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Abstract The development of causal modelling since the 1950s has been accompa-
nied by a number of controversies, the most striking of which concerns the Markov
condition. Reichenbach's conjunctive forks did satisfy the Markov condition, while
Salmon's interactive forks did not. Subsequently some experts in the field have
argued that adequate causal models should always satisfy the Markov condition,
while others have claimed that non-Markovian causal models are needed in some
cases. This paper argues for the second position by considering the multi-causal
forks, which are widespread in contemporary medicine (Section 2). A non-Markovian
causal model for such forks is introduced and shown to be mathematically tractable
(Sections 6, 7, and 8). The paper also gives a general discussion of the controversy
about the Markov condition (Section 1), and of the related controversy about prob-
abilistic causality (Sections 3, 4, and 5).
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1 Introduction. Debates about the Markov condition

The theory of causal modelling has developed in a striking fashion since the 1950s,
but this development, like most research developments, has been accompanied by
some controversies. Perhaps the most significant of these controversies has been that
which concerns the role of the Markov condition in causal modelling.1 Many re-
searchers in the field hold that a causal model cannot be satisfactory unless it is
Markovian, that is to say that every node of the model should satisfy the Markov
condition. Others, however, hold that the Markov condition is not always satisfied in
reality, so that the use of Markovian models can be misleading and that non-
Markovian models should be considered. The present paper supports the second of
these two positions. It proposes a non-Markovian model for what are called multi-
causal forks. The use of multi-causal forks is widespread in modern medicine, so that
this model should be a useful one, and it is shown that, although it is non-Markovian,
it is perfectly tractable mathematically.

Before we introduce multi-causal forks, and the non-Markovian causal model,
which we propose for handling them, it will be useful to give a brief account of the
debates, which have occurred so far, concerning the Markov condition and its role in
causal modelling. This we will do in the present section of the paper.

The first causal model in the modern sense can perhaps be attributed to
Reichenbach. In his 1956, p. 159, he introduced what he called a conjunctive fork.
This is illustrated in Fig. 1.

Here A and B are correlated, and this is explained by the fact that they have a
common cause C. C screens off A from B, that is to say that A and B are independent
given C. It is clear that Reichenbach’s screening off condition implies the Markov
condition, and that his conjunctive forks are simple Bayesian networks. Indeed they
were the first Bayesian networks to be introduced. Reichenbach went further and
formulated what he called (1956, p. 157f.), the principle of the common cause. This
states that, if A and B are correlated, then either A causes B, or B causes A, or A and
B have a common cause C which screens off one variable from the other.

Reichenbach’s ideas on causality were developed by Salmon, but Salmon found it
necessary to introduce, in addition to Reichenbach’s conjunctive fork, a second kind
of causal fork, which he called an interactive fork. As he says (1978, p. 134):

“It thus appears that there are two kinds of causal forks: (1) Reichenbach’s
conjunctive fork, in which the common cause screens off the one effect from the
other, …, and (2) interactive forks, exemplified by the Compton scattering of a
photon and an electron.”

Interactive forks can be illustrated by the same diagram as conjunctive forks
(Fig. 1). The difference is that in a conjunctive fork the common cause C screens
off A from B, but this is not the case in interactive forks. Salmon shows the need for
interactive forks by his interesting example of Compton scattering.

In a Compton scattering experiment, an energetic photon collides with an electron
which can be regarded as more or less stationary. The collision is represented by the
node C, where the variable C has the energy E as its value. As the result of the

1 For definitions of the Markov condition, and the other technical terms used in this paper, see appendix.
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collision we get an electron with energy E1 represented by node A, and a photon with
energy E2 represented by node B. Now because of the conservation of energy, we
have E=E1+E2, and so A and B are highly correlated given C. C is a common cause
of A and B, but it does not screen off A from B. So this is a causal fork, which is not a
conjunctive fork. It is an interactive fork.

Conjunctive forks are Markovian causal models, while interactive forms are non-
Markovian causal models. So Salmon clearly supports the view that at least some
causal models should be non-Markovian.

Suppes in his 1986 also supports the idea that there are non-Markovian
causal models, but in a different way from Salmon. Salmon’s non-Markovian
causal model is drawn from physics. However, Suppes holds that the Markov
assumption has on the whole been successful in physics. He then develops a
general argument to show that Markovian conditions are unlikely to be as
applicable in the social sciences as in physics. He illustrates this thesis with
examples of non-Markovian models in psychology and economics. Suppes
concludes his paper as follows (1986, p. 140):

“Philosophical views of causality—at least if it is intended for them to be
relevant to theoretical and empirical work in the social sciences—must not be
restricted to the dominant Markovian conceptions of causality that have played
such a central role in physics.”

Causal modelling received a tremendous impulse from the development of
the theory of Bayesian networks in the 1980s. The principal figure was Pearl
who introduced and developed the concept of Bayesian network in a series of
papers: Pearl (1982; 1985a, b; 1986), Kim and Pearl (1983), and a book: Pearl
(1988). An important extension of the theory was carried out by Lauritzen and
Spiegelhalter (1988), while Neapolitan’s 1990 book gave a clear account of
these new ideas and helped to promote the use of Bayesian networks in the AI
community. There is one point, however, on which Neapolitan’s approach
differs from that of the others just mentioned. Pearl, Kim, Lauritzen and Spiegelhalter
all interpret the probabilities in Bayesian networks subjectively as degrees of belief.
Neapolitan, however, suggests that they might be interpreted objectively. In this paper,

Fig. 1 Conjunctive or Interactive Fork
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we will always interpret the probabilities in Bayesian networks and causal probability
models objectively.2

The theory of Bayesian networks was well received by AI researchers, and many
successful AI systems were constructed using Bayesian networks in the 1990s. Here
we will mention, as an example, a system for partially automating colon endoscopy
(Sucar et al. 1993). Such a system has to be able to recognise the lumen of the colon,
and give an operator correct advice on how to proceed. The first attempt to construct
such a system was purely logic based, and did not use probability. It gave the correct
interpretation and advice regarding the lumen in only 39 % of cases. However, when
an appropriate Bayesian network was developed for the problem, the percentage of
correct results rose to over 90 %. This is a good illustration of the power of the new
theory.

Despite such successes, the theory of Bayesian networks was not well received in
all quarters. Bayesian networks, by definition, satisfy the Markov condition. Critics,
following in the line of Salmon’s criticism of Reichenbach, objected that there might
be many cases in which the Markov condition is not satisfied. For example,
Cartwright in her 1995, discusses a version of the Markov condition, which she
describes as (p. 340): “the screening-off condition familiar to philosophers from the
work of Reichenbach, Suppes and Salmon”. Of this version of the Markov condition
she says (p. 341):

“… it is not universally true for genuine probabilistic causation. Far from it. It is
a very special case that holds in unusual circumstances.”

She then goes on in her paper to give some examples in which the Markov
condition fails.

In 2000, Pearl published a book on causality. In this work, his focus had shifted
somewhat away from AI towards discussion of causal models in econometrics and
epidemiology. The main emphasis is on what he called: ‘functional causal models’
and later, e.g. in his 2011, ‘structural causal models’. Structural causal models are so-
called because the involve features of the structural equation models (SEM) used in
econometrics by figures such as Haavelmo (1943). Despite these changes, however,
Pearl’s structural causal models still satisfy the Markov condition, and so he needed
to reply to those who criticized the use of this condition. He does so as follows (2000,
p. 62):

“… criticisms of the Markov assumption, most notably those of Cartwright …,
have two characteristics in common:

1. they present macroscopic non-Markovian counterexamples that are… of the type
considered by Salmon …, that is, interactive forks; and

2. they propose no alternative, non-Markovian models from which one could
predict the effects of actions and action combinations.”

2 There are actually two senses of ‘objective’ as applied to probability. ‘Objective’ can mean objective in
the scientific sense, or objective in the logical, or epistemic, sense. In this paper, we will confine ourselves
to probabilities, which are objective in the scientific sense. For probabilities, which are objective in the
logical, or epistemic, sense, see Williamson 2005, Ch. 5, pp. 65–106, and Williamson 2010.
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These comments can be considered as posing a challenge to anyone who wants to
defend non-Markovian causal models. The non-Markovians should show that there
are non-Markovian counterexamples not reducible to Salmon’s interactive forks, and
they should produce non-Markovian models which are mathematically tractable and
from which action-guiding results can be deduced. Later in the paper we will
demonstrate both these points. We will produce (see Section 2) a non-Markovian
counterexample, which is quite different from Salmon’s interactive forks, and we will
produce (in Sections 6, 7 and 8) a non-Markovian causal model of a well-known
situation in preventative medicine, and show that action-guiding results can be
deduced from it.

Pearl argues that apparent non-Markovian counterexamples, such as Salmon’s inter-
active forks, can be dealt with by introducing into the network latent, or unobservable,
variables by means of which the Markov condition can be restored. He admits that
exceptions to this claim might occur in quantum mechanics. Perhaps this is a reference
to Salmon’s example of Compton scattering. As he says (Pearl 2000, p. 62):

“Only quantum-mechanical phenomena exhibit associations that cannot be
attributed to latent variables, and it would be considered a scientific miracle if
anyone were to discover such peculiar associations in the macroscopic world.”

Interestingly, Cartwright gives an example in her 1989, which is formally identical
to Salmon’s Compton scattering example, but deals with events in the everyday
macroscopic world. She writes (1989, p. 114):

“For example, an individual has $10 to spend on groceries, to be divided
between meat and vegetables. The amount that he spends on meat may be a
purely probabilistic consequence of his state on entering the supermarket; so too
may be the amount spent on vegetables. But the two effects are not produced
independently. The cause operates to produce an expenditure of n dollars on
meat if and only if it operates to produce an expenditure of 10−n dollars on
vegetables.”

A simpler everyday example along the same lines would be that of a mother who
repeatedly has to divide pieces of cake between her two children—the child who has
behaved better recently getting the larger slice.

Pearl would no doubt say that Cartwright’s macroscopic interactive fork could be
turned into a Markovian causal model by adding some latent variables. However he
does not discuss this example, or say what latent variables would be required to deal
with it. As we shall see in Section 5, adding latent variables to a causal model is by no
means an unproblematic process.

Pearl’s general conclusion is that (2000, p. 63):

“… counterexamples to the Markov condition are relatively rare and can be
explained away through latent variables.”

This is in rather striking contrast to Cartwright’s view that the Markov condition is
(1995, p. 341): “a very special case that holds in unusual circumstances.” Before we
discuss this interesting and important controversy further, however, it will necessary
to distinguish between two different questions concerning the Markov condition,
which are often treated together.
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In the past few decades, a good deal of research has been carried out on trying to
produce machine learning programs which are capable of obtaining causal relations
from statistical data. The success of this research remains somewhat controversial. Its
advocates claim that many striking successes have been achieved, while its detractors
are sceptical as to whether any result of significance has been produced. Now these
machine learning programs often make use of Bayesian networks, and hence of the
Markov condition. Some of Cartwright’s criticisms of the Markov assumption are
directed against its use in such machine learning programs. For example, in her 2001
paper: ‘What isWrong with Bayes Nets?’, she mainly criticizes the use of Bayes Nets in
the work on machine learning by Spirtes et al. (1993), and by other authors working on
related research programmes. She characterises the aim of her paper as that of discussing
(Cartwright 2001, p. 242): “… a variety of algorithms for inferring causal relations from
independencies. These I will loosely call ‘Bayes-nets methods’.”

In the present paper our aim is to discuss the use of causal Bayesian networks, and
other causal networks in modelling situations, which arise in the natural sciences and
medicine. We do not want to discuss the problematic question of whether Bayesian
networks can be used to obtain causal relations from statistical data. In order to
separate sharply the question of interest here from the machine learning question, we
propose the following strategy.

In the 450 years from 1500 to 1949, during which no computers or machine
learning existed, scientists nevertheless discovered a great number of hypotheses or
models to explain data. They did so by a process which could be called: ‘human
learning’. Popper (1963) analyses human learning as a sequence of conjectures and
refutations. A first conjecture C1 is put forward to explain some data. It is then tested
out rigorously against this data, and, if it is refuted, a new conjecture C2 is put
forward. This in turn is tested out against the data, and so on, until, hopefully, a
conjecture Cn is reached, which is not refuted, but on the contrary well corroborated
by the data. This was the method by which Kepler made his discovery that the planet
Mars moves in an ellipse with the Sun at one focus. Kepler had access to the very
accurate observations about positions of Mars, which had been made by Tycho
Brahe. His first conjecture about the orbit of Mars round the Sun was that it was
circular. However, this was refuted by Tycho Brahe’s data. Kepler then tried, as his
second conjecture, the idea that the orbit was generated by a circle and an epicycle.
This again could not be made to fit Tycho Brahe’s data. Kepler introduced the
hypothesis of an elliptical orbit as his fourth conjecture, but this time his conjecture
was very well corroborated by the data. The hypothesis that Mars (and the other
planets) move in ellipses with the Sun at one focus is not of course a causal model.
However, causal models can be learned by humans, through exactly the same process
of conjectures and refutations without using computers and machine learning.

As we have already remarked, the success of attempts to obtain causal relations
from statistical data remains somewhat controversial. However, one thing would, we
think, be agreed by everyone, namely that the machine learning of causal relations
has not completed superseded the human learning of such relations. The majority of
causal claims are formulated and tested out by humans using the familiar method of
conjectures and refutations. Perhaps some day machine learning will completely
supersede human learning, but, for the moment, human scientists are still needed
for much of the time.
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Given this situation, we propose, in this paper, to limit ourselves to considering
causal models, which are the products of human learning rather than machine
learning. This is in order to put aside the question of the efficacy of what
Cartwright calls: ‘Bayes-nets methods’ in machine learning, and to focus instead on
the question, which we want to tackle in this paper. This is the question of the value of
different types of causal network for modelling situations in the natural sciences and
medicine. Should we confine ourselves to the use of Markovian causal models, or is
there a role for non-Markovian causal models as well?

Having formulated our research area with some precision, let us now return to the
question of whether “counterexamples to the Markov condition are relatively rare”
(Pearl 2000, p. 63), or whether the Markov condition is “a very special case that holds
in unusual circumstances” (Cartwright 1995, p. 341). Williamson discusses counter-
examples to the Markov condition3 in his 2005, pp. 51–57. He begins by showing
that the Markov condition implies Reichenbach’s principle of the common cause.
Now many exceptions to Reichenbach’s principle of the common cause have been
discovered, and these constitute counter-examples to the Markov condition. In
addition further counter-examples have been discovered in the context of trying to
develop Bayesian networks in various contexts. One of the interesting features of
Williamson’s treatment is that he tries to classify the reasons why the conditional
independence of variables in a network can fail. He says (2005, p.52):

“… probabilistic dependencies arise … because the variables are related
through meaning, through logical connections, through mathematical connec-
tions, because they are related by (non-causal) physical laws, or because they
are constrained by local laws or boundary conditions.”

All this would seem to favour Cartwright against Pearl, but perhaps the question
should be formulated in a somewhat different fashion. To do so, we will consider in a
little more detail the example of Sucar et al. (1993), which was mentioned earlier. The
system was designed to recognise the lumen of the colon, and give advice to the
operator about how to proceed. Part of the network, which was initially tried, is
shown in Fig. 2.

Here L stands for the lumen, which causes a large dark region (or LDR) to appear
on the screen. This in turn produces values for the variables S, which measures the
size of the region in pixels, M, which measures its mean intensity, and V, which
measures the variance of that intensity. There was an abundant supply of videotapes
of colon endoscopies, in each frame of which, the lumen could be indicated by an
expert. These gave a mass of frequency data from which probabilities in an objective
sense could be estimated. In this case, the Markov condition implies that S, M and V
should be probabilistically independent given LDR. Since the probabilities involved
could be estimated from data, it was possible to test these consequences of the
Markov condition using frequency data. These statistical tests showed that, given

3 On pp. 51–57 of his 2005, Williamson is actually discussing exceptions to what he calls the Causal
Markov Condition, which is defined on p. 50, and is distinguished from the Markov Condition, which is
defined on p. 15. In this paper, we are using the term ‘Markov condition’ to cover both what Williamson
calls the ‘Markov condition’ and what he calls the ‘Causal Markov Condition’. So on pp. 51–57 of his
2005, Williamson is indeed discussing what are exceptions to the Markov condition in our sense of the
term. The differences here are purely terminological.
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LDR, S&M and S&V could reasonably be regarded as independent, but that M & V
were strongly correlated and so could not be regarded as independent. This failure of
the Markov condition is one, which Williamson classifies as due to a mathematical
connection, since well-known mathematical relations exist between the variables M
and V (see Williamson 2005, p. 54).

In this case, however, it was possible to restore the Markov condition in a simple
fashion. It was argued that, since M and V were correlated, it might be possible to get
just as good results by eliminating one of them. In fact, it turned out that eliminating
V improved the performance of the system, as related to L, on all measures (for
details, see Sucar, Gillies and Gillies, p. 206). Eliminating Valso reduced the network
size making object recognition faster. So this change produced a system, which was
not only more reliable, but also more efficient.

Generalising from this example, we can produce the following improved formu-
lation of the problem. The question as initially posed was whether violations of the
Markov condition were relatively rare or very common. However, any proposed
Markovian causal model should be regarded as a conjecture, which ought to be tested
using data. Sometimes statistical tests will confirm that the Markov condition holds,
4but, in other cases, they will show that it is violated. The important question,
however, is not that of how frequently such statistical violations of the Markov
conditions occur, but whether, if the Markov condition is refuted, it can be restored
by a suitable modification of the network. In fact, a number of techniques are
available for modifying a network in order to restore the Markov condition. (1)The
first, and simplest, is that used in the colonoscopy example, and consists in eliminat-
ing one of the variables between which a conditional probabilistic dependency exists.
(2) A second technique is to add an arrow joining the two dependent variables. We

Fig. 2 Part of a Network for Colonoscopy

4 In speaking of statistical tests confirming that the Markov condition holds, we do not mean to imply that
they establish the Markov condition with certainty, but only that they provide some evidence in its favour.
A scientific conjecture can never be established with certainty by a number of tests with favourable
outcomes, since future tests may always show that the conjecture is false in some respects.

282 Euro Jnl Phil Sci (2013) 3:275–308



will give an example of this modification technique later in the paper. (3) A third
technique is to add new variables to the network. These can either (3i) be observable
variables, or (3ii) be unobservable or latent variables. In fact Pearl refers to this last
approach when he says (2000, p. 63) that “… counterexamples to the Markov
condition … can be explained away through latent variables.” Pearl mentions only
one of the techniques, i.e. (3ii), for modifying a network to restore the Markov
condition, but, in what follows, we will allow all three, and indeed others, if they
can be discovered.

In terms of this formulation of the problem, we can now state the aim of the paper
as follows. Let us suppose that we are attempting to devise a causal model to explain
some phenomenon in the natural sciences or medicine. It may be sensible to begin by
assuming the Markov condition, since models satisfying the Markov condition are
easier to handle mathematically. However, and this is the key point, we should not
assume that what is mathematically convenient necessarily holds in the real world.
On the contrary, it is a basic principle of scientific method that we should test out the
assumptions of our model against the data. In some cases, these statistical tests will
show that the Markov condition does hold, and there is no problem. Even if statistical
tests show that the Markov condition does not hold, it might be possible to modify the
network in order to restore the Markov condition. There are several ways in which
this can be done, and, using some of them, we might well produce a modified
network, which is well-confirmed by the data, and satisfactory for our purposes.
However, yet another situation is possible. It could turn out that modifying the
network to restore the Markov condition produces a more complicated network which
is not well-confirmed empirically, nor satisfactory for our purposes; while the non-
Markovian network is well-confirmed empirically and much simpler. If, in such a
case, we can make the non-Markovian network mathematically tractable in the sense
of showing how to deduce from it the results we need to guide our actions, then such
a non-Markovian network is surely to be preferred to a Markovian one. It would
seem, in such a case, merely dogmatic to insist that the non-Markovian model is
unsatisfactory simply because it does not satisfy the Markov condition. The aim of
the rest of this paper is to produce such a non-Markovian model, designed to explain
some important situations which arise in modern medicine.

2 Indeterministic causality and multi-causal forks

Before introducing our example, it is necessary to make a couple of distinctions
regarding causality. The first of these is between deterministic and indeterministic
causality. ‘A causes B’ involves a deterministic notion of causality if, ceteris paribus,
the instantiation of A is always followed by B. A simple example of deterministic
causality is: ‘The sprinkler causes the grass to get wet.’ Here ‘The sprinkler’ is short
for ‘The sprinkler being properly connected to a working water supply and turned
on’. When that happens, ceteris paribus, the grass always gets wet.

Deterministic causality is the traditional concept of causality, which is analysed by
18th and 19th century philosophers such as Hume and Kant. In the 20th century,
however, a new concept of causality appeared largely in connection with medical
epidemiology. An example of this new, or indeterministic, type of causality is:
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‘Smoking causes lung cancer’. This is now a generally accepted causal law, and yet
smoking is not always followed by lung cancer. To show this, we will quote statistics
to be found in Doll and Peto (1976). These are concerned with a sample of 34,440
male doctors in the UK. The 1976 paper deals with the mortality rates of the doctors
over the 20 years from 1 November 1951 to 31 October 1971. During that time,
10,072 of those who had originally agreed to participate in the survey had died, and
441 of these had died of lung cancer. As about 83 % of the doctors sampled were
smokers, this means that only about 5 % of these smokers died of lung cancer. So,
although smoking causes lung cancer, smoking is not always followed by lung
cancer.

But although smoking is not invariably followed by lung cancer, smoking defi-
nitely increases the probability of getting lung cancer. Doll and Peto calculated the
annual death rate from lung cancer per 100,000 men standardised for age. The results
in various categories were as follows (1976, p. 1527):

Non-smokers 10

Smokers 104

1–14 g tobacco per day 52

14–24 g tobacco per day 106

25 g tobacco per day or more 224

(A cigarette is roughly equivalent to 1 g of tobacco)

These results do indeed show a striking correlation between smoking and lung cancer.
Smokers are on average more than 10 times more likely to die of lung cancer than non-
smokers, and this figure rises to more than 22 times for heavy smokers who consume 25 g
or more of tobacco per day. These results are highly significant statistically.

Since its introduction in the 1950s in the investigation of smoking and lung cancer,
the notion of indeterministic causality has become ubiquitous in medicine. Consider,
for example, the claims that fast food causes heart disease, that infection with the
papilloma virus causes cervical cancer, or that some particular genes cause
Alzheimer’s. In all these important recent claims in medicine, the notion of causality
is that of indeterministic causality. There are, however, a lot of problems connected
with indeterministic causality, which are far from having been resolved. Galavotti,
who refers to indeterministic causality as probabilistic causality, gives a good account
of these problems in her 2010 where she writes (p. 140):

“The first problem that arises as soon as causality is taken as a probable rather
than constant conjunction is that of identifying causal as opposed to spurious
relations, without getting muddled with problems of the Simpson’s paradox
kind. … . Moreover, the virtuous circle linking causality, explanation and
prediction within classical determinism (of the Laplacean kind) breaks down
in the case of probabilistic causality.”

Galavotti is quite correct to draw attention to “problems of the Simpson’s paradox
kind”, and we will encounter some of these problems in Section 3.

In addition to the deterministic/indeterministic distinction, there is one other
distinction concerned with causality, which we shall find of use. This is the
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distinction between generic and single-case causality. A causal claim such as A
causes B is said to be generic, if it can be instantiated on different occasions. Our
two preceding examples: ‘The sprinkler causes the grass to get wet’ and ‘Smoking
causes lung cancer’ are both examples of generic causality. By contrast, a causal
claim is single-case if it applies to only one instance. An example is: ‘A heart attack
caused Mr Smith’s death’.5

In this paper we will confine ourselves exclusively to generic causality, and will
use the term causality only in this sense from now on. This is partly because we
regard generic causality as more fundamental than single-case, and hence think it is
better to begin by analysing generic causality. It is also because we agree with
Campaner and Galavotti, when they write (2007, p. 181): “… the relationship
between type and token causality is highly problematic.” They go on to point out
that Suppes adopts the strategy of dealing with type causality first, and leaving a
theory of token causality to be developed later. This is the strategy, which we will
adopt here.

19th and early 20th century scientific medicine, as it was developed by Pasteur,
Koch, and others, used a deterministic notion of causality. An attempt was made to
show that each disease had a single cause, which was both necessary and sufficient
for the occurrence of that disease.6 So, for example, tuberculosis was caused by a
sufficiently large number of tubercle bacilli in the patient. As we have seen, however,
from the 1950s on, medicine has had to introduce an indeterministic notion of
causality. This goes hand in hand with explaining diseases as caused by the
conjunction of several causes acting together. This is multi-causality as opposed to
the earlier mono-causality. The various different causes, which act together to pro-
duce the disease, could be called causal factors. The term ‘risk factor’ is also used,
but will not be adopted here since it seems more suitable for a purely probabilistic
concept rather than a causal concept. The use of multi-causality, or several causal
factors, leads to the introduction of multi-causal forks, as shown in Fig. 3.

Here Z, a disease, has a finite number n of causal factors X1, X2, …, Xn. Perhaps
the most important case of a multi-causal fork in contemporary medicine is the case
of heart disease (see Levy and Brink 2005). In the last 60 years, quite a number of
causal factors for heart disease have been discovered. These include: smoking, eating
fast food, high blood pressure, diabetes, and obesity. In the last few years, investiga-
tions have begun into possible genetic causal factors. As heart disease is still the
number one killer in the developed world, this case is obviously an important one. A
fully developed causal model for heart disease would have to include all the factors
just mentioned and perhaps others as well. However, it seems sensible to begin an
investigation of multi-causal forks with a rather simpler situation. Accordingly, we
will initially confine ourselves to multi-causal forks with two prongs, as shown in
Fig. 4.

5 The terminology ‘type/token’ is often used for the distinction, which we have described as
‘generic/single-case’. Russo and Williamson argue that generic/single-case is a better terminology than
type/token, since the terms ‘type’ and ‘token’ normally refer to objects, whereas causal claims character-
istically relate events and variables (see Russo (2009) and Russo and Williamson (2011)). We are
sympathetic to their point of view and will use generic/single-case, except when quoting from authors
who use type/token. Hitchcock (2010, 1.3) uses ‘general/singular’ for the same distinction.
6 For details, see Codell Carter (2003).
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In our example of heart disease, we will take X=smoking, Y=eating fast food, and
Z=heart disease. This is shown in Fig. 5.

The multi-causal forks of Figs. 4 and 5 are obviously different from the conjunc-
tive or interactive forks illustrated by Fig. 1, for the arrows in Fig. 4 run in the
opposite direction from those in Fig. 1. Applied to the multi-causal fork of Fig. 4, the
Markov condition states that X should be independent of Y. However, this is not
satisfied in our heart disease example, since smoking is not independent of eating fast
food. The two are correlated. This justifies the claim made earlier that that there are
non-Markovian counterexamples not reducible to Salmon’s interactive forks. As a
matter of fact, multi-causal forks are mentioned in Reichenbach’s classic 1956. He
calls them ‘forks open towards the past, constituted by a common effect’ (see p. 159).
However, he does not discuss them in detail.

Fig. 3 n-Pronged Multi-Causal Fork

Fig. 4 2-Pronged Multi-Causal Fork
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Our proposed non-Markovian causal model is a multi-causal fork designed for medical
examples such as the causal factors in heart disease. To make good our claim that such a
model is worthy of being taken seriously, we have to show that it is (i) mathematically
tractable and (ii) that we can deduce from it action-guiding results. Before proceedingwith
this task, it is worth considering briefly what kind of action-guiding results we need to
deduce from a multi-causal fork such as the heart disease example of Fig. 5.

Multi-causal forks are routinely used by cardiologists to recommend to patients,
strategies for preventing heart disease. A cardiologist would typically advise a patient
to give up smoking, and to replace a fast food diet by healthy eating (perhaps some
combination of the traditional Mediterranean and Japanese diets). Moreover, if a
patient is not strong-willed enough to give up both smoking and fast food, then the
cardiologist would advise him or her to give up at least one. All this advice seems
intuitively correct, and we have to show that the cardiologist’s strategies can all be
justified by deductions from our heart disease model of Fig. 5.

To carry out these deductions, we need to provide some link between the causal
influences shown by arrows in Fig. 5, and the related probabilities and statistics. To
do so, we will make use of some ideas taken from an intellectual development known
as ‘probabilistic causality’. A consideration of probabilistic causality, however, lands
us once again in controversial territory. There is a major problem connected with
probabilistic causality, and it is by no means clear that it has been solved. Cartwright
was, for a time, one of the advocates of probabilistic causality, but, once again, her
work, and that of others of the same school, has been criticized by Pearl both in his
2000 and in a recent (2011) paper. We will discuss probabilistic causality in the next
Section (3), and Pearl’s alternative approach in Section 4. Then in Section 5, we will
make a comparison of the two approaches.

3 Probabilistic causality and its main problem

The appearance of indeterministic causality in science in the 1950s was soon
followed by the emergence of probabilistic causality among philosophers of science.

Fig. 5 Multi-Causal Fork for Heart Disease
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Reichenbach in his 1956 can, once again, be seen as a pioneer. However, the theory of
probabilistic causality really got underway with the works of Good (1961, 1962), and
Suppes (1970). Subsequently important developments of the approach were made by,
among others, Cartwright (1979), Salmon (1980), Eells (1991), and, more recently,
Twardy and Korb (2004), Galavotti (2010). Russo (2009) gives an excellent overview
of the debates in this area. Pearl, as we shall see in the next Section (4), has been the
principal critic of probabilistic causality.

The original hope of the programme was to define causality in terms of probability,
but this hope was definitely abandoned by researchers in probabilistic causality from
Cartwright (1979) onwards (see Twardy and Korb 2004, p. 241). These later writers
had the more modest aim of establishing a link between indeterministic causality and
probability, and to do so they made use of a principle which had been formulated in
the early days of the programme. This could the called the Causality Probability
Connection Principle (CPCP or CP2). This can be stated as follows:

If A causes B; then P B
���A

� �
> P B

���:A
� �

CPCPð Þ

CP2 seems intuitively reasonable, and certainly holds in the paradigm case of
‘smoking causes lung cancer’ as we saw in Section 2. However, counter-examples to
CPCP were discovered.

The most famous such example is due to Hesslow (1976). Suppose that we have a
reference class of young women, all with male partners, and for whom the only
contraceptive method available is the pill. We can still use Fig. 4 as an illustration, but
this time we set X=Taking the Contraceptive Pill, Y=Pregnancy, and Z=
Thrombosis.7 This is shown in Fig. 6.

We will suppose that both pregnancy and taking the contraceptive pill cause
thrombosis, but that the probability of getting thrombosis is higher for those who
are pregnant than for those who take the pill. Here preventing the occurrence of one
of the causal factors (i.e. taking the pill) does not help to avoid thrombosis. Stopping
taking the pill in this population makes pregnancy very likely, and that in turn gives a
higher probability of thrombosis. So it may well be the case that stopping taking the
pill increases the probability of thrombosis. This is in sharp contrast to the heart
disease case, where either stopping smoking, or stopping eating fast food reduces the
probability of getting heart disease. This shows that it is by no means such a simple
matter to deduce results from our multi-causal model of Fig. 4, as applied to heart
disease, which will justify the preventative strategies normally recommended by
cardiologists. In the Hesslow example, which is also a multi-causal model illustrated
by Fig. 4, a similar preventative strategy, i.e. giving up taking the contraceptive pill,
far from helping to prevent thrombosis would increase the chance of thrombosis
occurring. There is thus a significant mathematical problem here, which we will state
precisely and solve in Sections 6, 7 and 8.

Returning to the discussion of probabilistic causality, let us confine ourselves to
two pronged multi-causal forks and, as a final simplification, assume that X, Y and Z

7 It might be objected that Fig. 4 is not appropriate as a model for the Hesslow example, since in this case
X, i.e. taking the pill has a causal influence on Y, i.e. pregnancy. So an arrow should be added, joining X to
Y, as in Fig. 7. We will discuss this possibility in Section 5, but leave it aside for the moment.
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are bivariate variables taking the values 0 or 1. So people are classified into smokers
(X=1) or non-smokers (X=0), and similarly in the other cases. This is obviously a
simplification, since in the earlier table of results regarding smoking and lung cancer,
the doctors were classified into various groups according to the amount that they
smoked. However, as our project is to study the relations between causality and
probability, it seems best to take a simple, though quite realistic, case first, and then to
consider the effects of adding more complexities later. We will refer to the two
pronged multi-causal fork with binary variables as our simple model.

In the context of this simple model, CPCP takes the form:

If X causes Z; then P Z ¼ 1
���X ¼ 1

� �
> P Z ¼ 1

���X ¼ 0
� �

ð1Þ

Informally this states that if X is an indeterministic cause of Z, then the occurrence
of X raises the probability of Z occurring. If we take X as smoking and Z as lung
cancer, then estimating probabilities from the observed frequencies in the table given
earlier, we have that P(Z=1 | X=1) is about ten times P(Z=1 | X=0).

Let us now consider the Hesslow counter-example in terms of our simple model.
As before, we set X=Taking the Pill, Y=Getting Pregnant, and Z=Thrombosis. Now
consider (Eq. 1). P(Z=1 | X=1) is the probability of getting a thrombosis for those
taking the pill. By assumption, this is a positive but quite small probability. Next
consider P(Z=1 | X=0). If X=0, then it is very probable that Y=1, that is to say that
those who don’t take the pill have a high probability of getting pregnant, since there is
no other method of contraception. However, P(Z=1 | Y=1) is by assumption much
greater than P(Z=1 | X=1). So we are likely to have P(Z=1 | X=0)>P(Z=1 | X=1),
which contradicts (Eq. 1).

The existence of Hesslow’s and related counter examples to CP2 constitutes the
main problem of probabilistic causality. This problem has not led the proponents of
probabilistic causality to abandon their approach. They have rather sought for ways of
modifying CP2 so that the counter examples are excluded and the principle still holds.
We will next try to formulate our own solution to the problem and then compare it to
suggestions, which have already been made in the literature.

Fig. 6 Multi-Causal Fork for Hesslow Example
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We are interpreting the probabilities in causal models objectively, and this means
that all the probabilities are defined within some reference class. We can therefore ask
the question: ‘For which reference class or reference classes does (Eq. 1) hold?’ The
variables X, Y, Z are all associated with some underlying reference class S. However,
Hesslow’s counter-example shows that (Eq. 1) does not in general hold for this
reference class S. This is because the causal effects of X on Z are disturbed by the
causal effects of Y on Z, given that X and Y are themselves causally linked. This
suggests that, in order to make manifest the causal effect of X on Z, we have to hold
Y fixed. Since we are dealing with the simple case of binary variables, we have just
two cases Y=0 and Y=1. Our proposal then is to divide S into two disjoint reference
classes S & (Y=0) and S & (Y=1), and to claim that (Eq. 1) holds for each of these
two reference classes, but not necessarily for S itself.

The division of a reference class into two disjoint reference classes can be
illustrated by the example of the reference class consisting of a sequence of throws
of a standard fair die. This reference class can be divided into the reference class
consisting of those throws, which have an odd result, and the reference class
consisting of those throws which have an even result. In Hesslow’s example, the
underlying reference class S say consists of a set of young women living with male
partners in a situation in which taking the pill is the only contraceptive method
available. This can be divided into the following two disjoint reference classes: S
& (Y=0), i.e. the set of those who do not become pregnant in the time period under
consideration, and S & (Y=1), i.e. the set of those who do become pregnant. Now, in
both these reference classes (Eq. 1) holds. Consider S & (Y=0), which is the set of
young women who do not become pregnant. Those who take the pill (X=1) have a
higher probability of getting a thrombosis than those who do not (X=0) because of
the side effects of the pill. Consider next S & (Y=1), which is the set of young
women who do become pregnant. In this case it might be objected that there are no
members of this set who take the pill (X=1). However, it could be replied that the pill
is unlikely to be 100 % effective, and that, because of the side effects of the pill,
someone who both took the pill and became pregnant is likely to have a higher
probability of getting a thrombosis than someone who became pregnant without
having taken the pill. So (Eq. 1) again holds.

So our suggestion is the following. Suppose we are dealing with a multi-causal
fork, as in Fig. 3, in which a number of possibly interrelated indeterministic causes
(X1, X2, … Xn) are combining to produce an effect Z. We can only draw conclusions
about probabilities from the claim that X1 causes Z, if we assume that the values of
the other indeterministic causes (X2, … Xn) are fixed. So these probabilistic conclu-
sions hold in each member of a partition of the underlying reference class. From this
it does not follow in general that they hold in the reference class as a whole, though
this may be true in some cases. This shows that the Hesslow counter-example is
closely related to the Simpson paradox.8

This proposed solution to the problem has many points in common with those put
forward in the probabilistic causality research programme. Let us now briefly com-
pare our solution with those of Cartwright (1979) and Eells (1991). Cartwright
formulates what could be considered a version of CPCP in 1979 (p. 26) and Eells

8 A good recent discussion of Simpson’s Paradox is to be found in Bandyoapdhyay et al. (2011).
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in 1991 (p. 8). The general idea of these formulations is the same as that presented
here, but there are the following two differences. First of all both Cartwright
and Eells formulate CPCP as a necessary and sufficient condition of the form
‘X causes Z iff …, whereas we formulate it as a sufficient condition of the
form ‘If X causes Z, then …’. An ‘iff’ formulation would be necessary if we
were trying to define causality in terms of probability, but, as already stressed,
we are not attempting to give a definition of causality in terms of probability
which we regard as impossible, but rather to establish a connection between
indeterministic causality and probability. Secondly both Cartwright and Eells
make use of the notion of a complete set of causal factors. Speaking of the
effect E, Cartwright speaks of (p. 26): “A complete set of causal factors for E
…”, while Eells writes (p. 86):

“In assessing X’s causal relevance to Y we have to hold fixed all the other
factors F1, …, Fn, that are causally relevant to Y, independently of X, and then
observe the probabilistic impact of X on Y….”

By contrast our formulation is model relative. We only consider the causal factors,
which are included in the model. There may be further causal factors, which are not in
the model. A similar point of view is to be found in Twardy and Korb (2004), who,
using a rather different terminology, write (p. 242):

“… the concept of objective homogeneity does the real work in helping us
make sense of probabilistic causality, if only in combination with a known
causal structure.” (Our italics)

The objection to the formulations of Cartwright and Eells is that we can never
know whether we have discovered all the causal factors operating, and so their
versions of CPCP can never be applied in practice. To this it might be replied that,
equally, if our model is incorrect because it omits some important factors, then the
model relative application of CPCP would likewise be incorrect. Now, of course, any
proposed causal model, like any scientific hypothesis, might be wrong. What we
should do about this is to test every conjectured model as severely as we can, and
change those models, which are refuted, until, hopefully, we reach a well-
corroborated model which is adequate for our purposes.

The point of CPCP is to enable models involving indeterministic causality to
be tested. In the deterministic case there is no problem. Suppose we want to
test the deterministic claim that A causes B. All we have to do is to check that
the ceteris paribus conditions are satisfied, and instantiate A. If B follows, the
claim is confirmed, while if B does not follow, then the claim is refuted. In the
case of indeterministic causality, things are similar but a bit more complicated.
We have first to derive some probabilistic conclusions from our causal model
using an appropriate version of CP2. We can then test these probabilistic
conclusions against the data by using statistical tests. This shows why the ‘if
… then’ formulation of CPCP is all that is required. An ‘iff’ formulation is not
needed.

This then is our approach, which is in the tradition of probabilistic causality and is
based on a version of the Causality Probability Connection Principle. In the next
section we will compare it to the quite different approach advocated by Pearl.
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4 Pearl’s alternative approach

In his 2011, Pearl gives an exposition of what he calls ‘the structural theory of
causation’. Section 33.5 of the paper deals with the question of structural versus
probabilistic causality. Abbreviating probabilistic causality to PC, Pearl writes (p.
714):

“… the PC program is known mainly for the difficulties it has encountered,
rather than its achievements. This section explains the main obstacle that has
kept PC at bay for over half a century, and demonstrates how the structural
theory of causation clarifies relationships between probabilities and causes.”

The main obstacle is of course what Pearl calls the ‘probability raising’ trap, or (p.
714) “the idea that causes raise the probability of their effects”. The problem,
according to Pearl is that philosophers have tried to express the relationship ‘raises
the probability of’ in the language of probability theory by means of inequalities like
P(E | C)>P(E | ¬C) or equivalently P(E | C)>P(E).9 This is a mistake, however,
because (Pearl 2011, p. 715): “the relationship ‘raises the probability of’ is counter-
factual (or manipulative) in nature, and cannot, therefore, be captured in the language
of probability theory.” In order to express this relationship we need to use the
language of the do-calculus, introduced by Pearl, which goes beyond probability
theory. As Pearl himself says (2011, p. 715):

“The way philosophers tried to capture this relationship, using inequalities such
as

P E
���C

� �
> P Eð Þ

was misguided from the start—counterfactual ‘raising’ cannot be reduced to
evidential ‘raising’ or ‘raising by conditioning’. The correct inequality,
according to the structural theory …, should read:

P E
���do Cð Þ

� �
> P Eð Þ

where do(C) stands for an external intervention that compels the truth of C. The
conditional probability P(E | C) … represents a probability resulting from a
passive observation of C, and rarely coincides with P(E | do(C)).”

So Pearl’s main idea seems to be that the problem of probability raising is solved
by replacing P(E | C) by P(E | do(C)). One might expect him therefore to go on to
show that the counter-examples to probability raising such as Hesslow’s counter-
example can be eliminated by making this move. However, Pearl does not do this,
and does not mention any of the well-known counter-examples to probability raising
in his 2011 article. We will continue our exposition of Pearl’s own argument in a
moment, but first it seems interesting to see how his suggestion applies to the
Hesslow counter-example as formulated earlier in the paper. As a word of warning
we should say that this investigation would not be accepted as legitimate by Pearl

9 Our formulation of CP2 given above is an example of this.
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because our formulation uses multi-causal forks, which, because they are non-
Markovian, he does not accept as valid. Still the investigation is not without interest,
and we will accordingly carry it out.

So let us replace (Eq. 1) by (Eq. 2)

If X causes Z; then P Z ¼ 1
���do X ¼ 1ð Þ

� �
> P Z ¼ 1

���do X ¼ 0ð Þ
� �

ð2Þ

As before our underlying reference class consists of a set of young women all with
male partners in a situation in which the only method of contraception is the pill.
Before, we imagined that we were simply observing which of the women took the
pill, so that the ordinary probabilistic conditioning P(Z=1 | X=1) seemed appropriate.
However, we could instead imagine a situation, in some very authoritarian country, in
which an active intervention was made by the government. Some women, perhaps
those who, according to the government, have wrong political opinions or ethnic
character, would be forced under police supervision to take the pill [do (X=1)], while
others, whose children it was thought would be more useful to the state, would be
prevented from using the pill [do(X=0)]. In this new situation, the counter-example
which applied to (Eq. 1) would apply in just the same manner to (Eq. 2). Those who
were forced to take the pill would have a lower probability of getting thrombosis than
those who were prevented from taking the pill, because the latter would have a much
higher probability of becoming pregnant and so having pregnancy induced thrombo-
sis. It follows from this that use of the do-calculus on its own does not solve the
conundrums of CPCP. Pearl must be making some further assumptions—which of
course is the case. Let us now examine what these further assumptions are.

The key further assumption is that, when we are dealing with indeterministic
causes, we should use a structural causal model. These models are described in
Pearl (2000), and they are of two types. The first type, which could be called
observable, consists of a set of observable parameters, which are connected to their
parents by a functional equation involving an error or disturbance term. These error or
disturbance terms are assumed to be independent, and from this it follows that the
Markovian assumption is satisfied so that the network is a Bayesian network. But
what about cases where the Markovian assumption is known not to be satisfied—for
example Salmon’s interactive forks? Pearl proposes to deal with these by introducing
latent, unobservable variables. Referring to the parents of a variable Xi as PAi, Pearl
writes (2000, p. 44):

“If a set PAi in a model is too narrow, there will be disturbance terms that
influence several variables simultaneously and the Markov property will be lost.
Such disturbances will be treated explicitly as ‘latent’ variables … . Once we
acknowledge the existence of latent variables and represent their existence
explicitly as nodes in a graph, the Markov property is restored.”

So Pearl’s second type of structural causal model could be called latent, because it
involves latent, unobservable variables as well as observable variables. He thinks that
any significant, but apparently non-Markovian, causal model can be reduced to a
latent structural causal model. There might indeed be some non-Markovian models,
which could not be so reduced, but Pearl does not think they would be of any use. As
he says (2000, p. 62):
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“… we confess our preparedness to miss the discovery of non-Markovian
causal models that cannot be described as latent structures. I do not consider
this loss to be very serious, because such models—even if any exist in the
macroscopic world—would have limited utility as guides to decisions.”

Now the multi-causal forks, which we described earlier, are not in general structural
causal models. They involve only observable variables, but the Markov assumption is
not always satisfied. So Pearl would suggest that such models be reduced to structural
causal models by, for example, introducing unobservable latent variables. We will
consider how this might be done in a moment, but let us now return to Pearl’s solution
to the problem of whether causes raise the probabilities of their effects. Essentially his
approach is that we should formulate the problem within a structural causal model, and
we can then calculate the value of CE=P(y | do(x))−P(y). Sometimes it will be greater
than zero and sometimes not. However, no additional assumption along the lines of
CPCP needs to be made. In the case of observable structural causal models, the
calculation of CE can definitely be carried out. As Pearl says (p. 717): “The solution
follows immediately from the identification of causal effects in Markovian models …”
Pearl is a bit more cautious in the case of latent structural causal models. He writes (p.
717): “The solution is less obvious when P is defined over a proper subsetWof V, where
{V−W} represents the unmeasured variables.” However he thinks that there are results
which (p. 717) “reduce this problem to algorithmic routine.”

Such then is Pearl’s proposed solution to the problem of whether causes raise the
probabilities of their effects. We will now present some criticisms. The main diffi-
culty in Pearl’s approach seems to us to be his assumption that, whenever we are
handling indeterministic causes, we should do so by introducing a structural causal
model. In some cases, of course, structural causal models may be quite appropriate,
but, in other cases, it might be simpler and easier to use different kinds of causal
model, such as an interactive fork, or a multi-causal fork. Multi-causal forks are very
simple causal models, which apply in a straight-forward way to well-known examples
of the use of indeterministic causality in medicine, such as the causal factors of heart
disease. They can be handled quite easily. So why should they be banned? As we
know, Pearl would reply that the use of such non-Markovian models is unnecessary,
because they can easily be replaced with Markovian models by adding latent vari-
ables. In the next section we will consider how this might be done in the case of our
simple model of a multi-causal fork giving causal factors for heart disease.

5 Restoring the Markov condition by adjusting the model

In Section 1, we described 3 methods, which could be used to restore the Markov
condition in networks for which the Markov condition failed. These were: (1)
eliminating variables, (2) adding arrows, and (3) adding variables. Method (1) was
illustrated by the colonoscopy example of Fig. 2. Let us now examine how, using
such methods, we might try to restore the Markov condition in the case of two-
pronged multi-causal forks, as illustrated by Fig. 4.

For multi-causal forks, method (1), i.e. eliminating variables, does not seem
appropriate. So let us try method (2). We can than add an arrow joining X to Y, as
shown in Fig. 7.
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Now this does seem appropriate for the Hesslow example. If we apply it, we
transform Fig. 6 into Fig. 8, by adding the additional postulate that taking the pill has
a causal influence on getting pregnant.

Now this additional postulate is plainly correct, since taking the pill prevents
pregnancy, and prevention is of course a form of causal influence. Indeed, if our
main aim had been to analyse this example, there would have been no need to
introduce a non-Markovian model. The Markovian model of Fig. 8 is clearly satis-
factory. Indeed in his 2001, Hitchcock analyses the Hesslow example using a model,
which is an elaboration of Fig. 8 (see Hitchcock 2001, p. 364, Fig. 1). His analysis in
terms of the distinction between net effect and component effect is very convincing.
Reassuringly Hitchcock tells us (2001, p. 366) that “birth control pills are now
considerably safer than when Hesslow’s example was first presented.”

Fig. 7 Adding Arrow to Multi-Causal Fork

Fig. 8 Adding Arrow in Hesslow Example
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However, our main aim was not in fact to analyse the Hesslow example, but rather
the heart disease example of Fig. 5. The point of introducing the non-Markovian
model of the Hesslow example, as shown in Fig. 6, was to provide a simple and vivid
illustration of the pitfalls of non-Markovian models. Obviously anyone advocating
non-Markovian models should find some way of bringing their pitfalls to light, so
that these pitfalls can be avoided. The main claim of the paper is that a non-
Markovian causal model is suitable for the heart disease example of Fig. 5. So the
key question is whether the Markov condition can be restored for this model.

Of course, once again, we could try adding an arrow as in Fig. 7. In this case, this
would amount to making the claim that smoking causes the eating of fast food. Such a
claim, in contrast to the corresponding claim in the Hesslow case, is not at all
plausible. smoking and eating fast food are indeed correlated, but does the first cause
the second? It is just possible that having a dose of nicotine may cause a craving for
the consumption of food high in salt, sugar, and saturated fat, but there is no
physiological evidence for such a causal pathway. Nor is there any evidence for other
causal pathways which would justify an arrow of causal influence joining smoking to
eating fast food (or vice versa). In this case, then, it seems we should try what is
anyway Pearl’s preferred method, and introduced a latent variable U (= unobservable)
between X and Y, as in Fig. 9.

Now there would be no mathematical difficulty involved in such a move. The
problems, which arise here, have an empirical, or scientific, character. In general,
problems of this kind arise as soon as we start using unobservable variables in
modelling some observable phenomenon. We can illustrate these problems by con-
sidering a simple case involving ordinary rather than random variables. Suppose we
are modelling some observable quantity y, and, to do so, take into account n
observable variables x1, x2, …, xn. We then postulate the following model

y ¼ f x1; x2; … ; xnð Þ ð3Þ

Fig. 9 Adding Latent Variable to Multi-Causal Fork
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Unfortunately when this model is tested out, it is found that its predictions differ
quite dramatically from observation. However, not at all daunted, we decide to adjust
the model by adding a latent or unobservable variable u.

y ¼ f x1; x2; … ; xnð Þ þ u ð4Þ
Since u is unobservable, we postulate that its value is given by y - f(x1, x2, …, xn).

We then conclude that the adjusted model (Eq. 4) now agrees exactly with observa-
tion. Obviously such a procedure would be pseudo-science rather than science.

We give this example not in order to argue that the use of latent or unobservable
variables is always wrong. On the contrary, there are many examples in which the use
of such variables has proved fruitful. Our aim is rather to warn of dangers associated
with the use of such variables. They can all too easily lead to converting empirical
testable models into pieces of pure mathematics. In order to avoid such a danger,
some steps are needed. The unobservable variable U should be interpreted in some
way so that it can be checked whether there is anything, which corresponds to U in
the real world. If possible, some independent method of measuring U should be
developed. Then, most of important of all, any claims of the form ‘U causes X’
should be tested against evidence to see whether they really hold or not. Merely
writing down such claims without bothering to test them against data is to carry out
fiction or fantasy rather than science.10

Similar warnings against the dangers of the use of unobservable variables are to be
found in Korb et al (2004). In the context of a critique of determinism, they consider
the model

Z ¼ a1Xþ a2Yþ U

and comment as follows (p. 324):

“But, Z is not a strict function of any of X or Y or the combination of the two:
there is a residual degree of variation, described by U. U is variously called the
residual, the error term, the disturbance factor, etc. Whatever it is called, once
we add it into the model, the model is deterministic, for Z certainly is a function
– a linear function, of course – of the combination of X, Y and U. Does this
make the physical system we are trying to model with the equation (or,
Bayesian network) deterministic? Well, only if as a matter of fact U describes
a variable of that system. Since as a matter of actual practice U is typically
identified only in negative terms, as what is ‘left over’ once the influences of the
other parents of Z have been accounted for, and since in that typical practice U
is only ever measured by measuring Z and computing what’s left over after our
best prediction using X and Y, it is simply not plausible to identify this as a
variable of the system.”

10 This remark may seem exaggerated. Yet there are many learned and highly mathematical papers
published in leading journals which devote themselves to constructing models for fantasy examples such
as ‘A spell cast by Merlin caused the prince to turn into a frog.’ In our view such work is valueless. Clearly
in the real world spells do not cause princes to turn into frogs. Why should causality, as imagined in such a
fantasy world, have anything to do with causality in the real world? Causal modellers should devote
themselves to genuine scientific examples, which arise in the real world. There are a rich variety of these,
and there is consequently no need to bring in the consideration of purely imaginary examples.
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Bearing these potential dangers in mind, let us look at the result of introducing a
latent or unobservable variable U into our simple heart disease model. This is
illustrated in Fig. 10.

The first step in dealing with the model of Fig. 10 is to try to find some
interpretation of the unobservable variable U. One possibility would be to interpret
U as a measure of the psychological disposition to go for immediate gratifications
without regard for any long-term negative consequences. Such a disposition might be
described as ‘improvidence’. It seems plausible that improvident people might enjoy
the pleasures of smoking and eating fast food without taking account of the long-term
negative consequences on their health. But while such an account sounds reasonable
enough at a common sense level, it is by no means easy to establish that there really is
such a psychological disposition and to find some way of measuring it. Suppose,
however, we manage to overcome these problems, we have still got to establish
empirically that U causes smoking, and U causes eating fast food. Now, in general, it
is by no means easy to establish relations of indeterministic causality in medicine.
Think of the case of ‘smoking causes lung cancer’. This is now generally accepted,
but for decades it was a highly controversial claim, and it took a great deal of
evidence to convince the community as a whole that it was true. The problems of
establishing causal relations in medicine have been discussed in an illuminating
fashion in Russo and Williamson (2007). These authors propose what has come to
be known as the Russo-Williamson Thesis (or RWT). There are various forms of this
thesis, but a simple one is the following. In general to establish empirically that a
causal relation holds in medicine, one needs the conjunction of two types of evidence,
namely (i) statistical evidence, coming, for example, from epidemiology or
randomised control trials, and (ii) evidence of mechanisms, usually coming from
laboratory research. In Gillies (2011), the RWT is illustrated by the example:
‘smoking causes heart disease’. Here the statistical evidence from epidemiology
showed that there was a strong correlation between smoking and heart disease.
This statistical evidence was supplemented by many laboratory studies, which eluci-
dated the mechanisms that linked smoking to an increased tendency for atheroscle-
rotic plaques to form in arteries. Consider again the non-Markovian causal model of

Fig. 10 Adding Latent Variable in Heart Disease Example
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Fig. 5. Here the main causal links are well established by a great deal of scientific
empirical evidence. Moreover, there exists a mass of data from which the probabil-
ities used in the model can be estimated. Contrast this with the model of Fig. 10. Here
a long empirical scientific investigation would be needed to establish the postulated
causal links ‘U causes smoking’ and ‘U causes eating fast food’. Moreover, in order
to show that the Markov condition was indeed satisfied in this model, we would need
to test whether smoking and eating fast food were independent given U. As our earlier
discussion showed, this cannot be taken for granted a priori.

Of course it is an easy matter from a purely mathematical point of view to write
down any number of latent variables, link these with arrows to observable variables,
and postulate that the Markov condition is always satisfied. Once this is done,
probabilities within the model can be calculated using standard techniques.
However, such a procedure, though mathematically rigorous, may not be satisfactory
from an empirical-scientific point of view. To guide our actions, we should use causal
models, which have been rigorously tested, and are well-corroborated by evidence. It
is not satisfactory to use mathematically elegant models, which have little empirical
confirmation. In the examples we are considering, the non-Markovian causal model
of Fig. 5 has been rigorously tested and is strongly corroborated by evidence. For the
Markovian model of Fig. 10 to reach the same level of empirical corroboration, a
great deal of empirical-scientific research would be needed. So we see the situation as
one of a trade off. Those who favour the simpler mathematics of the Markovian
model of Fig. 10, would be forced to carry out a great deal of empirical scientific
work. Those, who favour the non-Markovian model, can avoid this empirical scien-
tific work, which has already been done, but they are forced to tackle the more
complicated mathematical problem of trying to handle the non-Markovian case. Can
this mathematical problem be solved? In the next 3 sections, we will show that it
can.11

6 Mathematical formulation of the problem

For simplicity, we will confine ourselves to the simple causal network illustrated in
Fig. 4. Our problem is the following. We have a disease Z which is known to have
two indeterministic causes X and Y. It would seem sensible in such a case to try to
avoid Z by eliminating through our actions at least one of X and Y, and preferably
both. It would seem to be a good strategy for doctors to advise such a course of
action. However, as the pregnancy, contraceptive pill, thrombosis example shows,
this advice would not always be correct. Can we then formulate some mathematical
condition on X, Y and Z such that the ‘common-sense’ advice of eliminating at least
one of X and Y is in fact correct advice?

We assume that X, Y and Z are random variables defined on some underlying
probability space Ω. So the joint distribution {X, Y, Z} is defined, and so also are the
marginal distributions {X,Z}, {Y,Z}, etc. This makes our network a probabilistic
network as well as a causal network, but note that it need not be a Bayesian network.
For it to be a Bayesian network, the Markov condition would have to be satisfied,

11 An informal summary of the results of these sections is given at the beginning of Section 9.
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and, in this simple case, the Markov condition is that the random variables X and Y
are independent. This is not the case in the two examples we considered in Figs. 5 and
6. Smoking and eating fast food are not independent, and neither are taking the pill
and getting pregnant.

For the purpose of Theorem 1, we will make the further assumption that X,Yand Z
are binary variables taking the values 0 or 1. Z is assumed to be a disease, and Z=1
means ‘having the disease’, while Z=0 means ‘managing to avoid the disease’. We
are also assuming that X and Y are indeterministic causes of Z. The question now is:
‘what probabilistic assumptions does this allow us to make?’ Here we adopt the
version of CPCP, which was argued for in Section 3. This amounts to assuming that,
if we set one of the variables X, Y to an arbitrary value, then a positive value of the
other will increase the probability of getting the illness. We can state it mathemati-
cally by defining

Zij¼def P Z ¼ 1
���X ¼ i; Y ¼ j

� �
for i; j ¼ 0; 1

The assumption made on the basis of X, Y being causal factors is then the
following:

Z11 > Z01

Z11 > Z10

Z01 > Z00

Z10 > Z00

We will call this the causal factor assumption in the binary case.
What we want to prove, to justify the strategy of eliminating at least one of the

causal factors in order to reduce the probability of getting the disease, is the
following:

P Z ¼ 1
���X ¼ 1

� �
> P Z ¼ 1

���X ¼ 0
� �

ð5Þ

P Z ¼ 1
���Y ¼ 1

� �
> P Z ¼ 1

���Y ¼ 0
� �

ð6Þ

(Eq. 5) and (Eq. 6) both seem to hold in the smoking, fast food example, but
(Eq. 5) fails in the contraceptive pill, pregnancy example. So (Eq. 5) and (Eq. 6) do
not follow from the causal factor assumption. Can we formulate a mathematical
condition, which, if it is added to the causal factor assumption will ensure that (Eq. 5)
and (Eq. 6) follow? As will be shown in the next section, if we assume that X, Y are
independent (the Bayesian network case), then (Eq. 5) and (Eq. 6) do follow.
However, this independence assumption does not hold in the various examples we
are considering. Theorem 1 of Section 7 shows that, if we assume P(Y=1 | X=1)>
P(Y=1 | X=0), then (Eq. 5) follows, and of course if we simply reverse X, Y in this
condition, we get (Eq. 6).

Now the condition P(Y=1 | X=1)>P(Y=1 | X=0) is a very reasonable one. It
clearly fails in the contraceptive pill, pregnancy case, since there we obviously have
P(Y=1 | X=1)<P(Y=1 | X=0), whereas it plausibly holds in the smoking, fast food
case, and this could be checked empirically.
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In order to prove Theorem 2, we drop the assumption that X and Y are binary
variables. The binary variable assumption amounts to classifying individuals as
smokers or non-smokers, or as fast food eaters or non-fast food eaters. However, this
is obviously inadequate when trying to relate smoking or fast food eating to heart
disease. In such an investigation, it is obviously very important to consider the
quantity of tobacco that an individual smokes, or the quantity of fast food, which
he or she consumes. Indeed in the statistics about smoking and lung cancer given in
Section 1, the effects of smoking different amounts of tobacco were considered. It is
generally held to be important to take into account the so-called ‘dose relation’ in
assessing causality. In the case of smoking, the dose relation would be how the
probability of getting the disease varies with the quantity smoked. For these reasons,
it is better to take X and Y to be continuous random variables taking non-negative
values.

The causal factor assumption can be given in a form appropriate to continuous
random variables X and Y. The condition P(Y=1 | X=1)>P(Y=1 | X=0) now
becomes a strong version of positive correlation between X, Y. Under these assump-
tions Theorem 2 is proved. We now give the details.

7 Two theorems

Note that if Z is 0,1 then P(Z=1)=E(Z). Assume X, Y are 0,1. Put

ejk ¼ P Z ¼ 1; X ¼ j; Y ¼ kð Þ; e j: ¼ P Z ¼ 1; X ¼ jð Þ; e:k ¼ P Z ¼ 1; Y ¼ kð Þ
pjk ¼ P X ¼ j; Y ¼ kð Þ; pj: ¼ P X ¼ jð Þ; p:k ¼ P Y ¼ kð Þ;

where ej.=ej1+ej0 and pj.=pj1+pj0. These imply P(Z=1|X=j, Y=k)=ejk/pjk.
(We assume the ejk and pjk are all non-zero.).
We shall need the following lemma.

Lemma If 1 > a > b > 0; xb >
y

1−b > 0 then a
b xþ 1−a

1−b y > xþ y:

Proof The assumptions are equivalent to (a−b)(1−b)x>(a−b)by which is equivalent
to what was to be proved.

If inequality (8) below is an equality, then X,Y are independent and (9) follows
simply.

Theorem 1 Assume that changing either X or Y from 0 to 1, keeping the other
constant, increases the conditional probability of Z. This is equivalent to the 4
inequalities (left-hand expression greater than middle 2 etc.)

e11
p11

>
e01
p01

;
e10
p10

>
e00
p00

ð7Þ

Further assume P(Y=1|X=1)>P(Y=1|X=0) or

p11
p1:

>
p01
p0:

ð8Þ
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then P(Z=1|X=1)>P(Z=1|X=0) or

e1:
p1:

>
e0:
p0:

ð9Þ

There is a similar theorem for conditioning on Y.

Proof Summing the first and fourth inequalities of (7) gives

e11
p1:

þ e10
p1:

>
e01
p0:

p11

.
p1:

p01

.
p0:

þ e00
p0:

p10

.
p1:

p00

.
p0:

ð10Þ

Put p11
p1:

¼ a; p01p0:
¼ b and x ¼ e01

p0:
, y ¼ e00

p0:
, then inequalities (8) and (7) imply

1 > a > b > 0; xb >
y

1−b > 0. Applying the lemma to the r.h.s. of (10) gives

e11
p1:

þ e10
p1:

>
e01
p0:

þ e00
p0:

⇒
e1:
p1:

>
e0:
p0:

:

A generalisation We now give a generalisation in which Z remains a binary random
variable, while X and Y are now continuous non-negative random variables.

Assumption 1: The probability that Z=1 conditional on X and Y increases if either X
or Y increases.

P Z ¼ 1
���X ¼ a; Y ¼ b

� �
≥P Z ¼ 1

���X ¼ c; Y ¼ d
� �

if a≥c; b≥d:

Assumption 2: if u>v then the conditional probability of Y given X=u stochastically
dominates the conditional probability of Y given X=v, that is

P Y ≤x
���X ¼ v

� �
≥P Y ≤x

���X ¼ u
� �

if u > v:

The second assumption is a strong version of positive correlation between X,Y. It
implies that E(Y | X=x) increases with x.

Lemma Put Ai=a1+a2+…ai, Ci=c1+c2+…ci. If An=Cn, Ci≥Ai, bi+1≥bi, i=1,…,n−1

then ∑
n

i¼1
aibi≥ ∑

n

i¼1
cibi:

Proof

Xn
i¼1

cibi ¼ Cnbn−
Xn−1
i¼1

Ci biþ1−bið Þ≤Anbn−
Xn−1
i¼1

Ai biþ1−bið Þ ¼
Xn
i¼1

aibi:

Theorem 2 Under assumptions 1 and 2 the higher the value of X, the more likely Z is
to occur.
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Proof Suppose that Y can only take the values y1<y2…<yn. Then

P Z ¼ 1
���X ¼ u

� �
¼ P Z ¼ 1;X ¼ uð Þ

P X ¼ uð Þ ¼
Xn
i¼1

P Z ¼ 1;X ¼ u; Y ¼ yið Þ
P X ¼ uð Þ

¼
Xn
i¼1

P Z ¼ 1
���X ¼ u; Y ¼ yi

� �
P X ¼ u; Y ¼ yið Þ

P X ¼ uð Þ

¼
Xn
i¼1

P Z ¼ 1
���X ¼ u; Y ¼ yi

� �
P Y ¼ yi

���X ¼ u
� �

≥
Xn
i¼1

P Z ¼ 1
���X ¼ v; Y ¼ yi

� �
P Y ¼ yi

���X ¼ u
� �

by assumption 1. Now, putting

ci ¼ P Y ¼ yi

���X ¼ v
� �

; ai ¼ P Y ¼ yi

���X ¼ u
� �

with u > v

assumption 2 implies that the conditions of the Lemma are satisfied. We thus have

P Z ¼ 1
���X ¼ u

� �
≥
Xn
i¼1

P Z ¼ 1
���X ¼ v;Y ¼ yi

� �
P Y ¼ yi

���X ¼ v
� �

¼ P Z ¼ 1
���X ¼ v

� �
:

8 Comment on the conditions of Theorem 1

The conditions given in Theorem 1 (with X,Y, and Z binary again) are sufficient for
(9), but not necessary, as can be seen from the following example in which (8) is
violated, but (9) still holds.

The underlying probability distribution is fully defined by P(X=0)=0.5,

P Y ¼ 1
���X ¼ 0

� �
¼ p01

.
p0: ¼ 0:5 > P Y ¼ 1

���X ¼ 1
� �

¼ p11

.
p1: ¼ 0:4

thus violating (8). Once again putting Zij=def P(Z=1 | X=i, Y=j) and having Z11=0.8,
Z01=Z10=0.5, Z00=0.2 we obtain

P Z ¼ 1
���X ¼ 1

� �
¼ p11Z11 þ p10Z10ð Þ

.
p1: ¼ 0:62 >

P Z ¼ 1
���X ¼ 0

� �
¼ p01Z01 þ p00Z00ð Þ

.
p1: ¼ 0:35:

The reason is that the difference between P(Y=1|X=0) and P(Y=1|X=1) is much
smaller than the difference between the Zij if, for i or j, 0 is replaced by 1. P(Z=1|Y=
1)=0.63>P(Z=1|Y=0)=0.36 can also be shown.
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9 Conclusions

Having stated our results in a mathematically precise way in the preceding 3 sections,
let us now look at them in a more qualitative fashion. The conditions under which the
theorems are proved could be stated roughly and informally somewhat as follows. Let
us say that two indeterministic causes X and Y are associated if, in the binary case,
the presence of one increases the probability of the presence of the other, and if, in the
continuous case, they are strongly positively correlated. Two indeterministic causes X
and Yare opposed if, in the binary case, the presence of one decreases the probability
of the presence of the other, and if, in the continuous case, they are negatively
correlated. The conditions of being associated or opposed are quite intuitive, and it
would be easy to check from data whether they held in a particular case. If X and Y
are associated indeterministic causes of Z, the two theorems show that it is a good
strategy, in order to avoid Z, to make sure that either X or Y or both do not occur, or
that their effects are pre-empted if they do occur.

There is, however, an objection to the claim that the results of our theorems justify
the avoidance strategies we have described.12 One of the results of theorem 1 is that
P(Z=1 | X=1)>P(Z=1 | X=0) [inequality ⋆ say], and this is taken to justify the
strategy of trying to avoid the disease Z by setting X=0, i.e. giving up smoking.
However, it could be objected that the inequality ⋆ might hold, but eliminating X will
not reduce the probability of getting the disease. Let X=1 represent yellow teeth, and
Z=1 lung cancer. The inequality ⋆ is satisfied, since people with yellow teeth tend to
be smokers, and hence have higher rates of lung cancer. But whitening your teeth will
not reduce your probability of getting lung cancer. This is not, however, a counter-
example to the claims we have made, since, we are assuming not just inequality ⋆, but
also that X causes Z, and tooth colour is not a cause of lung cancer. This alleged
counter-example is instructive, however, because it reinforces the familiar point that
statistical claims on their own are often not action guiding, and one may need causal
assumptions as well as statistical ones to justify actions. It is indeed a fundamental
characteristic of causes that they are action-related.13

What we have shown in this paper is that it is possible to develop a non-Markovian
causal model for a well-known medical situation, that this model is both well
corroborated empirically, and mathematically tractable, and that, in particular, we
can draw action-guiding conclusions from the model. In the mathematical theories of
causal networks so far developed, there has been an almost exclusive focus on cases
in which the Markov condition is satisfied. So one of the important features of the two
theorems just given is that they show that interesting results can be obtained in at least
some cases in which the Markov condition is dropped. It seems likely that more
interesting results covering this situation could be obtained in the case of more
complicated networks – for example in the case of multi-causal forks with more than
two indeterministic causes.

However, in pointing to a possible use of non-Markovian models, we do not want
to make the dogmatic claim that it is impossible to obtain similar results using

12 This objection was made, by an anonymous referee, to an earlier version of this paper. I have quoted the
objection, more or less verbatim, from the referee’s report.
13 For more on this, see Gillies (2004).
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Markovian models. We have done no more than pose a challenge to the advocates of
the exclusive use of Markovian models to solve the problem dealt with in this paper
within their preferred scheme. However, as stressed above in Section 5, a satisfactory
solution requires that the model used is both mathematically tractable and empirically
well corroborated. Our non-Markovian model of Fig. 5 satisfies both these condi-
tions, and any satisfactory Markovian model would have to satisfy them both as well.

We would also like to recommend the type of example considered in this paper as a
very suitable field of study for causal modellers. Heart disease is still the number one
killer in most developed countries. Medical science has made considerable advances in
its study, and these depend on the use of indeterministic causality and multi-causal forks.
The very important Framingham study, which has carried out investigations into heart
disease continuously since 1948 (see Levy and Brink 2005), has provided a whole mass
of data concerning possible causal factors of heart disease. Yet strange to say, there have
been very few attempts to create causal models for this data. One of the rare and
admirable exceptions is Korb et al (2004).14 Instead of causal models, only traditional
statistical models have been employed on the Framingham data. Surely the development
of causal, and hence action guiding, models here would be a step forward.
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Appendix

Definitions of Terms Used

A network or net is a directed acyclic graph.
The nodes or vertices of a network are variables, which are denoted by capital

letters, e.g. X, Y, Z, A, B, ….
If an arrow joins two nodes of a network A, B (see Fig. 11), then A is said to be a

parent of B, and B is said to be a child of A. Children, children of children, etc. of A
are said to be descendants of A.

If an arrow joining any two nodes A, B (see Fig. 11) of a network means that A has
a causal influence on B, then the network is said to be a causal network.

If the set of variables of a network, X1, X2, …, Xn say, are random variables all
defined on some underlying probability space and so having a joint distribution, then
the network is said to be a probability network.

14 A Google search for causal models for the Framingham data produced only Korb et al (2004). Of course
we may have missed some other papers, but there cannot be many of these.
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The Markov Condition is satisfied for a node A of a network, if A, conditional on
its parents, is probabilistically independent of any other set of nodes in the network
not containing any of A’s descendants.

A probability network in which every node satisfies the Markov condition is said
to be a Bayesian network.

In a Bayesian network, the parents of a node are said to screen it off from the other
nodes of the network except its descendants.

If a causal network is also a probability network, it is said to be a causal
probability network, or causal model. When the term ‘causal network’ is used in this
paper with no further qualification, it will be assumed to be a causal probability
network.

Note that when Pearl introduced the term Bayesian network or Bayes network in
his 1985b, he used it to refer to causal Bayesian networks. In fact Pearl wrote (1985b,
p. 330):

“Bayes networks are directed acyclic graphs in which the nodes represent
propositions (or variables), the arcs signify the existence of direct causal in-
fluences between the linked propositions, and the strengths of these influences
are quantified by conditional probabilities.”

We here, following a later convention, defined Bayesian networks purely proba-
bilistically, so that the arrows in a Bayesian network need not represent causal
influences. However, when the term ‘Bayesian network’ is used in this paper with
no further qualification, it will be assumed to be a causal Bayesian network.

A causal model, in which every node satisfies the Markov condition, is said to be a
Markovian causal model.

A causal model, in which at least one node does not satisfy the Markov condition,
is said to be a non-Markovian causal model.
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