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A Simple Proof of Arithmetical Completeness
for I1,-conservativity Logic

GIORGI JAPARIDZE

Abstract Hajek and Montagna proved that the modal propositional Idgdit
is the logic ofI1;-conservativity over sound theories containinng (PA with
induction restricted t&, formulas). | give a simpler proof of the same fact.

1 Introduction By a “theory” we mean an effectively axiomatized theory whose
language contains that 8A (arithmetic).

We say that a theonl, is IT1;-conservative over a theoryT; if T, proves every
[11-theorem ofT,. And T, isinterpretablein Ty if, intuitively, the language oT, can
be translated into the languageTfin such a way thal; proves the translation of
every theorem of,.

We say that a theory igssentially reflexive if for any formula « it proves
Prpc([a]) — a, where[«] is the code (@del number) o andPr pc (X) is the stan-
dard formalization of X is the code of a formula provable in the classical predicate
calculus.”

Itis known thatPA is essentially reflexive, but no finitely axiomatizable reason-
able theory, includingix, (PA with induction restricted t&;-formulas), can be such.
Indeed, supposgis a sufficiently strong finitely axiomatized theory. Let thienbe
the conjunction of the universal quantifier closures of its axiomEidessentially re-
flexive, thenT  Prpc([—AX]) — —AX, whenceTl - —=Prpc ([—AX]), which means
thatT proves its own consistency and hence liydél's Second Incompleteness The-
oremT is inconsistent.

According to a nice fact known &3rey-Hajek characterization, if given theo-
ries are essentially reflexive, one is interpretable in another if and only if drig-is
conservative over the other; moreover, this fact is provabRAjrso we can say that
interpretability and1;-conservativity relations between essentially reflexive theories
are “the same.” However, this is not true for finitely axiomatized theoried like

De Jongh and Veltmalg] introduced the propositional modal lodicM, whose
language contains two modal operatargunary) and> (binary). Berarducc[fj and
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Shavrukovif], independently, proved thHtM is the logic of interpretability ovePA,
that is,ILM yields exactly the schemataPA-provable formulas, whe@ A is under-
stood as a formalization of'is PA-provable” andA > B as a formalization of PA+B

is interpretable irPA+A.” By the Orey-Hajek characterization, this result immedi-
ately implies thatiLM is the logic ofIT;-conservativity ovePA as well. However,
the question whethdt.M is the logic ofl1;-conservativity ovet3; (whose logic of
interpretability was in Visselfl[d] shown to be different fromLM) remained open
until Hajek and Montagn46] found a positive answer.

In this paper | present an alternative proof of completeneds\dfs the logic of
[11-conservativity ovei¥; and its sound extensions; this proof is more direct (as it
appeals only to the most elementary facts alibusentences and is based directly on
the natural semantics fok M—\Veltman models) and therefore considerably simpler
than that of Hhjek and Montagna; since, in view of the Oregjek characterization,
this result immediately implies completenesdlof as the logic of interpretability
over PA, this is at the same time a new proof of the above-mentioned Berarducci-
Shavrukov theorem, which seems the simplest among those known so far.

2 Modal LogicPreliminaries ILM is given as the classical propositional logic plus
the rule of necessitation A = F OA and the following axiom schemat& (=
=0=):

0(A— B) —» (OA— OB);

OOA—> A)— OA

O(A— B) — (Ap> B);

((A>B)A(B>C)) — (A C);

(A C)A (B> C)) — ((AV B) > C);

(A B) —» (CA— OB);

(OA) > A

(A>B)— ((AAOC) > (BATOC)).

Thus,ILM contains the provability logiGL and, thereford LM+ OA — OOA
(see BoolodZ]).

One can show thdtM - OA < (—A) > L, which means thdt! can be elim-
inated from the language oM.

A finite Veltman frame is a systemW, R, {S,}wew), WhereW is a finite non-
empty set (of “worlds”) anR and eachS,, are binary relations olV such that the
following holds:

1. Ris transitive and irreflexive;
eachS,, is transitive and reflexive;
uS, v only if wRu andwRy;

WRURV = uS,v;

uS,VRr = UuRy.

o rwn

A finite VEltman model is a system

(W’ R’ {Su}w€W7 '=>9
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where(W, R, {S,},cw) is a finite Veltman frame angk is a (“forcing”) relation be-
tween worlds andLM-formulas such that:

e The Boolean connectives are treated in the classical way: L, w = A —
B« (wlE Aorw E B),etc,;

e w | OA < (for all u, if wRu, thenu = A);

e wkE= A B« (forallu, if wRuandu = A, then there i3 such thauS,v
andv = B).

A formulaAis said to bevalid in a Veltman mode{W, R, {S,}uew, E), if w &=
Aforall w e W.

Theorem 2.1  (De Jongh and Veltmal]) ILM - Aiff Aisvalidin all finite Velt-
man models.

3 Arithmetic Preliminaries  We fix atheoryT containingl 1. For safety we as-
sume thafT is in the language of arithmetic afdis sound, i.e., all its axioms are
true (in the standard model of arithmetic). In fact it is easy to adjust our proof of the
completeness theorem to the weaker conditioB psoundness of.

A realization is a function * which assigns an arithmetical senteptto each
propositional lettep of the modal language and which is extended to other modal
formulas in the following way:

e * commutes with the Boolean connectivels* = 1, (A — B)* = A* — B*,
etc.;

e (DA =Pr(fA"]);

e (A B)* = Conserv([ A*], [B*]),

wherePr ([ A*]) and Conserv([ A*], [B*]) are natural formalizations ofA* is T-
provable” and T+B* is I1;-conservative over+A*”,

We need to introduce some more notation and terminology.

We will read -« F as saying thax is the code of som@&-proof of the formula
F.

Wetake “X,!” to denote the class of the arithmetical formulas which have an ex-
plicit X1 form, i.e.,3xF for some primitive recursive formule. And we let“%,” de-
note the class of the formulas which dargorovably equivalent to sonmg, !-formula,
similarly for IT;.

Let us fix3yRegwitness(x, y) as a naturak;!-formalization of the predicatex’
is the code of a tru&,!-sentence” such thaf(proves that) for eack,!-sentencd-,
T+ F < JyRegwitness([F1, y).

The existence of the formulRegwitness(x, y) is the only not very trivial—but
quite well known (see, e.g., Smorynski)}—a fact aboutz,- (I11-) sentences that
will be used in the arithmetical completeness proof below.

We say that a natural numbé&ris aregular counterwitness for a I1,!-sentence
VxF, if Regwitness([3x—F1, k) is true.

4 The Completeness Theorem
Theorem 4.1 ILMF Aiff for any realization*, T - A*.
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The rest of the paper is a proof of this theorem. This proof has a lot of similarity
with proofs given in DzhaparidzB] and [], and in Zambella[[1]. Just as in[E] and
[4], | define here a Solovay function in terms of regular witnesses rather than provabil-
ity in finite subtheories (as this is done[@[[[7], [1]). Disregarding this difference,
my Solovay function is almost the same as the one giveiih Both works, unlike
or [[7], employ finite Veltman models rather than infinite Visser models.

The (=) part of the theorem can be checked by a routine inductiofLéf
proofs. Here we are going to prove only the=£) part.

SupposdLM t A. Then, by Theorem 2.1, there is a finite Veltman model
(W, R, {Sy}wew, ) inwhich Ais not valid. We may assume that={1,...,1}, 1
is the root of the model in the sense th&nifor all 1 # w € W, and 1}~ A.

We define a new framéwW’, R, {S,},ew):

W = WU {0}
R =RU{O,w): weW}
S$S=SU{(l,w): weW}andforeachweW, S, =S,.

Observe thatW', R, {S,},ew ) is a finite Veltman frame.
Following the “traditional” way of arithmetical completeness proofs, we are go-
ing to embed this frame int® by means of a Solovalg] style functiong: « — W’
and sentencddim,, (w € W’) which assert thab is the limit of g. This function will
be defined in such a way that the following basic lemma holds:

Lemma4.2

a) T provesthat ghasalimitin W', i.e, TH \/{Lim : r € W'}.

b) If w# u,then T - —=(Lim, A Limy).

c) If wRu, then T + Lim,, provesthat T t# —Limy.

d) If w# 0and not wR'u, then T + Lim,, provesthat T - —Lim,.

e) If uS,v, then T + Lim,, proves that T + Lim, is I1;-conservative over T +
Limy.

f) Suppose wR'uand V isasubset of W’ such that for no v € V dowehaveuS,v.
Then T + Lim,, provesthat T + \/{Lim, : v € V}isnot [1;-conservative over
T + Limy.

g) Limgistrue.

To deduce the main thesis from this lemma, we define a realizatigrsetting
for each propositional lettep,

p*=\/{Lim:reW, rgph.

Lemma4.3 For any w € W and any ILM-formula B,

a) ifw = B,then T 4+ Lim, - B*;
b) ifw |~ B, then T + Lim,, = —=B*.

Proof: By induction on the complexity oB. If B is atomic, then clause (a) is
evident and clause (b) is also clear in view of Lemma 4.2b. The cases Bhen
is a Boolean combination are straightforward; and sin€eis ILM-equivalent to
(—C) > L, itisenough to consider only the case whgge= C; > Co.
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Assumew € W. Then we can always write Rx andxS, y instead ofw R'x and
xS,y. Letaj ={r: wRr, r =G} (i =1, 2). Firstwe establish that for eack- 1, 2,

* T + Lim,, proves thafl - C* < \/{Lim, : r € aj}.

We ague inT + Lim,,. Since each € «; forcesC;, we have by the induction
hypothesis (clause (a)) that for each such - Lim, — C*, whenceT  \/{Lim :

r € i} — C. Next, according to Lemma4.2a,+ \/{Lim: : r € W'} and, according
to Lemma 4.2d7T disproves everyim, with not wRr; consequentlyT + \/{Lim :
WRr}; at the same time, by the induction hypothesis (clause @))mplies inT the
negation of eachim, withr = C;. Weconclude thal - C* — \/{Lim: : wRr, r |=
C},ie, TEC — \{Lim : r € a}. Thus (*) is proved. Now we continue:

(a) Suppose = C; > C,. We ague inT + Lim,,. By (*), to prove thatT 4 C;
is [1;-conservative ovell + Cj, it is enough to show that + \/{Lim : r € oy}
is [1;-conservative ovel + \/{Lim, : r € «3}. Consider an arbitrary € «; (the
case with empty is trivial, for any theory is conservative oveér+ 1). Sincew =
C, > Cy, there isv € ap such thatuS,v. Then, by Lemma 4.2€l + Lim, is IT;-
conservative ovef + Lim,. Then soisT + \/{Lim : r € a2} (which is weaker than
T + Lim,). Thus, for eachu € a1, T 4+ \/{Limy : r € ayp} is [1;-conservative over
T + Limy. Clearly this implies thal 4+ \/{Lim, : r € «y} is [1;-conservative over
T+ V{Lim :rea}.

(b) Supposev (= C; > Cy. Let us then fix an elementof «; such that for no
v € ap do we haveuS,v. We ague inT + Lim,. By Lemma 4.2fT + \/{Lim :

r € ap} is notIT -conservative ovell + Limy,. Then neither is iffT1;-conservative
overT 4 \/{Lim : r € a1} (which is weaker thail + Lim,). This means by (*) that
T + C; is notII;-conservative over + CJ.

Now we can pass to the desired conclusion: singe A, Lemma 4.3 give3 +
Limp — —A*, whenceT I/ —Limp — T t# A*. But we haveT t* —Lim because,
by the Clauses (c) and (g) of Lemma 4.2, this fact is derivable in the sound theory
from the true sentendam.

Our remaining duty now is to define the functigrand prove Lemma 4.2. The
Recursion Theorem enables us to define this function simultaneously with the sen-
tenced.im,, (for eachw € W’), which, as we have mentioned already, assertithat
is the limit of g, and formulasA 4 (y) (for each pair(w, u) with wR'u), which we
define by

Ayu(Y) =3t>y(@t) =0AVZ(y<z<t— g(2) =w)).

Definition 4.4 (of the functiong) Wedefineg(0) = 0. Assume novg(y) has been
defined for every < x, and letg(x) = w. Theng(x+ 1) is defined as follows:

1. SupposavR'u, n < x and for allzwith n < z < x we haveg(z) = w. Then,
if Fy Limy — = A, (0), wedefineg(x+ 1) = u.
2. Otherwise suppoga < x, F is all;!-sentence and the following holds:

a) F has aregular counterwitness whichds;
b) FmLimy, — F;
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C) WSymU,;

d) mis the least number for which suéhandu exist, i.e., there are nuo' :
m < m, world u’ andIl,!-sentence~’ satisfying the conditions (a)—(c)
whenm', v andF’ stand form, u andF.

Then we defing(x+ 1) = u.

3. In all the remaining casegx + 1) = g(x).

Itis not hard to see thafis primitive recursive. Before we start proving Lemma
4.2, let us agree on some jargon and prove two auxiliary lemmas.

When the transfer fronw = g(x) to u = g(x + 1) is determined by Definition
4.4.1, we say that at the moment 1 the functiong makes (or we make) aR'-move
from the worldw to the worldu. If this transfer is determined by Definition 4.4.2, then
we say that aris-transfer takes place and call the numbafrom Definition 4.4.2 the
rank of this S-transfer. Sometimes tt&-transfer leads to a new world, but “mostly”
it does not, i.e.{u=)g(x+ 1) = g(X)(= w), and then it is not a move in the proper
sense. Thos8&-transfers which lead to a new world we c8tmoves. As for R-
transfers, they (by irreflexivity oR’) always lead to a new world, so we always say
“R-move” instead of R'-transfer.”

In these terms, the formula,,,(n) asserts that beginning from the momaent
(but perhaps also before this moment) and until some momesetstay at the world
w without any motion and then, at the moménive move directly tou.

Intuitively, we make anR’-move fromw to u, wherewR'u, in the following
situation: since some momentand up to now we have been staying at the world
w, and at the present moment we have reached evidencé& thdtim, thinks that
the first (proper) move which happens after passing the mom@mid thus our next
move) cannot lead directly to the worlg then, to spite this belief of + Limy,, we
just move tou.

And the conditions for ars-transfer fromw to u can be described as follows:
We are staying at the world and by the present moment we have reached evidence
thatT + Limy, proves a falsé&l,!-sentencd-. This evidence consists of two compo-
nents: (1) a regular counterwitness, which indicatesfhatfalse, and (2) the rank
of the transfer, which indicates that Lim, = F. Then, as soon a8Symu, the next
moment we must be at(move tou, if u# w, and remain aw, if u= w); if there are
several possibilities of this transfer, we choose the one with the least rank. Besides,
the necessary condition for &transfer is that in the given situation &rmove is
impossible.

Lemma4.5 (T F:) For each natural number mand each w € W/, T + Lim,
proves that no S-transfer to w can have rank which is less than m.

Proof: Note that “the rank of ars-transfer is< m” means thafl + Lim,, proves
afalseIl;!-sentenced (i.e., one with a regular counterwitness) and the code of this
proof (i.e., of theT-proof of Lim,, — F) is smaller tharm. But the number of all
IT;!-sentences with such short proofs is finite, and asLim,, proves each of them,

it also proves that none of these sentences has a regular counterwitness (recall our
assumptions about the formuRegwitness(x, y)).
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Lemma4.6 (TF:) Ifgx)Rw,thenforall y<x, g(y)Rw.

Proof: Supposegg(x)R'w andy < x. We proceed by induction on = x — y. If

y = X, we ae done. Suppose nog(y + 1) Rw. If g(y) = g(y+ 1), weare done. If
not, then at the momennt+ 1 the function makes either @-move or anS-move.

In the first case we havg(y) R g(y + 1) and, by transitivity ofR’, g(y) Rw; in the
second case we haggy)S,g(y + 1) for somev, and the desired thesis then follows
from the Property 5 of Veltman frames.

Proof: (of Lemma 4.2) In each case below, except (g), we reasdn in

(a) First observe that therezssuch that for al’ > z, notg(Z)R'g(Z + 1).
Indeed, suppose this is not the case. Then, by Lemma 4.6, fottadre isZ
with g(z)R'g(Z). This means that there is an infinite (or “sufficiently long”) chain

wiRwyR ..., which is impossible becaud#’ is finite andR is transitive and ir-
reflexive.

So let us fix this numbez. Then we never make ar-move after the momeit
We claim thatS-moves can also take place at most a finite number of times (whence
it follows thatg has a limit and this limit is, of course, one of the elementg\y.

Indeed, letx be an arbitrary moment afterat which we make a®-move, and
let m be the rank of this move. Taking into account reflexivity of the relati§psa
little analysis of the Condition 4.4.2 convinces us that the rank of eachSembve
is less than that of the previous one, Samoves can take place at mastimes after
passingx.

(b) Clearlyg cannot have two different limite andu.

(c) Assumew is the limit of g andwR'u. Let n be such that for alk > n,
g(xX) = w. We need to show thar I/ —Lim,. Suppose this was not the case. Then
T+ Limy — —=A,u(N) and, since every provable formula has arbitrary long proofs,
there isx > nsuch that-« Lim, — —A,,,(N). Butthen, according to Definition 4.4.1,
we must havey(x + 1) = u, which, asu # w (by irreflexivity of R)), is a contradic-
tion.

(d) Assumew # 0, w is the limit of g and notw R'u.

If u= w, then (sincaw # 0) there isx such thag(x) = v £ uandg(x+1) = u.
This means that at the momen# 1 we make either arlR’-move or anS-move. In
the first case we haver Limy, — — A, (0) for somen for which, as it is easy to see,
the Z,!-sentenceA ,, (0) is true, whence, by!-completenessT + —Lim,. And if
anS-move is the case, then agdin- —Lim, becausd + Lim, proves a false (with
a < xregular counterwitnesg)!-sentence.

Suppose now # w. Let us fix a number with g(z) = w. Sinceg is primitive
recursive,T proves thag(z) = w.

Now we argue ifT + Limy: Sinceuis the limit ofgandg(z) = w # u, thereis a
numberx with x > z such thag(x) # uandg(x+ 1) = u. Since not(w =)g(2) R'u,
we have by Lemma 4.6 that

(*) For eachy with z< y < x, notg(y)Ru.

In particular, notg(x) Ru and the transfer frong(x) to g(x + 1)(= u) can be de-
termined only by Definition 4.4.2. Then (*) together with the Property 3 of Velt-
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man frames and Definition 4.4.2c, implies that the rank of $hisiove is less tham,
which, by Lemma 4.5, is a contradiction.
Thus, T + Lim is inconsistent, i.eT = —Limy.

(e) AssumeuS, v # u (the case = uis trivial). Supposew is the limit of g, F
is all;-sentence and +, Lim, — F. We may suppose tha < I1;! and thatzis
sufficiently large, namelyg(z) = w. Fix thisz. We need to show thal + Lim, - F.

We ague inT + Lim,. Suppose noE. Then there is a regular counterwitness
for F. Letusfixanumbex > z csuchthaty(x) = g(x+ 1) = u(asuis the limit ofg,
such a number exists). Then, accordingto 4.4.2, the only reasgierl) = u+# v
can be that we make &@\-transfer fromu to u and the rank of this transfer is less than
z, which, by Lemma 4.5, is not the case. We therefore concludeRifattrue).

(f) Assumeuw is the limit ofg, wR'u, V € W’ and for each € V, not, uS,v.

Let n be such that for alk > n, g(z) = w. By the primitive recursiveness of
g, T proves thag(n) = w. By 4.4.1, T + Limy & =A,u(A). So, as—A,,(0) is a
[1;-sentence, in order to prove that+ \/{Lim, : v € V} is notII;-conservative
overT + Lim, itisenough to show that for eaeghe V, T + Lim, = —=A,u(N). Let
us fix anyv € V. According to our assumption, nag, v and, by reflexivity ofS,,

u = v.

Wenow argue inil 4+ Lim,. Suppose, for a contradiction, that,,(n) holds, i.e.,
thereig > nsuchthag(t) = uand forallzwithn < z < t, g(z) = w. Asvisthe limit
of gandv # u, there ist’ > t such thag(t’ — 1) # v and at the moment we arrive
to v to stay there for ever. Let theg < ... < x¢ be all the moments in the interval
[t, t'] at which R'- or S-moves take place, and leg = g(xg), ..., Ux = g(Xx). Thus
t =X, ' =Xk, U=Ug, v=Uganduy, ..., Uy is the route ofj after departing from
w (at the moment).

Now let j be the least number among.1., k such that for allj < i < k, not
UoR'uj. Note that such g does exist because at legst k satisfies this condition
(otherwise, if(u =)upR'ux(= v), Property 4 of Veltman frames would impl§, v).

Note also that for eachwith j <i < k, the move tay; cannot be arR’-move.
Indeed, otherwise we must haug ; Ruj, whence, by Lemma 4.6, R u;, which is
impossible fori > j.

Thus, beginning from the momemy (inclusive), each move is aB-move.
Moreover, for each with j < i < k, the rank of theS-move tou; is less tharxg.
For otherwise Property 3 of Veltman frames together with Lemma 4.6 and Defini-
tion 4.4.2¢ would entail thaigR'u;. On the other hand, since consecuti@emoves
decrease the rank (as we noted in the proof of (a) above) and since the rank of the
S-move touy cannot be less tham(Lemma 4.5), we conclude that for eaictvith
j <i <k, the rank of theS-move tou; is in the interval f, X — 1]. But the value of
ginthis interval isw, and by Definition 4.4.2c this means thgt 1S, u;S, ... S, Ux.

At the same time, we have eithas = u;_1 or ugR'u;_1. In both cases we then have
UoS, uj—1 (in the first case by reflexivity of, and in the second case by the Property
4 of Veltman frames), whence, by transitivity 8f, usS,ux, i.e.,uS,v, which is a
contradiction.

Thus we can conclude th@t+ Lim, = —=A ,u(R).

(g) By Lemma 4.2a, a$ is sound, one of theim,, (w € W’) istrue. Since for
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no w do we havewR'w, Lemma 4.2d means that ealcim,,, exceptLimg, implies
in T its own T-disprovability and therefore is false. Consequerttigry is true. This
completes the proof of Lemma 4.2.

This in turn completes the proof of Theorem 4.1.
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