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Debates about the validity of Bayesianism have been a prominent feature of 

work on the foundations of statistics and on scientific method in general for most 

of this century.  Nor do these debates show any sign of being resolved or 

discontinued, as is well illustrated by three recent books.   Howson and Urbach’s 

1989 book argues that Bayesianism provides a sound foundation both for 

statistics and for scientific reasoning in general.  By contrast Miller’s 1994 book 

has this to say (125):  ‘Surely every one of the 46,656 varieties of Bayesianism 

catalogued by Good ... is vulnerable to at least one of the deadly objections 

raised in recent years.’;  while Earman’s 1992 book presents arguments for and 

against Bayesianism and develops an overall position which has some Bayesian 

features without being wholly Bayesian.  In this paper I want to concentrate on 
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the Bayesian debate within statistics, although I will make use of general ideas 

drawn from philosophy of science.  My main thesis is that there has been a 

significant change  in the debate owing to the rise of subjective Bayesianism and 

recent results such as the theory of Bayesian networks.  These developments 

have overcome the objections made to Bayesianism by the principal architects of 

classical statistics (Fisher and Neyman).  Yet Bayesianism, I will argue, is still 

open to objections of a rather different kind, namely objections of a 

methodological character.  I will illustrate these objections by considering some 

examples of Bayesian networks. 

 

 Section 1 of the paper sets the scene with a brief account of the origin, 

development, and establishment of the paradigm of classical statistics.  This 

paradigm still dominates statistics, and one of its features is a rejection of 

Bayesian methods.  Indeed the principal figures in the development of classical 

statistics (Fisher and Neyman) both criticized Bayesianism, although on different 

grounds.  I will give an account of their objections to Bayesianism in section 2.  

It is important to realise that these objections were made against the 

classical/logical version of Bayesianism, a type of Bayesianism which has had a 

long history beginning with Bayes, and continuing through Laplace to Jeffreys, 

Keynes, and Carnap in the twentieth century.  In the 1930’s, however, a new 

type of Bayesianism appeared, the subjective Bayesianism of Ramsey and De 

Finetti.  In section 3, I will try to show that this new version of Bayesianism 

overcomes the objections of Fisher and Neyman.  This, I think, explains why 

there has been a new flowering of Bayesianism from the 1950’s to the present.  

This flowering has resulted in many interesting developments, including the 

recent theory of Bayesian networks, a theory which has had numerous successful 

applications in the field of artificial intelligence.  It is worth noting that Howson 

and Urbach (1989) adopt the position of subjective Bayesianism, and from this 

point of view criticize classical statistics.  Does all this mean that we will soon 

have a change of paradigm, and that subjective Bayesianism will supersede the 
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methods of Fisher and Neyman as the dominant approach to statistics?  It is of 

course always difficult to predict the future, but my own guess is that such a 

change of paradigm will not occur, for, although subjective Bayesianism has 

indeed overcome the objections made originally to Bayesianism, it is still liable 

to further objections of a rather different character.  These might be characterised 

as methodological objections.  I will conclude section 3 by giving an account of 

these objections, and then in section 4 I will examine their implications for the 

new theory of Bayesian networks.  This theory was born in the paradigm of 

subjective Bayesianism, but I will maintain that it is possible to reformulate it in 

the framework of objective probabilities and the testing methodology of Fisher 

and Popper.  I will try to show that this reformulation definitely improves the 

theory, so that, although the theory was created by the opposition group, it 

actually strengthens the established paradigm. 

 

 

1. The Origin, Development, and Establishment of the Paradigm of 

 Classical Statistics (1900-1938) 

 

 I have selected 1900 as the starting point because it was in a paper 

published that year in which Karl Pearson introduced the chi-square test.  I 

regard statistical tests as the core of classical statistics, so that the introduction of 

the first important statistical test is the crucial advance.  In his 1908 paper, 

W.S.Gosset, who modestly wrote under the name ‘Student’, introduced the t-test.  

It was at this point that Fisher began his work.  He gave a better mathematical 

foundation to the tests of Karl Pearson and Student, and introduced his own       

F-test, and the analysis of variance.  In the 1920’s he also developed the theory 

of statistical estimation.  Two of Fisher’s books were important for the 

introduction of the new ideas and techniques to statisticians.  The first was his 

1925 Statistical Methods for Research Workers, and the second his 1935 The 

Design of Experiments.  In a paper of 1934 Neyman introduced another crucial 
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ingredient of classical statistics - his theory of confidence intervals.  I have 

chosen 1938 as the final date because another important book was published that 

year - Neyman’s Lectures and Conferences in Mathematical Statistics, in which 

he gave a general account of his position.  Naturally there have been many 

discoveries and developments in classical statistics since 1938, but, by that date 

the paradigm had been established. 

 

 I have used the word ‘paradigm’ with deliberate reference to the 

philosophy of Kuhn, but this may seem a little strange.  Statistics, after all, is a 

branch of methodology or scientific method concerned with how to reason about 

empirical data.  Kuhn’s theory, on the other hand, was designed to apply to 

branches of science concerned with developing theories about the natural world.  

Despite this difference in subject matter, I do think that many of Kuhn’s ideas 

apply quite well to the development of statistics.  To begin with, classical 

statistics has dominated since the 1940’s, and still dominates today, in the sense 

that it is the approach used by a very large majority of statisticians in most of 

their work.  It thus seems reasonable to say that the dominant paradigm1 in the 

subject is classical statistics.  There are moreover several other ideas of Kuhn’s 

which can usefully be applied here.  Kuhn emphasizes the importance of 

textbooks for teaching the paradigm, or, perhaps, as a cynic might say, for 

indoctrinating the new generation in the paradigm (Kuhn, 1962, 10).  According 

to this textbook criterion, the content of a paradigm is more or less what appears 

in the standard textbooks.  A most important book for classical statistics was 

Harald Cramér’s Mathematical Methods of Statistics, published in Sweden in 

1945, and in the United States in 1946.  This is a most admirable book.  The 

exposition is extremely clear, and contains many historical notes.  It also made a 

very important mathematical improvement.  Fisher used techniques of               

n-dimensional geometry in his original proofs.  Cramér instead adopted the 

measure theory approach to probability.  As a results his proofs were shorter and 

more comprehensible to the mathematical community.  Granted then that 
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Cramér’s book played an important rôle in establishing classical statistics as the 

dominant paradigm in the subject, it is interesting to examine what he has to say 

about Bayesianism.  In fact only two of the 575 pages of his book make any 

reference to Bayesianism at all.  Moreover his very brief remarks on the subject 

occur in a chapter entitled:  ‘Confidence Regions’.  Cramér writes (1946, 507):  

 

 ‘In the older literature of the subject, probability statements of this type 

were freely deduced by means of the famous theorem of Bayes, one of the typical 

problems treated in this way being the classical problem of inverse probability 

....  However, these applications of Bayes’ theorem have often been severely 

criticized, and there has appeared a growing tendency to avoid this kind of 

argument, and to reconsider the question from entirely new points of view.  The 

attempts so far made in this direction have grouped themselves along two main 

lines of development, connected with the theory of fiducial probabilities, due to 

R.A.Fisher ... and the theory of confidence intervals due to J.Neyman ... .  We 

shall here in the main have to restrict ourselves to a brief account of the latter 

theory.’  

 

This passage illustrates another point of Kuhn’s.  In the creation of a paradigm, 

not all the ideas of the original researchers are included, but only that subset 

which is accepted by the majority of experts in the field.  Beginning with his 

1930 paper, Fisher published a series of works on the development of his theory 

of the fiducial argument.  But this theory was not accepted by the general 

community of statisticians, who adopted instead Neyman’s rival theory of 

confidence intervals  Fisher was very angry about this, but, everything 

considered, the community was right since the theory of confidence intervals 

does work, while the fiducial argument does not.  Cramér who had studied with 

Fisher at Cambridge approaches the question in the most tactful way possible, 

saying in effect that limits of space do not allow a discussion of the fiducial 

argument, but this was, in effect, an exclusion of that theory from the paradigm. 
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 Returning to the problem of Bayesianism, it is clear that Cramér’s attitude 

is that of excluding Bayesianism completely from the paradigm.  According to 

him, in cases in which in the past Bayesianism was employed, statisticians will 

in the future use the theory of confidence intervals.  In effect Cramér rejects 

Bayesianism without however giving any criticism of this theory, but criticisms 

of Bayesianism were made by Fisher and Neyman.  We shall consider these 

criticisms in the next section. 

 

 

2. Fisher’s and Neyman’s Objections to Bayesianism 

 

 To explain these objections. let us take the most simple example.  Suppose 

we are tossing a possibly biassed coin, that the tosses are independent, and that 

the probability of heads is p, where p has some constant but unknown value in 

the interval [0, 1].  In the classical Bayesian approach, we begin with the 

assumption that we know a priori that p has a uniform distribution in the interval 

[0, 1].  This assumption is justified in the classical Bayesian approach by using 

the so-called Principle of Indifference.  Since we have no reason to suppose that 

p is in one part of the interval rather than another, we should assign a uniform 

distribution to p. 

 

 Fisher, however, denies that we can have a priori knowledge, based on the 

Principle of Indifference, that p has a uniform distribution.  His argument is as 

follows (see Fisher, 1956, 16-17).  Define φ by 

 

   p  =  sin2φ    where   0 ≤ φ ≤ π/2. 

 

We have no reason to suppose that φ is in one part of the interval rather than 

another.  Thus, if the above argument based on the Principle of Indifference were 
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correct, we could equally well conclude that φ had a uniform a priori distribution 

in [0, π/2].  But this would give to p a non-uniform a priori distribution in [0, 1].  

Fisher therefore thinks that we cannot, in general, assign a priori distributions to 

parameters, and that Bayesianism fails for this reason to give a satisfactory 

account of statistical inference.  Of course the point stressed here by Fisher is 

really a traditional one.  It goes back to the paradoxes of geometrical probability, 

and the whole matter is well discussed in Keynes’ Treatise on Probability (1921, 

41-64). 

 

 The next argument against Bayesianism was, to the best of my knowledge, 

genuinely invented by Neyman, and appeared in his 1937.  Fisher questioned 

whether we could know what a priori distribution a parameter had.  Neyman 

went further and questioned whether it was admissible to ascribe an a priori 

distribution to a parameter at all. 

 

 To see the force of his argument, let us begin by observing that probability 

distributions can only be correctly ascribed to random variables.  Now what can 

we regard as a random variable?  The answer depends on what interpretation of 

probability we adopt.  Let us begin by taking an objective interpretation defined 

as follows.   Probabilities are taken to be objective features of the material world 

like charges or masses.2  On this approach, we need to have a set of repeatable 

conditions, say S.  If any possible result of these conditions is given by a real 

number, we can say that the results are specified by a random variable X.  The 

range of X is the set of possible results of S, and the probability distribution of X 

gives the weight we attach to different possible results of S.  Probability 

distributions are related to the objective variation in the value of X obtained 

when S is repeated. 

 

 Now can a parameter, such as p in the present example, be regarded as the 

result of repeating an underlying set of conditions?   Sometimes perhaps it could 
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be.  For example, suppose we have an urn filled with coins having different 

biases in different directions.  The urn is shaken well, and a coin drawn from it.  

In this case p (the probability of heads for that coin) is the result of a set of 

repeatable conditions S.  In general, however, when we are presented with a 

coin, its selection would not have been the result of a repeatable process of the 

sort just described.  Our parameter p will not then be a quantity which fluctuates 

objectively on repeating some set of conditions.  It will instead (if the 

background assumptions are correct) be a fixed, though unknown, constant.  

Thus, given an objective interpretation of probability of the kind described 

earlier, we cannot regard a parameter as a random variable and so cannot ascribe 

an a priori distribution to it as the Bayesian method requires.  This is Neyman’s 

new argument against Bayesianism.  

 

 For the sake of precision, we must make one small qualification to the 

above formulation of Neyman’s argument.  An unknown constant can, even 

given the above objective interpretation of probability, be regarded as a random 

variable in a ‘trivial’ or ‘degenerate’ sense.  Suppose p has the value a, where a is 

a real constant.  We can then say that p is a random variable with the distribution 

 

   Prob(p = a)  =  1 

   Prob(p ≠ a)  =  0. 

 

In his 1937 paper, Neyman rules out such degenerate random variables by 

requiring that the range of any random variable should contain two subsets A and 

B such that  

 

  A Z B  =  |,   Prob(A)  ≠  0,  Prob(B)  ≠  0    (1) 

 

However, it seems to me mathematically convenient to be able to treat a constant 

as a random variable by the above method.  Let us therefore allow such random 
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variables but say that a random variable is trivial or degenerate unless Neyman’s 

condition (1) is satisfied.  We can then put Neyman’s point by saying that 

parameters will in general be unknown constants and hence only random 

variables in a degenerate sense.  They will not be random variables in the non-

trivial sense which is required by Bayesian inference. 

 

 In formulating this argument, Neyman was, I think , influenced by von 

Mises whose 1928 he helped to translate from German for the first English 

edition of 1939.  Von Mises bases his approach to probability on the concept of 

collective which he describes as a long (1928, 12) ‘sequence of uniform events 

or processes which differ by certain observable attributes, say colours, numbers, 

or anything else.’  Von Mises argues that probabilities in the mathematical sense 

can only be defined within collectives.  He says (1928, 12): 

 

‘The principle which underlies the whole of our treatment of the probability 

problem is that a collective must exist before we begin to speak of probability.’ 

 

Actually this formulation is perhaps a little too strong, because von Mises does 

not deny that we sometimes speak of probabilities in ordinary language where 

there is no collective.  His thesis is that such probabilities cannot be brought 

within the scope of the mathematical theory.  This view he illustrates by an 

analogy with the concept of work in mechanics.  Work in the precise 

mathematical sense is defined as force times distance, and when work is used in 

the mathematical theory it is always used in this sense.  This excludes some 

every day uses of work.  For example if a waiter holds up completely steadily for 

some time a heavy tray laden with canapes, we could quite reasonably say that 

he has done a lot of hard work, but he has not done any work in the mathematical 

sense used in mechanics.  Similarly, von Mises argues, the probabilities to which 

the mathematical theory applies must all be defined in a collective, even though 
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the word probability might sometimes be used in a wider sense in ordinary 

language.  As he puts it (1928, 15): 

 

‘‘The probability of winning a battle’, for instance, has no place in our theory of 

probability, because we cannot think of a collective to which it belongs.  The 

theory of probability cannot be applied to this problem any more than the 

physical concept of work can be applied to the calculation of the ‘work’ done by 

an actor in reciting his part in a play.’ 

 

 Using von Mises’ framework, Neyman’s objection to Bayesianism can be 

put like this.  An unknown parameter such as p is not in general a member of any 

collective.  So we cannot assign to it a probability distribution and apply the 

mathematical theory of probability.  

 

 Neyman’s argument requires stronger premisses than Fisher’s, but it also 

rules out more.  In particular, if we accept Neyman’s argument, we should not 

assign any probability distribution, whether a priori or a posteriori, to an 

unknown parameter.  So the argument rules out Fisher’s fiducial argument as 

well as Bayesianism, but it does allow confidence intervals.  We see then that the 

argument underlies the debate between Fisher and Neyman concerning the 

respective merits of the fiducial argument and confidence intervals. 

 

 

3. Subjective Bayesianism overcomes Fisher’s and Neyman’s 

 Objections:  the Present State of the Problem     

 

 As I have already remarked, the objections of Fisher and Neyman were 

made to the classical/logical version of Bayesianism which has had a long 

history beginning with Bayes, and continuing through Laplace to Jeffreys, 

Keynes, and Carnap in the twentieth century.  In the early 1930’s, however, just 
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at the time when the paradigm of classical statistics was being consolidated, the 

first papers developing a new approach to Bayesianism (the subjective approach) 

were published.  This is an example of a simultaneous discovery, because it was 

made by Ramsey at Cambridge in England, and by De Finetti in Italy.  Ramsey 

read a paper on the subject at Cambridge in 1926, and it was published, after his 

premature death, in the 1931 collection of his papers.  De Finetti wrote an 

account of the subjective approach to probability in 1928, and published his first 

paper on the question in 1930.  A more extensive account of his views is 

contained in his (1931a &b), published in the same year as Ramsey’s 

posthumous collection.  The two discoverers worked quite independently of each 

other.  Ramsey almost certainly never heard of De Finetti, and De Finetti only 

read Ramsey’s paper on subjective probability several years after his own views 

had been formulated and published.  In fact there are quite significant differences 

between Ramsey’s approach to the question and De Finetti’s.  These are 

discussed in an interesting article by Galavotti (1991), and Sahlin’s 1990 book 

on Ramsey’s philosophy contains some valuable observations on this question 

(41-2 & 53).  However, for the purposes of this paper I can concentrate on points 

which are common to both Ramsey and De Finetti. 

 

 The subjective theory interpreted probability as the degree of belief of a 

particular individual (Mr R say).  The first important step in its development was 

to introduce a method for measuring this degree of belief.  The measure 

proposed was the rate at which Mr R would bet under certain conditions.  The 

second important step was to show, using the very reasonable condition of 

coherence, that these betting rates (or quotients) must obey the mathematical 

axioms of the probability calculus.  This result is the famous Ramsey-De Finetti 

theorem. 

 

 Now when von Mises suggested in 1928 that the mathematical theory of 

probability should be limited to probabilities defined within collectives, his 
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position was a very reasonable one.  At that time, there was no satisfactory way 

of extending the mathematical calculus to probabilities in any more general 

sense.  The development of the subjective theory, and, in particular, the Ramsey-

De Finetti theorem changed the situation.  It now became possible to introduce 

probabilities as subjective betting quotients, even if no collective was defined, 

and to show that these betting quotients must obey the standard mathematical 

axioms of probability.  We can illustrate this by taking von Mises’ own example 

of the probability of winning a battle.  Suppose a battle is due to be fought 

tomorrow.  Von Mises is right to say that it would be very difficult to define an 

appropriate collective, because battles are individual events, fought under widely 

different conditions.  However Mr R can certainly bet on the outcome of the 

battle, and so we can introduce his subjective probability of a particular side 

winning. 

 

 Subjective probabilities overcome Neyman’s objection, which, as I 

argued, was based on von Mises’ ideas.  An unknown parameter p may indeed 

not be the result of a set of conditions whose repetition produces objective 

random variation.  Thus we may not be able to assign a probability distribution 

to the parameter if the probabilities are understood in an objective, scientific 

sense.  However, we can certainly introduce the subjective probability of Mr R 

that p will lie in a particular interval [a,b] say.  This is simply the rate at which  

Mr R will agree to bet that p lies in [a,b].  It might be objected that we can never 

know for certain what the value of an unknown parameter is, and so the bet as 

just described can never be settled.  If, however, a sufficiently large sample is 

taken, this will fix the value of p within agreed limits which are sufficiently 

narrow to allow a decision to be reached as to whether p lies in [a,b] or not.  

Thus the bet could be settled at least in principle, and so can be regarded as 

legitimate.  By considering bets for all the relevant intervals, we can introduce 

Mr R’s a priori subjective probability distribution for p.  So Neyman’s objection 

to assigning probability distributions to unknown parameters is overcome, 
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provided the probability distributions assigned are understood in the subjective 

sense. 

 

 Fisher’s objection can also be overcome in the subjective approach.  In the 

older classical/logical tradition, it was necessary to use the Principle of 

Indifference to obtain an a priori probability distribution.  Moreover, since such 

a distribution was supposed to have a logical character, it had to be unique.  So 

when different a priori distributions were obtained using the Principle of 

Indifference (as in Fisher’s example), this amounted to a contradiction.  All this 

changes in the subjective approach.  Here there is no longer any need to use the 

Principle of Indifference to obtain an a priori probability distribution, for such a 

distribution simply represents the opinion of a particular individual.  It is 

possible in theory at least for an individual to choose any distribution subject 

only to the constraint of obeying the probability axioms obtained from the 

condition of coherence.  There is no contradiction in Mr R choosing one a priori 

distribution, and Mr D-F another.  They simply have different opinions on the 

question, and there is no unique correct a priori distribution obtainable by some 

kind of logical argument.  It is for these reasons that Ramsey writes (1931, 189):  

 

‘ ... the Principle of Indifference can now be altogether dispensed with; ... To be 

able to turn the Principle of Indifference out of formal logic is a great advantage;  

for it is fairly clearly impossible to lay down purely logical conditions for its 

validity, as is attempted by Mr Keynes.’  

 

 These successes of the subjective conception of probability mean, in my 

opinion, that there has been what Lakatos would have called a problem shift in 

the Bayesian debate.  The old debate concerned the question of a priori 

distributions.  Was it possible to know what these distributions were? (Fisher)  

Was it legitimate at all to introduce such distributions for unknown parameters?  

(Neyman)  Subjective Bayesianism found quite convincing replies to these 
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difficult questions.  But this does not mean that all the differences between 

Bayesianism and Classical Statistics have been resolved:  it means only that 

other points and other differences are now more important than the question of a 

priori distributions.  What then is the present state of the problem?  

 

 I think there are two important differences between Classical Statistics and 

subjective Bayesianism:  (i) a difference in the interpretation of probability - 

objective in once case, and subjective in the other, and (ii) in close connection 

with (i) a difference in methodology.  This methodological difference seems to 

me the more important, and indeed I regard it as the crucial point in the current 

state of the Bayesian debate. 

 

 Let us begin with Classical Statistics.  This adopts an objective conception 

of probability.  Probabilities are regarded as aspects of the material world similar 

to the masses of bodies.  A probability or a mass has an objective value which 

might be unknown, but which exists nonetheless.  If the distribution of the values 

of a random variable is unknown, we can make a conjecture as to what it is, but 

such conjectures must be subjected to statistical tests, and it could well happen 

that these tests show that the conjecture is incorrect.  In effect, as I have already 

claimed, the key part of Classical Statistics is the theory of statistical tests.  

Moreover the methodology of Classical Statistics is precisely Popper’s method 

of conjectures and refutations.  

 

 If we now turn to subjective Bayesianism, we have a very different 

picture.  Probabilities are the opinions of a particular individuals, for example of 

our Mr R.  If Mr R judges at a particular moment t that the probability of a 

particular event A is, let us say, 3/4, it makes no sense to say afterwards that this 

value has been shown to be wrong by experience.  Whatever happens, it remains 

true that Mr R at t had a degree of belief of 3/4 in A.  If new evidence E comes to 

light between t and the present, Mr R will change his a priori  probability P(A) 
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to an a posteriori probability P(A | E), but without repudiating his original 

opinion.  The change from P(A) to P (A | E) is made using Bayes’ Theorem, and 

is called Bayesian conditionalisation (or conditioning).  So the key difference 

between the two approaches is a methodological difference - statistical tests 

(conjectures and refutations) versus Bayesian conditionalisation.  De Finetti 

describes this difference with great clarity.  The passage is the following (De 

Finetti, 1937, 146.  I have slightly altered De Finetti’s notation to agree with that 

used in the present paper):   

 

‘Whatever be the influence of observation on predictions of the future, it never 

implies and never signifies that we correct the primitive evaluation of the 

probability P(A) after it has been disproved by experience and substitute for it 

another P*(A) which conforms to that experience and is therefore probably 

closer to the real probability;  on the contrary, it manifests itself solely in the 

sense that when experience teaches us the result E on the first n trials, our 

judgment will be expressed by the probability P(A) no longer, but by the 

probability P(A | E), i.e. that which our initial opinion would already attribute to 

the event A considered as conditioned on the outcome E.  Nothing of this initial 

opinion is repudiated or corrected;  it is not the function P which has been 

modified (replaced by another P*), but rather the argument A which has been 

replaced by A | E, and this is just to remain faithful to our original opinion (as 

manifested in the choice of the function P) and coherent in our judgement that 

our predictions vary when a change takes place in the known circumstances.’   

 

 I will now give my criticism of subjective Bayesianism.  It is that 

subjective Bayesianism is too conservative.  Once our Mr R has decided in 

favour of an initial distribution, that distribution is changed only by means of 

Bayesian conditioning;  but there are many cases in which such changes are not 

sufficiently radical.  Using Bayesian conditioning it is possible to change for 

example the values of parameters, but the basic framework of the model implied 
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by the original choice of distribution remains unchanged.  So Bayesianism is all 

right for changes within a fixed framework, but it does not allow changes of the 

basic framework. 

 

 Quite to the contrary, the testing methodology of Fisher and Popper 

requires that every assumption of the underlying framework be checked by 

statistical tests.  If one of these tests gives a negative result (a refutation), it 

becomes necessary to change some assumption, and introduce a new assumption, 

perhaps based on some some new idea or conception.  Often changes of this type 

lead to models which work better.  Subjective Bayesianism blocks this type of 

progress. 

 

 This argument can be summarised as follows.  Subjective Bayesianism 

only allows change by means of Bayesian conditioning.3  This is too 

conservative, since such changes are often too small.  Bayesian conditioning 

does not change the basic structure of the the original opinion, but often this 

structure must be changed to allow progress.  The testing methodology of Fisher 

and Popper forces us to criticize the basic assumptions, and to check them with 

statistical tests.  The refutation of some of these assumptions often leads to better 

assumptions and models;  that is to an important form of progress which cannot 

take place within the framework of subjective Bayesianism. 

 

 This is my general argument against subjective Bayesianism.  In the final 

section of the paper, I would like to illustrate it with an example drawn from the 

new theory of Bayesian networks. 
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5.  Bayesian Networks and the Methodology of Testing 

 

 Bayesian networks were introduced in the late 1980’s and early 1990’s 

[Pearl (1988), Spiegelhalter and Lauritzen (1990), and Neapolitan (1990)].  I 

believe that they represent a most important advance in probabilistic reasoning 

for artificial intelligence, and, in particular, for expert systems.  At least two of 

the principal contributors (Pearl and Spiegelhalter) are subjective Bayesians, and 

there is thus no doubt that subjective Bayesianism has proved heuristically very 

fruitful.  Despite this, however, the theory of Bayesian networks is not 

completely tied to the subjective Bayesian approach.  It is possible to translate it 

into the Fisher-Popper framework.  I will begin this section with an explanation 

of how this translation can be carried out, and I will then try to show with a 

practical example that the translation brings some advantages. 

 

 Let us consider the field of medicine.  A doctor has a patient with a group 

S say of symptoms, and the doctor considers the probability that the patient has a 

disease D say.  The doctor, who is also a mathematician, writes down Bayes’ 

theorem. 

 

   P(D | S)  =  
P(S | D) P(D)

 P(S)   

 

 If the doctor is a subjective Bayesian, all these probabilities will represent 

his degrees of belief, so that, for example, P(D | S) will be the doctor’s degree of 

belief that the patient has disease D given that the patient has symptoms S.  This 

interpretation is not, however, necessary for it is possible to interpret all these 

probabilities as objective probabilities.  P(D) is the probability of the disease in 

the population, which may well be known on the basis of statistical data.         

P(S | D) is the probability that a person who has the disease in question also has 

the group S of symptoms.  This might not be known, but it could in principle be 

calculated from statistical data about people suffering from the disease.  Finally 
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P(S) is the probability that a person chosen at random from the population has 

the group of symptoms S.  This is undoubtedly an objective probability.  It 

would perhaps be difficult to calculate its value from statistical data, but there 

might be methods of forming an estimate of this value.  It is clear then that all the 

probabilities which are used in the field of medicine can be interpreted as 

objective.  The only difficulty would be to calculate the values of these 

probabilities from statistical data in some cases.  However this problem is not an 

insuperable one. 

 

 I have just given a simple example in which it is possible to use Bayes’ 

theorem.  In more difficult cases, however, it becomes necessary to use a more 

complicated structure - a Bayesian network.  The general definition of a 

Bayesian network is a little complicated (see Neapolitan, 1990, 158-9), but I can 

illustrate the point I want to make with a quite simple example, which I call:  

‘The Englishman in summer’.  The example is taken from Neapolitan (1990, 

186-7), but the name is my own invention!  The network is illustrated in Figure 

1. 
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 The interpretation of the network in the framework of subjective 

Bayesianism is the following.  The medical expert observes the event A, and 

knows that it could be caused by B or by C.  This is shown in the figure by the 

arrows which go from B to A, and from C to A.  The doctor also knows that the 

possible causes B and C are independent.  A cold does not cause hay fever or 

vice versa.  This is shown in the figure by the fact that there is no connection 

between B and C.  This causal independence is then used as a reason for 

supposing that there is probabilistic independence, i.e.  P(B | C)  =  P(B) and  

P(C | B)  =  P(C).  The doctor then adds to the network his subjective a priori 

probabilities, giving, for example, his degree of belief in B given A [P(B | A)].  

These initial probabilities can be changed by means of probability calculations, 

when further facts become known.  The theory of Bayesian networks explains 

how these calculations should be carried out, not just in simple cases like this, 

but in much more complicated cases as well. 

 

 This simple example illustrates a fundamental point.  Every Bayesian 

network involves assumptions of independence or of conditional independence.  

These assumptions are necessary.  Without them the problem becomes 

computationally intractable.  In the subjective Bayesian approach these 

assumptions are justified by the knowledge of the expert, and, in particular by his 

knowledge of causal chains.  What would be the Popperian attitude to this 

procedure?  A Popperian would not deny that it could be very useful to use the 

expert’s knowledge, especially of causal chains, to construct the Bayesian 

network with its assumptions of independence or conditional independence.  But 

for a Popperian this initial opinion is only a conjecture.  This conjecture might be 

true or it might be false.  It is therefore very important to subject the conjecture 

to statistical tests to see whether it is confirmed or refuted.  In particular, it is 

essential to check the assumptions of independence or conditional independence 

by statistical tests.  This is the key point.  In the framework of subjective 

Bayesianism, the assumptions of independence and conditional independence in 
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a Bayesian network are not checked by tests.4  I will now try to show with a 

practical example that it is useful to carry out such tests for two reasons.  First it 

is possible that the assumptions of independence or conditional independence 

might be false, and, second, if they are false, it may be possible to substitute for 

them other assumptions which give a Bayesian network which is simpler and 

more efficient.  

 

 The example is taken from a research project in artificial intelligence in 

which I participated with Duncan Gillies (my brother) and Enrique Sucar in the 

Department of Computing, Imperial College, London (Sucar, Gillies, and Gillies, 

1993).  The research concerned a medical instrument called an ‘endoscope’.  

This allows a doctor to put into the colon of a patient a small camera which 

transmits an image of the interior of the colon to a television screen.  In this 

image an expert can recognise various things in the interior of the colon.  Let us 

take two such things as examples.  One is called the ‘lumen’ which is the 

opening of the colon.  Despite its name, it generally appears as a large dark 

region;  but sometimes it is smaller and surrounded by concentric rings.  Another 

is called a ‘diverticulum’ and is a small malformation in the wall of the colon, 

which can cause some illnesses.  A diverticulum generally appears as a dark 

region, smaller than the lumen, and often circular.  It is a problem then to 

program a computer to recognise from the image the lumen or a diverticulum.  

This is a typical problem of computer vision.  To solve it, we constructed a 

Bayesian network with the help of an expert in medical endoscopy.  Figure 2 

shows only a small part of this network, but it is sufficient to illustrate the points 

which I would like to make.  
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 In every Bayesian network certain assumptions of independence or 

conditional independence are by definition satisfied.  In this case, S, M, V must 

be conditionally independent of L and mutually conditionally independent, given 

LDR.  Using the testing methodology of Fisher-Popper, we considered these 

assumptions as conjectures which needed to be checked by statistical tests.  In 

fact it was not difficult to carry out a statistical test.  We took a random sample 

of 300 images of the colon.  Entire sessions investigating the colon with the 

endoscope are recorded on video as a standard practice;  so there is no shortage 

of data for these problems.  In every image of the colon, the lumen, if it was 

visible, was identified by an expert.  It was also possible to calculate LDR, S, M, 

V and so to form estimates of the various probabilities in the network using 

observed frequencies.  To carry out a statistical test of the assumptions of 

conditional independence, we calculated the correlation between S, M, V 
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conditional on LDR.  We used two correlation coefficients, Pearson’s r, and 

Kendall’s τ.  The results are given in Table 1.  

 

     Table 1 

 

 

 

 

 

 

 

 

 

 

 

 It can be seen that the correlations between S & M, and S & V are fairly 

small. So we can regard the assumptions of conditional independence between S 

& M, and S & V as having passed this statistical test, and we can continue to 

adopt them.  The case of M & V is very different.  Here the correlations are 

rather large.  So the assumption of conditional independence has failed the 

statistical test and should no longer be adopted. 

 

 But what should be done in this situation?  The simplest response was to 

eliminate one of the two parameters M and V on the grounds that, since they 

were correlated, only one could give almost as much information as both.  The 

results of this elimination are given in Table 2, which was prepared using 

another random sample of more than 130 images of the colon. 
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     Table 2 

 

 

 

 

 It can be seen that the elimination of one of the parameters gave better 

results than those obtained using all three parameters.  At first sight this seems a 

paradox, because these better results were obtained using less information.  The 

explanation is simple however.  Undoubtedly there is more information in all 

three parameters (S, M, V) than in only two (for example S, M).  But the greater 

amount of information in the three parameters was used with mathematical 

assumptions of conditional independence which were not correct.  The lesser 

amount of information in the two parameters S, M was, by contrast, used with 

true mathematical assumptions.  So less information in a correct model worked 

better than more information in a mistaken model.  Moreover, since the modified 

Bayesian network was simpler, the calculations using it were carried out more 

quickly.  So, to conclude, the modified Bayesian network was more efficient, and 

gave better results.  This shows the value of using the testing methodology of 

Fisher-Popper. 

 

 Naturally this example is very simple, but it suggests an interesting 

research programme which could lead to useful results.  This programme does 
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not completely contradict the theory of Bayesian networks developed in the 

framework of subjective Bayesianism, but rather suggests an addition which 

could improve the theory.  In this approach the methods used now by the 

subjective Bayesians to construct Bayesian networks are considered as a first 

phase - the heuristic phase.  A second phase is then added, that of testing and 

modification, in which the network is subjected to statistical tests, particularly of 

the assumptions of independence and conditional independence.  If some of 

these assumptions are shown to be false, the network is modified by eliminating 

them, and adding better assumptions.  But how should these tests and 

modifications be carried out?  I have given a simple example, but a great deal of 

work would be necessary to discover how to carry out tests and make appropriate 

modifications in the various cases, many much more complicated, which are 

useful in practice.  This work constitutes the research programme suggested by 

the application of the testing methodology of Fisher and Popper to Bayesian 

networks. 
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NOTES 

 

 

 

* An earlier version of this paper was read at the Istituto per le Applicazioni 

 del Calcolo “Mauro Piccone” (IAC) in Rome in October 1996.  I found the 

 lively discussion and comments made on that occasion very useful in 

 developing the paper.  Wlodek Rabinowicz and Jon Williamson were kind 

 enough to read the paper and offer detailed comments, several of which 

 have been incorporated into the final version.  I would also like to 

 acknowledge the help of a grant from the Humanities Research Board of 

 the British Academy which provided me with some research leave during 

 which this paper was written. 

 

1. In his analysis of the natural sciences, Kuhn claims that, apart from 

 exceptional revolutionary periods, only one paradigm exists at a particular 

 time in a mature natural science.  Whether or not this is true of mature 

 natural sciences, it does not seem to me true of statistics.  In this field there 

 have been for the last fifty or so years, two paradigms.  The paradigm of 

 classical statistics has undoubtedly dominated, but the Bayesian paradigm 

 has constituted a strong and intellectually stimulating opposition.  

 

2. In this paper when we speak of objective probabilities or an objective 

 interpretation of probability, ‘objective’ will always be used in the sense 

 here explained, i.e. as referring to something which exists in the material 

 world.  There is another sense of objective probability which appears in 

 Keynes’s logical theory of probability (see his 1921).  According to 

 Keynes, there is, given some hypothesis h and a body of evidence e, a 

 single correct degree of belief in h conditional on e.  Probability is 
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 interpreted as this rational degree of belief.  Different individuals 

 possessing the same evidence e may diverge from the rational degree of 

 belief in h, and have different individual degrees of belief.  Such degrees 

 of belief are for Keynes subjective, while the rational degree of belief is 

 objective (see 1921, 4).  This is clearly a different sense of objective, 

 because Keynes is not suggesting that rational degrees of belief exist in the 

 world of nature.  Keynes’s sense of objective will not be used in this 

 paper.  

 

3. It might be objected that a version of subjective Bayesianism could be 

 developed in which changes of belief by means other than Bayesian 

 conditioning are allowed.  This is certainly possible, though it has not yet 

 been done in detail to the best of my knowledge, and there are difficulties 

 in the way of carrying out the programme.  It would have to be specified 

 under what circumstances the switch is made from Bayesian conditioning 

 to another form of belief change, and also what form or forms these other 

 kinds of belief change would take. 

 

4. It might be objected that a method of testing could be developed within 

 the framework of subjective Bayesianism.  As far as I know this has not 

 been done as yet, though I would certainly welcome such a development 

 which would bring subjective Bayesianism closer to the position 

 advocated here. 
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