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Abstract

Einstein's �point-coincidence argument� as a response to the �hole argument� is usually
considered as an expression of �Leibniz equivalence�, a restatement of indiscernibility
in the sense of Leibniz. Through a historical-critical analysis of Logical Empiricists'
interpretation of General Relativity, the paper attempts to show that this labeling is
misleading. Logical Empiricists tried explicitly to understand the point-coincidence ar-
gument as an indiscernibility argument of the Leibnizian kind, such as those formulated
in the 19th century debate about geometry, by authors such as Poincaré, Helmholtz
or Hausdor�. However, they clearly failed to give a plausible account of General Rel-
ativity. Thus the point-coincidence/hole argument cannot be interpreted as Leibnizian
indiscernibility argument, but must be considered as an indiscernibility argument of a
new kind. Weyl's analysis of Leibniz's and Einstein's indiscernibility arguments is used
to support this claim.
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1. Introduction

It has become commonplace in the literature to argue that Einstein's celebrated ar-
gument for general covariance, the so called �point-coincidence argument� (well-known
from Einstein's review of his general theory of relativity; CPAE 6, Doc. 30; Die Grund-

lage der allgemeinen Relativitätstheorie, 1916), if considered as a response to the also
celebrated �hole argument� (known from Einstein's private correspondence with Michele
Besso, Paul Ehrenfest, Hendrik Lorentz and others; CPAE 8a, Doc. 173, 178, 180, 183;
see Norton 1984), would amount to a defense of what has been famously labeled �Leibniz
equivalence� (Earman and Norton, 1987).
According to this line of thought, Einstein's point-coincidence/hole argument would

clearly resemble Leibniz's indiscernibility arguments against Newtonian absolute space.
In particular the role played by what we now call �di�eomorphisms� (transformations that
preserve only smoothness and the uniqueness of the coordinates) in Einstein's argument
would recall that of �translations� (which preserve also the distance between any pair
of points) in Leibniz's shift argument against Clarke. In both cases worlds which can
be transformed into each other by suitable transformations might be considered the
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same world. John Earman and John D. Norton drew the parallel in detail in their
seminal contribution (Earman and Norton, 1987) and the protagonists of the huge debate
created by this paper, such as Tim Maudlin (1988), Jeremy Butter�eld (1989), John
Stachel (1993), Robert Rynasiewicz (1994), Carl Hoefer (1996) and Simon Saunders
(2002), endorse the shift argument/hole argument analogy, or at least adopt it as a
polemical target. From this perspective the hole argument should be considered as a
�New Leibnizian Argument� (Bartels, 1994; Bartels, 1996).
In this article I will try to show that reference to Leibniz in this context is in many

respects confusing. It is not a question so much of historical accuracy, but rather of
obscuring the radical novelty of Einstein's indiscernibility arguments in comparison to
those of Leibniz. I will try to bring out this point through what I may dare to call an
�historical-critical� reconstruction of the role of Leibniz's indiscernibility arguments in the
Logical Empiricist interpretation of General Relativity. Logical Empiricists actually tried
explicitly to understand the point-coincidence argument as an indiscernibility argument
of the Leibnizian kind, encouraged by the use of such arguments in the 19th century
philosophical debate about geometry. However, they clearly failed to give a plausible
account of General Relativity (Friedman, 1983; Ryckman, 1992; Howard, 1999). An
analysis of the reasons for and the origins of this failure should show, in my opinion,
that the comparison between Leibniz's indiscernibility arguments and Einstein's point-
coincidence/hole argument is misleading.
I will proceed as follows: developing an idea of Hermann Weyl's, I will argue that

Leibniz's celebrated thought experiments on the impossibility of noticing a universal di-
lation of the whole universe or its mirroring by changing east into west and so on, can
be considered as the �rst attempt to de�ne the modern concept of �automorphism� or
symmetry transformation, a structure-preserving transformation of space into itself, a
way of mapping the object onto itself while preserving all of its structure. In my opinion
Weyl's suggestion, although surely questionable from a strict philological point of view,
is nevertheless helpful in the attempt to grasp the theoretical signi�cance of Leibniz's
indiscernibility arguments and most of all to understand the role that �Leibnizian� ar-
guments played in the 19th century debate about geometry. The major protagonists
of that debate, such as Hermann von Helmholtz, Henri Poincaré, but also Felix Haus-
dor� (to whom I will mostly refer), in considering automorphisms (or isomorphisms)
that preserve progressively weaker levels of geometrical structure, were able to generalize
Leibniz's thought experiments, showing that two worlds would be indistinguishable even
if they were mapped onto each other by any continuous deformation whatsoever.
Early Logical Empiricists (Moritz Schlick, Hans Reichenbach, Rudolf Carnap) explic-

itly interpreted General Relativity in the light of such Leibnizian kinds of arguments.
In particular they considered Einstein's �point-coincidence argument� as an expression
of indiscernibility in the sense of Leibniz. I will suggest that the inadequacy of Logical
Empiricists' interpretation of General Relativity, which is now commonplace in the litera-
ture, depends exactly upon their misleading interpretation of Einstein's point-coincidence
argument as one of the many Leibniz-style indiscernibility arguments that appeared in
19th century debate about geometry.
The lesson that, in my opinion, we can draw from such a reconstruction is that, even

if the point-coincidence argument as a response to the �hole argument� can be consid-
ered a sort of indiscernibility argument, it cannot, however, be interpreted simply as a
restatement of indiscernibility in the sense of Leibniz. Interestingly enough, as we shall
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see, it was precisely Weyl himself who already clearly recognized this point. In a �rst
approximation, we can say that whereas �Leibniz's indiscernibility� is an expression of
apparent physical di�erences that cannot �nd expression in the mathematical apparatus
of the theory, what we may call �Einstein's indiscernibility� is the consequence of appar-
ent mathematical di�erences that cannot �nd any correspondence in physical reality. In
an appendix I will try to provide a formal elucidation of this point.

2. Leibniz's Indiscernibility Arguments and his Conception of Geometry

Hermann Weyl was perhaps the �rst to emphasize the depth of the �philosophical
twist� (Weyl, 1952, p. 127) that Leibniz gave to the simple geometrical notion of �simili-
tude� or �similarity� between two �gures: �Leibnitz [sic] declared: two �gures are similar
or equivalent if they cannot be distinguished from each other when each is considered by
itself, because they have every imaginable property of objective meaning in common, in
spite of being individually di�erent� (Weyl, 1934/2009, p. 21). Leibniz thus exhibited
�the true general meaning of similitude� (Weyl, 1939/1997, p. 15). According to Weyl
such a �`philosophical' de�nition of similar �gures� can be considered as the �rst de�ni-
tion of the more general concept of �automorphism� or symmetry transformation: �an
automorphism carries a �gure into one that in Leibniz's words is `indiscernible from it
if each of the two �gures is considered by itself' � (Weyl, 1952, p. 18). Automorphisms
are, namely, transformations of space into itself that leave all relevant geometrical struc-
ture intact, so that the result is indistinguishable from the original unless one refers to
something that does not participate in the transformation, which thus serves as a frame
of reference (Rosen, 2008; Kosso, 2000). The �ction of a change that involves the entire
universe serves exactly to exclude in principle the possibility of such comparison. Two
worlds arising from each other by an �automorphic� transformation, i.e. by a trans-
formation which preserves some geometrical structure, are to be considered the �same
world,� since there is in principle nothing outside the universe with respect to which the
transformation can be referred. Thus, after the transformation, one cannot say if the
transformation has taken place or not, and it is impossible to establish whether one is
living in the original universe or in its transmogri�ed copy.
In the next section I will try to show that Weyl's suggestion can �nd supporting

evidence in Leibniz's texts. Of course no claim to provide an exhaustive and philologically
precise account of Leibniz's philosophy of geometry can be made in this context (for a
recent reconstruction see De Risi, 2007; still relevant for my exposition is Schneider, 1988;
see also Freudenthal, 1972; Münzenmayer, 1979; Wallwitz, 1991). The more humble aim
of this section is to show that considering Leibniz's indiscernibility arguments in the
light of his re�ections about geometry throws a di�erent light on the meaning of similar
Leibniz-style arguments in the subsequent history of philosophy of space and spacetime.
This will be helpful further on, when we will consider the di�erence between Leibniz
indiscernibility and Einstein indiscernibility.

2.1. Leibniz's De�nition of Similarity and the �Nocturnal Doubling� Thought Experiment

Leibniz, as is well known, was unsatis�ed by the traditional de�nition of �similarity�
of �gures (see De analysi situs, GM V, pp. 179-80; Leibniz 1976, p. 255). Every �gure,
according to the period's mathematical parlance, includes besides quantity also quality or
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form (GM V, p. 179; Leibniz 1976, p. 254). Similar �gures were usually considered those
that have the same �form� or �quality,� but possibly di�erent magnitude or �quantity�: for
instance two equilateral triangles or two cubes may have the same �form� but di�erent
�size.� However, such a de�nition appeared to Leibniz �fully as obscure as the thing
de�ned� (GM V, p. 180; Leibniz 1976, p. 254). Indeed, according to Leibniz, �it is not
enough to designate objects as similar whose form is the same, unless a general concept
is further given of form� (GM V, p. 180; Leibniz, 1976, p. 254). But the concept of form,
far from being obvious, is laden with cloudy metaphysical presuppositions.
To avoid a direct de�nition of similarity in terms of identity of quality, Leibniz proposed

therefore a sort of phenomenological de�nition of �similarity,� considering similar those
�gures �which cannot be distinguished when observed in isolation from each other� (GM
V, p. 180; Leibniz 1976, p. 255). As far as we know, Leibniz provided such a de�nition for
the �rst time in 1677 (Leibniz to Gallois; GM I, p. 180), and he later repeatedly insisted
that the Euclidean de�nition of similarity was just a particular case of his more general
phenomenological de�nition (De analysi situs, GM V, p. 179 and 181-82; Specimen

geometriae luciferae, GM VII, pp. 281-82). Here is one of the many passages that one
can refer to:

Things are similar in which when they are considered one by one, nothing by which
they can be di�erentiated can be found as two spheres or circles (or two cubes or
perfect squares) A and B. For example if the eye alone without the rest of the body is
imagined now to be inside sphere A now in sphere B it will not be able to distinguish
them but it will be able if it considers both at once, or if it brings with it other organs
of the body, or another standard of measure which it applies now to one now to the
other. Therefore to distinguish similar things, they must either be present together,
or between them a third thing must be present to each successively. [Similia sunt
in quibus per se singulatim consideratis inveniri non potest quo discernantur, ut duo
sphaerae vel circuli vel duo cubi aut duo quadrata perfecta A et B. Ut si solus oculus
sine aliis membris �ngantur, nunc esse intra sphaeram A nunc intra sphaeram B, non
poterit eas discernere, sed poterit si ambas simul spectet, vel si secum membra alia
corporis aliamve mensuram introrsum a�erat, quam nunc uni nunc alteri applicet.
Itaque ad similia discernenda opus est vel compraesentia eorum inter se, vel tertii cum
singulis successive.] (GM VII, 30; tr. Cox 1978, p. 234)

It is possible, for example, to distinguish �an isosceles triangle from a scalene, even if we
do not see them together� [ita triangulum isosceles facile discernitur a scaleno, etsi non
simul videantur] (GM V, p. 155). But if one wants to determine which is the larger of
two equilateral triangles, one �must compare the two triangles� [collatione Triangulorum
cum aliis opus habeo] (GM V, p. 155). Then the quality of a �gure is what �can be
known in a thing separately,� while �quantity� is what can be grasped only when the
�gures �are actually present together� (GM V, p. 180; Leibniz 1976, p. 254).
Leibniz was deeply convinced of the superiority of his own de�nition of similarity, for �it

has not been deduced from the consideration of angles, which represents only one instance
of similarity, but from a deeper principle, that is from the principle of discerning� (LH
XXXV, I, 14, bl. 23-24; tr. De Risi 2005, p. 145). Euclid's de�nition of similarity
based on the congruence of angles is a �special case which does not reveal the nature of
similarity in general� (GM V, p. 181; Leibniz, 1976, p. 256). Leibniz explicitly claims
that it is possible to deduce the congruence of angles from his perceptual de�nition of
similarity, allowing congruence to be de�ned from similarity rather than the other way
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around.
It is not possible here to discuss the geometrical implications of Leibniz's strategy,

adopted for instance in the Specimen geometriae luciferae (GM VII, pp. 281-82), to
provide a de�nition of similitude based on proportion of sides, rather than on angle
congruence (De Risi, 2007, p. 141�.) However, in my opinion, following Weyl's interpre-
tative suggestion, we should be able to grasp the philosophical intuition behind Leibniz's
�perceptual de�nition� of similarity. According to Weyl, Leibniz seems to glimpse that
the important role of similitude in elementary geometry is related to the fact that trans-
formations which change the size of segments, but preserve both the ratio of lengths and
the size of angles, cannot change any �geometric� properties of �gures. Geometry does
not have at its disposal any conceptual resources to establish the di�erence between, say,
a smaller and a bigger circle; every objective statement about the one would hold about
the other, for the size of �gures cannot be taken into consideration in geometrical theo-
rems: �every theorem, construction, propriety, proportion or relation that can be found
in a circle, could be found also in the other� [Omnia theoremata, omnes constructiones,
omnes proprietates, proportiones, respectus, qui in uno circulo notari possunt, poterunt
etiam in alio notari] (GM VII, 276). Thus similar �gures (which have the same shape but
possibly di�erent sizes) are clearly the �same� �gure for the geometer. Their di�erence
cannot be expressed �conceptually,� but emerges merely through an �intuitive compari-
son� [comparaison intuitive] (Couturat, 1961, p. 412), that is through what Leibniz calls
�comperceptio.�
Leibniz's celebrated thought experiments serve exactly to show ideal cases, where the

possibility of such comparison is �ctionally excluded. If, for instance, God were to dimin-
ish all appearances in and around us in a closed room (�in aliquo cubiculo�), preserving
the proportions (�omnia . . . apparentia proportione eadem servata minuere�), everything
would appear the same, and we would not be able to distinguish the state before from
that after transformation, without exiting our closed room and considering the things
that have not been diminished (�nisi sphaera rerum proportionaliter imminutarum, cu-
biculo scilicet nostro, egrederemur�) (GM V, p. 153s). The di�erence would emerge
only through comparison between two situations: one that has been scaled, and one
that has not. Something must remain untransformed as a standard against which the
transformation is measured. If this comparison would be in principle impossible:

If God were to change everything conserving the proportion, we would lose all our
measures and it would not be possible to know how much the things have changed,
because it is impossible to determine a certain de�nition of measure or to conserve
it in the memory. From that I believe I could explain the di�erence between size
and species, between quantity and quality. [At si quemadmodum alibi jam dixi Deus
omnia mutaret proportione eadem servata perisset nobis omnis mensura nec possemus
scire quantum res mutatae sint, quoniam mensura nulla certa de�nitione comprehendi
adeoque nec memoria retineri potest, sed opus est reali ejus conservatione. Ex quibus
omnibus discrimen inter magnitudinem et speciem inter quantitatem et qualitatem
elucere arbitror.] (GM VII, 276)

In the well-known terminology due to Leibniz, the original universe and the transformed
one would be indiscernible.1 It would not even make sense to speak of a di�erence. We

1An attempt to give an account of the di�erent forms (logical, metaphysical, empirical, etc.) that
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cannot ascertain the change of a length in the course of time, but only the change of
its ratio �to real standards of measure which are assumed to be unchanging� (GP V,
134; Leibniz 1976, p. 147). Thus if all lengths were diminished or magni�ed by the
same factor, that is conserving the angles and the proportions among lengths, Euclidean
geometry would provide us with no tools for ascertaining the di�erence. Any attempt
to establish through geometrical methods whether we are in the original or the scaled
universe would be in vain.

2.2. Leibniz's De�nition of Congruence and the Static Shift Argument

Thus, Leibniz's �nocturnal doubling�-style thought experiment is simply the counter-
part of his de�nition of similarity. Leibniz himself explicitly establishes this connection
for the very �rst time when he introduced this de�nition in his never sent letter to Jean
Gallois, to which we have already referred.2Leibniz was so impressed by his own de�nition
that he repeatedly tried to provide an analogous phenomenological account of the notion
of �congruence� (see Schneider 1988 for list of passages). Two �gures are congruent if
they can be distinguished not only through the simultaneous perception of both of them,
but also requiring the perception of a third object: �Congruent are those things that can
be distinguished only through the comperception with a third� [Congrua sunt quae sola
comperceptione cum tertio discerni possunt] (LA VI.4a 565). Two similar �gures that
di�er in magnitude can be distinguished even if they are in the same place, for one can
be part of the other:

But if two things are not only similar, but also equal, i.e. they are congruent, they
cannot be distinguished even if they are perceived together, if not because of the
place, that is only when something it is assumed outside them and it is observed
that they have a di�erent position respect to this third object. [Si vero duae res non
tantum sunt similes sed et aequales, id est si sint congruae, etiam simul perceptas non
discernere possum, nisi loco id est, nisi adhuc aliud assumant extra ipsas et observem
ipsas diversum habere situm ad tertium assumtum.] (GM V, 155)

Thus congruent �gures, in Leibniz's scholastic parlance, are di�erent �solo numero,� only
by the reference to something external (�solo erga situ ad externa discernuntur�; GM VII,
275), because �one is more on the west or more on the east, more on the north or more on
the south, more above or more below, or because some another body is posited outside
them� [unum alio orientalius aut occidentalius vel septentrionalius aut meridionalius vel
superius aut inferius esse vel alteri alicui corpori extra ipsa posito esse] (GM VII, 276).
Leibniz did not remain satis�ed with such a de�nition of congruence (De Risi, 2007,

pp. 143�.). However, it is plausible that the very famous arguments that Leibniz used
in his correspondence with Clarke can be considered the exact counterpart of such a
phenomenological de�nition of congruence, just as, as we have argued, the �nocturnal

the principle of identity of indiscernibles assumes in Leibniz's work is impossible here and not only for
space constraints; on some of the forms that the principle assumes in Leibniz, see (Cherno�, 1981).

2�Having thoroughly inquired, I have found that two things are perfectly similar when they cannot
be discerned other than by com-presence, for example, two unequal circles of the same matter could not
be discerned other than by seeing them together, for in this way we can well see that the one is bigger
than the other . . . In fact, if all the things of the world a�ecting us were diminished by one and the
same proportion, it is evident that nobody could make out the change.� (GM I, p. 180; tr. De Risi
(2007, p. 58)).
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doubling� thought experiment is the counterpart of Leibniz's de�nition of similarity.
Two congruent �gures A and B in the same plane may show many di�erences, when
they are considered in their relations to some �xed frame of reference. However, these
di�erences are not geometrical di�erences; every objective statement that geometry can
make for one �gure will hold for the other. If therefore the reference to the third external
�gure is eliminated, we would be left without any geometrical tools to establish if the
�gure that we are considering is the �gure A or the �gure B.
Imagine that the whole universe has been displaced. Since the universe is everything,

in principle no external reference frames can be imposed upon it, so that the very concept
of spatial displacement would be inapplicable to the universe. Thus according to Leibniz
�to suppose that the universe could have had at �rst another position of time and place,
than that which it actually had . . . is an impossible �ction� (Leibniz, 1976, p. 667).
The details of Leibniz's �static shift argument� (following the nomenclature introduced
by Maudlin 1993) have been rehearsed so many times in the literature that I refrain
from doing so again here. The only aspect I would like to pinpoint is that it seems clear
that the goal of Leibniz's thought experiment is to make the �simultaneous perception�
of the original situation and the changed one in principle impossible - showing that
di�erence of position is inessential to geometry, that it is geometrically no di�erence at
all. Geometrically we cannot establish if we are living in the original or in the displaced
world.
Similarly, when in the Third Paper, �5, Leibniz so famously argued that if we inter-

change all matter east to west, or left to right, no di�erence would emerge, he seems
to imply that the inner geometrical structure of Euclidean space does not allow one to
distinguish a left from a right-handed screw without reference to some third external
asymmetric object. The di�erence between left and right is not a geometrical di�erence,
as Leibniz seems to admit in this passage: �But it is impossible to distinguish left and
right . . . if not for the fact itself or the perception, that the human being experiences
that a motion is more comfortable on one side that on the other� [Sed dextrum a sin-
istro discerni non potest . . . nisi facto ipso, seu perceptione, dum ab uno latere motum
commodiorem quam ab alio homines experiuntur] (C Phil VII, D, II, 2, f. 30).
A passage of Leibniz's summarizes e�ectively the simple path that we have followed

through the rather messy conglomerate of his notes, drafts and manuscripts on geom-
etry: �the quality can be observed in one thing, the quantity in two . . . the position in
three [qualitas est in uno observabilis, quantitas in duobus . . . positio in tribus] (A IV.1,
p. 393). If we resort to Weyl's interpretative key, this apparently trivial distinction of
the form of a �gure from its position and magnitude seems to express the fundamental
�di�erence between conceptual de�nition and intuitive exhibition� (Weyl, 1927b, p. 73;
tr. Weyl, 2009b, p. 11), the idea that is impossible to describe a position or �x a unit
of length �in a conceptual way,� through geometric methods, and �not by means of a
demonstrative this-here� (Weyl, 1934/2009, p. 119). Di�erences in position and magni-
tude are geometrically unascertainable and emerge only through an intuitive comparison.
Thus Leibniz's indiscernibility arguments seem to correspond exactly to such �perceptual
de�nitions� of congruence and similarity, in as much they serve to �ctionally exclude the
possibility of such comparison.
However, precisely for this reason, it is easy to see that they do not succeed at all in

supporting the fully �relational� conception of space usually attributed to Leibniz, that
is to reduce space to the consequence of the �relations among bodies�, as in the received

7



view of Leibniz's philosophy of space. On the contrary, the arguments a�rm something
very precise about the structure that space possesses independently from the �relations
among bodies.� Leibniz's arguments work because it has been settled in advance that
the space, as is said in a recently published manuscript, is not only uniform, i.e. �self-
congruent� but also �self-similar� (LH XXXIV, I, p. 14, Bl. 23 retro; tr. De Risi 2005,
p. 140), that it is �at or Euclidean. Space, as Leibniz explicitly points out, is not like
a spherical or a cylindrical surface, i.e. one of the surfaces that Leibniz de�ned as a
�uniform locus,� self-congruent, but not self-similar; but it is like a �plane� (LH XXXIV,
I, p. 14, Bl. 23 retro; tr. De Risi 2005, p. 145), which is �everywhere internally similar
to itself� (GP VII, p. 22; tr. Leibniz 1976, p. 672).

2.3. A Glimpse into the Relationalism vs. Substantialism debate. Leibniz's Kinematic

Shift Argument

From this point of view it is not clear how Leibniz could credibly have believed that he
challenged Newton's conception of absolute space through his celebrated indiscernibility
argument. Newton's absolute space is obviously endowed precisely with the same Eu-
clidean symmetries of Leibniz's space. Leibniz's arguments seem to confuse the problem
of absolute position with that of absolute motion, that is the problem of the same posi-
tion in di�erent times, which was Newton's concern (DiSalle, 2002b). Obviously, Leibniz
could extend his indiscernibility arguments to motion itself.
�A ship may go forward, and yet a man, who is in the ship, may not perceive it� (GP

VII p. 403; tr. Leibniz 1976, p. 705). As in the other indiscernibility arguments, also
in this �Galilean� thought experiment one can perceive the motion of the ship only by
reference to something outside the ship, that does not participate in its motion. Once
again the �ction of the motion of the whole universe eliminates in principle the possibility
of such a comparison:3 since there is nothing outside the universe, the motion of the whole
universe, per de�nition, cannot be observed, �and when there is no change that can be
observed, there is no change at all� (GP VII, p. 404; tr. Leibniz, 1976, p. 705).
Thus the �static shift argument� can be easily transformed into a �kinematic shift

argument�: �To say that God can cause the whole universe to move forward in a right

line, or in any other line, without making otherwise any alteration in it, is another
chimerical supposition.� These �two states indiscernible from each other� would be �the
same state�, it would be �a change without a change� (GP VII, p. 373; tr. Leibniz, 1976,
p. 705).
There was a time when the philosophical supremacy of Leibniz's �relationalist� account

of motion over Newton's alleged theological-metaphysical �substantialism� appeared un-
questionable. However, it has more recently become commonplace to argue that such
a generalized indistinguishability between motion and rest, the idea that �there are no

3In this sense Galilei's ship experiment is the prototype of every indiscernibility argument. According
to Galilei, uniform motion �exists relatively to things that lack it�, but for things that participate equally
in the motion, motion �is as if it does not exist� (come s'e' non fusse) (Galilei, 1632/2005, I, p. 205;
tr. Galilei 1967, p. 116). The indiscernibility emerges from the exclusion of the external reference to
�other bodies lacking that motion.� Similarly Leibniz's changes that involve the whole universe mean
�agendo, nihil agere� (GP VII, p. 396), since the reference to something that has remained unchanged
is in principle impossible. There is therefore a connection between global symmetries, indiscernibility
and the possibility of subdividing the universe into isolated subsystems (see Brading and Brown, 2003,
p. 99-98).
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exceptions to the general law of equivalence� (Letter to Huygens, 12/22 June 1694, A
III.6, p. 131; tr. Leibniz, 1989, p. 308) is obviously incompatible with Galilean relativity.
Galilean relativity is the statement that motion �in a right line� is indistinguishable from
stasis, and not that also �motion in any other line� (however zigzagging) is indistinguish-
able from stasis. Leibniz's indiscernibility arguments, if applied in all their generality
to all motions, it is said, are unable to make sense of the privileged status of inertial
motion, the uniform motion in straight line, that one should be able to distinguish from
an accelerating motion. Thus Newton's bucket experiment correctly shows that circu-
lar motion is actually an exception to Leibniz's general law of equivalence. However,
Newton's alleged claim (Rynasiewicz, 2000) that this argument would provide evidence
for the existence of absolute space is commonly considered puzzling: Newton's laws of
motion presuppose absolute time, but not absolute space; absolute acceleration, but not
absolute velocity.
It has now become usual (Stein, 1967/1970; DiSalle, 2002a, 2006) to argue that the

Leibniz-Newton debate can be better understood if one assumes that it concerns not the
geometrical structure of space, but that of spacetime. Let me resort once more to Weyl's
account. Not only was Weyl probably the �rst to make this point clear, but most of
all his position will reveal itself particularly signi�cant later on for the purposes of the
present paper. As Weyl famously pointed out, �the dynamic inequivalence of di�erent
states of motion teaches us that the world bears a structure� (Weyl, 1927a, p. 70 ; tr.
Weyl 2009b, p. 101). Since unaccelerated motion is also called �inertial motion,� one
also refers to such structure as the �inertial structure.� But in the concept of �absolute
space� this inertial structure is �evidently not sized up correctly; the dividing line does
not lie between rest and motion, but between uniform translation and accelerated mo-
tion.� spacetime of classical mechanics has de�ned structure, since �straight lines can be
objectively distinguished from curves, but in the family of all straight lines one can single
out the vertical ones only by a convention based on individual exhibition� (Weyl, 1927a,
p. 70 ; tr. Weyl 2009b, p. 101).
Classical mechanics appeals to the action of a background spacetime structure, one

may call it �Galilean spacetime,� in which the particles are immersed and against which
inertial and non-inertial motion can be distinguished (a body that is not moving in
a straight line is considered as being acted on by a force). With respect to Galilean
spacetime, it is usually argued, �Newtonian spacetime� has, so to speak, �too much
structure�, since Newton wanted to determine objectively what is a vertical straight
line (a body at absolute rest, the objective occurrence of two events in the same place).
�Leibnizian spacetime,� on the other hand, bears �too little structure�4: if Leibniz requires
the relativity of all motions, then he could not distinguish straight lines from curved lines
(inertial and non-inertial motions). Spacetime would be an amorphous �mass of clay�
(Weyl 1927b, p. 57; tr. Weyl 2009a, p. 41), without a real inertial structure. Then,
as Weyl points out, the concept of the relative motion of several bodies would have no
more foundation than the concept of absolute motion for a single body (Weyl 1927b, p.
57; tr. Weyl, 2009a, p. 105). In fact, if the automorphisms of spacetime do not preserve

4A much more sophisticated catalog of classical spacetimes is discussed in John Earman's de�nitive
studyWorld Enough and spacetime (Earman, 1989). Leibnizian spacetime in particular is not completely
amorphous, because Leibniz seems to admit a foliation in hyperplanes of simultaneity. See Roberts 2003
for an overview and a criticism of the received account of �Leibnizian spacetime.�
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any structure relational theories of motion would - as we shall see later - be dynamically
trivial (Lariviere, 1987).
Needless to say, Weyl's interpretation is dangerously close to that �folk reading�

(Huggett and Hoefer, 2009) of Leibniz's philosophy of space and time, which, as recent
literature has shown, is far from exhausting Leibniz's much more articulated conception
of the relationship between relationalism and absolutism about motion.5 However, as we
shall see later, Weyl's suggestion is useful in order to restate once more what Leibniz's
indiscernibility arguments, in my opinion, implicitly presuppose. If the whole universe
were to move with constant velocity, we would certainly not notice the di�erence from
a universe at rest: parallel world lines would be mapped into parallel world lines; the
a�ne structure of spacetime gives us no means of picking the vertical lines among the
others. All relevant geometrical structure would appear the same, in the universe at
rest and in the uniformly moving one. However, classical mechanics a�rms that if the
whole universe were rotating, parallel lines would be mapped into curved lines. The
original universe and the transformed situation would not be indistinguishable at all, for
the a�ne structure gives us the possibility of distinguishing between curved and straight
trajectories in spacetime.
This was of course hard to grasp without having the possibility of considering spacetime

as a single geometrical structure. However, exactly for this reason, we are in a better
position to recognize that it is the geometry, which has been settled in advance, that
�decides� the indiscernibility. Any proto-veri�cationist interpretation of Leibniz's famous
remark that motion depends �upon being possible to be observed� (GP VII, 403; tr.
Leibniz 1976, p. 705) (like Reichenbach's reading, as we shall see) obscures the fact that
it is the �inner structure� of Galilean spacetime that does not allow the establishment
of the di�erence between rest and uniform motion, but does allow that between uniform
motion and acceleration. From today's standpoint, the fact, taken as obvious, that such
a mere geometrical structure is able to exert such an important in�uence on physical
reality appears more than surprising. Not only does spacetime geometry make bodies
conspire to move in straight lines at uniform speeds, but it even opposes resistance when
one attempts to deviate bodies from such trajectories: �It is probably fair to say that
anyone who is not amazed by this conspiracy has not understood it� (Brown, 2005, p.
14).

3. Leibnizian Indiscernibility Arguments in the 19th Century Debate about

Geometry.

Weyl's intuition seems to o�er a good insight into Leibnizian indiscernibility argu-
ments: in geometry two �gures are considered the �same� �gure �if one can be carried

5As is well known, in many passages Leibniz insists that a distinction between true motion and merely
relative motion can be drawn in terms of �force� or vis viva, that is mv2. This claim is usually considered
inconsistent or at least circular (measurement of mv2 depends on the de�nition a reference of frame);
this nevertheless makes clear that Leibniz's spacetime had probably a richer structure than what is now
called Leibnizian spacetime (Roberts, 2003, p. 553). In Roberts 2003, for instance, it is argued that
Leibniz would have even defended a form of absolutism about motion; for Arthur 1994 on the contrary
Leibniz was a full-blooded relativist. According to (Jauernig, 2008) it should be possible to reconcile
absolutism and relativism about motion by considering the di�erent ontological levels, the dynamical
and the phenomenal levels, that characterize Leibniz's thought. See also (Slowik, 2006).
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into the other by an automorphism� (Weyl, 1927a, p. 79; tr. Weyl 2009b, p. 73), i.e. by a
structure preserving mapping of the space onto itself. �That is now our interpretation of
Leibniz's de�nition of similar �gures as �gures that are indiscernible if each is considered
by itself�(Weyl, 1927a, p. 79; tr. Weyl 2009b, p. 73). Thus, which worlds count as indis-
cernible depends on what kind of mathematical structure, we are concerned with. Once
this is known, we should be able to pinpoint what mappings preserve the structure, that
is the automorphism of this structure. In general transformations to which Leibniz refers
- the scaling of the entire world or, in his dispute with Clarke, the interchange east with
west or displacement of everything three feet east - are not arbitrary since they preserve
some �geometrical structure.� The original and the copy are indistinguishable precisely
because all the relevant geometrical structure that was found before the transformation
will appear the same in the transformed situation. In other words, indiscernibility arises
because the geometrical structure we are considering does not allow the expression of
di�erences that we might otherwise consider intuitively evident.
This point becomes particularly clear if one considers the story of indiscernibility argu-

ments in the 19th century debate on the foundations of geometry. The rapid development
that geometrical thought experienced from the 1830s opened to the protagonists of this
debate, such as Helmholtz, Poincaré and, as we shall see, Hausdor�, the possibility of gen-
eralizing Leibniz's thought experiments (even if Leibniz is seldom explicitly mentioned):
two worlds will be indistinguishable not only if they are congruent or similar, but even
if they are mapped onto each other by any continuous deformation whatsoever, only re-
quiring that points that are close together before the transformation is applied also end
up close together. In other words, the 19th century debate seems to be dominated by
the tendency to consider transformations of space into itself that preserve progressively
weaker levels of geometrical structure. Two worlds arising from each other by a trans-
formation which preserves some geometrical structure are to be considered the �same
world.�

3.1. Hausdor�'s Geographical Maps

Helmholtz's and Poincaré's arguments have been abundantly discussed in the literature
(see for instance DiSalle 2006). I will therefore try to reconstruct summarily the 19th cen-
tury geometrical debate from a signi�cant, but less commonly considered, point of view.
The German mathematician Felix Hausdor�, in his major philosophical work Das Chaos

in kosmischer Auslese6 (Mongré 1898, now in Hausdor� 2004, with the same pagination),
published in 1895 under the pseudonym of Paul Mongré (�Paul to-my-liking�), o�ered a
good overview of all the Leibniz-style indiscernibility arguments that were widespread in
the period's debate about geometry. Hausdor� is surely better known for his fundamental
contributions to topology and set theory than for his early forays into philosophy of ge-
ometry, to which scholars' attention has been attracted only recently (Epple 2006, 2007).
Nevertheless Hausdor�'s re�ections on the foundation of geometry provide a valuable
overview into the use of indiscernibility arguments in the 19th century philosophical de-
bate about geometry - a debate that, as is well known, profoundly contributed to shaping
the new-born �philosophy of science� at the turn of the century (Friedman, 1999).

6Chaos in Cosmic Selection, as it might be translated in English
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Hausdor� considered �rst of all translations, rotations, mirroring and scaling of the
whole universe showing that a consciousness would necessarily remain unaware of them,
as long as all meter sticks used to ascertain any change, also underwent the same de-
formation (Mongré 1898/Hausdor� 2004, pp. 84-94). But according to Hausdor�, one
would consider two worlds as indistinguishable even if the objects of the universe were ar-
bitrarily distorted in arbitrary directions, by any deformation whatsoever, only requiring
that, in a �rst approximation, it is free from �discontinuities and singularities� [Unste-
tigkeiten und Singularitäten] (Mongré 1898/Hausdor� 2004, pp. 84-94): �We would not
notice anything of certain space transformation: this is the refrain of my transcendental
dialectic� [Von gewissen Transformationen des Raumes würden wir nichts bemerken: das
ist der Refrain meiner transcendentalen Dialektik] (NL FH Kapsel 49; Fasz. 1079; Bl.
26).
This was also the refrain of the whole period's philosophical-geometrical debate, which

was entirely dominated by similar thought experiments, showing �in a popular illumi-
nating way� [in populär einleuchtender Weise], �how a space transformation can elude
our empirical perception� [dass eine Raumtransformation sich der empirischen Wahr-
nehmung entzieht] (Mongré 1898/Hausdor� 2004, p. 100). Hausdor� is aware that the
�Helmholtzian convex mirror� [Helmholtzens Convexspiegelbild] (NL FH Kapsel 24; Fasz.
71; Bl. 33) already o�ered an example of such an approach, even if Helmholtz was more
interested in the �possibility of visualizing non-euclidean relationships� [die Anschaubar-
keit nicht euklidischer Verhältnisse] (Kapsel 24: Fasz. 71, Bl. 65) than of showing the
indeterminacy of the space structure. In an fragment of the Nachlass, unfortunately
undated, Hausdor� confesses that he found similar reasoning �also by others (Poincaré)�
[auch bei Andern (Poincaré)] (NL FH Kapsel 49; Fasz. 1079; Bl. 4), who similarly argued
that our actual space does not di�er from any space that one can derive from it by any
continuous deformation whatsoever.
However, Hausdor� could consider such a type of thought experiment only as a special

case of what he called the �principle of transposition, transformation principle, map-
ping principle; principle of substitutability� [Übertragungsprincip, Transformationsprin-
cip, Abbildungsprincip; Princip der Ersetzbarkeit] (Kapsel 24: Fasz. 71, Bl. bl4 [7]).

Two spaces that are point-wise coordinated to one another, in such a manner that
their whole physical content participates in this point-correspondence, produce the
same mental image . . . Every space stands for a whole class of spaces, among which
no di�erentiation, and thus also no choice, is possible. [Zwei Räume, die einander
punktweise zugeordnet sind, derart dass ihr gesamter physischer Inhalt an dieser Cor-
respondenz der Punkte betheiligt ist, erzeugen dasselbe Bewusstseinsbild. . . . jeder
Raum Repräsentant einer ganzen Klasse von Räumen, zwischen denen keine Unter-
scheidung, auch also keine Entscheidung möglich ist] (Kapsel 24: Fasz. 71, Bl. 65)

This approach is surely commonplace for someone who is familiar with the work of
Helmholtz or Poincaré. However, completely original in Chaos in kosmischer Auslese is
Hausdor�'s attempt to approach the issue using the modern concepts of Cantorian set
theory, then new-born (Cantor, 1874, 1878). This seems surprising at �rst sight. Only
a few mathematicians at that time were interested in this �eld and probably none at-
tempted to apply set theoretical considerations to philosophical and epistemological prob-
lems. However, precisely this �rst unusual contact with Cantor's theory showed Hausdor�
the potentialities of the �Mengenlehre,� that he later de�ned as the �groundwork of all
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mathematics� [das Fundament der gesamten Mathematik] Hausdor�, 1914/2002, p. 1. In
1904 Hausdor� began to work actively in this area, and in 1914, in his celebrated Grund-

züge der Mengenlehre, he developed the theory for which he is now rightly famous, the
theory of �topological spaces,� Hausdor�'s labeling for sets endowed with an additional
structure in which distinct points have disjoint neighborhoods (actually what we now
call Hausdor� spaces; see Hausdor�, 1914/2002, p. 718f.; Hausdor� (1927, 1935/2007,
p. 226f.)).
However, already in Hausdor�'s geometrical-philosophical speculation, one can see

the tendency to consider space as point sets endowed with a structure. In particular,
Hausdor� considers the empirical and the absolute space as two �point sets.� Between
these two, one can apply what �has been newly called a transformation or a mapping of a
space onto the other� [was man neuerdings eine Transformation oder Abbildung des einen
Raumes auf den anderen nennt] (Hausdor�, 2004, p. 82 ), that is a transformation that
preserves some geometrical structure. That idea that di�erence between the empirical
and absolute space �would not fall in our consciousness� [nicht in unser Bewuÿtsein fallen
würde] (Hausdor�, 1903, p. 17) means now that they can be mapped onto one another
by such a structure-preserving mapping. �Thus: geometry is not valid for a particular
space (the real one), but for all its univocal mappings� [Also: Geometrie gilt nicht von
Einem bestimmten Raum (dem wirklichen), sondern von all seinen eindeutigen Bildern].
Once again, which worlds count as indistinguishable depends upon which geometrical

structure one wants to preserve. If all the relevant structure is preserved by the mapping
(one-to-one and onto, but Hausdor� considered more general cases), then the original and
the deformed world would be regarded as �the same� and di�erence between them would
escape any observation. The sense of the expression �the same� is here intended as mere
set-theoretical equivalence, a mere �mapping, coordination, correspondence� [Abbildung,
Zuordnung, Correspondenz] between sets:

Mapping in the sense of correspondence, coordination. The usual parlance assigns
to these �pictures� a certain similarity with the original. In this sense one usually
says that mind-processes are signs, not �pictures� of the external world, or that the
words are signs, and not picture of the concepts. Geographical charts provide already
a freer conception of the concept of �mapping.� [Abbildung im Sinne von Zuord-
nung, Correlation. Der gewöhnliche Sprachgebrauch schreibt dem �Bilde� eine gewisse
Ähnlichkeit mit dem Original zu; in diesem Sinne sagt man, dass die Bewusstseinsvor-
gänge Zeichen, nicht Bilder der Aussenwelt oder die Worte Zeichen, nicht Bilder der
Begri�e seien. Geographische Karten führen schon zu freierer Au�assung des Begri�s
Abbildung. (NL FH Kapsel 49; Fasz. 1079; Bl. 8)

If the relationship between absolute and empirical space is conceived as an �Abbildung,�
a �mapping� in the set theoretical sense, it becomes clear that it does not make any sense
�to demand any congruence or similarity from such a mapping� [von dieser Abbildung
Congruenz oder Ähnlichkeit oder derlei zu verlangen] (Kapsel 49: Fasz. 1077, Bl. 4).
In 1903, in his inaugural lecture about �Das Raumproblem� as an extraordinarius at

Leipzig University, in order to give an idea of this procedure, Hausdor� e�ectively com-
pares the empirical space exactly to a geographical map of the absolute space: �If this
conception is correct, then the original can undergo every transformation whatsoever,
without any change in the mapped copy: exactly as you cannot recognize in a geograph-
ical map, if it was drawn from the original or from another geographical map� [Wenn
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diese Au�assung richtig ist, so muÿ man das Urbild einer beliebigen Transformation un-
terwerfen können, ohne daÿ das Abbild sich verändert: gerade so wie man einer Karte
nicht ansehen kann, ob sie nach dem Original oder nach einer anderen Karte gezeichnet
ist] (Hausdor�, 1903). Thus in order to know the nature of the absolute space starting
from the empirical one, one has to know which kind of projection has been used, that is,
what kind of structure has been preserved by the mapping:

Our empirical space is like a three-dimensional geographical chart, a mapping of the
absolute space; but we lack the map legend, we do not know the mapping principle
and hence we do not know the original. Between both spaces there is an unknown, and
arbitrary relationship or correspondence, a completely arbitrary point-transformation
[. . . ] [T]he deformation however does not fall into our consciousness, because not
only the objects, but also we, and our measuring instruments are similarly deformed.
[Nun, unser empirischer Raum ist solch eine körperliche Karte, ein Abbild des absolu-
ten Raumes; aber es fehlt uns der Eckenvermerk, wir kennen das Projektionsverfahren
nicht und kennen folglich auch das Urbild nicht. Zwischen beiden Räumen besteht eine
unbekannte, willkürliche Beziehung oder Korrespondenz, eine völlig beliebige Punkt-
transformation . . . die Verzerrung fällt nicht in unser Bewuÿtsein, weil nicht nur die
Objekte, sondern auch wir selbst und unsere Meÿinstrumente davon gleichmäÿig be-
tro�en werden.] (Hausdor�, 1903, p. 17)

For example, a map of the world shown in Mercator's projection accurately depicts only
the equatorial regions of the Earth's surface. As one moves nearer and nearer to the
polar regions, so the features of the map become progressively distorted. This distor-
tion is particularly pronounced for Greenland and Antarctica, which become drawn out
horizontally far in excess of their true proportions. The reason for this is well known,
of course, it being simply due to the fact that the surface of the Earth is spherical,
and it is not possible to represent a curved surface on a �at map without distortion.
However, since all measuring instruments would be equally distorted, someone living
in the distorted situation would not notice the di�erence. The only way to know the
structure of the absolute space from the empirical one, our geographical map, is to know
the Abbildungsverfahren, the kind of �mapping,� that has been used to draw the map
(Mercator, Stereographic, etc.). The empirical space is �no faithful copy of the absolute
one, but only a mapping according to an arbitrary, indeterminable projection principle�
[keine getreue Kopie des absoluten, sondern nur sein Abbild nach einem beliebigen, un-
bestimmbaren Projektionsverfahren] (RP 17). If we don't know which structure (angles,
areas, geodesics, etc.) has been preserved by the mapping, there is no way to infer the
�real� geometry of space.

4. The Point-Coincidence Argument as a Leibniz-Style Indiscernibility Ar-

gument: the Logical Empiricist Interpretation of General Relativity

Helmholtz and Poincaré, but also Hausdor�/Mongré, are the authors to whom Moritz
Schlick refers in his celebrated Raum und Zeit in der gegenwärtigen Physik (Schlick,
1922/2006, tr. Schlick, 1978a), which achieved four editions from 1917 to 1922. If
Helmholtz's and Poincaré's in�uence on Schlick is well known and well documented in
the literature (Co�a, 1991; Pulte, 2006; Ryckman, 2005; Friedman, 1995), the relationship
between Schlick and Hausdor� has only recently been brought to the attention of a larger
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audience (Epple, 2006). For the aims of this paper, it is interesting in particular that,
after an exchange of letters in 1919-20,7 Schlick, in the fourth edition of his work, felt
obliged to add a note to recognize the value of Hausdor�'s philosophical re�ections.8

This says a lot about Schlick's position regarding the connection between 19th century
Leibnizian indiscernibility arguments and the philosophical interpretation of the new-
born theory of General Relativity.
In particular, the third chapter of Schlick's booklet is entirely dominated by the re-

production of Leibniz-style thought experiments. Schlick starts �by considering the case
in which the imaginary transformed world is geometrically similar to the original one,�
then he imagines that �the dimensions of all objects are lengthened or shortened in one
direction only,� and �nally he considers the case where �the objects in the universe are
arbitrarily distorted in arbitrary directions� (Schlick 1922/2006, p. 202; tr. Schlick
1978b, p. 227). Schlick's conclusion is invariably the same: as long as we suppose that
�all measuring instruments, including our own bodies� share the same deformation, �the
whole transformation immediately becomes unascertainable� (Schlick 1922/2006, p. 202;
tr. Schlick 1978b, p. 227):

In mathematical phraseology we can express this result by saying: two worlds, which
can be transformed into one another by a perfectly arbitrary (but continuous and
one-to-one) point-transformation, are, with respect to their physical reality, identical.
That is: if the universe is deformed in any way, so that the points of all physical
bodies are displaced to new positions, then [. . . ], no measurable, no �real� change
has happened at all, if the co-ordinates of a physical point in the new position are
any arbitrary functions whatsoever of the co-ordinates of its old position. (Schlick
1922/2006, p. 204; tr. Schlick 1978b, p. 227)

Moving from the consideration of space to that of spacetime, it was easy for Schlick to
use this sort of argument in the context of General Relativity. The connection between
the 19th century debate and the new theory can be found in the, as John Stachel has
conveniently labeled, �point-coincidence argument�; an argument that Schlick could read
in Einstein's 1916 review article Die Grundlage der allgemeinen Relativitätstheorie. Ein-
stein, as is well known, maintained that the physical content of a theory is exhausted
by the catalog of the �spacetime coincidences� or �veri�cations of . . . meetings of the
material points of our measuring instruments with other material points� (CPAE 6, Doc.,
30, p. 291f.). According to Schlick, this implies that all worlds that agree on such co-
incidences are equivalent, and that a choice among them is the result of an arbitrary
stipulation (an implication that Schlick called �the geometrical relativity of space�):

All world pictures which lead to the same laws for these point-coincidences are, from
the point of view of physics, in every way equivalent. We saw earlier that it signi�es
no observable, physically real, change at all, if we imagine the whole world deformed
in any arbitrary manner, provided that after the deformation the co-ordinates of every

7The letters are preserved in Noord-Hollands Archief in Haarlem (NL): 102/Haus-2 Letter to Schlick
(23.2.1919, Greifswald); 102/Haus-2 letter to Schlick (17.7.1920, Greifswald).

8�Unfortunately, only after the publication of the second edition of this writing have I learned about
the most astute and fascinating book [Das Chaos in kosmischer Auslese]. The �fth chapter of this
monograph gives a very perfect presentation of the considerations that follow in the text above. Not
only Poincare's re�ections, but also the extensions added above have been anticipated there� (Schlick
1922/2006, p. 198, note 1, tr. Schlick 1920, p. 24, note 1).
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physical point are continuous, single-valued, but otherwise quite arbitrary, functions
of its co-ordinates before the deformation. Now, such a point-transformation actu-
ally leaves all spatial coincidences totally una�ected; they are not changed by the
distortion, however much all distances and positions may be altered by them. For, if
two points A and B, which coincide before the deformation (i.e. are in�nitely near
one another), . . . as a result of the deformation . . . must be at the same point (or
in�nitely near) A. Consequently, all coincidences remain undisturbed by the deforma-
tion. (Schlick 1922/2006, p. 232; tr. Schlick 1978b, p. 227)

Schlick's interpretation of the point-coincidence is usually considered the expression of a
form of veri�cationism, as a commitment to a strong observability requirement. In this
sense the point-coincidence remark has been famously de�ned as �the beginnings of the
empiricist and veri�cationist interpretation of science characteristic of later positivism�
(Friedman, 1983, p. 24). It is indeed the case that Einstein's point-coincidence argu-
ment fascinated contemporary philosophers for its veri�cationist turn of phrase. But the
argument actually o�ered them much more. It allowed them to exorcise the novelty of
Einstein's newborn theory, by simply inserting it in the context of the by then already fa-
miliar 19th century debate about geometry. Einstein's point-coincidence argument is just
one of those many Leibniz-style philosophical arguments that one can �nd in Helmholtz,
Poincaré or, as we have seen, Hausdor� (Friedman, 1983, p. 47).
Schlick had by that time reached the philosophical stature necessary to transform

such an interpretative proposal into the received view. As is well known, he was a
trained physicist, having taken his doctorate under Max Planck, who notably singled
out Schlick as one of his best students, together with Max von Laue, later awarded the
Nobel Prize. But most importantly, Schlick and Einstein were in correspondence by late
1915; Schlick sent Einstein a copy of his paper on the philosophical signi�cance of the
theory of relativity (CPAE 8a, Doc. 296; 4 February 1917), which Einstein famously
praised for its �unsurpassed clarity and perspicuousness [Übersichtlichkeit]� (CPAE 8a,
Doc. 297, p. 389; 6 February 1917; see also Doc. 165; 14 December 1915). When
in 1922 Schlick was appointed to the chair in philosophy held earlier by Ernst Mach
and by Ludwig Boltzmann at the University of Vienna, he was already the recognized
philosophical authority on the subject of relativity.
Schlick's in�uence on the philosophical debate on geometry and relativity was enor-

mous. The young Rudolf Carnap in his doctoral Dissertation Der Raum (Carnap, 1922)
drew mostly upon from Schlick's interpretation of Einstein's passage on the geometri-
cal interpretation of the point-coincidence argument - the idea that point-coincidences
are the only topological invariant, and are therefore �unambiguous�, whereas anything
else - projective, a�ne or metric structure is the result of a stipulation. Later Car-
nap remained essentially faithful to this approach, even after abandoning the Husser-
lian/Kantian framework in which it had originally been developed. And it was after hav-
ing corresponded with Schlick that Hans Reichenbach (1923/24), for whom Einstein later
created a chair in the philosophy of science in the physics department at Berlin, quickly
modi�ed his early Neo-Kantian interpretation of the theory (Reichenbach, 1920/1977) in
the direction of the metric conventionalism for which he later became famous with his
classic Philosophie der Raum-Zeit-Lehre (Reichenbach 1928/1977 translated as Philoso-
phy of Space and Time in Reichenbach 1928/1958).
Reichenbach was perhaps the �rst among Logical Empiricists to insist on the fact that

the indiscernibility arguments that �ourished in 19th century philosophy of geometry
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were nothing but variations of Leibniz's argument in the Leibniz-Clarke correspondence
(Reichenbach, 1924). Such arguments, in Reichenbach's �veri�cationist� reading, express
the idea that �it is meaningless to postulate di�erences in objective existence if they
do not correspond to di�erences in observable phenomena� (Reichenbach 1928/1977, p.
495; tr. Reichenbach 1928/1958, p. 210). Reichenbach felt a profound philosophical
a�nity with Leibniz. According to Reichenbach, Leibniz �went so far as to recognize the
relationship between causal order and time order� (Reichenbach, 1949/1951, p. 300), and
most of all with his �principle of the identity of indiscernible, discernible in connection
with the veri�ability theory of meaning,� he laid the foundation of what Reichenbach
calls the �theory of equivalent descriptions� (see for instance Lehrer 2004; Klein 2001)
where Leibniz's indiscernibility explicitly �oods into the period's debate about geometry
.
Reichenbach's approach is well known. Only a set of di�erent descriptions, rather

than a single description, can correctly describe the geometry of physical space, in as
much as these �di�erent geometries can be represented on one another by a one-to-one
correspondence� (Reichenbach, 1949/1951, p. 298), so that all objects are assumed to be
deformed in such a way that the spatial relations of adjacent bodies remain unchanged:

In this context belongs the assumption that overnight all things enlarge to the same
extent, or that the size of transported objects is uniformly a�ected by their position.
Helmholtz's parable of the spherical mirror comparing the world outside and inside
the mirror is also of this kind; if our world were to be so distorted as to correspond
to the geometrical relations of the mirror images, we would not notice it, because all

coincidences would be preserved.� (Reichenbach 1928/1977, p. 38-, tr. Reichenbach,
1928/1958, p. 27; my emphasis)

According to Reichenbach, Einstein's theory of relativity is the result of the recognition
of such a �relativity of geometry,� the recognition that a di�erent choice of a �coordinate
de�nition� of rigid bodies or straight lines may yield di�erent geometrical descriptions of
the world, that are however physically equivalent.
The connection of this strategy with Leibnizian indiscernibility arguments is made

particularly clear by Rudolf Carnap in a passage of his Philosophical Foundations of

Physics (Carnap, 1966), published in 1966:

Leibniz, the reader may recall, had earlier defended a similar point of view. If there is
in principle no way of deciding between two statements, Leibniz declared, we should
not say they have di�erent meaning. If all bodies in the universe doubled in size
overnight, would the world seem strange to us next morning? Leibniz said it would
not. The size of our own bodies would double, so there would be no means by which we
could detect a change. Similarly, if the entire universe moved to one side by a distance
of ten miles, we could not detect it. To assert that such a change had occurred would,
therefore, be meaningless. Poincaré adopted this view of Leibniz's and applied it to
the geometrical structure of space. (Carnap, 1966, p. 148)

This passage clearly shows that the strategy adopted by Logical Empiricists to assimilate
General Relativity is disarmingly simple: Einstein's point-coincidence argument is simply
a Leibniz-style indiscernibility argument, the same kind of argument that dominated
the 19th century debate on the philosophical foundation of geometry. If Helmholtz,
Poincaré or Hausdor� applied their arguments to space alone, Einstein simply extended
them to spacetime, that is to the intersection of world lines: a �coincidence� of two
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world lines presupposes nothing concerning the metrical relations of space and time, so
metrical properties of spacetime are deemed less fundamental than �topological� ones.
The �objective� system of coincidences does not depend on an observer, it is therefore
�independent of all arbitrariness� and an �ultimate fact of nature,� whereas the metric
relations are frame-dependent and conventional. Point-coincidences represent a sort of
�xed framework in which we can formulate an equivalence class of physically possible
geometries mapped onto each other by one-to-one continuous transformations (that is
probably what we would called �di�eomorphisms�): �Topological properties turn out to
be more constant then the metrical ones�, so that the transition from the special theory to
the general one should be interpreted as �a renunciation of metrical particularities while
the fundamental topological character of space and time remains the same� (Reichenbach
1924, p. 115; tr. Reichenbach, 1924/1969, 195; see Ryckman 2007, 2008).
The veri�cationist ��avor� of such a reading of the point-coincidence argument, the

idea (on which Howard 1999 famously insisted) that point-coincidences are taken to be
real because of their observability, and thus they qualify as invariant, seems however to
induce Logical Empiricists to underestimate the consequences of such an unrestrained use
of Leibnizian arguments. In such arguments, as we have seen, indiscernibility does not
arise at all from the impossibility of observing certain di�erences physically, but from the
impossibility of expressing them geometrically. Just as Euclidean space does not allow
one to establish the di�erence between left or right without a �coordinative de�nition�,
a bare �topological� space would not allow one to �observe� the distinction between
straight and curved lines. From such a conclusion, it is not hard to prognosticate that
Logical Empiricists' interpretation of General Relativity, despite its undisputed historical
relevance, was destined to failure from a theoretic point of view. Probably only the
implementation of a generalized �Machian� point of view in which �the inertial force can
be interpreted . . . as a dynamic gravitational e�ect� (Reichenbach 1928/1977, p. 247;
tr. Reichenbach, 1928/1958, p. 214), prevented them from seeing that the interpretation
they were suggesting would have made General Relativity dynamically empty.

4.1. The Failure of the Logical Empiricist Interpretation of General Relativity

If the interpretation of the point-coincidence argument as Leibniz-style indiscernibility
argument can be considered the core of the Logical Empiricist interpretation of General
Relativity, at the same time then it is the reason for its substantial inadequacy. As we
have tried to show, Leibniz's indiscernibility arguments express the global symmetries of
space or spacetime: two universes mapped by some kind of deformation would be indis-
tinguishable, if all relevant structure were preserved, since all that the theory considered
geometrically relevant would appear the same in both universes. If the point-coincidence
argument were an indiscernibility argument of this kind, its result would be therefore to
enlarge the spatio-temporal symmetry group of spacetime to the group of all one-one,
bi-continuous point transformations: only the topological features of events are preserved
by this group of transformations, that is, the notion of the �coincidence� of two events
and the notion of two events being near one another in spacetime.
From a contemporary perspective, the mistake of such an account is easy to recognize:

the symmetry group of an arbitrary general relativistic spacetime is not the widest group
of all smooth coordinate transformations that preserve only point-coincidences, but the
narrowest one consisting of the identity alone. The use of the full group of admissible
transformations in General Relativity does not imply that we are working in the context
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of a very weak, though �xed, geometrical structure, but, rather, that we are working in
the context of a highly structured spacetime, endowed with a perfectly de�nite, although
variable, metric. In this context indiscernibility arguments in the sense of Leibniz do not
even make any sense. In an inhomogeneous space it really would make a di�erence if one
would shift everything into a region of increasing spatial curvature, and the consequences
of doubling would depend on where the doubling were carried out (Nerlich, 1994, p. 152).

When Weyl (1924b), upon whose authority we wish once more to rely, reviewed Re-
ichenbach's Axiomatik der relativistischen Raum- Zeit-Lehre, (Reichenbach 1924, tr. Re-
ichenbach, 1924/1969) he found the book �not very satisfactory, too laborious and too
obscure� [wenig befriedigend zu umständlich und zu undurchsichtig](Weyl, 1924b). Be-
yond mathematical technicalities, what Weyl probably felt to be the most philosophically
extraneous was Reichenbach's identi�cation of the �philosophical achievement� of Gen-
eral Relativity with the separation between the factual and conventional components,
those which are �xed once and for all, and those which result from the stipulations of
rigid rods and ideal clocks. Weyl's reliance on the use of trajectories of force-free mass
points in the construction of the metric (Ehler, 1988)9 is, on the contrary, the result of a
completely di�erent philosophical attitude (Ryckman, 1995, 2005). As it is well known,
according to Weyl, the main novelty of Einstein's theory of gravitation was that it had
transformed the �guiding inertial structure,� that counts as standard for no-acceleration,
from �a rigid geometric property of the world, �xed once for all� (Weyl, 1934/2009, p.
134) to a �guiding �eld� (Führungsfeld , as Weyl famously called it) �a physical reality
which is dependent on the state of matter� (Weyl 1921/1968, p. 141 tr. Weyl 1921/2009,
p. 21): �The distinction between guidance [Führung] and �eld is preserved, but guidance
has become a �eld (as the electromagnetic �eld� [An dem Dualismus von Führung und
Kraft wird also festgehalten; aber die Führung ist ein physikalisches Zustandsfeld (wie
das elektromagnetische)] (Weyl, 1924a, p. 198).

The philosophical meaning of General Relativity should be sought not in the distinc-
tion between arbitrary and non-arbitrary structures, but in that between dynamical and
non-dynamical ones. The di�erence between Galilean spacetime and Special Relativis-
tic spacetime lies in the di�erence between their inertial structures. Nevertheless, both
structures are non-dynamical in the sense that they are independent of their contents:
the unique a�ne connection (compatible with the spacetime metric), it is said, provides a
standard for absolute acceleration and rotation. The radical novelty of General Relativ-
ity does not consist in weakening such a �xed background structure, but in transforming
the �xed background into a dynamical one. Since all bodies are in�uenced by gravity in
precisely the same way (equivalence principle), there are no physical phenomena inde-
pendent of gravitation that might serve to measure the background spacetime geometry;
on the contrary we can measure the acceleration of a particle in a magnetic �eld relative
to the inertial trajectory of a body that is not a�ected by magnetism. In other terms,
there is no unique decomposition of the a�ne structure into an inertial structure and the
deviation from this structure caused by gravitation.

9So Weyl summarizes his position: �the metrical structure of the world is already fully determined by
its inertial and causal structure, that therefore mensuration need not depend on clocks and rigid bodies
but that light signals and mass points moving under the in�uence of inertia alone will su�ce� (Weyl,
2009b, p. 103).

19



4.2. The Point-Coincidence Argument as a Response to the Hole Argument

Even if the distinction between dynamical and non-dynamical structures (or dynamical
and absolute objects, in James Anderson's terms; Anderson 1967) turned out to be �not
su�ciently sharp� (Giulini 2007; see Pitts 2006), nevertheless it is now a widely shared
opinion that it better expresses the philosophical spirit of General Relativity than the
Logical Empiricists' distinction between arbitrary and non-arbitrary structure. It is not
the case that the metric that was non-arbitrary in previous theories has become arbitrary,
but that the metric that was non-dynamical has become dynamical - it has become a
�eld among others.
As we argued, the Logical Empiricists' failure to grasp this point seems connected

to their interpretation of the point-coincidence argument as a 19th century radicaliza-
tion of Leibnizian indiscernibility arguments. This mistake is of course at least partly
comprehensible. The echo of the widespread use of such arguments in one of the most
exciting philosophical debates of the turn of century was still vivid. Moreover Einstein's
�Helmholtzian� insistence on the importance of practically rigid rods and clocks (Ein-
stein, 1921, 1925) could be easily seen as the authoritative con�rmation that this was
the correct interpretative context (Ryckman, 1996; see also Howard, 2005). Only re-
cent scholarship initiated by John Stachel (Stachel, 2002) discovered the key to a proper
understanding of the point-coincidence argument, with the help of Einstein's correspon-
dence from that period . The meaning of what we may call (following Rynasiewicz 1999)
the public point-coincidence argument can be understood only if one knows the private

point-coincidence argument as a response to the infamous �hole argument.� The details
of both versions of the argument have been rehearsed many times in recent literature,
so it does not seems necessary to repeat here the �Hole Story,� as Earman and Norton
ingeniously called it. I will attempt anyway a brief exposition.
(I) The public point-coincidence argument, as we said, appeared for the �rst time in

Einstein's 1916 review article on General Relativity, and it is used to express the formal
request of general covariance, i.e. of coordinate-independent formulation of the laws of
nature: �The laws of nature are only propositions about spatio-temporal coincidences;
therefore they �nd their natural expression in generally covariant �elds equations� (CPAE
7, Doc. 4, 38; Prinzipielles zur Relativitätstheorie, 1918). In this context the argument
has nothing to do with indiscernibility, as the Logical Empiricists believed. If coincidences
are all that matters physically, then we ought to be able to use any coordinate system,
since all coordinate systems necessarily agree on such coincidences (Norton, 1995). The
young Wolfgang Pauli (at his third semester), in his celebrated �Enzyklöpedie� article on
relativity (Pauli, 1921), sums up this line of reasoning clearly:

All physical measurements amount to determination of spacetime coincidences; noth-
ing apart from these coincidences is observable. If however two point events correspond
to the same coordinates in one Gaussian coordinate system, this must also be the case
in every other Gaussian coordinate system. We therefore have to extend the postulate
of relativity: The general physical laws have to be brought into such a form that they
read the same in every Gaussian coordinate system, i.e. they must be covariant under
arbitrary coordinate transformations (Pauli, 1958, p. 149).

In this form the argument is customarily regarded as physically vacuous, since such
a requirement can be satis�ed by virtually all theories, independently of the content
of the laws. The unavoidable reference is to the now familiar argument of the young
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mathematician Erich Kretchman, who as early as 1917 (Kretschmann, 1917) turned the
point-coincidence argument against Einstein: if the physical content of every spacetime
theory is exhausted by the catalog of spacetime coincidences, that is by �topological
relations,� then for this very reason all spacetime theories can be given in a generally
covariant formulation (Rynasiewicz, 1999).
(II) The private point-coincidence argument is a response to the �hole argument,� which

probably �rst occurred to Einstein by November 1913 (Stachel, 1980/2002) at the latest.
In this form the argument appears actually as a sort of indiscernibility argument. As
it is well known, Einstein was worried that by means of a coordinate transformation,
two di�erent solutions of generally covariant �eld equations would arise at a single point
within a hole (a region devoid of matter and energy), whereas the sources outside the hole
have not changed. Einstein overcame this di�culty when he came to realize that two sets
of �eld lines that intersect in the same way, that is that agree on point-coincidences, de�ne
the same physical situation, since we do not have any means to separate a background
system of rigid grids from the �eld lines. Hence, two metric �elds whose geodesics
intersect one another in the same way are the �same� metric �eld.
The nature of the point-coincidence argument as an indiscernibility argument is prob-

ably nowhere more in evidence than in Einstein's correspondence with Paul Ehrenfest in
late December 1915 and early January 1916 (CPAE 8a, Doc. 173, 26 December 1915, and
Doc. 180, 5 January 1916). Ehrenfest, in a letter that no longer exists, presumably asked
Einstein to consider a situation in which light from a distant star passes through one of
Einstein's holes and then strikes a screen with a pinhole in it that directs the light onto
a photographic plate. The question is whether the same point on the photographic plate
would have received the light after a coordinate transformation. In fact, the coordinate
transformation would change the metric in the hole, determining a di�erent geodesic
trajectory of the light rays.
In his answer (CPAE 8a, Doc. 180), Einstein imagines representing the situation

described by Ehrenfest �on completely deformable tracing paper [Pauspapier]�. If one
deforms the tracing paper arbitrarily then one would obtain a solution that �is math-
ematically a di�erent one from before� (CPAE 8a, Doc. 180, p. 238). Deforming the
paper means deforming the coordinate systems, and according to the well-known rules
of tensor calculus, one would obtain a di�erent metric �eld, and therefore a di�erent
geodesic trajectory of light rays. Einstein's worries that this would jeopardize the �uni-
vocality� of the description of nature disappeared, when he realized that this is only a
mathematical di�erence - �physically it is exactly the same.� (CPAE 8a, Doc. 180, p.
239; my emphasis). In fact the background coordinate system (the orthogonal drawing
paper coordinate system) with respect to which the situation would have appeared de-
formed �is only something imaginary [eingebildetes]�: �What is essential is this: As long
as the drawing paper, i.e., `space,' has no reality, the two �gures do not di�er at all. It is
only a matter of �coincidences,� e.g., whether or not the point on the plate is struck by
light. Thus, the di�erence between your solutions A and B becomes a mere di�erence of
representation, with physical agreement� (CPAE 8a, Doc. 180, p. 239; my emphasis; tr.
from Howard and Norton 1993).

4.3. Weyl on Leibniz's and Einstein's Indiscernibility Arguments.

Logical Empiricists' interpretation of the point-coincidence argument fails to grasp the
meaning of both versions of the argument (Ryckman, 1992; Howard, 1999). The public
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point-coincidence argument is not an indiscernibility argument at all. The private in-
discernibility argument is an indiscernibility argument, but, as we shall see, not in the
Leibnizian sense. I argued that the reason for such a failure is not so much the conse-
quence of a rather clumsy attempt to �nd eminent precursors of their �veri�cationist�
point of view. It is rather the fact that, given the philosophical context in which they
developed their interpretation, they could hardly resist the temptation to interpret the
argument more geometrico, as one of the many Leibniz-style argument that dominated
the 19th century debate on the foundations of geometry. Only recently has the knowledge
of Einstein's correspondence convincingly shown that these remarks of Einstein's link-
ing general covariance and point-coincidences should be understood against a completely
di�erent background, one that the Logical Empiricists could not, if not partially, have
known (see Einstein's letter to Schlick, CPAE, Doc. 165; 14 December 1915). However,
it is signi�cant that it was precisely Hermann Weyl had already clearly seen the di�erence
between Leibniz-style and Einstein-style indiscernibility arguments during roughly the
same years when the Logical Positivists were publishing their philosophical re�ections on
relativity.
Weyl provides on many occasions his own version of a indiscernibility argument á la

Leibniz applied to spacetime: �Let us imagine the four-dimensional world as a mass
of plasticine traversed by individual �bers, the world lines of material particles� (Weyl
1927b, p. 73; tr. Weyl 2009b, p. 105). According to Weyl it is �impossible to distinguish
conceptually between the system of lines and the system of curves resulting from them
by a spatial deformation� (Weyl 1927b, p. 21; tr. Weyl 2009b, p. 24; my emphasis). In
fact �only such relations have an objective signi�cance as are preserved under arbitrary

deformations of the plasticine. The intersection of two world lines is, for instance, of
this kind� (Weyl 1927b, p. 73; tr. Weyl 2009a, p. 129; my emphasis). In this way,
however, the world would be an �amorphous continuum without any structure� (Weyl
1934/2009, p. 129) or better without any �post-di�erential� structure: �Only statements
concerning the distinctness or coincidence of points and the continuous connection of
point con�guration can be made at this stage�, but it would be impossible to �distinguish
the straight lines from the curved ones� (Weyl, 1932/2009, p. 41; my emphasis). Thus
every �guiding structure,� every standard for distinguishing inertial motions and deviation
from the inertial motion would have been lost. The consequence of the Leibnizian strategy
stubbornly pursued by Logical Empiricists is here e�ectively described by Weyl. Such
a strategy clearly destroys the possibility of dealing with the problem of the relativity
of motion, since �no solution of the problem is possible� as long as �one disregards the
structure of the world� (Weyl 1927b, p. 65; tr. Weyl 2009b, p. 105; see Coleman and
Korté 1984).
Einstein's indiscernibility argument, the point-coincidence argument as a response to

the hole argument, cannot therefore be confused with an indiscernibility argument in the
sense of Leibniz. The great achievement of General Relativity, as Weyl never tires of
telling, lies in the fact that �the inertial structure of the world is not rigid, but �exible,
and changes under material in�uences� (Weyl, 1934/2009, p. 133). The standard for
distinguishing between inertial and non-inertial motion has itself become dynamical, that
is, in Weyl's parlance, a �guiding �eld�: acceleration means deviation from the trajectories
of particles subject only to gravitation, trajectories that, however, depend in turn on the
contingent distribution of matter. In this context an indiscernibility argument, as Weyl
writes in a nice scienti�c-philosophical dialog, Massenträgheit und Kosmos, published in
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1924, serves to avoid �the mistake that Einstein committed in 1914� [den gleichen Fehler,
den Einstein 1914 machte] (Weyl, 1924a, p. 202).
The reference is clearly to the �hole argument� that was �rst published in January 1914

(CPAE 4, Doc. 26; January 1914) in the �Bemerkungen� added to the article version of
the Entwurf paper written with Grossman (�rst published as separatum CPAE 4, Doc.
13; 1913) and repeated in two papers both dating from early 1914 (CPAE 4, Doc. 25,
January 1914; CPAE 6, Doc. 2, May 1914).
In fact Weyl �rst observed that �if the matter disappears, the guiding �eld must be-

come undetermined � [bei verschwindender Materie muss das Führungsfeld unbestimmt
werden] (Weyl, 1924a, p. 202; my emphasis). The very same physical state can be real-
ized in in�nite possible mathematical ways.10 In fact, �if the laws of nature are invariant
under arbitrary coordinate-transformations, then I will get from a solution [of the �eld
equations] by means of a transformation, in�nitely many new ones� [wenn die Naturgeset-
ze invariant sind gegenüber beliebigen Koordinatentransformationen, so erhalte ich aus
einer Lösung durch Transformation unendlich viele neue] (Weyl, 1924a, p. 203). Weyl's
reference to �Einstein's mistake� is particularly signi�cant, since in 1913, as Einstein was
working on the Entwurf theory, Weyl was his colleague at the ETH in Zürich (Weyl came
to Zürich in Fall 1913, whereas Einstein left Zürich for Berlin in Summer 1914).
In Massenträgheit und Kosmos Weyl reformulates an indiscernibility argument à la

Einstein in the following way: �I divide the world in two parts through a three-dimensional
cut that separates both its edges� [Teile ich die Welt durch einen dreidimensionalen
Querschnitt, welcher ihre beiden Säume, voneinander trennt, . . . in zwei Teile]. Weyl's
reformulation of the hole argument is similar to that of David Hilbert in 1917 (Renn and
Stachel, 2007), in using a open space-like hypersurface (a Cauchy surface) that separates
the future from the past, rather than a closed hypersuface as Einstein. Then, Weyl
continues, �if I apply only those [coordinate] transformations that leave unchanged the
part `below'� [verwende [Ich] nur solche Transformationen, welche die �untere� Hälfte
unberührt lassen], but change the metric �eld in the part above, �then all these solutions
[of the �eld equations] will describe also in the underpart the same state evolution as of
the original ones� [so stimmen alle diese Lösungen gleichwohl in der unteren Welthälfte
mit der ursprünglichen überein] (Weyl, 1924a, p. 203; emphasis mine). According to
Weyl, Einstein's mistake depends on the fact that he initially overlooked �that there
was a di�erence only if the four-dimensional world were a resting medium� [daÿ ein
Unterschied nur bestünde, wenn die vierdimensionale Welt ein stehendes Medium wäre]
(Weyl, 1924a, p. 203). However, as Weyl immediately emphasizes �such a resting Medium
. . . is completely repudiated by the theory of relativity� [Ein solches stehendes Medium
wird aber . . . von der Relativitätstheorie durchaus geleugnet] (Weyl, 1924a, p. 203).
Einstein's kind of indiscernibility argument, as Weyl's exposition shows, does not imply

that the inertial structure has been dissolved in a Leibnizian/Machian way, but that it
has been, as Weyl wrote in an essay of 1925, �so to speak, freed from space� [vom Raume
abgelöst]. It has become �an existing �eld within the remaining structureless space� [sie
wird zu einem in dem zurückbliebenden strukturlosen Raume existierenden Feld] (Weyl,
1925/1988, p. 4). Di�erences that would appear only with respect to such a structureless
space are not real di�erences. On the other hand, Weyl shows that the strategy implied

10�So gibt es, doch unendlich viele Möglichkeiten, wie sich dieser Zustand imWeltcontinnum realisieren
kann� (Weyl, 1924a, p. 202; my emphasis)
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in Leibniz's indiscernibility arguments, to which the Logical Empiricists resorted, has
simply, as we may say, freed space from the minimum of structure that can play the role
of inertial guidance. In these two opposite manners of grasping Einstein's famous remark
that spacetime has lost its �last vestige of physical reality,� one can recognize most easily
the di�erent consequences of Leibniz's and Einstein's indiscernibility arguments.
It may be worth mentioning, even if only in passing, that Weyl's insistence on the fact

that, in General Relativity, the �metric �eld has been freed from the manifold� (Korté,
2006, pp. 193, 201) should probably be understood in the context of his attempt to de�ne
mathematically the concept of �manifold� set-theoretically, via the concept of �neighbor-
hood� (Umgebung , Weyl 1913). Such an attempt, initiated by Hilbert (1902) in the
same years, was, as Weyl recognizes, was pursued �more systematically [Systematischer]�
�by Hausdor� in his Grundzügen der Mengenlehre (1914)� (Weyl 1925/1988, p. 4; the
reference is to Hausdor� 1914/2002). By contrast Einstein's work is based on an older
approach, where the �manifold� was considered as a number manifold, as the manifold
of all possible values of x, y, z, t. Thus it could be argued, that Einstein was forced to
introduce his indiscernibility argument precisely in order to �wash out� this additional
structure (Norton, 1989, 1992, 1999).

5. On Learning from the Mistakes of Logical Empiricists. Some Lessons for

the Recent Debate

My attempted historical-critical analysis of the Logical Empiricists' misunderstanding
of the point-coincidence argument as an indiscernibility argument in the sense of Leibniz
is, in my opinion, instructive for the animated debate stirred by Earman and Norton's
fundamental paper (1987). Weyl's version of the �hole argument� is astonishingly similar
to that of Earman and Norton (much more so than Einstein's original version), and also
addresses the same �substantivalist� opponents; but at same time Weyl is also careful
to distinguish the hole/point-coincidence argument from a Leibnizian indiscernibility
argument.
The point-coincidence argument cannot be simply considered a �stronger version of a

famous argument due to Leibniz himself against Newton's substantival ontology of space�
(Janssen, 2005, p. 74). The analogy between Leibniz's and Einstein's arguments could
actually appear prima facie very plausible. Leibniz considered two material universes as
indistinguishable or as the �same universe.� Einstein, roughly two centuries later, found
himself likewise considering two �eld con�gurations as empirically indistinguishable and
thus physically identical. In both cases there are apparently di�erent �possible worlds�
allowed by the theory that actually correspond to the same physical reality. Leibniz
referred to alternative worlds that di�er from the actual one only in position, orientation
or magnitude, but agree in the measure of the angles and proportions of lengths. Einstein
could imagine alternative worlds that agree exactly with the actual world outside the
hole, while di�ering within the hole. In both cases what seems at �rst sight a dramatic
di�erence reveals itself actually as being no di�erence at all, since the di�erence is declared
irrelevant.
However, the similarity between the two arguments is only apparent. The di�erence

should strike the reader when they simply consider the di�erent structures of the two
arguments. Leibniz-style arguments, as we have seen, always presuppose a transformation
that a�ects every physical entity without exception; if this condition is violated, the two
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situations could be easily distinguished. But Einstein's argument explicitly violated this
condition, allowing a transformation that leaves everything unchanged with the exception

of a region devoid of matter. Of course both are indiscernibility arguments. They both
aim to �ctionally eliminate the reference to a �xed standard against which the change
can be measured, so that the apparent change would reveal itself to be no change at
all. However, such a standard is clearly di�erent in each case: Leibniz-style arguments
dissipate the illusion of a transformation that would appear only with respect to some
physical entity; Einstein's argument dissolves the appearance of a transformation that
would emerge, only while referring to the rigid geometry of the empty space.
The now usual exposition of physical theories in terms of models, where the models

are intended to represent the physically possible worlds that satisfy the laws of the
theory, can be useful to see this point. I will provide a slightly more formal presentation
in the appendix. Each model comprises a di�erential manifold and various geometric
objects on it, such as metric and matter �elds. Indiscernibility arguments in the sense of
Leibniz work well in a theory with global symmetries that presupposes that all relevant
geometrical structure of space appears �the same� in all universes or models governed
by the theory, so that the theory does not have the conceptual resources to distinguish
among them. In General Relativity, on the contrary, there are no non-trivial symmetries,
except identity. Therefore there is no spacetime background that would look the �same�
across all possible universes or models allowed by the theory, so that any reference to
such a background cannot be used to distinguish among them.
Thus in theories where spacetime is endowed with global symmetries, it makes perfect

sense to apply Leibniz's indiscernibility arguments. Such arguments after all simply
postulate a trivial identity (Stachel and Iftime, 2005) of all models of the theory: it is, so
to speak, the very same model or better - in Leibniz's terms - models that are di�erent solo
numero. On the contrary, Einstein's indiscernibility arguments make sense in theories
without global symmetries, where one has to deal with a plurality of di�erent models that
are declared non-trivially equivalent, although they show, to resort to Leibniz's parlance
again, a �more than numerical� di�erence.
As we have seen, Leibniz's arguments serve to identify the physically relevant geo-

metrical structure of a theory, so that physical di�erences that do not �nd expression
in such a structure should not be considered di�erences. Einstein's argument signals
on the contrary the presence of a surplus mathematical structure, so that di�erences
with respect to such a structure cannot be considered physically meaningful. In the �rst
case we have di�erent physical situations expressed by the same mathematical model, in
the second case di�erent mathematical models that express the same physical situation
(the very same inertio-gravitational �eld). Thus in Leibniz-style thought experiments
worlds that at �rst sight physically di�erent turn out to be mathematically identical ;
in the hole argument apparently mathematically di�erent worlds reveal themselves as
physically identical.
If one can speak in both cases of �indiscernibility,� it seems to me that we have to do

with di�erent forms of indiscernibility: (1) an indiscernibility that arises because there
is too little structure to express some alleged physical di�erences - di�erences that might
otherwise be thought to have physical signi�cance are therefore declared mathematically

irrelevant ; (2) an indiscernibility that arises, because there is too much structure, from
which apparent mathematical di�erences emerge, that are however declared physically

irrelevant, since they express the same physical situation in reality. In the �rst case, one
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might say, �indiscernibility� is the consequence of underdetermination, since the theory
does not have the tools to express at �rst sight real di�erences. In the second case, we
�nd overdetermination, because the mathematical apparatus of the theory introduces
di�erences that do not have any correspondence in reality. In my opinion simply re-
garding the point-coincidence argument as a restatement of �Leibniz's equivalence,� as
it is ritually repeated in the literature, would miss the di�erence between these two
sorts of indiscernibility arguments: di�erent physical situations that are declared math-

ematically indiscernible and di�erent mathematical objects that are declared physically

indiscernible.

6. Conclusion. Leibniz Equivalence vs. Einstein Equivalence

The historical reconstruction I have attempted should have shown that neither the
public version of the point-coincidence argument, expressing the requirement of general
covariance, nor its private version, a response to the hole argument, can be interpreted
simply as a restatement of indiscernibility in the sense of Leibniz, without committing the
mistakes of the Logical Empiricists. Leibnizian indiscernibility arguments misleadingly
induced the Logical Empiricists to declare generally relativistic spacetime �metrically
amorphous,� as Adolf Grünbaum famously put it. The point-coincidence argument,
as a response to the hole argument, shows on the contrary that the main feature of
General Relativity is best summarized by John Stachel's celebrated motto: �no metric,
no spacetime.�
The Logical Empiricists believed that General Relativity was the result of a sort of

�Leibniz's equivalence� stricto sensu: in the Logical Empiricist interpretation of the point-
coincidence argument �di�eomorphisms� play exactly the same role that �translations�
or �scaling� play in Leibniz's arguments, that is they expresses a global symmetry of
space or spacetime. However, such an approach clearly failed to give a plausible account
of General Relativity. �Einstein's equivalence� (as we may call it) must therefore have
a di�erent meaning and di�eomorphism must play a completely di�erent role, a role
that it is more similar to that which it is usually called gauge freedom, akin to that of
electrodynamics (Giulini and Straumann 2006, p. 151). Just as in electrodynamics where
the same physically measurable �eld strengths can be expressed by several potentials,11

similarly in General Relativity an entire equivalence class of di�eomorphically-related
solutions to the �eld equations should correspond to one inertio-gravitational �eld.

11�The freedom to choose among gauge-equivalent potentials is not a physical degree of freedom: it
rather results from the fact that we have many distinct mathematical objects all of which represent the
same physical state of a�airs� (Maudlin, 2002, p. 2, my emphasis; see also Belot, 1998). Another usual
example of the role of surplus structure in physical theories is to be found in modern particle physics.

Let a single, free non-relativistic particle be described by the wave function ψ(
−→
x) . Multiplying this wave

function by a complex number of unit modulus, a phase factor of the form eιθ, gives a wave function

ψ′(
−→
x) = eιθψ(

−→
x) : ψ(

−→
x) and ψ′(

−→
x) di�er mathematically by an overall global phase. However, they

represent physically the same quantum state: the probability distribution for position and momentum
and the time evolution of probability distribution would be the same. As these well-known examples
show gauge freedom arises because the mathematical formalism introduces di�erences that are physically
meaningless. At the contrary, global spacetime symmetries arise because certain empirical di�erences
(of position, velocity etc.) are not allowed to appear in the mathematical expression of any physical law
(see also Brading and Brown, 2004).
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We cannot enter the discussion on the legitimacy of such an analogy between General
Relativity and gauge theory (Weinstein, 1999), on which Norton himself, has insisted
(Norton, 2003). However, the simple possibility of establishing such an analogy, shows
the di�erence between �Leibniz equivalence� and �Einstein equivalence�. Leibniz equiv-
alence erases di�erences: indiscernibility results from the acknowledgment of a lack of

mathematical structure that serves to express such di�erences. On the contrary, Einstein
equivalence declares di�erences redundant; indiscernibility follows from the acknowledg-
ment of an excess of mathematical structure. Leibniz indiscernibility arguments, we may
say, try to convince us that are no di�erences at all. It is more a kind of �Leibniz identity�
than a �Leibniz equivalence�. The Einstein indiscernibility argument wants to persuade
us not to worry if the di�erences appear to be too many.

Appendix. Leibniz Equivalence vs. Einstein Equivalence in Terms of Space-

time Models

The use of spacetime models o�ers a very simple way to grasp what I think it is
the theoretical core of the historical reconstruction I suggested: the di�erence between
Leibniz and Einstein indiscernibility, or between Leibniz and Einstein equivalence. Even
if the symbolic apparatus is now more than commonplace in philosophical discussion, I
will provide at least a rapid overview. Following the current parlance stemming from
(Hawking and Ellis, 1974, ch. 3; see also Wald) �models� of a spacetime theory consist
of a manifold, a metric with Lorentz signature, and optionally one or more matter �elds
(electromagnetic �eld, neutrino �eld etc.) that can be regarded as material content of
spacetime. Each of such �elds is assumed to satisfy the �eld equations. The models of a
theory are those that satisfy such partial di�erential equations.
From this point of view, one can easily see the di�erence between a theory like Special

Relativity (SR) and General Relativity (GR), and the reason why Leibniz indiscernibility
arguments apply only to the former and Einstein indiscernibility argument only to the
latter kind of theory. In pre-general-relativistic theories one always has an a priori

chrono-geometrical structure, that is one always knows what the geometry is, independent
of obtaining any solution to the equations of motion. In General Relativity, on the other
hand, the relevant geometrical structure has no a priori prescribed values, but rather
obeys the equations of motion.
A model of SR has the form ⟨M, ηµν,,F1,,F2,...,Fn,⟩ whereM, ηµν , and Fi, represent

the spacetime manifold, the metric �eld and the other �elds (gravitational, electromag-
netic . . . ) respectively. SR exhibits global symmetries, because of the invariance of the
ηµν : in all models allowed by the theory ηµν = (−1, 1, 1, 1). Thus there is a �xed space-
time structure, the metric structure ηµν,, whose a�ne structure Γλ

µν = 0 represents a
�xed standard of non-acceleration. This structure will appear the same in all possible
worlds.
A model of GR is given by a triple M = ⟨M, gµν , Tµν⟩ where M, gµν , and Tµν

represent the spacetime manifold, the metric �eld, and the stress-energy �eld respectively.
Such models are taken to represent the physically possible worlds of General Relativity
when they satisfy Einstein's �eld equations Gµν = κTµν (where Gµν is the Einstein
tensor describing the curvature of spacetime, and κ the coupling constant, proportional
to Newton's universal constant of gravitation). In contrast to SR, the gµν are then
subjected to the equations of the theory: they have become a �eld among others. In

27



GR the symmetry group of ⟨M, gµν⟩ is the identity group, since there is in general no
transformation that leaves gµν invariant. Hence there will be in general di�erent models
of the theory: ⟨M, gµν⟩, ⟨M, g′µν⟩, ⟨M, g′′µν⟩, ... The Christo�el symbols Γλ

µν �gure as
the components of the gravitational-inertial �eld (so they are in general ̸= 0), whereas the
Curvature tensor or Riemann-Christo�el tensor (Bρ

µστ ) represents the �eld gradient, or
tidal �eld. The fact that Γλ

µν is not a tensor is the formal expression of the non-unique
decomposition of the a�ne connection into an inertial and a gravitational part.
The analogy of the �Leibniz shift� can be found only in pre-relativistic theories, such

as SR: it can be represented by a map h between worlds or models (spatial or temporal
displacements, rotations, or boosts up to the speed of light) that preserves all relevant
geometrical structure (in the case of SR the metric structure uniquely determining the
inertial structure), that is h ∗ ηµν = ηµν (an isometry). If such a structure would not be
preserved, that is if h ∗ ηµν ̸= ηµν , the two universes or models would not be indistin-
guishable. The indistinguishability arises because the transformation produces the very

same model (it is a trivial identity). The original and the transformed situations are
indiscernible simply because they are mathematically exactly the same. The ηµν are the
only quantities pertaining to spacetime structure which can appear in any physical law.
Thus di�erences that cannot be encoded in such a spacetime structure are not di�erences.
In order to introduce further distinctions, for instance of spatial orientation, one has to
allow further aspects of spacetime structure to appear in physical laws (Wald, 1984, p.
60).
Einstein's hole/point-coincidence argument makes sense only in GR12: it implies a

transformation h (diff(M)) that does not preserve the relevant geometrical structure

(the metric structure determining the geodesics), that is h∗gµν ̸= gµν . An indiscernibility
argument in the sense of Einstein is needed because the theory introduces di�erent models

that, however, are declared physically exactly the same: the same gravitational �eld
corresponds to an equivalence class of ⟨M, gµν⟩- it is so to speak, a non-trivial equivalence.
The Logical Empiricists clearly confused Leibniz and Einstein indiscernibility (or bet-

ter, had at their disposal only Leibniz indiscernibility): noticing that the group of trans-
formations of GR, does not preserve the metric gµν , (h ∗ gµν ̸= gµν), they declared the
metric �conventional� and identi�ed spacetime with the �invariant� M held across models.
Di�erences that cannot be expressed in M, like in a Hegelian night, are not di�erences:
that is they identify diff(M) with a global spacetime symmetry. Einstein's indiscernibil-
ity argument moving from h∗gµν ̸= gµν concludes that spacetime is the equivalence class
(up to di�eomorphism) of all ⟨M, gµν⟩,⟨M, g′µν⟩, ..., so that di�erences with respect to
M are not di�erences, they are a mere mathematical redundancy: diff(M) resembles
more closely an expression of gauge freedom (a whole family of gauge-related solutions
of the �eld equations represent the same physical situation) (Wald, 1984, p. 438).
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