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Abstract The forensic two-trace problem is a perplexing inference problem

introduced by Evett (J Forensic Sci Soc 27:375–381, 1987). Different possible ways

of wording the competing pair of propositions (i.e., one proposition advanced by the

prosecution and one proposition advanced by the defence) led to different quanti-

fications of the value of the evidence (Meester and Sjerps in Biometrics 59:727–

732, 2003). Here, we re-examine this scenario with the aim of clarifying the

interrelationships that exist between the different solutions, and in this way, produce

a global vision of the problem. We propose to investigate the different expressions

for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian

networks, to model the rationale behind each of the proposed solutions and the

assumptions made on the unknown parameters in this problem.

Keywords Evaluation of evidence � Value of the evidence � Graphical probability

models � Bayesian networks � Two-trace problem

1 Introduction

The two-trace problem, introduced by Evett (1987), is a perplexing inference

problem that continues to puzzle many forensic scientists. It considers a scenario

where forensic investigators recover two items of a particular category of trace

evidence on a crime scene, e.g. two bloodstains, and compare both of these to the
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sample taken from a suspect. The question of interest to the court is, ‘How strong is

the evidence resulting from these two comparisons in favor of the prosecution or the

defence?’

The objective of the forensic scientist’s testimony is to answer this question. The

answer to this question takes the form of the value of the evidence (e.g., Aitken and

Taroni 2004):

V ¼ Prðevidencejproposition 1; IÞ
Prðevidencejproposition 2; IÞ ; ð1Þ

where proposition 1 is the proposition advanced by the prosecution, proposition 2

the proposition advanced by the defence, and I the background information con-

sisting of the forensic scientist’s knowledge on the case circumstances prior to

observing the evidence. The evidence is an intrinsic trait (e.g., the blood group or

DNA profile) of the two traces and the suspect’s sample, observed as a result of the

test or analysis performed in the forensic laboratory. Prior to hearing the forensic

scientist’s testimony, the prosecution and the defence each take position on the

origin of the traces. These views are formalized into the two propositions, that is,

into two statements that are each either true or false. As a pair, these propositions

must be mutually exclusive,1 yet there is no requirement for them to be exhaustive2

(e.g., Robertson and Vignaux 1995; Aitken and Taroni 2004). In this case, the first

proposition (advanced by the prosecution) links the suspect to the crime stains, and

the second (advanced by the defence) rejects such a link. The fact-finder (a judge or

jury member) has a particular degree of belief in the truth of each of these prop-

ositions before hearing the forensic testimony. By presenting the value of the evi-

dence V, the forensic scientist’s testimony conveys by how much more or less the

evidence supports the first proposition with regard to the second proposition: if

V [ 1, the evidence supports the first proposition; if V \ 1, the evidence supports

the second proposition; and if V = 1, the evidence does not provide support for

either of the two propositions, meaning that it is irrelevant for discriminating

between them. Hence, the value of the evidence allows the fact-finder to update his

or her belief in the truth of these propositions, and construct an informed opinion

about each party’s account of the events.

1.1 Aim and outline of this paper

With two traces making up the recovered evidence, there are several possibilities for

formulating a pair of propositions: they can focus on one of the two traces, or on

both, and in the latter case, either specify or not specify which of the two traces

originates (or does not originate) from the suspect. What is disturbing for a fact-

finder hearing a forensic scientist’s testimony in the context of a two-trace problem,

is that the value of the evidence, as given by Eq. (1), is different for different pairs of

propositions (Meester and Sjerps 2003).

1 Two propositions are mutually exclusive if they cannot both be true at the same time.
2 A set of propositions is exhaustive if it covers all scenarios, so that at least one of its propositions is

always true.
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The aim of this paper is to investigate the value of the evidence in a two-trace

problem with regard to different pairs of propositions, by unifying three different

pairs in a single framework. To accomplish this, we will construct a Bayesian

network, i.e., a graphical probability model. In forensic contexts, Bayesian networks

help examine the reasonableness of the formal derivation of a formula, that is, the

assumptions that have been made (Taroni et al. 2006). This allows us to compare

the derived values of the evidence for different pairs of propositions. In addition,

these models allow the user to perform complex probabilistic calculations that take

into account the probability assignments over all of the unknown parameters. In this

way, we hope to provide a global model which offers a complete and realistic

approach to the valuation of scientific evidence in a two-trace problem. With this

model, we hope to draw the reader’s attention to the importance of the formulation

of a pair of propositions, and increase his/her awareness of the impact that subtle

differences in these formulations can have on the value of the evidence.

Besides a brief description of what Bayesian networks are and how they work

(Sect. 2), we do not give a detailed explanation on Bayesian networks, and refer the

interested reader to one of the many publications on the subject (e.g., Jensen 2001;

Kjaerulff and Madsen 2008). Section 3 gives an overview of the two-trace problem

as we will treat it in this paper, and Sect. 4 describes the notation we will use.

Section 5 explains how we construct the Bayesian network, and Sects. 6 and 7

illustrate the use of this model and the influence of the different parameters through

a numerical example. Concluding remarks are in Sect. 8.

2 Bayesian networks

Bayesian networks are graphical probability models, also known as probabilistic

expert systems. The key advantage of these models is their capacity of splitting up a

complex inference problem into its different parts. They represent random variables

as nodes, and dependence relationships between the random variables as arrows

connecting the nodes to form a directed acyclic graph. The random variables can be

either discrete or continuous, but for the sake of simplicity we will use discrete

nodes in this paper. Thus, each random variable will consist of a finite and

exhaustive list of mutually exclusive states. The arrows model the probabilistic

relationships between the variables by connecting a ‘parent’ node to a ‘child’ node.

They condition the probability distribution of the child node upon each of its parents

with probability tables that allow the user to quantify the probabilistic relationships.

In this way, the Bayesian network decomposes the joint probability distribution

of a set of random variables X1, …, Xn into the product of each of their probabilities

conditioned on their parents. This is known as the Markov property:

PrðX1; . . .;XnÞ ¼
Yn

i¼1

PrðXijparentsðXiÞÞ: ð2Þ

It is important to stress that there is no true model, because a model is personal

and reflects the constructor’s view of the problem and the information available at
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the time of the construction (Lindley 2000). As our understanding of the issue

progresses, the constructed network may evolve to model a situation more

accurately, so that several different Bayesian network structures may be accepted as

a description of the same scenario (Garbolino 2001).

The relevance of Bayesian networks for applications in forensic science was first

recognized—in print—by Aitken and Gammerman (1989). Key publications in

legal literature followed (Edwards 1991; Schum 1994; Kadane and Schum 1996),

presenting thorough descriptions of the potential of probabilistic models for

reasoning about evidence in real cases. Since then, the application of Bayesian

networks has covered different aspects of evidential assessment (Taroni et al. 2006),

in particular the evaluation of DNA evidence (Dawid et al. 2002, 2007; Mortera

et al. 2003), evidence collected in fire debris (Biedermann et al. 2005a, b), firearm

evidence (Biedermann and Taroni 2006; Biedermann et al. 2009), and fibre

evidence (Garbolino and Taroni 2002), as well as practical considerations on how to

present their results in court (Fenton and Neil 2011).

In this study, we constructed the Bayesian networks using the software Hugin
Researcher 7.3, by Hugin Expert A/S. This program allows the user to construct and

use Bayesian networks that contain numerical probability values. It can only carry

out numerical propagations between the nodes. To derive the algebraic expressions

corresponding to the calculations performed by the model, the user applies Eq. (2).

The probabilistic relationships defined by the structure and the probability tables tell

the user how the probability of a compound event is broken down into separate

conditional probabilities.

3 The two-trace problem

We denote the following pair of propositions ‘pair H’:

Proposition 1: At least one of the crime stains comes from the suspect;

Proposition 2: Neither of the crime stains comes from the suspect.

These propositions are called source level propositions according to the hierarchy

of propositions defined by Cook et al. (1998), because they describe whether a

particular object or person is the source, or origin, of the traces recovered on the

crime scene. Source level propositions are different from activity level propositions

(describing the activity that led to the transfer of the traces from their source to the

crime scene) and crime level propositions (concerned with whether the suspect

actually committed the crime under investigation). In this paper we treat only source

level propositions. For activity or crime level evaluations of the evidence in a two-

trace problem, see Triggs and Buckleton (2003) and Gittelson et al. (2012), and

Dawid (2004), respectively.

The value of the evidence with regard to the above propositions depends on the

evidence observed. There are three possibilities:

1. If neither of the two crime stains matches the suspect’s sample, then the

likelihood of the first proposition is 0, and consequently Eq. (1) becomes
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V ¼ 0; ð3Þ

2. If one of the crime stains matches the suspect’s sample, Evett (1987) showed

that this leads to

V ¼ 1

2c
; ð4Þ

where c represents the match probability (Weir 2000) of the matching trait in the

relevant population of possible crime stain donors [Note that originally, Evett

(1987) did not deduce this expression for the source level propositions as described,

but for their equivalents at the crime level, assuming the relevance of both traces to

be maximal. A crime level evaluation with maximal relevance produces the same

value of the evidence as the source level evaluation presented here (see, e.g., Aitken

and Taroni 2004)];

3. And if both of the crime stains match the suspect’s sample, most forensic

scientists would assume that the two traces come from a single contributor so

that Eq. (1) reduces to

V ¼ 1

c
: ð5Þ

These assessments are based on the assumption that no laboratory errors are pos-

sible, an assumption we maintain throughout this paper. Note, however, that

relaxing this assumption may have a considerable effect on the value of the evi-

dence (Thompson et al. 2003).

Among these three ratios, Eqs. (3) and (5) are the same as for a scenario

involving a single crime stain. This is because the differentiation between the two

traces is not necessary in these cases in order to describe the observed evidence. In

these two cases, one can combine the two crime stains into a single group, which we

see as either matching (Eq. 5), or not matching (Eq. 3) the suspect’s sample. In both

of these cases, the reasoning that leads to Eqs. (3) and (5) is the same as that applied

to the evaluation of the value of a single crime stain.

This is different for the case involving one matching stain and one non-matching

stain (item 2 in the list). This case requires the forensic scientist to distinguish

between the two traces by multiplying the traditional value of 1
c by a factor of 0.5

(we will discuss the meaning of this additional factor in Sect. 7). This is the case

which interests us in this paper.

Evett (1987) was not the only author to treat this problem. After Evett (1987), the

case of one matching stain and one non-matching stain gave rise to the formulation

of other propositions, which led to evidential values that were not equal to Eq. (4).

According to Meester and Sjerps (2003), a pair of propositions worded slightly

differently (note that the wording of these propositions has been modified here with

regard to their original formulation in Meester and Sjerps (2003), yet their logical

meaning remains unchanged), that is,

Proposition 1: Crime stain 1 comes from the suspect;

Modeling the forensic two-trace problem 225

123



Proposition 2: Neither of the crime stains comes from the suspect;
(we denote this pair ‘pair H01’) produced a value of

1

c
; ð6Þ

and the pair

Proposition 1: Crime stain 1 comes from the suspect;

Proposition 2: Crime stain 1 does not come from the suspect;
(denoted ‘pair H001 ’) produced a value of3

2� d
2cð1� dÞ ; ð7Þ

for evidence consisting of a match between crime stain 1 and the suspect’s sample,

and a non-match between crime stain 2 and the suspect’s sample. In Eq. (7), the

probability denoted d represents the prior probability that the suspect was one of two

crime stain donors. This probability had to be introduced to correctly evaluate the

probability of the evidence given proposition 2 and I. See Sect. 7.3 for further

explanations.

The pair of propositions H (on page 4) is related to the above two pairs (pairs

H01 and H001 ) when the forensic scientist observes a match between the suspect’s

sample and stain 1, and a non-match between the suspect’s sample and stain 2: in

this case, all three pairs of propositions have identical posterior odds of

d
2ð1� dÞc ; ð8Þ

for a prior probability of d that the suspect was a crime stain donor (Note that we

call the odds of a pair of propositions ‘prior odds’ before observing the evidence,

and ‘posterior odds’ after observing the evidence. We use the terms ‘prior proba-

bility’ and ‘posterior probability’ in the same way).

Here, the observation of a matching trait in the suspect’s sample and stain 1, and

a non-matching trait in the suspect’s sample and stain 2 has made the three pairs of

propositions logically equivalent, since it has become impossible for the suspect to

be the donor of stain 2. Algebraically, this comes down to multiplying the value of

the evidence by the corresponding pair of propositions’ prior odds according to the

odds’ form of Bayes’ theorem (Meester and Sjerps 2003):

d
1� d|fflffl{zfflffl}

prior odds for pair H

� 1

2c|{z}
value of the evidence for pair H

; ð9Þ

3 Note that Eq. (7) gives the simplified form of the value of the evidence, so that the numerator and

denominator of this ratio do not represent the probabilities forming the numerator and denominator in

Eq. (1).
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d=2

1� d|fflffl{zfflffl}
prior odds for pair H0

1

� 1

c|{z}
value of the evidence for pair H0

1

; ð10Þ

d=2

1� d=2|fflfflfflffl{zfflfflfflffl}
prior odds for pair H00

1

� 2� d
2cð1� dÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

value of the evidence for pair H00
1

: ð11Þ

Meester and Sjerps (2003) and Meester and Sjerps (2004a, b) conclude from this

that forensic scientists should use posterior odds in the place of the value of the

evidence to communicate the strength of forensic evidence, a recommendation

which makes no attempt at clarifying the logical relationships between the three

pairs of propositions and their different values for the same evidence [a point

criticized by Dawid (2004)].

The Bayesian network we present in Sect. 5 will illustrate the interrelationships

between these three pairs of propositions by modeling them in separate nodes.

Before explaining the rationale behind this model, the next section presents the

notation we will use in the rest of this paper.

4 Notation

We distinguish between the background information (Sect. 4.1), the propositions

(Sect. 4.2), the unknown parameters d, k and s (Sect. 4.3), and the evidence

(Sect. 4.4).

4.1 Background information

The background information I is all of the knowledge available prior to observing the

evidence. This information includes the case circumstances (e.g., the location of the

crime scene), the facts surrounding the recovery of the two traces on the crime scene

(e.g., their exact locations on the scene), the fact that one suspect has been found from

whom a sample has been obtained for comparison with the recovered traces, and the non-

scientific information associating this suspect to the crime scene (e.g., witness

statements asserting the suspect’s presence near the scene). All of the probabilities

assessed in a case are conditional probabilities given I. However, for the sake of brevity

in the mathematical expressions that follow, we shall hereafter omit I from their notation.

4.2 Propositions

The propositions reflect the viewpoints of the prosecution and the defence. At the

time they are formulated, the evidence has not yet been observed, so that these

formulations are independent of the evidence, and based solely on the background

information. Each proposition depicts the most plausible situation(s) given the

party’s point of view and the background information (Robertson and Vignaux

1995). Since the background information is case-specific, one pair of propositions

may be reasonable in one case, yet unreasonable in another case.
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Section 1 introduced four propositions, which we denote with capital letters as

follows:

D—at least one of the crime stains comes from the suspect;
�D—neither of the crime stains comes from the suspect;

C1—crime stain 1 comes from the suspect;
�C1—crime stain 1 does not come from the suspect.

The horizontal bar over a capital letter means that the proposition described is the

negation of the proposition denoted by that letter (i.e., its complement). The number

figuring as a subscript to propositions C and �C indicates which crime stain the

proposition refers to. Analogous to C1 and �C1; we also formulate:

C2—crime stain 2 comes from the suspect;
�C2—crime stain 2 does not come from the suspect.

Meester and Sjerps (2003) considered 3 pairs of propositions, denoted here as pairs

H, H01; andH001 (the subscript ‘1’ indicates that the pair contains at least one

proposition referring only to crime stain 1). These combine in different ways the

four propositions D, �D; C1 and �C1 as follows:

pair H: D—at least one of the crime stains comes from the suspect;
�D—neither of the crime stains comes from the suspect;

pair H01: C1—crime stain 1 comes from the suspect;
�D—neither of the crime stains comes from the suspect;

pair H001 : C1—crime stain 1 comes from the suspect;
�C1—crime stain 1 does not come from the suspect.

To model a pair of propositions as a node in a Bayesian network, the node must

have an exhaustive list of states (see Sect. 2). The propositions in pairs H and H001
already form an exhaustive set of possibilities, and can therefore be modeled as

nodes with two states. Yet pair H01 is not exhaustive because it does not consider the

possibility that crime stain 2 comes from the suspect. An exhaustive list would need

to include all of the possible combinations between C1; �C1;C2 and �C2; i.e.,

C1 \ C2—both crime stains come from the suspect;

C1 \ �C2—crime stain 1 comes from the suspect,
and crime stain 2 does not come from the suspect;

�C1 \ C2—crime stain 1 does not come from the suspect,
but crime stain 2 comes from the suspect;

�C1 \ �C2—neither of the crime stains comes from the suspect.

In this list, proposition �D is equivalent to �C1 \ �C2; and proposition C1 to fC1 \
C2g [ fC1 \ �C2g: Modeling pair H01 as a node with exhaustive states in a Bayesian

network will therefore require the additional state �C1 \ C2 in this node.

Analogous to pair H01, we define pair H02 for the combination of C2 and �D:

pair H02: C2—crime stain 2 comes from the suspect;
�D—neither of the crime stains comes from the suspect;
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and analogous to pair H001 , we define pair H002 for the combination of C2 and �C2 :

pair H002 : C2—crime stain 2 comes from the suspect;
�C2—crime stain 2 does not come from the suspect.

Modeling pair H02 as a node in a Bayesian network will follow the same reasoning as

for pair H01 by requiring the additional state C1 \ �C2 to make the node’s states

exhaustive.

4.3 Unknown parameters

The two-trace problem involves three unknown parameters (Table 1):

– d: The first parameter, d, we encountered in Eq. (7). This is the prior probability

that the suspect is a crime stain donor, i.e.,

PrðDÞ ¼ d;

as defined in Meester and Sjerps (2003). d describes the probability that a trace

recovered on the crime scene comes from the suspect based on the information

available prior to the laboratory analyses of the crime stains. This parameter takes

into account the background information regarding the suspect’s presence on or

near the crime scene during the lapse of time when the traces were deposited (for

example, witness statements, data from mobile phone providers, and images from

surveillance cameras), as well as background information regarding the suspect’s

ability to transfer the type of trace evidence in question (for example in the case of

recovered bloodstains, the fact that the suspect had a scratch, cut or other injury

with blood loss at the time when the traces were deposited would increase d). In

this model, the value of d is based on this background information alone, inde-

pendent of whether the recovered traces come from a single source or from two

different sources. Note however that in some cases this assumption of d being

independent of the total number of crime stain donors may not be reasonable.

Notably when the background information described above is very poor or not

available, it may be reasonable to assume that d is greater in the case of two donors

than in the case of a single donor (Meester and Sjerps 2004a, b). This situation is

not treated in this paper, but it would require an additional dependence rela-

tionship in the Bayesian network presented in Sect. 5 (Fig. 2).

– k: The second parameter describes the uncertainty on the number of donors

(Dawid 2004). Defined by Dawid (2004), k represents the probability that there

are two distinct donors. Before observing the evidence, all we know is that there

are two traces. A priori, these may come from the same source with a probability

of 1 - k, and from two different sources with a probability of k.

– s: The third parameter, s, considers the conditional probability that crime stain 1

comes from the suspect given that the suspect is one of two crime stain donors, i.e.,

PrðC1j2 donors;DÞ ¼ s:

From this definition, it follows that 1 - s is the probability of crime stain 2 coming

from the suspect given that the suspect is the source of one of the two traces, i.e.,
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PrðC2j2 donors;DÞ ¼ 1� s:

All of these parameters are assessed on the basis of the background information

alone, that is, before observing the evidence: the value of d will depend on the prior

information regarding the suspect’s connection to the crime scene; and the values of k
and s are based on the circumstancial information of the case, including the location of

each of the traces on the scene, witness reports, and images from surveillance cameras.

These prior assessments determine the prior probabilities of the propositions (see

column 3 of Table 2). The probabilities of D and �D are determined by d, as

described above. The probabilities of C1, �C1;C2 and �C2 are made up of the

probabilities of C1 \ C2, C1 \ �C2; �C1 \ C2 and �C1 \ �C2, which are

PrðC1 \ C2Þ ¼ dð1� kÞ
PrðC1 \ �C2Þ ¼ dks

Prð �C1 \ C2Þ ¼ dkð1� sÞ
Prð �C1 \ �C2Þ ¼ 1� d;

so that the probabilities of C1; �C1;C2 and �C2 are

PrðC1Þ ¼ PrðC1 \ C2Þ þ PrðC1 \ �C2Þ
¼ dð1� kÞ þ dks;

Prð �C1Þ ¼ Prð �C1 \ C2Þ þ Prð �C1 \ �C2Þ
¼ dkð1� sÞ þ 1� d;

PrðC2Þ ¼ PrðC1 \ C2Þ þ Prð �C1 \ C2Þ
¼ dð1� kÞ þ dkð1� sÞ;

and

Prð �C2Þ ¼ PrðC1 \ �C2Þ þ Prð �C1 \ �C2Þ
¼ dksþ 1� d:

The examples in Sects. 6 and 7 will illustrate the impact of parameters d, k and s
on the value of the evidence and on the posterior odds of the different pairs of

propositions.

4.4 Evidence

The evidence is the new piece of information we observe. It is the compound event

of observing the states of the three variables X, Y1 and Y2. X denotes the profile of

Table 1 Definition of the

parameters d, k and s d Probability that the suspect is a crime stain donor

k Probability that there were two distinct donors

s Probability that crime stain 1 comes from the suspect, given that

the suspect is one of two donors

230 S. Gittelson et al.

123



the suspect’s sample, Y1 the profile of the first of the recovered traces, which we call

‘crime stain 1’, and Y2 the profile of the second of the recovered traces, which we

call ‘crime stain 2’.

We assume that the analysis performed is capable of distinguishing between k
different profiles, which we label C1;C2; . . .;Ck: Profile Ci; i ¼ 1; 2; . . .; k; has a

match probability of ci in the relevant population of possible crime stain donors.

Note that the relevant population is defined on the basis of the background

information. Before observing the evidence, X, Y1, and Y2 each have a probability of

ci, i ¼ 1; 2; . . .; k;
P

ci = 1, to have profile Ci: After observing the evidence, the

states of X, Y1, and Y2 are known with certainty. They are each equal to one of the k
profiles, C1;C2; . . .;Ck:

In the next section, we combine the above evidence, propositions, and parameters

in a Bayesian network for the two-trace problem.

Y2

X

H

Y1 Y2

Y1

F

Fig. 1 The Bayesian network
presented in Taroni et al. (2006)
for a very specific scenario of
the two-trace problem. Nodes
H, X, Y1 and Y2 consist of the
states presented in Table 2, and

node F of the states C1 \ �C2;
�C1 \ C2 and �C1 \ �C2 � �D

H’’2

Y1 Y2

X

LH

1H’ H’2

Y1Y2

δ

τ

λ

1H’’

Fig. 2 The extended Bayesian network for the two-trace problem. This model is more flexible and
realistic than the Bayesian network shown in Fig. 1, because it models the uncertainty on the number of
crime stain donors, and the uncertainty on which trace comes from the suspect if the suspect is one of two
donors. It also includes a node for each of the unknown parameters, allowing the user to define a
probability distribution for each. Table 1 gives the definitions of the parameters, and Table 2 lists the
definitions and probabilities of the states in each of the non-parametric nodes
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5 Constructing a Bayesian network

The aim of this section is to construct a Bayesian network containing the

propositions, the parameters, and the evidence, defined in the previous section. This

section contains several technical details of the constructed Bayesian network, and

Table 2 Description of the states of the non-parametric nodes in the Bayesian network in Fig. 2

Nodes States Probabilities Definitions of the states

H D d At least one of the crime stains comes from the suspect

�D 1 - d Neither of the crime stains comes from the suspect

L 1 donor 1 - k The crime stains come from the same source

2 donors k The crime stains come from two different sources

H001 C1 d(1 - k ? ks) Crime stain 1 comes from the suspect

�C1 dk(1 - s) ? 1 - d Crime stain 1 does not come from the suspect

H002 C2 d[1 - k ? k(1 - s)] Crime stain 2 comes from the suspect

�C2 dks ? 1 - d Crime stain 2 does not come from the suspect

H01 C1 d(1 - k ? ks) Crime stain 1 comes from the suspect

�C1 \ C2 dk(1 - s) Only crime stain 2 comes from the suspect

�D 1 - d Neither of the crime stains comes from the suspect

H02 C2 d[1 - k ? k(1 - s)] Crime stain 2 comes from the suspect

C1 \ �C2 dks Only crime stain 1 comes from the suspect

�D 1 - d Neither of the crime stains comes from the suspect

X C1 c1 Profile of the suspect’s sample

C2 c2

..

. ..
.

Ck ck

Y1 C1 c1 Profile of crime stain 1

C2 c2

..

. ..
.

Ck ck

Y2 C1 c1 Profile of crime stain 2

C2 c2

..

. ..
.

Ck ck

Y1Y2 C1C1 c1 c1 Profiles of crime stains 1 and 2 (as ordered pairs)

C1C2 c1c2

C2C1 c2 c1

..

. ..
.

CkCk ck ck

The parameters d, k, and s are defined in Table 1
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may be skipped by readers interested more in the application of the model than in its

construction. For the propositions we create nodes H, H01; H001 ; H02 and H002 , and for

the evidence, nodes X, Y1 and Y2. Table 2 provides the exhaustive list of the states

and probabilities associated to each of these nodes.

Taroni et al. (2006) proposed a model containing some of these nodes for a very

specific scenario of a two-trace problem (Fig. 1). In this model, node F contains the

inexhaustive list of states C1 \ �C2; �C1 \ C2 and �C1 \ �C2: This model sets the profile

of Y1 equal to the profile of X if C1 is true, and the profile of Y2 equal to the profile of

X if C2 is true. Concerning the propositions, it specifies that C1 and C2 can only be

true if D (in node H) is true. However, this model makes the assumption that C1 and

C2 are equally likely under D, and it does not consider the possibility of C1 and C2

being true at the same time (i.e., node F contains an inexhaustive list of states).

Node Y1Y2 combines the states of Y1 and Y2 as ordered pairs, so that the model

computes the compound probability of the two crime stain profiles. This node is

necessary for evaluating the value of the evidence (see Sect. 7).

We use this model as a starting point to extend and improve it to a more general

Bayesian network for evaluating the value of the evidence in a two-trace problem.

For this, we examine the following points: the relationship between the proposi-

tional nodes (Sect. 5.1), the uncertainty on the number of donors (Sect. 5.2), and the

relationship between the propositional and the evidential nodes (Sect. 5.3).

5.1 Relationships between the propositional nodes H; H01; H001 ; H02 and H002

The postdata equivalence presented in Sect. 3 indicates a relationship between the

nodes containing the pairs of propositions H, H01 and H001 . To expose the links that

exist between these nodes, we analyze the logical relationships between the

propositions that form the nodes’ states.

The difference between proposition D and propositions C1 and C2 is that the

former does not specify which trace, or traces, come(s) from the suspect, whereas

the latter do. Logically, this means that propositions C1 and C2 are two subsets of

proposition D, i.e., C1 � D and C2 � D: In a Bayesian network, this relationship

may be modeled by conditioning the probabilities of C1 and C2 on D (Taroni et al.

2006). In other words, we model node H (containing proposition D) as a parent of

nodes H001 (containing proposition C1) and H002 (containing proposition C2).

As for nodes H01 and H02, their states �C1 \ C2; C1 \ �C2 and �D̄ (: �C1 \ �C2) are

combinations of C1, �C1, C2, and �C2. Each of these combinations is a subset of its

single components: {C1 \ �C2} , C1, {C1 \ �C2} , �C2, { �C1 \ C2} , �C1, { �C1 \ C2}

, C2, �D , �C1 and �D̄ , �C2. Again, we find it convenient to model a subset as a child

of its superset. Therefore, we model nodes H01 and H02 as children of nodes

H001 and H002 , with the conditional probability distributions given in Tables 3 and 4.

The resulting hierarchical ordering, from the parent node to the child node, is

therefore:

H ! fH001 ;H002g ! fH01;H02g:

Our Bayesian network will reflect this hierarchy.

Modeling the forensic two-trace problem 233

123



5.2 Uncertainty on the number of donors

To take into account the possibility that there was only one donor, we add an

additional node L made up of the states ‘1 donor’ and ‘2 donors’. We use the

parameter k, denoting the prior probability of ‘2 donors’, to introduce the

uncertainty on the number of donors into this node.

The states of node L add a constraint on the probability distribution over

C1; �C1;C2; and �C2; and on the observed profile of crime stain 2 (Y2) given the profile

of crime stain 1 (Y1). That is, if there is only 1 donor, then Y2 must be equal to Y1,

and both C1 and C2 must be true or false, together, according to whether D is true or

false. If there are 2 donors, then either C1 or C2 will be true when D is true, but

never both C1 and C2. In the case of two donors, the parameter s (denoting Pr(C1|2

donors, D)) determines the probability distribution over C1 and C2 under proposition

D. Tables 5 and 6 describe the logical relationships between the propositions

C1; �C1;C2; and �C2 and the propositions D and �D given the number of donors

specified in node L.

5.3 Relationship between the propositional and evidential nodes

As proposed by Taroni et al. (2006), the profile of each crime stain depends on

whether that particular crime stain comes from the suspect, i.e., on propositions C1

and C2. This means that node Y1 should be connected with a node containing state

C1, and node Y2 with a node containing state C2. The most straightforward way of

Table 3 Probability table for node H01 in Fig. 2. The states of H01 are defined by the combinations of the

states in nodes H001 and H002

H001 : C1
�C1

H002 : C2
�C2 C2

�C2

H01: C1 1 1 0 0

�C1 \ C2 0 0 1 0

�D 0 0 0 1

Table 4 Probability table for node H02 in Fig. 2. The states of H02 are defined by the combinations of the

states in nodes H001 and H002

H001 : C1
�C1

H002 : C2
�C2 C2

�C2

H02: C2 1 0 1 0

C1 \ �C2 0 1 0 0

�D 0 0 0 1

234 S. Gittelson et al.

123



achieving this in the model is for Y1 to be a child of H001 , and Y2 a child of H002 . Thus,

Y1 copies the state of X when C1 is true, and is independent of X when �C1 is true (see

Table 7). The same principle holds for Y2 (Table 8), with the additional constraint

that Y2 copies the state of Y1 in every case where both traces come from the same

source (defined by node L). Finally, node Y1Y2 combines the states of Y1 and Y2 as

ordered pairs, as proposed by Taroni et al. (2006) (see Table 9). Putting all of these

considerations together produces the Bayesian network shown in Fig. 2.

There are two ways to use the Bayesian network, which we will illustrate in the

next two sections: the user can either update the prior probability distributions over

the propositions to posterior probability distributions given the evidence (see Sect.

6), or the user can use the Bayesian network to evaluate the probabilities forming

the ratio of the value of the evidence (Eq. 1) for a given pair of propositions (see

Sect. 7). Both of these are useful means for a forensic scientist to convey the value

of the evidence to a fact-finder.

6 Using the Bayesian network to update the prior probability distribution
to a posterior probability distribution

Fact-finders and lawyers are interested in the probability distribution over the

propositions given the forensic scientist’s evidence. The Bayesian network

Table 5 Probability table for node H001 in Fig. 2

H: D �D

L: 1 donor 2 donors 1 donor 2 donors

H001 : C1 1 s 0 0

�C1 0 1 - s 1 1

This probability table contains the parameter s = Pr(C1|2 donors, D)

Table 6 Probability table for node H002 in Fig. 2

H: D �D

L: 1 donor 2 donors 1 donor 2 donors

H001 : C1
�C1 C1

�C1 C1
�C1 C1

�C1

H002 : C2 1 n/a 0 1 n/a 0 n/a 0

�C2 0 n/a 1 0 n/a 1 n/a 1

Note that the second, fifth and seventh columns describe impossible combinations of states (i.e., in the

second column, the suspect is a crime stain donor, and there is only a single donor for both crime stains,

yet the suspect is not the donor of crime stain 1; and in the fifth and seventh columns the suspect is not a

crime stain donor, yet crime stain 1 comes from the suspect), so that the probability distribution over

states C2 and �C2 is not defined for these events (‘n/a’ = not applicable). For an alternative way of

modeling this conditional probability distribution over the states of node H002 that avoids having these

impossible combinations in the conditional probability table, we refer the reader to the work by Fenton

et al. (2011)
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presented in Fig. 2 can compute this posterior probability distribution for a given

prior probability distribution over the propositions. There are two applications

where a forensic scientist testifying in court would use the model in this way: (1)

when a fact-finder or lawyer interested in the probabilities of the propositions

communicates the information required to define the prior distribution to the

forensic scientist, (2) when the forensic scientist wants to illustrate the evidence’s

effect on several prior probability distributions of different orders of magnitude to

show what the posterior probability distribution would be for each.

To specify the prior probability of each proposition, the user must assess the

values of d, k and s (see the definitions given in Table 1 and in Sect. 4.3).

Practically speaking, the user of the model must enter these values into the Bayesian

network, an action called ‘instantiating’ the corresponding nodes. The Bayesian

network then propagates these values to the rest of the network.

To find the posterior probability distribution given the evidence, the user

instantiates the observed traits for the suspect’s sample and the two traces in nodes

X, Y1 and Y2, respectively. After entering this evidence, the Bayesian network

updates the probability distributions in the remaining nodes according to the laws of

probability and the probabilistic relationships specified by the model. The

probability distributions indicated in the propositional nodes now correspond to

the posterior distributions given the evidence. Mathematically, this updating

corresponds to the application of the laws of probability, in particular Bayes’

theorem. The following numerical example illustrates this concept.

Example Consider a case where crime scene investigators recover two contact

stains on a wall, at a given height above the floor: say, crime stain 1 at 1.5 meters,

and crime stain 2 at 1.8 meters from the floor. There are no witness statements

asserting whether these two traces come from a single source or from two different

sources. We assume that it is, a priori, equally probable for the two traces to come

from a single source as it is for them to come from two different sources, and thus

set k = 0.5. A suspect, with a prior probability assessed at d = 0.1 of being the

source of at least one of the two traces recovered on the crime scene, comes to the

attention of the police. This suspect is particular in that he is very short, measuring

only 1.6 meters. This information makes a contact between the suspect and the

location of crime stain 1 more probable than a contact between the suspect and the

location of crime stain 2. In other words, if only one of the two traces comes from

Table 7 Probability table for node Y1 in Fig. 2. If C1 is true, the state of Y1 is equal to the state of X. If �C1

is true, the probability of observing each profile is equal to that profile’s match probability in the relevant

population of possible crime stain donors

H001 : C1
�C1

X: C1 C2 Cother C1 C2 Cother

Y1: C1 1 0 0 c1 c1 c1

C2 0 1 0 c2 c2 c2

Cother 0 0 1 1 - c1 - c2 1 - c1 - c2 1 - c1 - c2
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this suspect, it is more probable for this stain to be crime stain 1 than crime stain 2.

For this reason, we set s = 0.75.

The following analysis compares the probability distributions for the three

different types of pairs of propositions by considering pairs H, H01 and H001 (Note that

the Bayesian network presented in Fig. 2 allows for the same analysis with regard to

pairs H, H02 and H002 , focusing on crime stain 2 instead of on crime stain 1. Here,

however, we will focus on crime stain 1). For this, node H02 is superfluous in the

Bayesian network (Fig. 2). In this section, Fig. 3 has omitted this node to avoid

cluttering the Bayesian network’s expanded representations.

Figure 3a gives the prior probability distribution over the nodes of the Bayesian

network for the above described example. The ratio of the probabilities of the

propositions of each pair forms the following prior odds for the three pairs of

propositions defined in Sect. 4.2:4

d
1� d

¼ 0:1000

0:9000
¼ 0:1111 for pair H; ð12Þ

dð1� kþ ksÞ
1� d

¼ 0:0875

0:9000
¼ 0:0972 for pair H01; and ð13Þ

dð1� kþ ksÞ
dkð1� sÞ þ 1� d

¼ 0:0875

0:9125
¼ 0:0959 for pair H001 : ð14Þ

With these numerical calculations, we do not imply that it is possible to attain this

level of precision in practice. The precision of the numerical calculations in Eqs.

(12)–(14), and in the equations of the rest of this and the next section, is only for the

purpose of showing the level of agreement between the Bayesian network’s com-

putations and the algebraic equations.

The comparison of the above results with the prior odds given in Meester and

Sjerps (2003) (see Eqs. 9–11) shows that the latter describe a case where k = 1 and

s = 0.5. The above expressions relax these assumptions by allowing the user to

specify parameters k and s so that they reflect the circumstances of the case as

accurately as possible. Comparing the prior odds for each of the pairs of

propositions with each other reveals that the most general pair of propositions (pair

H) has the greatest odds, and the most specific pair of propositions (pair H001 ) has the

smallest odds. This is logical since the prior odds for a specific crime stain cannot be

Table 9 Probability table for node Y1Y2. This node combines the states of Y1 and Y2 as ordered pairs

Y1: C1 C2 Cother

Y2: C1 C2 Cother C1 C2 Cother C1 C2 Cother

Y1Y2: C1C2 0 1 0 0 0 0 0 0 0

other 1 0 1 1 1 1 1 1 1

4 Note that, by definition, pair H01 consists of two nonexhaustive propositions. This is not problematic in

this situation, because the evidence introduced later on will render the remaining proposition impossible.
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greater than the general prior odds for the suspect being a donor of any one of the

crime stains.

Example (continued) We now analyze the evidence, and observe Y1 ¼ C1; Y2 ¼
C2 and X ¼ C1; i.e., the suspect’s sample matches crime stain 1. In the population of

potential sources of the two traces, we assume c1 = 0.01 and c2 = 0.02.

Instantiating the evidential nodes X, Y1 and Y2 to their observed traits (Fig. 3b),

produces identical posterior odds of

0:89286

0:10714
� 8:3333

for all three pairs of propositions. Algebraically, these posterior odds are given by

ds
ð1� dÞc1

: ð15Þ

(a)                                                                   (b)
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Fig. 3 Expanded representation of the Bayesian network presented in Fig. 2, without node H02, which has

been omitted to avoid cluttering the figure, and to focus the reader’s attention on the probability
distributions in nodes H, H01andH001 . This Bayesian network updates a the prior probability distribution

over the propositions, to b the posterior probability distribution obtained after observing the traits of X, Y1

and Y2. Here, the model is applied to the example described on pages 16 and 18, with d = 0.1,
k = 0.5, s = 0.75, c1 = 0.01 and c2 = 0.02. The observed evidence consists of X ¼ C1; Y1 ¼ C1 and
Y2 ¼ C2: This information is communicated to the Bayesian network by instantiating the evidential nodes
to these observed states. Here, the instantiated nodes are indicated by a thicker border, and the
instantiated state with a probability of 1 in bold. Instantiating the evidential nodes produces identical
posterior odds for the pairs of propositions H, H01andH001 . Note that in b, we could also have instantiated

node Y1Y2 instead of nodes Y1 and Y2 and obtained the same outcome
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The comparison of this ratio with the posterior odds presented in Meester and Sjerps

(2003) (see Eq. 8) shows that Eq. (15) relaxes the assumption of s = 0.5, assumed

in Eq. (8). Equation (15) therefore gives the generalized expression for the posterior

odds for any value of s.

This approach of instantiating the evidential nodes in the Bayesian network is

useful whenever one wants to find a posterior probability distribution for a given

prior probability distribution. This application is limited to situations where the

forensic scientist receives information about the prior probability distribution from

an actor in the legal system, or situations where the forensic scientist assigns

hypothetical prior distributions to illustrate the evidence’s effect on the probabilities

of the propositions. However, the forensic scientist’s role is not to determine the

probability distribution over the propositions. The role of the forensic scientist is to

evaluate the value of the evidence (e.g., Lindley 1977; Aitken and Taroni 2004).

This means that he/she wants to find out to what extent the observed evidence will

affect the probability distribution over the propositions, without knowing what this

probability distribution is.

In addition to computing the posterior probabilities seen in this section, the

Bayesian network allows its user to evaluate the probabilities forming the value of

the evidence for any of the three pairs of propositions. We discuss this use of the

Bayesian network in the next section.

7 Using the Bayesian network to evaluate the value of the evidence

The objective of the forensic scientist’s testimony is to present the value of the

evidence. That is, he/she should present how much more or less probable the

evidence is if the first proposition is true than if the second proposition is true. This

value depends on the formulation of the two propositions. The value of the evidence

for each pair of propositions corresponds to the Bayes factor obtained by dividing

the posterior odds by the prior odds (Table 10).

Mathematically, this value is given by Eq. (1). Applying the third law of

probability for dependent events according to a suspect-anchored perspective (e.g.,

Aitken and Taroni 2004) makes this equation equal to

V ¼ PrðX; Y1; Y2jproposition 1Þ
PrðX; Y1; Y2jproposition 2Þ

¼ PrðY1; Y2jX; proposition 1Þ
PrðY1; Y2jX; proposition 2Þ �

PrðXjproposition 1Þ
PrðXjproposition 2Þ ;

which reduces to

¼ PrðY1; Y2jX; proposition 1Þ
PrðY1; Y2jX; proposition 2Þ ; ð16Þ

given that the profile of the suspect’s sample does not change under the competing

propositions, i.e., Pr(X|proposition 1) = Pr(X|proposition 2).

So, to find the value of the evidence, the Bayesian network calculates the

probabilities forming the numerator and the denominator of Eq. (16). The Bayesian
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network computes the compound probability of Y1 and Y2 in node Y1Y2. This node

indicates the numerator of V for the observed traits of Y1 and Y2 when X and

‘proposition 1’ are instantiated, and the denominator of V when X and ‘proposition

(a)                                                                (b)
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Fig. 4 The Bayesian network computes a the numerator, and b the denominator of the value of the
evidence (Eq. 16) for pair of propositions H, for evidence consisting of X ¼ C1;Y1 ¼ C1 and Y2 ¼ C2:
The instantiated nodes are indicated by a thicker border, and the instantiated state with a probability of 1
in bold. The numerator is the probability of C1C2 in node Y1Y2 when C1 is instantiated in node X and D is
instantiated in node H. The denominator is the probability of C1C2 in node Y1Y2 when C1 is instantiated in

node X and �D is instantiated in node H. The calculations are for the example described in Sect. 6
(d = 0.1, k = 0.5 and s = 0.75)

Table 10 The mathematical expressions used by the Bayesian network in Fig. 2 to compute the prior

odds, value of the evidence (Bayes factor) and posterior odds for each of the three pairs of propositions,

H, H01andH001

for pair H: d
1� d|fflffl{zfflffl}

prior odds

� s
c1|{z}
V

¼ ds
ð1� dÞc1|fflfflfflfflffl{zfflfflfflfflffl}
posterior odds

for pair H01: dð1� kþ ksÞ
1� d|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

prior odds

�
s

1�kþks

c1|fflffl{zfflffl}
V

¼ ds
ð1� dÞc1|fflfflfflfflffl{zfflfflfflfflffl}
posterior odds

for pair H001 : dð1� kþ ksÞ
dkð1� sÞ þ 1� d|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prior odds

�
s

1�kþks

c1
1�d

ð1�sÞkdþ1�d|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
V

¼ ds
ð1� dÞc1|fflfflfflfflffl{zfflfflfflfflffl}
posterior odds

For the definitions of d, k and s, see Table 1
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2’ are instantiated.5 Figures 4, 5 and 7 illustrate the results obtained in this way for

each of the three pairs of propositions, H, H01 and H001 , for the numerical example

presented in Sect. 6. Again, the expanded representations of the Bayesian network

omit node H02 to avoid cluttering these figures, and to focus the reader’s attention on

the propositional nodes H, H01 and H001 . In the following sections, we discuss each

value in turn, and examine how each is affected by the parameters s, k and d.

7.1 The value of the evidence for pair H

According to Fig. 4, the value of the evidence for pair H is equal to

V ¼ 0:0075

0:0001
¼ 75:

Algebraically, this value is given by

V ¼ ksc2

kc1c2

¼ s
c1

: ð17Þ

The numerator describes the probability of observing the evidence given that at least

one of the crime stains comes from the suspect (proposition D). In this case, the

observation of the evidence is only possible when the two traces come from two

different donors (for which the probability is k), of which the suspect is the donor of

the first trace (probability s), and someone with trait C2 the donor of the second

trace (probability c2). The denominator describes the probability of observing the

evidence given that neither of the crime stains comes from the suspect (proposition
�D). In this case, the observation of the evidence corresponds to the event that the

two traces come from two different donors (probability k), of which one has trait C1

(probability c1) and the other trait C2 (probability c2).

For this pair of propositions, V reduces to a linear function of s, ranging from a

minimum of 0 when s = 0 (i.e., when it is a priori impossible for the suspect to be

the source of trace 1 in a case where the suspect is the source of one of the two

traces), to a maximum of 1
c1

for s = 1 (i.e., when it is a priori certain that the suspect

is the source of trace 1 in the case that the suspect is the source of one of the two

traces). In the latter case, the value of the evidence is the same as in a one-trace

problem, because, just as in a one-trace problem, it becomes certain to observe a

match between crime stain 1 and the suspect’s sample if proposition D is true.

When s = 0.5, this means that it is equally likely for either of the two traces to

come from the suspect in a case where the suspect is one of two crime stain donors.

This is the additional factor multiplied by 1
c1

to produce Eq. (4) derived by Evett

(1987) for the value of one matching stain and one non-matching stain. Underlying

Eq. (4) is therefore the assumption that each of the two traces is equally likely to

come from the suspect if the suspect is the source of one of the two traces. Yet, as

5 Note that the Bayesian network presented here models the probability of Y1 and Y2 as independent of

the suspect’s sample given ‘proposition 2’. This makes the probability of Y1 and Y2 when ‘proposition 2’

and X are instantiated identical to the probability of Y1 and Y2 when only ‘proposition 2’ is instantiated, so

that the instantiation of X is not absolutely necessary in this case.
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seen in the example on page 16, the two crime stains may not have the same prior

probability of coming from the suspect if they were recovered at different locations

on the crime scene. In this case, it is necessary to replace Eq. (4) with Eq. (17), and

assign a more adequate value for s based on the circumstances of the case.

7.2 The value of the evidence for pair H01

For pair H01, Fig. 5 shows that the value of the evidence is equal to

V ¼ 0:00857

0:0001
¼ 85:7;

which, algebraically, corresponds to

V ¼
ks

1�kþks c2

kc1c2

ð18Þ

¼
s

1�kþks

c1

: ð19Þ
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Here, the probability in the numerator is the probability of observing the evidence

given that crime stain 1 comes from the suspect (proposition C1). A priori, there are

two possibilities if proposition C1 is true: either both traces come from the suspect

(for which the probability is 1 - k), or only crime stain 1 comes from the suspect

(for which the probability is ks). The observation of one matching and one non-

matching trace is impossible if both traces come from the suspect. The probability

of observing the evidence is therefore the normalized probability for the latter case

times the probability that the donor of the second trace has trait C2 (probability c2),

as shown in the numerator of Eq. (18). The denominator remains the same as for

pair H. For this pair of propositions, V is an increasing function of both s and k for

all s\ 1 and k\ 1 (Fig. 6). V attains the maximum value of 1
c1

when at least one of

these parameters is equal to 1:

– When k = 1, it is certain that the two traces come from two different sources. In

this case, it is, a priori, certain that crime stain 2 does not come from the suspect

given proposition C1, and the only possibility left under this proposition is that

the suspect is the source of only crime stain 1. The normalized probability in the

numerator of Eq. (18) therefore reduces to 1, so that the probability of observing

the evidence given C1 and X ¼ C1 is equal to 1 9 c2. With the denominator,

this reduces the numerator of V to 1.

– When s = 1, it is a priori certain that trace 1 comes from the suspect if exactly

one of the traces comes from the suspect. The normalized probability in the

numerator of Eq. (18) thus reduces to k. The probability of observing the

evidence is therefore equal to the probability that the two traces come from two

different sources times the probability that the other donor has trait C2; i.e.,

k 9 c2. With the denominator, this reduces the numerator of V to 1.

According to the reasoning in Meester and Sjerps (2003), Eq. (6) was obtained

for k = 1 and s = 0.5. In this case, V is maximum for this pair of propositions

because of k = 1. However, the assumption of k = 1 can only be made in very

specific cases. By definition, this assumption must be made before observing the

evidence, so it can only be based on other information in the case. For example, one

could imagine a case with a crime scene in a location under high surveillance and

cleaned on a regular and scheduled basis: here, a surveillance camera showing two

unidentifiable individuals on the scene on the day the traces were deposited, where

individual 1 was only present in the location of the recovery of crime stain 1, and

individual 2 only in the location of the recovery of crime stain 2, might justify an

assumption of k = 1. Other than these very particular circumstances, it is difficult to

imagine a scenario where such an unmitigated assumption could be made.

To justify an assumption of s = 1, the circumstances must be just as particular.

In this case, they must be such that they make it impossible for the suspect to be the

source of only crime stain 2. This could be the case when it is physically impossible

for the suspect to have been in contact with the surface of crime stain 2. However,

even in these cases it is difficult to justify s = 1 for DNA traces in situations where

secondary transfer is possible (e.g., Goray et al. 2010).
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Fig. 8 The value of the evidence V for pair H001 in function of: a k for d = 0.1, b s for d = 0.1, c k for

d = 0.5, d s for d = 0.5, e k for d = 0.9, and f s for d = 0.9. Here, c1 = 0.01. V is an increasing function

of k and d, and equal to 1
c1

for s = 1. It tends towards a maximum of 1
c1ð1�dÞ for k = 1 and s! 0;s = 0
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In most cases, V will therefore be less than 1
c1
: For s = 0.5, the exact value will

lie somewhere on the dashed curve of Fig. 6a below the maximum point at k = 1.

According to Fig. 6a, the range of values obtained for V for different values of k
is smaller for high values of s. This is because a large value of s leads to a high prior

probability that trace 1 comes from the suspect, regardless of whether there was one

donor or two donors. That is, if the suspect was the only donor, then it is certain that

trace 1 comes from the suspect, and if the suspect was one of two donors, then the

prior probability that trace 1 comes from the suspect (=s) is also high. Therefore a

large value for s leads to a high probability in the numerator of V (Eq. 19),

regardless of the value of k.

This is no longer the case for small values of s. If s is small, the prior probability

that trace 1 comes from the suspect will be determined mostly by the probability

that both traces come from the suspect, i.e., 1 - k. The numerator of V (Eq. 19) will

therefore vary greatly according to the value of k. The greater k, the smaller the

prior probability of a single donor. Since the evidence is such that it rejects the

hypothesis of a single donor, the probability of observing the evidence given

proposition C1 (i.e., the numerator of V) is greater when the prior probability of a

single donor is small. That is, a small prior probability for a single donor increases

the normalized probability of the event that only crime stain 1 comes from the

suspect, figuring in the numerator of V. Thus, the overall value of the evidence is an

increasing function of k.

Figure 6b shows that the range of values obtained for V for different values of s
remains 0 to 1

c1
; regardless of the value of k. This is because the evidence (a match

with crime stain 1 and a non-match with crime stain 2) is such that its value will

always be 0 in a case where it is impossible for crime stain 1 to come from the

suspect, given that there were two different donors (i.e., when s = 0), and equal to 1
c1

whenever it is certain that crime stain 1 comes from the suspect, given that there

were two different donors (i.e., when s = 1). Thus, the value of the evidence is an

increasing function of s.

7.3 The value of the evidence for pair H001

According to Fig. 7, the value of the evidence for pair H001 is equal to

V ¼ 0:00857

9:86� 10�5
¼ 86:9;

which is computed by

V ¼
ks

1�kþks c2

kc1
1�d

ð1�sÞkdþ1�d c2

ð20Þ

¼
s

1�kþks

c1
1�d

ð1�sÞkdþ1�d

ð21Þ
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Here, the probability in the numerator is the same as for pair H01. The probability in

the denominator is the probability of observing the evidence given that crime stain 1

does not come from the suspect (proposition �C1). A priori, there are two possibilities

if proposition �C1 is true: either the suspect is only the source of crime stain 2 [for

which the probability is (1 - s)kd], or neither of the two traces comes from the

suspect (for which the probability is 1 - d). The observation of the evidence is only

possible in the latter case. Therefore, the probability of the evidence is the proba-

bility that the two traces come from two different donors, of which one has trait C1

and the other trait C2; i.e., kc1c2, times the normalized probability that neither of the

traces comes from the suspect (Eq. 20).

For this pair of propositions, V is a function of s, k and d (Fig. 8). Just like for

pair H01, V is equal to 1
c1

whenever s = 1. In this case, the numerator of V reduces to

kc2 as explained above for pair H01, and the denominator of V becomes equal to

kc1c2, because the possibility of the suspect being the source of crime stain 2 when

there are two different crimes stain donors becomes impossible. With the numerator,

the denominator of V therefore reduces to c1.

Yet, unlike for pair H01, k = 1 no longer produces V ¼ 1
c1

(e.g., Fig. 8a, c, e). This

is because k = 1 (i.e., there were two different donors) does not, a priori, exclude

the possibility that the suspect is the source of the second trace given that crime

stain 1 does not come from the suspect (proposition �C1). For k = 1, V is actually a

decreasing function of s, attaining a minimum of 1
c1

when s = 1 (Fig. 8b, d, f). This

is because the possibility of the suspect being only the source of crime stain 2

becomes less probable as s increases, thus increasing the normalized probability of

the event that neither of the traces comes from the suspect. This increases the

denominator of V, and decreases the whole value of the evidence. However, when

s! 0; s = 0, the probability of the suspect being only the source of crime stain 2

increases, which decreases the normalized probability of neither trace coming from

the suspect. This decreases the denominator of V, and increases the whole value of

the evidence. Thus the maximum of V for this pair of propositions is greater than 1
c1

(which is the maximum value for the other two pairs of propositions):

when s! 0 and k ¼ 1; V ! 1

c1ð1� dÞ : ð22Þ

In other words, for s\ 1, the possibility that the suspect is the source of crime stain

2 is not excluded. Yet, if the suspect is not the source of crime stain 1 (proposition
�C1), the evidence is only possible when neither stain comes from the suspect

(probability of 1 - d), so that the factor 1 - d has an increasing influence in the

denominator of V for s! 0; s = 0.

This effect becomes more pronounced as d increases (Fig. 8b, d, f). A larger

value of d produces a smaller probability in the denominator of V, and therefore a

greater value of V.

The value of the evidence proposed by Meester and Sjerps (2003) for this pair of

propositions (Eq. 7) is equal to
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1

c1
1�d

1
2
dþ1�d

:

Again, this value assumes k = 1 and s = 0.5. Its application is therefore just as

limited by the assumption k = 1 as the value of the evidence they propose for pair

H01 (see page 24). This value is the point at s = 0.5 on the solid lines in Fig. 8b, d, f.

With k\ 1, V would be smaller, lying on one of the other curves in these graphs.

7.4 Comparison of the values of the evidence

As Meester and Sjerps (2003) concluded, pairs of differently formulated proposi-

tions for the two-trace problem lead to different values of the evidence. For the

example presented, the value of the evidence is greatest for pair H001 , and smallest for

pair H. This is because the probability of observing a match with stain 1 and a non-

match with stain 2 is greatest given proposition C1 and smallest given proposition
�C1:

The derived formulae for calculating the value of the evidence show that this

value is a function of s for all three pairs of propositions, a function of k for two of

the three pairs (pairs H01 and H001 ), and a function of d for one pair (pair H001 ). In the

two-trace problem, the value of the evidence is therefore not based solely on the

analytical results provided by the laboratory analyses of the collected evidence, that

is, on the match probabilities of these results in the relevant population of possible

sources. In addition, the value depends on parameters assessed on the basis of the

case circumstances prior to observing the evidence. The more specific the

competing pair of propositions are, the more parameters will determine the value

of the evidence for these propositions. That is, propositions focusing only on one of

the two traces require additional information regarding the total number of donors

on the crime scene and/or the prior assumption on the suspect’s implication as a

donor of any of the traces on the scene. To accurately evaluate the value of the

evidence in a two-trace problem, an evaluator’s knowledge must therefore extend

beyond the observations made on the evidence, to the facts regarding the case

circumstances.

8 Discussion and conclusions

The role of the forensic scientist is to evaluate the value of the evidence (e.g., Evett

1998). In the forensic two-trace problem, this has been somewhat perplexing since

three different formulations of the competing pair of propositions lead to three

different quantifications of this value (Meester and Sjerps 2003).

In this paper, we have provided a more general vision of the entire two-trace

problem by constructing a Bayesian network that includes each of the three pairs of

propositions as a separate node in the model. Through an illustrative example, we

demonstrate how to use the network to evaluate the value of the evidence for each

pair of propositions. The different structural relationships between each of the pairs
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and the evidence inevitably leads to different values of the evidence, each

addressing the two-trace problem from a different angle.

The flexibility of the value of the evidence to adapt to each pair of propositions is

an advantage, not an inconvenience. A forensic scientist’s task is to evaluate the

relative support provided by the evidence for one proposition with respect to an

alternative proposition (i.e., the value of the evidence) (e.g., Evett 1998). And this,

he/she must do with regard to the very particular framework of circumstances that

reflects the case, and for the precise propositions of interest to the court. Therefore,

it is important that the propositions be chosen and formulated with care, and that

these be based on the particular circumstances related to the case. The different

values of the evidence then complement each other, providing the scientist with a

range of formulae from which he/she can select the most appropriate in view of the

pair of propositions of interest to the court. The crucial issue is to understand what

assumptions lie behind each formula, in order to correctly use it in the context of the

case. In this respect, the Bayesian network offers transparency through its graphical

representation of the dependence relationships among the variables. In particular, it

models the dependency of each of the random variables on three unknown

parameters:

– d, the probability that at least one trace comes from the suspect,

– k, the probability that the two traces come from two different donors (Dawid

2004), and

– s, the probability that trace 1 comes from the suspect in a case where the suspect

is one of two different donors.

The value of the evidence is a function of s for all three pairs of propositions, a

function of k for the two pairs where the prosecutor’s proposition relates only to one

trace, and [as presented in Meester and Sjerps (2003)] a function of d for the pair

where the defence’s proposition relates only to one trace. To accurately evaluate the

value of the evidence, an evaluator is therefore obliged to have information on the

case circumstances. If it is difficult to obtain precise assessments for the unknown

parameters, the Bayesian network environment allows the user to specify subjective

probability distributions over each parameter space.

Note that the model presented in this paper is still based on several assumptions,

notably on the independence between the three unknown parameters. The validity of

this assumption will depend on the circumstantial information available in a case,

and on the evaluator’s personal assessments of the parameters. The results of this

work justify a careful examination and further study on the dependence relation-

ships between these parameters in cases where the assumption of independence no

longer holds.

Notwithstanding, the major advantage of using the Bayesian network is when the

evidence of the two traces must be combined with other types of evidence. The

fundamental structure of this Bayesian network allows for an extension to more than

two traces, as well as an extension to address activity level propositions (Gittelson

et al. 2012). Thanks to its graphical architecture, this model can be inserted as a

component part in a larger network for a more complex inference problem. Given

that most forensic cases involve numerous traces of different types of evidence, this
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possibility is an indispensable property for all practical applications. The generic

Bayesian network presented in this paper therefore offers a transparent and practical

tool for tackling two-trace problems in forensic casework.
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