the IBDF/NIBDF distinction. Why would removing energy from information
bearing degrees of freedom to non-information bearing degrees of freedom imply
an increase of heat? Bennett recognises that it does not: “Typically, the entropy
increase takes the form of energy imported into the computer, converted to heat,
and dissipated into the environment, but it need not be, since entropy can be
exported in other ways, for example by randomizing configurational degrees of
freedom in the environment”.7 But if this is so, how does Landauer’s principle
defeat Maxwell’s Demon?

Sixth, if the problem that information and fine-grained Gibbs entropy as
such seem to have little relevance to Maxwell’s Demon is solved by equating
IBDF’s to macroscopic and NIBDF’s to microscopic degrees of freedom – and
some such step seems necessary –, we simply have SSC. The weaknesses of SSC
have been shown in chapters 3 and 4. If it is the core of the new erasure-
approach to exorcism, as I have stated when I presented it and as seems evident
from the present discussion, the erasure-approach cannot be judged a success.
It does not banish Maxwell’s Demon.

7.3.3 Subjective information

Several lines below his argument for Landauer’s principle which was discussed
in the previous subsection, Bennett makes a curious comment.

If a logically reversible operation like erasure is applied to random
data, the operation still may be thermodynamically reversible be-
cause it represents a reversible transfer of entropy from the data to
the environment [...]. But if, as is more usual in computing, the
logically irreversible operation is applied to known data, the oper-
ation is thermodynamically irreversible, because the environmental
entropy increase is not compensated by any decrease of entropy of
the data. This wasteful situation, in which an operation that could
have reduced the data’s entropy is applied to data whose entropy is
already zero, is [...]8

Somehow, according to Bennett, the thermodynamical properties of an oper-
ation depend on our knowledge. Yet surely, whether a demon can or cannot
operate has nothing at all to do with our knowledge about it or the gas on
which it is meant to operate? The only way to inject the concept of knowledge
into the story of the demon is by interpreting the ensemble of systems, as char-
acterised by the distribution function ρ(~x), as a measure of our ignorance about
the system. We do not know in which state a single system is, all we know is
that it has a certain chance of being in a certain state – knowledge which is
summarised in the function ρ(~x). So if we do not know what data we are going
to erase, ρ(~x) will be evenly distributed over all possibilities. Erasing this data
will decrease the fine-grained entropy of our memory device. But if we already
know what state the memory is in, if we already know the data, ρ(~x) will be

7[6], p. 502.
8[6], p. 502.
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completely concentrated in one point and the fine-grained entropy cannot be
lowered by memory erasure. But because the operation of erasure is identical
in both cases, the entropy it generates must also be the same. So if we erase
known data, we generate entropy without getting anything in return.

This reconstruction of Bennett’s reasoning at least explains his remarks; but
it cannot save them from heavy criticism. Most obviously, his claim that erasing
known data increases the total entropy must be rejected: the fine-grained Gibbs
entropy cannot increase. There are no two ways about it, it must always remain
constant. If there is no multiplicity in the IBDF’s, there cannot be an increase
in the NIBDF’s.

A second criticism concerns the paradoxical consequences that Bennett’s
view has. If we erase known data the entropy increases, no matter what the
actual data is. But the erasure process is not dependent on our knowledge,
so from a physical perspective our knowledge must be irrelevant: we just have
some data and a process (erasure) acting upon it. This cannot be physically
different from erasing unknown data, the only difference being that we do not
know what exactly is taking place. But physically, everything is the same: the
same processes are taking place, whether the data is known or unknown. So if
entropy increase depends on our knowledge of the data, this entropy cannot be
a physical quantity. And if it is not a physical quantity, it cannot have anything
to do with Maxwell’s Demon.

Thirdly, it seems pretty hard to argue for the view that our knowledge,
formalised as ρ(~x), must follow a Hamiltonian evolution. And finally, there
is a perfectly good reason why we must use ensembles in our discussion of
Maxwell’s Demon. We do not want it to be overly sensitive to initial conditions,
an argument which was developed in subsection 2.4.1. But that we do or do not
have knowledge about a certain system is not a good reason for using ensembles.
Our knowledge is nothing to the demon, and certainly not the reason he must
act on an ensemble instead of on a single system.

For these reasons, I conclude that interpreting the ensemble ρ(~x) as a mea-
sure of knowledge does not help the erasure argument against Maxwell’s Demon.
In fact, it only makes it very hard to understand the sound physical ideas be-
neath the misleading statements at the surface. Bennett is not alone in bringing
knowledge into the story. See Jeffrey Bub 2000, [9], for another example. It
is very amusing that Bub provides an argument (on page 6 of his article), us-
ing simple thermodynamical thought experiments with which one can hardly
disagree, that it is only erasing unknown information that must be accompa-
nied by entropy increase. This is the exact opposite of Bennett’s conclusion,
which suggests that Bennett’s approach to information, subjective knowledge
and entropy may be fundamentally confused. There does not seem to be much
hope for a deep argument for Landauer’s principle in this direction. All in all,
then, the exorcisms of the second kind are profound, but not sound – although
they do not presuppose the fundamental assumption, they do not prove the
non-existence of Maxwell’s Demon.

7.4 Too many notions of ‘ensemble’

In this section, we will look at a further important criticism of the erasure-
school of exorcism: John Norton’s claim that the arguments for Maxwell’s De-
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mon which rely on erasure implying a contraction in state space are based on
illegitimate assumptions. I will argue that his verdict is too harsh, and that a
confusion about which notion of ‘ensemble’ to use is the root of the controversy.

7.4.1 Eaters of the Lotus

In his 2004 article Eaters of the Lotus ([23]), John Norton claims that Bennett’s
argument of subsection 7.3.2 fails. Remember that Bennett argued that since
fine-grained entropy is preserved by Hamiltonian evolution, and the resetting of
a memory is a many-to-one mapping which decreases the fine-grained entropy
of the memory, the entropy of the external world must be raised during erasure.
We identified his argument as a somewhat misleadingly stated version of the
State Space Contraction argument, which, although a good argument, can be
countered effectively. But according to Norton Bennett’s ‘Many to One Map-
ping Argument’, MOMA from now on, fails because it makes an illicit use of
thermodynamical ensembles. It is not a good argument the presuppositions of
which can be successfully contested, it is a bad, confused argument.

Norton starts by telling us about the two different ways in which ensembles
can be constructed in statistical mechanics. I will quote him at some length:

One familiar way of doing this is to take a single component and
sample its state frequency through its time development. The prob-
ability distribution of the component at one moment is then recov-
ered from the occupation times, the fractional times the system has
spent in different parts of its phase space during the history sam-
pled. [...] Another way of doing it is to take a collection of identical
components with the same phase space – an “ensemble” – and gen-
erate a probability distribution in one phase space from the relative
frequency of the positions of the components in their own phase
spaces at one moment in time. [...] We might take the probability
distributions of one component at different times; or we might take
the probability distributions of many components from their phase
spaces. Carried out correctly, this form of the procedure is rather
trivial, since all the distributions are the same. In all cases, the re-
sult is a probability distribution in one phase space at one moment
that represents the thermodynamic properties of one component.9

It is important to note that Norton claims that the probability distribution
as a time-average of a single component and the probability distribution as
the description of an ensemble must be exactly equal – if the procedure is
carried out correctly. This is not so much a presupposition as a restriction on
what Norton accepts as legitimate “ensembles”: a legitimate ensemble is one in
which all components are described individually by the probability distribution.
The probability distribution the characterises the ensemble must also be the
time-averaged position in state space of every system in the ensemble.

With this idea firmly in place, John Norton goes on to criticise the use of
ensembles in exorcisms inspired by Maxwell’s Demon. It is a presupposition of
arguments such as Bennett’s that a memory in which unknown data is stored,
which thus has equal chances of being in a ONE or a ZERO state, is characterised

9[23], P. 14-15.
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by a distribution function which occupies a larger volume in state space than
that of a reset cell, which is in ZERO with certainty. If the memory is a one-
molecule gas in a partitioned box, the distribution function should range over
the part state space that corresponds to the ZERO side of the box and the part
of state space that corresponds to the ONE side. But if the memory is reset,
the distribution function should only range over the part of state space that
corresponds to the ZERO side.

According to Norton, this idea is wholly incoherent, because it makes use
of an illegal ensemble: an ensemble where some of the systems have a molecule
trapped on the ZERO side, and some have a molecule trapped on the ONE side.
If we sample the state frequency of one of the former systems through its time
evolution, we will get a distribution function confined to the ZERO-part of state
space; if we do the same for of the latter, we will get a distribution function
confined to the ONE-part of state space. And if we take the ensemble average,
we get a distribution function evenly spread out over both parts. Thus, the
distribution function read off from the ensemble is not equal to the time-average
of any system within the ensemble, and does not represent “the thermodynamic
properties of one component”. The ensemble is illicit, because it has nothing to
do with the physical reality of the single system or its thermodynamical state.

Adopting these kinds of ensembles even entails giving up the additivity of
entropy, claims Norton. For suppose we have a set of N systems in state ZERO,
and assume that the corresponding distribution function leads to a thermody-
namic entropy of S; the total entropy of this set is NS. We also have an equally
large set of systems in state ONE, which is just as big in state space as state
ZERO, such that the total entropy of this set is also NS. What happens if we
put the two sets together into a new ensemble? The new distribution function
will be spread out over a volume in state twice as big as the original one for
either set, so the entropy of each component becomes S + kB ln 2, and the total
entropy becomes 2NS + 2NkB ln 2, in direct contradiction with the additivity
of entropy.

MOMA uses these illicit ensembles, and needs to use them. It has to claim
that the volume in state space of a memory cell is twice as big before erasure as
it is after erasure. But this only seems to be the case if we use the illicit ensemble
of ‘random data’, the distribution function of which does not correspond to the
real thermodynamical state of the individual memory cell. If we think carefully,
we must recognise that before erasure the memory is one single state, and after
it is still in one single state, with exactly the same accessible volume in state
space. Quoting Norton:

Prior to erasure, the memory device is in state ZERO or it is in state
ONE (but not both!). After the erasure it is in state ZERO. Since the
states ZERO and ONE have the same volumes in phase space, there is
no change in phase space volume as a result of the erasure procedure.
A process of erasure that resets a memory device in state ZERO or in
state ONE back to the default state ZERO does not reduce phase space
volume in the sense relevant to the generation of thermodynamic
entropy! 10

10[23], p. 24; emphasis in the original.
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7.4.2 From MOMA to SSC

I think it is time to diagnose the sources of the controversy and find out whether
Norton’s criticism is correct. The main source is the use of different notions of
‘ensemble’ by different authors.

1. John Norton sees an ensemble as a set of systems which are identical in the
sense that they have the same time-averaged behaviour. An acceptable
ensemble is one in which the fraction of systems in a part P of state space
is equal to the fraction of the time that the systems spend in part P . With
this interpretation, there are no ensembles containing both memory cells
in state ZERO and memory cells in state ONE, because these do not have
the same time-averaged behaviour. MOMA is incoherent.

2. Bennett, Bub, and other exorcists see the ensemble as a measure of igno-
rance: only if we do not know what state the memory cell is in, may we
use the ensemble containing memory cells in both states. In this interpre-
tation, the ensemble is not illicit, but has a very clear interpretation. Un-
fortunately, as Norton points out, it is very hard to see why the ‘entropy’
thus defined would have anything to do with thermodynamics. MOMA is
coherent, but not valid.

3. If we interpret the ensemble as I suggested we do in section 2.4, it functions
as an indication of the class of systems we wish the demon to be able to
operate on. We need to use such an ensemble not as a matter of hard logic,
but because we do not wish our demon’s success to be excessively sensitive
to initial conditions of the system it encounters. With this interpretation
the ensemble used by MOMA is not illicit, and can be given thermody-
namical relevance in the way shown in chapter 3. MOMA becomes SSC,
which is coherent and valid – but makes questionable presuppositions, as
shown in chapters 3 and 4.

I conclude that Norton’s criticism of MOMA is correct insofar as many pre-
sentations by exorcists are concerned. But there is an interpretation of the
mixed ensemble which does not make it illicit, and does preserve the force of
MOMA by transforming it into SSC. Norton’s criticism is partly justified, but
not entirely correct.

7.5 The new paradigm’s failure

Is the application of Landauer’s principle the sine qua non of successfully ex-
orcising Maxwell’s Demon? This chapter leaves little doubt that the answer
to this question must be negative. We have seen that there are two classes of
proofs of the validity of Landauer’s principle: those which make the extended
fundamental assumption, and are thus sound but not profound; and those which
try to base Landauer’s principle on deeper grounds. These latter were either
incoherent or, where sense could be made of them, versions of SSC embellished
with the words ‘information’ and ‘erasure’. And not only could SSC be formu-
lated without using those notions or Landauer’s principle, it was also seen to be
an argument of little value for exorcists.
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The erasure-paradigm of exorcism is, then, not the most exalted of stages
in the history of mankind’s understanding of Maxwell’s Demon. Neither does
it contain the holy symbols or powerful enchantments needed to banish the de-
mon forever from this world. This does not mean it is wholly a failure: it’s
thermodynamical proofs, though not profound, nevertheless give insight into
the thermodynamics of computation; and arguments like MOMA draw inter-
esting parallels between the thermodynamics of computation and the question
of the second law’s contingency – even if they are, in and of themselves, not
strong enough to answer that question. We would do well to learn from Lan-
dauer, Bennett and their followers what we can, and then carefully unlearn the
confusion and false beliefs that may have come with that wisdom.
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Epilogue: Return of the
Demon

Saint Peter’s chambers in the Celestial Office. The Demon stands
in eager anticipation before a magnificent oaken desk behind which
Peter is seated. In the background, we see a gigantic door adorned
with a sturdy golden lock.

Saint Peter Well, that was quite a story, little demon. I find it remarkable
that you have not given up on the whole project, considering all
those scathing ad hominem attacks you suffered.

Demon Demons are strong and tough, and prideful besides. Giving up
would be an unbearable humiliation.

Saint Peter Yes, of course – and you know where that attitude has brought
your kind! “To bow and sue for grace, with suppliant knee, and
deify his power; that were an ignominy and shame beneath this
downfall,” or some such rant. I notice that you’re back in Heaven
anyway, which must have involved some kind of groveling!

Demon Looking slightly ashamed. “It’s better to reign in Hell than
serve in Heaven”, yes, yes, don’t speak to me about it. Very
little reigning done in Hell by the likes of me, I can assure you.
Nevertheless, I want to be neither in Heaven nor in Hell – I want
to go back to Earth. Has my story convinced you?

Saint Peter The Celestial Office has heard your case, and has reached a deci-
sion concerning your request. Takes a formal looking doc-
ument from the middle of a huge pile of identical-
looking forms. The exorcisms which we examined have too
many loopholes to hold out against the strength of your determi-
nation. If you wish, you may return to Earth.

Demon Great! You’ve done me a real favour, Pete!

Saint Peter Don’t expect a warm welcome, though. I’m not sure they really
want you back, down there.

Demon Winks. Then I will make them want me. Earth, I’m back!

Saint Peter grabs a huge key and opens the gate. Cackling with
only slightly malicious laughter, the Demon jumps through it.
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Conclusion

The tale of Maxwell’s Demon is a long and complex one, of which only a fraction
has been told in this thesis. But from this fraction, several morals have been
drawn. It is time to reiterate the main conclusions once more, and thus bring
our demonic story to an end.

A being is a successful Maxwell’s Demon if it can create an anti-entropic
phenomenon with high probability and without endangering its own continued
operation. The non-existence of Maxwell’s Demon cannot be deduced from clas-
sical mechanics alone. Considerations of scales were seen to be very important
both in defining what the second law means within the context of classical me-
chanics, and in showing that classical mechanics cannot, in and of itself, prove
the second law. Maxwell’s Demon remains possible as long as it has not been
assumed that there is a lowest significant scale in nature.

All successful attempts at exorcism actually make this assumption, albeit
in the guise of the idea that every system must be described by a canonical
distribution function at temperature T – what I call the extended fundamental
assumption. The full significance of this assumption has not been appreciated by
the exorcists using it. The fluctuation-account of exorcism is sound, but based
on this assumption. The measurement-account can be seen as an insightful
extension of the fluctuation-account; as a fundamental theory postulating a deep
link between entropy generation and measurement, it fails. In the same vein, the
erasure-account using Landauer’s principle has a sound and an unsound side. If
based on the extended fundamental assumption, it provides a correct if limited
exorcism. But claims that there is an interesting link between information and
entropy on a deeper level do not hold up under scrutiny.

It is very hard to prove the second law on general principles, and certainly
it has not yet been done. This recognition is enough to deny the exorcists the
full victory they have ofttimes claimed. We must echo the words of Earman and
Norton:11 The Demon lives!

11[11], p. 25.
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Appendix A

Towards a generalised
second law

In this appendix, I will take a suggestion from subsection 4.2.4 and indicate
how a variant of the fine-grained Gibbs entropy can be used to formulate a
generalised second law. The aim is to make explicit considerations of scale, and
arrive at a second law which is supposed to hold independent of the contingent
facts identified in part I, and still be useful to physicists. I succeed only partly,
which explains the ‘towards’ in the title.

Let Ω = {. . . , Ω−1,Ω0,Ω1, . . .} be a set of sets, which designates a system.
The Ωn are sets of objects of a scale n, where higher n denotes bigger objects.
Thus,

Ωn = {On,1, On,2, . . . , On,m(n)}, (A.1)

where m(n) is the number of objects of scale n, and Oi,j is the j-th object on
scale i. Let K(Oi,j) be the kinetic energy of object Oi,j , calculated in the frame
of rest of the bigger object it is a part of.1 Then

Kn =
m(n)∑
j=1

K(On,j) (A.2)

is the total kinetic energy on scale n. Furthermore, P is the combined potential
energy of all objects – a scale-transcending notion – so that the total energy is

E = P +
∞∑

n=−∞
Kn. (A.3)

The first law of thermodynamics is then:

∆E = 0. (A.4)

We now define a state space for every scale, which is spanned by the position
and momentum vectors of every object on that scale. Thus

Γn =
m(n)⊕
i=1

(~qOn,i
, ~pOn,i

). (A.5)

1See subsection 3.1.1
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The total state space Γ is defined as

Γ =
∞⊕

n=−∞
Γn. (A.6)

Let ρ(~x) be a normalised distribution function on Γ, with the additional property
that it can be decomposed as follows:2

ρ(~x) =
∞∏

n=−∞
ρn(~xn), (A.7)

where ρn is a normalised distribution function on Γn. We define the entropy
on scale n analogously to the fine-grained Gibbs entropy of formula 2.2:

Sn = Sn[ρn(~xn)] = −kB

∫
Γn

ρn(~xn) ln{ρn(~xn)}d~xn. (A.8)

Additionally, we define the total entropy as:

S = S[ρ(~x)] = −kB

∫
Γ

ρ(~x) ln{ρ(~x)}d~x. (A.9)

It can easily be shown that the total entropy is equal to the sum of the scale
dependent entropies:

S = −kB

∫
Γ

ρ(~x) ln{ρ(~x)}d~x (A.10)

= −kB

∫
Γ

{
∞∏

n=−∞
ρn(~xn)} ln{

∞∏
n=−∞

ρn(~xn)}d~x (A.11)

=
∞∑

i=−∞
−kB

∫
Γ

{
∞∏

n=−∞
ρn(~xn)} ln{ρi(~xi)}d~x (A.12)

=
∞∑

i=−∞
−kB

∫
Γ/Γi

{
∏

n∈{N/i}

ρn(~xn)}d~x× (A.13)

∫
Γi

ρi(~xi) ln{ρi(~xi)}d~xi (A.14)

=
∞∑

i=−∞
−kB

∫
Γi

ρi(~xi) ln{ρi(~xi)} (A.15)

=
∞∑

i=−∞
Si. (A.16)

We can follow ρ(~x) through time, giving us the function ρ(~x, t). Assume that
this can still be decomposed into now time-dependent functions on the subspaces
of Γ which correspond to different scales:

ρ(~x, t) =
∞∏

n=−∞
ρn(~xn, t). (A.17)

2This is a very strong, but not a very crucial, assumption. We’ll come back to it.
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We now have the tools to formulate a generalised second law of ther-
modynamics:

Suppose D is a machine which, operating in a cycle on a system Ω, changes
every cycle with high probability the Kn in the following way:

a∑
n=−∞

KI
n <

a∑
n=−∞

KF
n , (A.18)

where F stands for ‘final’, and I for ‘initial’; and furthermore

∆Ka ≡ KF
a −KI

a < 0. (A.19)

Then with high probability

a−1∑
n=−∞

∆Sn ≈ −∆Sa > 0. (A.20)

If there is a smallest scale c, so that all Γi with i < c are empty and all Si

with i < c are zero, this condition cannot be met. As a consequence, if there
is a smallest scale, no machine can exist which with high probability, operating
in a cycle, can transform the kinetic energy of objects on this smallest scale to
energy on higher scales or potential energy. Given the contingent fact that there
are no tinyons, this reduces to the normal statistical version of the second law
of thermodynamics.

The idea behind the above formulation of the laws is as follows. Suppose
we make a machine which operates in a cycle and succeeds with high proba-
bility in changing the kinetic energy of random motion on a certain scale a to
kinetic energy on a larger scale, or to potential energy. This machine would
be a successful Maxwell’s Demon at scale a. What the generalised second law
claims is that this Maxwell’s Demon must increase the entropy (diversity of the
ensemble) at one or more scales beneath a. And as a consequence, if there are
no scales beneath a, there can be no Maxwell’s Demon at scale a.

It is important to notice the somewhat bizarre way in which we have used
the fine-grained Gibbs entropy in this law. The total entropy of the system, S,
remains constant if we allow only Hamiltonian time-evolutions – this was the
great problem of this measure of entropy. But the scale-dependent entropies Sn

do not have to remain constant. They measure the ‘diversity of the ensemble
at a certain scale’, but this diversity can be transformed from one scale to the
other. For instance, in normal dissipation processes both energy and ‘diversity’
is transferred from a higher to a lower scale. And as we have seen in chapters
3 and 4, because there are so many fewer degrees of freedom at higher scales
than at lower scales, diversity cannot be transferred to higher scales, but can
be transferred to lower one.

How does one go about proving this generalised second law? Obviously,
ρ(~x, 0) is to be interpreted as the initial ensemble of systems. Then, Hamilto-
nianism gives us that ∆S = 0, and thus that the sum of the Sn is constant.
Next, we must prove that if we exploit random motion of objects on scale a,
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then ∆Ka < 0 → ∆Sa < 0. Such an argument is produced in section 3.2.1,
where it is shown that volume in state space increase very fast with available
kinetic energy. Of course in general a change in kinetic energy says nothing
about volumes in state space (for instance, if you have only one degree of free-
dom, your kinetic energy can change but your volume will not), but for general,
‘random’ ensembles it does. A realistic ensemble for a hot gas will be spread out
across a much larger part of state space than that for a cold gas. We may now
conclude that if kinetic energy on scale a is transformed into ‘higher’ forms of
energy, ∆Sa < 0. Consequently, the sum over all other Sn must become bigger.
The generalised second law claims that at least part of this increase must be at
scales smaller than a. The elements needed for a proof of this further include a
demonstration, akin to that given in section 3.2.1, that the fraction ∆Sn/∆Kn

increases very rapidly with the number of relevant degrees of freedom on scale n,
which is 3m(n). If we then put in the assumption that m(a) �

∑∞
n=a+1 m(n),

the generalised second law will follow. For evidently, the loss of kinetic energy
at scale a implies a loss of entropy which cannot be balanced by increases of
kinetic energy at higher scales. Ergo, it must be balanced by increases of energy
at lower scales.

The present law has a few weaknesses which make it somewhat less than a
successful generalised second law. The first thing that will be noticed by readers
are the assumptions A.7 and A.17. It is not in general very plausible that the
ensemble ρ(~x) can be so decomposed, and it is certainly quite implausible that
it will remain in such a mathematical form under evolution. This might not be
a deep problem, as we can opt to define

ρi(~xi) =
∫

Γ/Γi

ρ(~x)d~xN/i, (A.21)

after which it may still be possible to prove that the total entropy is equal to
the sum of the scale-dependent entropies. I confess that I have not looked into
this mathematical problem.

A more fundamental weakness is that the law still needs two major assump-
tions, contingent given only classical mechanics, in order to be proved at all.
The first is that the world can be divided into scales. If this is not granted,
the whole formalism used just collapses. The second major assumption is that
m(a) �

∑∞
n=a+1 m(n), that there are much more objects (or degrees of freedom)

at scale a than at all higher scales combined. This furnishes the scale-asymmetry
which we absolutely need to get the second law of the ground in any form like
its original one. Yet a third major assumption, that m(a) �

∑a−1
n=−∞m(n), is

needed in order to have the normal second law follow from the ‘generalised’ one.
The generalised law here developed is still a contingent law, given only classi-

cal mechanics. By adding the two major assumptions noted above as ‘if’-clauses
to the law, it would become necessary, a consequence of classical mechanics and
considerations of ensembles and probabilities and such; but its connection with
the original second law would be very vague at best, its usefulness for thermal
physics negligible. There is a trade-off, a delicate balance, between usefulness
and lack of assumptions. Thermal physicists in the past have clearly opted to
put more weight on the former, and I tend to agree with them. Generalising
the second law may well turn out to be a pass-time for philosophers, of which
all true physicists stay clear.
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