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Abstract

It has been an open question whether or not we can define a belief revision operation
that is distinct from simple belief expansion using paraconsistent logic. In this paper, we
investigate the possibility of meeting the challenge of defining a belief revision operation
using the resources made available by the study of dynamic epistemic logic in the presence
of paraconsistent logic. We will show that it is possible to define dynamic operations of
belief revision in a paraconsistent setting.
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1 Introduction

What is the rational thing to do when new information contradicts old informa-
tion? The standard assumption is that it is always rational to remove contradic-
tions. This standard assumption has been challenged in recent years, most notably
by Graham Priest.1 For example, Bohr’s theory of the atom contained both clas-
sical electrodynamics principles and quantum principles that were inconsistent,
but reasoning with Bohr’s theory was not thought of as irrational.2 Moreover,
even when we are rationally required to update inconsistent theories, the method

1Cf. Priest (1987) and Priest (2006) chaps. 7 and 8.
2Cf. Brown and Priest (2004) for a discussion of contradictions in the history of science and a

paraconsistent logic dealing with some of those contradictions.



for the belief update cannot be trivial. The notion of rationality which incorpo-
rates information dynamics must thus integrate a method of sensibly dealing with
contradictory information.

One way of sensibly dealing with contradictory information is to model infor-
mation dynamics in terms of paraconsistent logic. In a paraconsistent logic, ex
contradictione quodlibet (ϕ,¬ϕ |= ψ for any ϕ, ψ) is invalid. That is, inconsis-
tency is not automatically treated as triviality. Armed with paraconsistent logic,
we don’t necessarily have to declare inconsistent information trivial. Thus, by
assuming the underlying logic to be paraconsistent, we can separate inconsistent
information from triviality. In the presence of paraconsistent logic, therefore, we
can sensibly deal with contradictory information. We can then reject the assump-
tion that it is always rational to avoid contradictory beliefs.3

Classically, if new information contradicts other beliefs, it is necessary to re-
vise, rather than expand, beliefs in order to maintain non-triviality. This means
that, classically, the need for revision is driven by consistency and consistency is
maintained by defining revision as a different operation from (mere) expansion. If
inconsistency does not imply triviality, however, the need for separating revision
from expansion disappears. As Tanaka (2005) shows, AGM revision and expan-
sion can be shown to be equivalent (with respect to Grove’s sphere semantics) in
most paraconsistent logics.

This does not mean that rationality never demands inconsistent beliefs or in-
formation to be revised, as Priest argues.4 It may be the case that, if it is not ratio-
nal to stipulate which of p or ¬p to reject when evidence is lacking for either case,
the most rational thing to do is to expand one’s beliefs by accepting both p and
¬p (at least for the time being). Nonetheless, when new information which car-
ries sufficient evidential force becomes available, we may be rationally required
to revise our beliefs by picking only one of p or ¬p and rejecting the other. Hence,
even though paraconsistency does not force one to always resolve contradictory
beliefs, it is important to distinguish between expanding one’s beliefs by accepting
contradictory beliefs and revising them by resolving contradictory beliefs. There
is thus still a need for revision in paraconsistent logic.

We know that paraconsistency can provide a mechanism for accommodating
contradictory beliefs (and information). Restall and Slaney (1995) used First De-
gree Entailment (FDE) (a fragment of relevant logic containing only ¬, ∧ and ∨)
to show that a system of spheres based on FDE is sound with respect to all AGM
postulates. Mares (2002) extended their analysis by using the (full) relevant logic
R to show that the AGM operations can be satisfied paraconsistently. They did

3For introductions to paraconsistent logic, see, for example, Priest (2002) and Priest, Tanaka
and Weber (2013).

4Cf. Priest (2006) chaps. 7 and 8.
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not show, however, that the revision operation that they defined is distinct from
expansion.5 Moreover, Priest (2006 ch. 8) proposed a paraconsistent model of be-
lief revision and showed that all of the AGM revision postulates fail in his system.
Defining a distinct revision operation using paraconsistent logic, thus, remains an
open question.6

In recent years, (classical) revision operations have been studied in the frame-
work of Dynamic Epistemic Logic (DEL). DEL offers a general framework for
analysing the dynamics of structured epistemic and doxastic states. Whereas
the AGM theory treats beliefs as a set of sentences, DEL provides a framework
for analysing the doxastic (and epistemic) states, rather than sets, by taking into
consideration the doxastic (and epistemic) structure that represents beliefs (and
knowledge).7

In this paper, we investigate the possibility of meeting the challenge of defin-
ing a revision operation that is not mere expansion using the resources made avail-
able by the study of DEL in the presence of paraconsistent logic. We will define
two paraconsistent revision operations over belief states in appropriate extensions
of the paraconsistent logic LP.8 We will expand LP in two ways. First, we intro-
duce epistemic and doxastic operators. Second, we introduce a conditional (taken
from D’Ottaviano and da Costa (1970)) necessary for the analysis of dynamics.
We will then show that the operations of public announcement (Plaza (2007)) and
lexicographic upgrade (van Benthem (2007)) can be defined in the expanded LP-
language. These two belief state revision operations are respectively called radi-
cal and moderate revision in Rott (2009). We thus have a possibility result: it is
possible to define dynamic operations of belief revision in a paraconsistent setting.
This solves the open problem of paraconsistently defining a revision operation that
is distinct from expansion. Moreover, we provide an analysis of doxastic states,
rather than doxastic sets, that may be contradictory by combining the studies of
belief revision, DEL and paraconsistent logic for the very first time.

5Mares took expansion and contraction operations as primitive and defined them using the
relevant logic R. He then defined revision in terms of expansion and contraction via Levi Identity.
As Tanaka (2005) shows, however, some of the AGM revision postulates fail if we define revision
in terms of the Levi Identity in paraconsistent logics. It is thus not clear to what extent Mares has
succeeded in defining revision paraconsistently.

6For a summary of paraconsistent approaches to AGM operations, see Wassermann (2011).
7Cf. van Benthem (2007), Baltag and Smets (2008), and Girard and Rott (2014). See also

Rott (2009) for the difference between belief sets and belief states.
8LP was introduced by Priest (1979).
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2 Many-Valued Epistemic and Doxastic Logic

We first investigate paraconsistent epistemic and doxastic logic. Following the
presentation of paraconsistent logics in Priest (2008), we provide a general frame-
work for many-valued epistemic and doxastic logic, and define epistemic and dox-
astic LP as a special case.

2.1 Many-Valued Epistemic Logic

Given a set of connectives C, a many-valued logic L can be characterised by a
structure S L = 〈V,D, { fc | c ∈ C}〉, whereV is the set of truth-values which come
with a complete ordering9 �, D ⊂ V is the set of designated values, and for
each logical connective c ∈ C, fc is the truth function it denotes. A model for
a many-valued propositional logic L is a structure M = 〈W, S L, ν〉 where W is a
non-empty set of worlds, S L is a propositional many-valued structure for the logic
L, and ν is a collection of propositional valuations νw for each world w ∈ W such
that νw(p) ∈ V. The truth values of complex formulas are computed using the
function fc:

νw(c(ϕ1, ..., ϕn)) = fc(νw(ϕ1), ..., νw(ϕn)).

For epistemic multi-valued logic, we expand the language with an epistemic
operator K, and we add to models a corresponding epistemic equivalence relation
∼ on worlds.10 A model for a many-valued epistemic logic is thus a structure
M = 〈W,∼, S L, ν〉 where W is a non-empty set of worlds, ∼ is an equivalence
relation on W, S L is a structure for the propositional many-valued logic L, and
ν is a collection of propositional valuations νw for each world w ∈ W such that
νw(p) ∈ V. Truth values for epistemic formulas can be computed as follows:

νw1(Kϕ) = Glb{νw2(ϕ) |w1 ∼ w2}

where Glb is the greatest lower bound in the ordering �. As usual, we can define
an operator kϕ dual to Kϕ, with truth values computed as follows:

νw1(kϕ) = Lub{νw2(ϕ) |w1 ∼ w2}

where Lub is the least upper bound in the ordering �.11

9Complete so as to guarantee the existence of greatest and least bounds which we require for
the semantics of modalities, as we will see below.

10Cf. Fagin et al. (1995).
11For special cases of many-valued epistemic logic, for instance LP, defining knowledge in this

way allows Kϕ to be evaluated as both true and false at some world. We acknowledge that there are
other plausible definitions of knowledge in many-valued settings. For example, one can impose
a classical definition of knowledge such that Kϕ is 1 (the top value) if it is 1 in all epistemically
equivalent worlds. But this would make the logic non-paraconsistent: K p would entail everything
when νw(p) = b for all w ∈ W.
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Example 1. LetV = {0, 1, 2} andD = {1, 2}. Consider the following model:

νw1(p) = 2
νw1(q) = 1

w1

νw2(p) = 1
νw2(q) = 1

w2

νw3(p) = 0
νw3(q) = 1

w3

(Here and throughout the paper, we represent two worlds being epistemically
equivalent by drawing a line between them. For readability, we omit transitive
and reflexive relations between worlds.)

In this model, Glb{νx(p) |w1 ∼ x} = 0, Glb{νx(q) |w1 ∼ x} = 1, Lub{νx(p) |w1 ∼

x} = 2 and Lub{νx(q) |w1 ∼ x} = 1 for every x ∈ W. So νw1(K p) = 0, νw1(Kq) = 1,
νw1(kp) = 2 and νw1(kq) = 1.

A valid consequence relation is defined in terms of the preservation of desig-
nated values.

Σ |= ϕ iff for every M and every w ∈ W, if νw(ψ) ∈ D for every ψ ∈ Σ

then νw(ϕ) ∈ D.

We say that a formula is valid iff ∅ |= ϕ, which we abbreviate as |= ϕ.

2.2 Many-Valued Doxastic Logic

We now expand the language of many-valued epistemic logic by introducing a
doxastic operator Bϕ.12 We follow van Benthem (2007) and define belief in terms
of maximal plausible worlds.

A model for a many-valued doxastic logic, M, is a structure 〈W,∼,≤, S L, ν〉
where W is a non-empty set of worlds, ∼ is an equivalence relation on W, ≤ is a
well-founded13 preorder (reflexive and transitive relation) on W with the restric-
tion that ≤⊆∼, S L is a structure for a many-valued logic L, and ν is a collection
of propositional valuations νw for each world w ∈ W such that νw(p) ∈ V. We
define u < v iff u ≤ v and v � u and say that a world w is maximal (or most plau-
sible) if there is no world v such that w < v. Finally, we can define the semantics
of the doxastic operator B in terms of maximal worlds by adapting the classical
definition; namely by taking the greatest lower bound of epistemically equivalent
maximal worlds:

12The logic we develop in this section may best be described as an ‘epistemic doxastic logic’
since Bϕ supplements rather than replaces knowledge operator. For simplicity, however, we refer
to it as a ‘doxastic logic’ rather than ‘epistemic doxastic logic’.

13For the concerned reader, well-foundedness guarantees the limit assumption which simplifies
technical and conceptual details that are not critical in the context of this paper.
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νw1(Bϕ) = Glb{νw2(ϕ) |w1 ∼ w2,w2 is a maximal world}.

Notice that we added an epistemic restriction on the maximal worlds used for
evaluating beliefs. This is to ensure doxastic introspection, so that agents know
what they believe (if Bϕ, then KBϕ). In the rest of the paper, we will assume that
the epistemic relation is the universal relation for simplicity.

We can also define a corresponding existential belief operator b with semantics
given in terms of the least upper bounds:

νw1(bϕ) = Lub{νw2(ϕ) |w1 ∼ w2,w2 is a maximal world}.

Example 2. As a simple example, consider the following model M:

νw1(p) = 0
νw1(q) = 0

w1

νw2(p) = 2
νw2(q) = 1

w2

νw3(p) = 1
νw3(q) = 2

w3

(We assume that the epistemic relation is the universal relation and use arrows
to represent plausibility orders. So, in this model, x ∼ y for every world x, y,
and w1 < w2, w2 ≤ w3 and w3 ≤ w2. When we combine epistemic and doxastic
relations, we will omit the epistemic relation altogether, since all worlds are epis-
temically equivalent in our examples. For readability, we also omit transitive and
reflexive relations between worlds.)

According to our definition of maximality, w1 is the maximal world in this model.
So Glb{νw1(q)} = 0. Therefore, νx(Bq) = 0 for every x ∈ W.

2.3 Conditional Belief

In a dynamic doxastic language, it is much easier to work with a conditional belief
operator B(ϕ |ψ), defined as the belief in ϕ given ψ. The technical reason for this
will become clear later.

To define the semantics of conditional belief, we adapt the notion of maximal-
ity to that of conditional maximality. We define a maximal ψ-world w as a world
such that νw(ψ) ∈ D and there is no x such that w < x and νx(ψ) ∈ D . The
truth-value of B(ϕ |ψ) is then given by:

νw1(B(ϕ |ψ)) = Glb{νw2(ϕ) |w1 ∼ w2,w2 is a maximal ψ-world}.

Example 3. As a simple example, consider the following model M:
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νw1(p) = 0
νw1(q) = 0

w1

νw2(p) = 2
νw2(q) = 1

w2

νw3(p) = 1
νw3(q) = 2

w3

The maximal world in M is w1, but the maximal worlds conditional on p are w2

and w3. Furthermore, Glb{νw2(q) = 2, νw3(q) = 1} = 1 (assuming that 0 � 1 � 2).
Therefore, νx(B(q | p)) = 1 for every x ∈ W.

2.4 Doxastic LP

Doxastic LP can be seen as a special case of many-valued doxastic logic with
V = {1, b, 0}, ordered as

0 � b � 1

or ordered by the following lattice:

1
↑

b
↑

0

For each propositional variable p and w ∈ W, νw(p) = 1, νw(p) = b, or νw(p) = 0.
If we think of the value b as 0.5, then the truth values of negated and disjoined
formulas can be computed as follows:

νw(¬ϕ) = 1 − νw(ϕ)
νw(ϕ ∨ ψ) = Max(νw(ϕ), νw(ψ)).

The functions that compute the truth values of negated and disjoined formulas
give the following tables:

¬

1 0
b b
0 1

∨ 1 b 0
1 1 1 1
b 1 b b
0 1 b 0

Let D = {1, b}. We will write doxastic LP models succinctly as 〈W,∼,≤, ν〉,
omitting the component S L, which is now fixed for LP. A doxastic LP-valid con-
sequence relation is then defined in terms of the preservation of designated values:

Σ |=LP ϕ iff for every doxastic LP-model, 〈W,∼,≤, ν〉, and for every
w ∈ W, if νw(ψ) ∈ D for every ψ ∈ Σ then νw(ϕ) ∈ D.
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It is easy to show that p,¬p ∨ q 6|=LP q, by taking a model with a single world
w such that νw(p) = b, νw(q) = 0. This means that ∨ is not a detachable connective
in the sense that a disjunct cannot be isolated from a disjunction. In fact, as Beall,
Forster and Seligman (2013) demonstrate, no non-trivial detachable connective
can be defined in LP. This will become important for us below.

3 Dynamic Doxastic LP

Having treated (static) epistemic and doxastic paraconsistent logic, we now turn to
the dynamics of belief revision. We will introduce two kinds of belief revision op-
erations. The first is the operator known as public announcement (Plaza (2007)),
but interpreted as an operation of radical revision, following the taxonomy of
Rott (2009). Radical revision is an action which deletes all worlds in which ϕ is
not designated. The second is the lexicographic upgrade of van Benthem (2007),
which Rott (2009) categorises as moderate revision. Moderate revision doesn’t
delete any world. Instead, it rearranges the plausibility order by putting the worlds
in which ϕ is not designated at the bottom of the order. From now on, we will re-
fer to the two operations as radical and moderate revision, respectively defined in
Sections 3.1 and 3.2.

3.1 Paraconsistent Radical Revision

Radically revising by ϕ amounts to removing all worlds from a model in which ϕ
is not designated. To radically revise by ϕ is thus to remove all worlds in which ϕ
is (strictly) false and preserve only worlds in which ϕ is designated.

We extend our basic epistemic language with the radical revision operator [!ϕ]
and define the result of announcing ϕ, [!ϕ]ψ, in a model M = 〈W,∼,V〉 in terms
of the submodel Mϕ = 〈Wϕ,∼ϕ, νϕ〉 where:

• Wϕ = {u | νu(ϕ) ∈ D},

• ∼ϕ= {〈u, v〉 | u, v ∈ Wϕ, u ∼ v}, and

• νϕ = ν − {νu | u < Wϕ}.

The semantic value of [!ϕ]ψ is defined as:

νw([!ϕ]ψ) =

{
ν
ϕ
w(ψ) if νw(ϕ) ∈ D

1 otherwise

Example 4. LetV = {0, b, 1} andD = {b, 1}, and consider the following model:
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νw1(p) = 1
νw1(q) = 1

w1

νw2(p) = b
νw2(q) = 1

w2

νw3(p) = 0
νw3(q) = 0

w3

In this model, νw2(Kq) = 0, since w2 ∼ w3 and νw3(q) = 0. Now, since νw3(p) = 0,
the effect of announcing p results in the following model:

νw1(p) = 1
νw1(q) = 1

w1

νw2(p) = b
νw2(q) = 1

w2

In this new model, we have that νp
w2(Kq) = 1. Therefore, νw2([!p]Kq) = 1. (This

example is specifically paraconsistent since the world w2 in which p is both true
and false is preserved. A more classical operation would only preserve world w1.)

Following Rott (2009), if we think of a model as representing a doxastic (and
epistemic) state and the change of models as representing the doxastic dynamics,
Example 4 illustrates a revision operation where the information that ¬q is lost by
the announcement of p. Given that expansion is an operation where information is
added and no information is removed, [!ϕ] represents revision which is not (mere)
expansion.

3.2 Paraconsistent Moderate Revision

For moderate belief revision, we further extend the language with the lexico-
graphic upgrade operator [⇑ ϕ] taken from van Benthem (2007). We will refer to
the operator as a moderate revision operator from now on.14 The main difference
between radical and moderate revision is that the former deletes worlds whereas
the latter preserves all worlds but re-orders them according to plausibility. Not
deleting worlds allows them to be used for new revision in the future.

In modelling moderate revision, we modify the plausibility ordering by up-
grading every world in which some formula ϕ is designated, and we preserve the
ordering otherwise. That is, given a model M, we define the action of moderate
belief revision in terms of the model M⇑ϕ = 〈W⇑ϕ,∼⇑ϕ,≤⇑ϕ, ν⇑ϕ〉, where

• W⇑ϕ = W,

• ∼⇑ϕ=∼,

14This approach was further explored in a multi-agent system in Baltag and Smets (2008).
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•

≤⇑ϕ = {〈w1,w2〉 ∈ ≤ | νw1(ϕ), νw2(ϕ) ∈ D}
∪ {〈w1,w2〉 ∈ ≤ | νw1(ϕ) = νw2(ϕ) = 0}
∪ {〈w1,w2〉 | νw1(ϕ) = 0, νw2(ϕ) ∈ D}

• ν⇑ϕ = ν.

The semantics of [⇑ ϕ]ψ is given by:

νw([⇑ ϕ]ψ) = ν
⇑ϕ
w (ψ).

Example 5. Consider the model M, given by:

νw1(p) = 0
νw1(q) = 0

w1

νw2(p) = 1
νw2(q) = 1

w2

νw3(p) = b
νw3(q) = 1

w3

In M, the maximal world is w1 and νw1(q) = 0, so νx(Bq) = 0 for every x ∈ W.
The result M⇑p of upgrading p in M is given by:

νw1(p) = 0
νw1(q) = 0

w1

νw2(p) = 1
νw2(q) = 1

w2

νw3(p) = b
νw3(q) = 1

w3

The maximal worlds in M⇑p are w2 and w3, and Glb{νw2(q), νw3(q)} = 1. So
νx(Bq) = 1 for every x ∈ W⇑p. Therefore, νx([⇑ p]Bq) = 1 for every x ∈ W.

Example 5 illustrates a revision operation where the belief in ¬q is lost as a
result of upgrading p. As in radical revision, this is a case of revision and not
expansion.

3.3 Compositional Analysis

Compositional analysis is a method of showing that the axiomatisation of dynamic
logic can be reduced to that of the corresponding static logic via reduction prin-
ciples (see for example van Benthem 2006 and Kooi 2007). The following two
classical theorems can be found in van Benthem (2007).

Theorem 1. The following are classically valid:

1. [!ϕ]p ≡ ϕ→ p
2. [!ϕ]¬ψ ≡ ϕ→ ¬[!ϕ]ψ
3. [!ϕ](ψ ∨ ξ) ≡ [!ϕ]ψ ∨ [!ϕ]ξ
4. [!ϕ]Kψ ≡ ϕ→ K[!ϕ]ψ
5. [!ϕ]B(ψ | ξ) ≡ ϕ→ B([!ϕ]ψ |ϕ ∧ [!ϕ]ξ)
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Theorem 2. The following are classically valid:

1. [⇑ ϕ]p ≡ p
2. [⇑ ϕ]¬ψ ≡ ¬[⇑ ϕ]ψ
3. [⇑ ϕ](ψ ∨ ξ) ≡ [⇑ ϕ]ψ ∨ [⇑ ϕ]ξ
4. [⇑ ϕ]Kψ ≡ K[⇑ ϕ]ψ
5. [⇑ ϕ]B(ψ | ξ) ≡ (k(ϕ ∧ [⇑ ϕ]ξ) ∧ B([⇑ ϕ]ψ | (ϕ ∧ [⇑ ϕ]ξ)))

∨(¬k(ϕ ∧ [⇑ ϕ]ξ) ∧ B([⇑ ϕ]ψ | [⇑ ϕ]ξ))

Given an arbitrary formula containing revision operators, one proceeds inside-
out, eliminating every announcement operator, using appropriate reduction prin-
ciples from Theorem 1 or 2. The result is a logically equivalent formula which
does not contain revision operators.15

Now, can we provide compositional analyses of our revision operators, defined
in LP? As van Benthem (2007) demonstrates, the existence of compositional
analysis marks the success of logical analysis of epistemic and doxastic dynamics.
Offering a positive answer to the question, thus, allows us to meet the challenge of
defining a revision operation separate from an expansion operation by using the
resources made available by the study of DEL.

3.4 From LP to LP→

In an LP environment, compositional analyses for radical and moderate revision
are more complicated than in classical logic. An obvious problem is that LP
doesn’t have an implication like p → q. The first attempt to get around this
problem is to use the explicit definition of → as ¬p ∨ q. But this will not do,
since the two formulas [!ϕ]p and ¬ϕ ∨ p are not logically equivalent in LP. Take
νw(p) = b and νw(q) = 0, then νw([!p]q) = 0, but νw(¬p ∨ q) = b. Hence the first
reduction principle of Theorem1 doesn’t hold.

The problem is an important one. Indeed, we can show that there are no re-
duction principles for the propositional case in LP. Consider the special case of
propositional announcement [!p]q whose truth value can be computed by the fol-
lowing table:

[!p]q q = 1 q = b q = 0
p = 1 1 b 0
p = b 1 b 0
p = 0 1 1 1

15That the end-result is a logically equivalent formula follows from the fact that every step in
the transformation produces an equivalent formula, pushing the dynamic modality inside until it
is attached to a propositional variable and then eliminated. Take the following simple example to
illustrate the point: [!p](q ∨ r) ≡ [!p]q ∨ [!q] ≡ p→ q ∨ [!p]r ≡ p→ q ∨ p→ r.
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In order to satisfy the first reduction principle of radical revision in this special
case, a connective with a matching truth-table definable in LP is required. But
this is impossible, because such a connective satisfies detachment. To see this,
consider adding [!p]q to propositional LP. With ϕ and ψ purely propositional for-
mulas, it’s easy to prove that if ϕ and [!ϕ]ψ are both designated, then ψ must also
be designated. Given that no non-trivial detachable connective is definable in LP
as we noted above, we cannot even get a reduction principle for the propositional
case in LP.

However, what if we extend LP with a propositional conditional → with the
following table?16

→ 1 b 0
1 1 b 0
b 1 b 0
0 1 1 1

To our knowledge, this conditional was first introduced by D’Ottaviano and da
Costa (1970) and axiomatised by Avron (1984). The logic is ideal in the sense of
Arieli, Avron and Zamansky (2011); that is, it is maximally paraconsistent17 and
maximal relative to classical logic.18 Furthermore, it satisfies both detachment
and the deduction theorem, both of which are crucial for compositional analysis.
Even though this conditional is well-studied, what we add to its history are new
motivations stemming from considerations of dynamics.

Let’s call the resulting logic LP→. In the next section, we will show that com-
positional analyses of radical and moderate revision can be given in LP→.

16Our choice of conditional is fully dictated by the semantics of [!p]q. For instance, the RM3
conditional would not suffice. The RM3 table for→ is given by:

→ 1 b 0
1 1 0 0
b 0 b 0
0 1 1 1

Consider [!p]q and take p = 1 and q = b. Then [!p]q = b, but p→ q = 0. Nevertheless, one could
define a belief revision [!ϕ]ψ that reduces to the RM3 arrow in the special case [!p]q. We leave
this as an open problem.

17That is, extending LP→ with any axiom or rule that produce new theorems yields a non-
paraconsistent logic.

18That is, adding any non-provable classical tautologies as axioms yields a non-paraconsistent
logic.
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3.5 Compositional Analysis for Paraconsistent Doxastic Logic

In order to provide a full compositional analyses for radical and moderate revision,
we define an equivalence connective ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), with the
following derived table:

↔ 1 b 0
1 1 b 0
b b b 0
0 0 0 1

Radical and moderate revision operators are not conservative over LP, since they
can define a detachable propositional connective. However, they are conservative
over LP→ as the following theorems show:

Theorem 3. The following are valid:

1. [!ϕ]p ↔ ϕ→ p
2. [!ϕ]¬ψ ↔ ϕ→ ¬[!ϕ]ψ
3. [!ϕ](ψ ∨ ξ) ↔ [!ϕ]ψ ∨ [!ϕ]ξ
4. [!ϕ]Kψ ↔ ϕ→ K[!ϕ]ψ
5. [!ϕ]B(ψ | ξ) ↔ ϕ→ B([!ϕ]ψ |ϕ ∧ [!ϕ]ξ)

Proof. In each case, if νw(ϕ) < D, then both sides of the equations are designated.
So assume that νw(ϕ) ∈ D.

1. This is immediate for the propositional case, by the choice of the semantics
for the new connective.

2. vw([!ϕ]¬ψ) ∈ D iff ν
ϕ
w(¬ψ) ∈ D (definition)

iff νw(ψ) = b or νw(ψ) = 0 (definition)
iff νw([!ϕ]ψ) = b or νw([!ϕ]ψ) = 0 (νw(ϕ) ∈ D)
iff νw(¬[!ϕ]ψ) ∈ D (definition)
iff νw(ϕ→ ¬[!ϕ]ψ) ∈ D (weakening)

3. Observe that νϕw(ψ ∨ ξ) ∈ D iff ν
ϕ
w(ψ) ∈ D or νϕw(ξ) ∈ D, from which the

result follows immediately.

4. Observe that, under the assumption that νw(ϕ) ∈ D, Glb{νϕx(ψ) | w ∼ϕ x} ∈
D iff Glb{νx([!ϕ]ψ) | w ∼ x} ∈ D, as can be seen in the truth table provided
earlier for the propositional announcement [!ϕ]ψ. Thus,

vw([!ϕ]Kψ) ∈ D iff ν
ϕ
w(Kψ) ∈ D (definition)

iff Glb{νϕx(ψ) | w ∼ϕ x} ∈ D (definition)
iff Glb{νx([!ϕ]ψ) | w ∼ x} ∈ D (observation above)
iff νw(K[!ϕ]ψ) ∈ D (definition)
iff νw(ϕ→ K[!ϕ]ψ) ∈ D (weakening)
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5. This again follows directly from the observation that Glb{νϕx(ψ) | w ∼ϕ

x, x is a maximal ξ−world} ∈ D iff Glb{νx([!ϕ]ψ) | w ∼ x, x is a maximal (ϕ∧
[!ϕ]ξ) − world} ∈ D. �

Theorem 4. The following are valid:

[⇑ ϕ]p ↔ p
[⇑ ϕ]¬ψ ↔ ¬[⇑ ϕ]ψ
[⇑ ϕ](ψ ∨ ξ) ↔ [⇑ ϕ]ψ ∨ [⇑ ϕ]ξ
[⇑ ϕ]Kψ ↔ K[⇑ ϕ]ψ
[⇑ ϕ]B(ψ | ξ) ↔ (k(ϕ ∧ [⇑ ϕ]ξ) ∧ B([⇑ ϕ]ψ | (ϕ ∧ [⇑ ϕ]ξ)))

∨(¬k(ϕ ∧ [⇑ ϕ]ξ) ∧ B([⇑ ϕ]ψ | [⇑ ϕ]ξ))

Proof. Since the propositional valuation is not affected by doxastic dynamic, nor
is the epistemic relation, the proof for the four first principles is immediate.

For the last principle, the right-to-left direction is a matter of unpacking the
definitions. For the (harder) left-to-right direction, assume that νw([⇑ ϕ]B(ψ | ξ)) ∈
D for some w. (In what follows, we simply sketch a proof.) We distinguish two
cases, which correspond to the two disjuncts of the right-hand side.

Case 1: There are some worlds x such that the following hold: 1) νx(ϕ) ∈ D,
2) x ∼ w and 3) ν⇑

aϕ
x (ξ) ∈ D. That is, νw(k(ϕ ∧ [⇑ ϕ]ξ)) ∈ D.

Now, a simple argument establishes that the two following sets are identical:
α = {x ∈ W⇑aϕ | w ∼ x, x is a maximal ξ-world}
β = {x ∈ W | w ∼ x, x is a maximal [⇑ ϕ]ξ-world, νx(ϕ) ∈ D}

For every x ∈ α, ν⇑
aϕ

x (ψ) ∈ D. So νx([⇑ ϕ]ψ ∈ D). Hence, for every x ∈ β, νx([⇑
ϕ]ψ) ∈ D. Thus, νw(B([⇑ ϕ]ψ | (ϕ ∧ [⇑ ϕ]ξ))) ∈ D.

Case 2: There are no worlds x such that the following hold: 1) νx(ϕ) ∈ D, 2)
x ∼ w and 3) ν⇑

aϕ
w (ξ) ∈ D. That is, νw(¬k(ϕ ∧ [⇑ ϕ]ξ)) ∈ D.

Again, a simple argument shows that the following two sets are identical:
α′ = {x ∈ W⇑aϕ | w ∼ x, x is a maximal ξ-world}
β′ = {x ∈ W | w ∼ x, x is a maximal [⇑ ϕ]ξ-world}

Since for every x ∈ α′, ν⇑
aϕ

x (ψ) ∈ D, we have that νx([⇑ ϕ]ψ) ∈ D, so for every
x ∈ β′, νx([⇑ ϕ]ψ) ∈ D. Thus, νw(B([⇑ ϕ]ψ | [⇑ ϕ]ξ)) ∈ D. �

4 Conclusion

We have now established a possibility result: it is possible to define dynamic
operations of belief revision over belief states in the DEL style in the presence
of paraconsistent logic. This result opens the door for further investigation into
paraconsistent (and relevant) dynamic logic. In the literature on DEL, the notion
of common knowledge plays a central role. How should common knowledge be
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defined in paraconsistent logic? How would it be affected by radical and moderate
revision? Interesting issues akin to those arising for conditional belief also become
prominent for conditional common knowledge with a paraconsistent logic in the
background. Finally, one could define many more belief change operations with
the propositional dynamic logic of Pratt (1976), as in Girard and Rott (2014). In
this paper, we have provided the groundwork for further research in paraconsistent
(and relevant) dynamic logic.
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