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Abstract

In December 1924 Wolfgang Pauli proposed the idea of an inner degree of free-
dom of the electron, which he insisted should be thought of as genuinely quan-
tum mechanical in nature. Shortly thereafter Ralph Kronig and, independently,
Samuel Goudsmit and George Uhlenbeck took up a less radical stance by sug-
gesting that this degree of freedom somehow corresponded to an inner rotational
motion, though it was unclear from the very beginning how literal one was actu-
ally supposed to take this picture, since it was immediately recognised (already
by Goudsmit and Uhlenbeck) that it would very likely lead to serious problems
with Special Relativity if the model were to reproduce the electron’s values for
mass, charge, angular momentum, and magnetic moment. However, probably
due to the then overwhelming impression that classical concepts were generally
insufficient for the proper description of microscopic phenomena, a more de-
tailed reasoning was never given. In this contribution I shall investigate in some
detail what the restrictions on the physical quantities just mentioned are, if they
are to be reproduced by rather simple classical models of the electron within the
framework of Special Relativity. It turns out that surface stresses play a decisive
role and that the question of whether a classical model for the electron does in-
deed contradict Special Relativity can only be answered on the basis of anexact
solution, which has hitherto not been given.
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1 Introduction

The discovery of electron spin is one of the most interesting stories in the history of
Quantum Mechanics; told e.g. in van der Waerden’s contribution to the Pauli Memorial
Volume ([10], pp. 199-244), in Tomonaga’s book [38], and also in various first-hand
reports [39][16] [24]. This story also bears fascinating relations to the history of un-
derstanding Special Relativity. One such relation is given by Thomas’ discovery of
what we now call “Thomas precession” [36][37], which explained for the first time
the correct magnitude of spin-orbit coupling and hence the correct magnitude of the
fine-structure split of spectral lines, and whose mathematical origin can be traced to
precisely that point which marks the central difference between the Galilei and the
Lorentz group (this is e.g. explained in detail in Sects. 4.3-4.6 of [14]). In the present
paper I will dwell a little on another such connection to Special Relativity.

As is widely appreciated, Wolfgang Pauli is a central figure, perhapsthemost cen-
tral figure, in the story of spin . Being the inventor of the idea of an inner (quantum
mechanical) degree of freedom of the electron, he was at the same time the strongest
opponent to attempts to relate it to any kind of interpretation in terms of kinematical
concepts that derive from the picture of an extended material object in a state of rota-
tion. To my knowledge, Pauli’s hypothesis of this new intrinsic feature of the electron,
which he cautiously called “a classical non-describable two valuedness”, was the first
instance where a quantum-mechanical degree of freedom was claimed to exist without
a corresponding classical one. This seems to be an early attempt to walk without the
crutches of some ‘correspondence principle’. Even though the ensuing developments
seem to have re-installed – mentally at least – the more classical notion of a spinning
electron through the ideas of Ralph Kronig (compare section 4 of van der Waerden’s
contribution to [10], pp. 209-216) and, independently, Samuel Goudsmit and George
Uhlenbeck [17][18], Pauli was never convinced, despite the fact that he lost the battle
against Thomas1 and declared “total surrender” in a letter to Bohr written on March
12. 1926 ([22], Vol. I, Doc. 127, pp. 310). For Pauli the spin of the electron remained
an abstract property which receives its ultimate and irreducible explanation in terms
of group theory, as applied to the subgroup2 of spatial rotations (or its double cover)
within the full symmetry group of space-time, may it be the Galilei or the Lorentz
group (or their double cover).3 In this respect, Pauli’s 1946 Nobel Lecture contains the
following instructive passage (here and throughout this paper I enclose my annotations
to quotes within square brackets):

Although at first I strongly doubted the correctness of this idea [of the
electron spin in the sense of Kronig, Goudsmit and Uhlenbeck] because of
its classical-mechanical character, I was finally converted to it by Thomas’

1 At this point Frenkel’s remarkable contribution [11] should also be mentioned, which definitely
improves on Thomas’ presentation and which was motivated by Pauli sending Frenkel Thomas’
manuscript, as Frenkel acknowledges in footnote 1 on p. 244 of [11]. A more modern account of
Frenkel’s work is given in [35].

2 It is more correct to speak of the conjugacy class of subgroups of spatial rotations, since there is no
(and cannot be) a single distinguished subgroup group of ‘spatial’ rotations in Special Relativity.

3 Half-integer spin representations only arise either as proper ray-representations (sometimes called
‘double-valued’ representations) of spatial rotationsSO(3) or as faithful true representations (i.e.
‘single-valued’) of its double-cover groupSU(2), which are subgroups of the Galilei and Lorentz
groups or their double-cover groups respectively.
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calculations on the magnitude of doublet splitting. On the other hand,
my earlier doubts as well as the cautions expression�classically non-
describable two-valuedness� experienced a certain verification during
later developments, since Bohr was able to show on the basis of wave
mechanics that the electron spin cannot be measured by classically de-
scribable experiments (as, for instance, deflection of molecular beams in
external electromagnetic fields) and must therefore be considered as an
essential quantum-mechanical property of the electron.4 ([25], p. 30)

Figure 1: Part of a letter by L.H. Thomas to S. Goudsmit
dated March 25th 1926, taken from [15]

This should clearly not be
misunderstood as saying that
under the impression of Thomas’
calculations Pauli accepted spin
in its ‘classical-mechanical’ in-
terpretation. In fact, he kept on
arguing fiercely against what in
a letter to Sommerfeld from De-
cember 1924 he called “model
prejudices” ([22], Vol. I, Doc. 72,
p. 182) and did not refrain from
ridiculing the upcoming idea of
spin from the very first mo-
ment (cf. Fig. 1). What Pauli
accepted was the idea of the
electron possessing an intrinsic
magnetic moment and angular
momentum, the latter being in-
terpretedexclusivelyin a formal
fashion through its connection
with the generators of the subgroup of rotations within the Lorentz group, much like
we nowadays view it in modern relativistic field theory. To some extent it seems fair
to say that, in this case, Pauli was a pioneer of the modern view according to which
abstract concepts based on symmetry-principles are seen as primary, whereas their
concrete interpretation in terms of localised material structures, to which e.g. the kine-
matical concept of ‘rotation’ in the proper sense applies, is secondary and sometimes
even dispensable. But one should not forget that this process of emancipation was
already going on in connection with the notion of classical fields, as Einstein used
to emphasise, e.g., in his 1920 Leiden address “Ether and the Theory of Relativity”5

([34], Vol. 7, Doc. 38, pp. 308-320). We will come back to this point below.6

Besides being sceptical in general, Pauli once also made aspecificremark as to the
inadequateness of classical electron models; that was three years after Thomas’ note, in
a footnote in the addendum to his survey article “General Foundations of the Quantum

4 At this point Pauli refers to the reports of the Sixth Physics Solvay Conference 1932.
5 German original:Äther und Relativiẗatstheorie.
6 The case of a classical electromagnetic field is of particular interesting insofar as the suggestive picture

provided by Faraday’s lines of force, which is undoubtedly helpful in many cases, also provokes to
view these lines as objects in space, like ropes under tension, which can be attributed a variable state
of motion. But this turns out to be a fatal misconception.
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Theory of Atomic Structure”7, that appeared 1929 as chapter 29 in ‘Müller-Pouillets
Lehrbuch der Physik’. There he said:

Emphasising the kinematical aspects one also speaks of the ‘rotating elec-
tron’ (English ‘spin-electron’). However, we do not regard the conception
of a rotating material structure to be essential, and it does not even recom-
mend itself for reasons of superluminal velocities one then has to accept.
([21], Vol. 1, pp. 721-722, footnote 2)

Interestingly, this is precisely the objection that, according to Goudsmit’s recollec-
tions [15], Lorentz put forward when presented with Goudsmit’s and Uhlenbeck’s idea
by Uhlenbeck, and which impressed Uhlenbeck so much that he asked Ehrenfest for
help in withdrawing the already submitted paper [15]. He did not succeed, but the
printed version contains at least a footnote pointing out that difficulty:

The electron must now assume the property (a) [ag-factor of 2], which
LANDÉ attributed to the atom’s core, and which is hitherto not understood.
The quantitative details may well depend on the choice of model for the
electron. [...] Note that upon quantisation of that rotational motion [of the
spherical hollow electron], the equatorial velocity will greatly exceed the
velocity of light. ([17], p. 954)

This clearly says that a classical electron model cannot reproduce the observable quan-
tities, mass, charge, angular momentum, and magnetic moment, without running into
severe contradictions with Special Relativity.8 The electron model they had in mind
was that developed by Abraham in his 1903 classic paper on the “Principles of Elec-
tron Dynamics” [1] (cited in footnote 2 on p. 954 of [17]). Since then it has become
standard textbook wisdom that classical electron models necessarily suffer from such
defects (compare, e.g., [5], p. 155) and that, even in quantum mechanics, “the idea of
the rotating electron is not be taken literally”, as Max Born once put it ([5], p. 188).
Modern references iterate this almost verbatim:

The term ‘electron spin’ is not to be taken literally in the classical sense as
a description of the origin of the magnetic moment described above. To be
sure, a spinning sphere of charge can produce a magnetic moment, but the
magnitude of the magnetic moment obtained above cannot be reasonably
modelled by considering the electron as a spinning sphere.
(Taken from〈 http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html〉)

In this contribution I wish to scrutinise the last statement. This is not done in an
attempt to regain respect for classical electron models for modern physics, but rather
to illuminate in some detail a specific and interesting case of the (well know) general
fact that progress is often driven by a strange mixture of good and bad arguments,
which hardly anybody cares to separate once progress is seen to advance in the ‘right
direction’. Also, the issues connected with an inner rotational motion of the electron

7 German original: Allgemeine Grundlagen der Quantentheorie des Atombaues.
8 The phrase “upon quantisation” in the above quotation is to be understood quantitatively, i.e. as “upon

requiring the spin angular-momentum to be of magnitude ¯h/2 and the magnetic moment to be one
magneton (g = 2)”.
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are hardly mentioned in the otherwise very detailed discussion of classical electron
theories in the history-of-physics literature (compare [23][20]). Last but not least,
the present investigation once more emphasises the importance of special-relativistic
effects due to stresses, which are not necessarily connected with large velocities, at
least in a phenomenological description of matter. But before giving a self-contained
account, I wish to recall Pauli’s classic paper of December 1924, where he introduced
his famous “classically non-describable two-valuedness”.

2 A classically non-describable two-valuedness

2.1 Preliminaries

We begin by recalling the notion ofgyromagnetic ratio. Consider a (not necessarily
continuous) distribution of mass and charge in the context of pre-Special-Relativistic
physics, like, e.g., a charged fluid or a finite number of point particles. Let~v(~x) denote
the corresponding velocity field with respect to an inertial frame andρq andρm the
density distributions of electric charge and mass corresponding to the total chargeq

and massm0 respectively. The total angular momentum is given by (× denotes the
antisymmetric vector product)

~J =

∫
d3x ρm(~x)

(
~x×~v(~x)

)
. (1)

The electric current distribution,~j(~x) := ρq~v(~x), is the source of a magnetic field
which at large distances can be approximated by a sum of multipole components of
increasingly rapid fall-off for large distances from the source. The lowest possible
such component is the dipole. It has the slowest fall-off (namely1/r3) and is therefore
the dominant one at large distances. (A monopole contribution is absent due to the
lack of magnetic charges.) The dipole field is given by9

~Bdipole(~x) :=
(µ0

4π

) 3~n(~n · ~M) − ~M

r3
, (2)

wherer := ‖~x‖, ~n := ~x/r and where~M denotes the magnetic dipole moment of
the current distribution, which is often (we shall follow this) just calledthemagnetic
moment:

~M := 1
2

∫
d3x ρq(~x)

(
~x×~v(~x)

)
. (3)

Note the similarity in structure to (1), except for the additional factor of 1/2 in front
of (3).

Thegyromagnetic ratioof a stationary mass and charge current-distribution ,Rg,
is defined to be the ratio of the moduli of~M and~J:

Rg :=
‖ ~M‖
‖~J‖

. (4)

9 We use SI units throughout so that the electric and magnetic constantsε0 andµ0 will appear explicitly.
Note thatε0µ0 = 1/c2 and thatµ0 = 4π · 10−7 kg ·m · C−2 exactly, where C stands for ‘Coulomb’,
the unit of charge.

6



We further define a dimensionless quantityg, called thegyromagnetic factor, by

Rg =: g
q

2m0
. (5)

These notions continue to make sense in non-stationary situations if~M and~J are
slowly changing (compared to other timescales set by the given problem), or in (quasi)
periodic situations if~M and~J are replaced by their time averages, or in mixtures of
those cases where, e.g.,~J is slowly changing and~M rapidly precesses around~J (as in
the case discussed below).

An important special case is given if charge and mass distributions are strictly
proportional to each other, i.e.,ρq(~x) = λρm(~x), whereλ is independent of~x. Then
we have

Rg =
q

2m0
⇒ g = 1 . (6)

In particular, this would be the case if charge and mass carriers were point particles of
the same charge-to-mass ratio, likeN particles of one sort, where

ρq(~x) =
q

N

N∑
i=1

δ(3)(~x − ~xi) and ρm(~x) =
m0

N

N∑
i=1

δ(3)(~x − ~xi) . (7)

After these preliminaries we now turn to Pauli’s paper.

2.2 Pauli’s paper of December 1924

On December 2nd 1924, Pauli submitted a paper entitled “On the influence of the
velocity dependence of the electron mass upon the Zeeman effect”10 ([21], Vol. 2,
pp. 201-213) to the Zeitschrift für Physik. In that paper he starts with the general
observation that for a point particle of rest-massm0 and chargeq, moving in a bound
state within a spherically symmetric potential, the velocity dependence of mass,

m = m0/
√

1 − β2 , (8)

affects the gyromagnetic ratio. Hereβ := v/c, wherev := ‖~v‖. The application he
aims for is the anomalous Zeeman effect for weak magnetic fields, a topic on which
he had already written an earlier paper, entitled ’On the Rules of the anomalous Zee-
man Effect’11 ([21], Vol. 2, pp. 151-160), in which he pointed out certain connections
between the weak-field case and the theoretically simpler case of a strong magnetic
field. Note that “weak” and “strong” here refers to the standard set by the inner mag-
netic field caused by the electrons orbital motion, so that “weak” here means that the
Zeeman split is small compared to the fine-structure.

Since the charge is performing a quasi periodic motion12, its magnetic moment
due to its orbital motion is given by the time average (I will denote the time average of
a quantityX by 〈X〉)

〈 ~M〉 = q 〈~x×~v〉/2 . (9)

10 German original:Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den
Zeemaneffekt.

11 German original:Über die Gesetzm̈aßigkeiten des anomalen Zeemaneffekts.
12 Due to special-relativistic corrections, the bound orbits of a point charge in a Coulomb field are not

closed. The leading order perturbation of the ellipse that one obtains in the Newtonian approximation
is a prograde precession of its line of apsides.
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On the other hand, its angular momentum is given by

~J = m (~x×~v) = m0 (~x×~v)/
√

1 − β2 . (10)

It is constant if no external field is applied and slowly precessing around the magnetic
field direction if such a field is sufficiently weak, thereby keeping a constant modulus.
Hence we can write

〈~x×~v〉 =
~J

m0

〈√
1 − β2

〉
, (11)

where the averaging period is taken to be long compared to the orbital period of the
charge, but short compared to the precession period of~J if an external magnetic field
is applied. This gives

‖〈 ~M〉‖
‖~J‖

=
|q|

2m0
γ , (12)

where13

γ :=
〈√

1 − β2
〉

. (13)

More specifically, Pauli applies this to the case on an electron in the Coulomb field
of a nucleus. Hencem0 from now on denotes the electron mass. Its charge isq = −e,
and the charge of the nucleus isZe. Using the virial theorem, he then gives a very
simple derivation of

γ = 1 + W/m0c
2 , (14)

whereW denotes the electron’s total energy (kinetic plus potential). For the quantised
one-electron problem, an explicit expression forW in terns of the azimuthal quantum
numberk (j+1 in modern notation, wherej is the quantum number of orbital angular-
momentum) and the principal quantum numbern (n = nr + k, wherenr is the radial
quantum number) was known since Sommerfeld’s 1916 explanation of fine structure
(see, e.g., [32], p. 53, formula (17)). Hence Pauli could further write:

γ =

1 +
α2Z2(

n − k +
√

k2 − α2Z2
)2


−1/2

≈ 1 −
α2Z2

2n2
, (15)

where the approximation refers to small values ofα2Z2 and whereα := e2/4πε0h̄c ≈
1/137 is the fine-structure constant. For higherZ one obtains significant deviations
from the classical valueγ = 1. For example,Z = 80 givesg = 0.812.

The relativistic correction factorγ affects the angular frequency14 with which the
magnetic moment created by the electron’s orbital motion will precess in a magnetic
field of strengthB. This angular frequency is now given byγω0, whereω0 is the
Larmor (angular) frequency:

ω0 = ge
eB

2m0
. (16)

13 This is Pauli’s notation. Do not confuse thisγ with the Lorentz factor1/
p

1 − β2, which nowadays
is usually abbreviated byγ, though not in the present paper.

14 We will translate all proper frequencies in Pauli’s paper into angular frequencies. Hence there are
differences in factors of2π. This is also related to our usage of ¯h := h/2π rather thanh (Planck’s
constant).
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Here we explicitly wrote down the gyromagnetic ratio,ge, for of the electron’s orbital
motion even thoughge = 1, just to keep track of its appearance. The energy for the
interaction of the electron with the magnetic field now likewise receives a factor ofγ.

Pauli now applies all this to the “core model” for atoms with a single valence elec-
tron.15 According to the simplest version of this model, the total angular momentum,
~J, and the total magnetic moment,~M, are the vector sums of the angular and mag-
netic momenta of the core (indicated here by a subscriptc) and the valence electron
(indicated here by a subscripte):

~J = ~Jc +~Je , (17a)

~M = ~Mc + ~Me . (17b)

The relations between the core’s and electron’s magnetic momenta on one side, and
their angular momenta on the other, are of the form

~Mc =
egc

2m0

~Jc , (18a)

~Me =
ege

2m0

~Je . (18b)

The point is now that~M is not a multiple of~J if ge 6= gc. Assuming a constant~J
for the time being, this means that~M will precess around~J. Hence~M is the sum of
a time independent part,~M‖, parallel to~J and a rotating part,~M⊥, perpendicular to~J.

The time average of~M⊥ vanishes so that the effective magnetic moment is just given
by ~M‖. Using (17) and (18), and resolving scalar products into sums and differences
of squares,16 we get

~M‖ =
~J · ~M

J2
~J

=
e

2m0

ge(~J ·~Je) + gc(~J ·~Jc)

J2
~J

=
e

2m0

ge(J
2 + J2

e − J2
c) + gc(J

2 + J2
c − J2

e)

2J2
~J

=
e

2m0

{
ge +

(
gc − ge

)J2 + J2
c − J2

e

2J2

}
~J .

(19)

Setting againge = 1, the expression in curly brackets gives the gyromagnetic factor of
the total system with respect to the effective magnetic moment. Its quantum analog is
obtained by replacingJ2 → J(J + 1) and correspondingly forJ2

c andJ2
e, which is then

called theLand́e factorgL. Hence

gL := 1 + (gc − 1)
J(J + 1) + Jc(Jc + 1) − Je(Je + 1)

2J(J + 1)
. (20)

All this is still right to a good approximation if~J is not constant, but if its frequency of
precession around the direction of the (homogeneous) external field is much smaller

15 Instead of the more modern expression “valence electron” Pauli speaks of “light electron” (German
original: Lichtelektron). Sometimes the term “radiating electron” is also used (e.g., in [38]).

16 Like, e.g.,~J ·~Je = −1
2

`
(~J −~Je)2 − J2 − J2

e

´
= −1

2

`
J2
c − J2 − J2

e

´
.
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than the precession frequency of~M around~J, which is the case for sufficiently small
external field strength .

Basically through the work of Landé it was known thatgc = 2 fitted the observed
multiplets of alkalies and also earth alkalies quite well. This value clearly had to
be considered anomalous, since the magnetic moment and angular momentum of the
core were due to the orbital motions of the electrons inside the core, which inevitably
would lead togc = 1, as explained in section 2.1. This was a great difficulty for the
core model at the time, which was generally referred to as the “magneto-mechanical
anomaly”. Pauli pointed out that one could either say that the physical value of the
core’s gyromagnetic factor is twice the normal value, or, alternatively, that it is ob-
tained by adding 1 to the normal value.

These two ways of looking at the anomaly suggested two different ways to account
for the relativistic correction, which should only affect that part of the magnetic mo-
ment that is due to the orbital motion of the inner electrons, that is, the ‘normal’ part of
gc. Hence Pauli considered the following two possibilities for a relativistic correction
of gc, corresponding to the two views just outlined:

gc = 2 · 1 → gc = 2 · γ or gc = 1 + 1 → gc = 1 + γ . (21)

Then comes his final observation, that neither of these corrections are compatible
with experimental results on high-Z elements by Runge, Paschen and Back, which,
like the low-Z experiments, resulted in compatibility with (20) only ifgc = 2. In a
footnote Pauli thanked Landé and Back for reassuring him that the accuracy of these
measurements where about one percent. Pauli summarises his findings as follows

If one wishes to keep the hypothesis that the magneto-mechanical
anomaly is also based in closed electron groups and, in particular, the
K shell, then it is not sufficient to assume a doubling of the ratio of the
group’s magnetic moment to its angular momentum relative to its classi-
cal value. In addition, one also needs to assume a compensation of the
relativistic correction. ([21], Vol. 2, p. 211)

After some further discussion, in which he stresses once more the strangeness17 that
lies in gc = 2, he launches the following hypothesis, which forms the main result of
his paper:

The closed electron configurations shall not contribute to the magnetic
moment and angular momentum of the atom. In particular, for the alka-
lies, the angular momenta of, and energy changes suffered by, the atom in
an external magnetic field shall be viewed exclusively as an effect of the
light-electron, which is also regarded as the location [“der Sitz”] of the
magneto-mechanical anomaly. The doublet structure of the alkali spec-
tra, as well as the violation of the Larmor theorem, is, according to this
viewpoint, a result of a classically indescribable two-valuedness of the
quantum-theoretic properties of the light-electron. ([21], Vol. 2, p. 212)

17 For example: how can one understand the sudden doubling that the gyromagnetic factor of an outer
electron must suffer when joining the core?
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Note that this hypothesis replaces the atom’s core as carrier of angular momentum by
the valence electron. This means that (17), (18), and (20) are still valid, except that the
subscriptc (for “core”) is now replaced by the subscripts (for “spin”, anticipating its
later interpretation), so that we now have a coupling of the electron’s orbital angular
momentum (subscripte) to its intrinsic angular momentum (subscripts). In (20), with
gc replaced bygs, one needs to setgs = 2 in order to fit the data. But now, as long
as no attempt is made to relate the intrinsic angular momentum and magnetic moment
of the electron to a common origin, there is no immediate urge left to regard this
value as anomalous. Also, the problem in connection with the relativistic corrections
(21) now simply disappeared, since it was based on the assumption that~Jc and ~Mc

were due to orbital motions of inner (and hence fast) electrons, whereas in the new
interpretation only~Je and ~Me are due to orbital motion of the outer (and hence slow)
valence electron.

It is understandable that this hypothesis was nevertheless felt by some to lack pre-
cisely that kind of ‘explanation’ that Pauli deliberately stayed away from: a common
dynamical origin of the electron’s inner angular momentum and magnetic moment.
From here the ‘story of spin’ takes its course, leading to the hypothesis of the rotating
electron, first conceived by Kronig and a little later, and apparently independently, by
Goudsmit and Uhlenbeck, and finally to its implementation into Quantum Mechan-
ics by Pauli [26] (“Pauli Equation” for the non-relativistic case) and Dirac [8] (fully
Lorentz invariant “Dirac Equation”). Since then many myths surrounding spin built
up, like that the concept of spin, and in particular the valueg = 2, was irreconcilable
with classical (i.e. non-quantum) physics and that only the Dirac equation naturally
predictedg = 2. As for the latter statement, it is well known that the principle of
minimal coupling applied to the Pauli equation leads just as natural tog = 2 as in case
of the Dirac equation (cf. [12] and [9], p. 37). Also, the very concept of spin has as
natural a home in classical physics as in quantum physics if one starts from equally
general and corresponding group-theoretic considerations.18

For the rest of this contribution I wish to concentrate on the particular side aspect
already outlined in the introduction. Let me repeat the question: In what sense do the
actual values of the electron parameters, mass, charge, intrinsic angular-momentum,
and gyromagnetic factor, resist classical modelling in the framework of Special Rela-
tivity?

18 The spaces of states in quantum and classical mechanics are Hilbert spaces and symplectic manifolds
respectively. Anelementary systemis characterised in Quantum Mechanics by the requirement that the
group of space-time symmetries act unitarily and irreducibly on its space of states. The corresponding
requirement in Classical Mechanics is that the group action be symplectic and transitive [3]. The
classification of homogeneous (with respect to the space-time symmetry group, be it the Galilei or
Lorentz group) symplectic manifolds [2][19] leads then as natural to a classical concept of spin as
the classification of unitary irreducible (ray-) representations leads to the quantum-mechanical spin
concept. The mentioned classical structures are related to the quantum structures by various concepts
of ‘quantisation’ like ‘geometric quantisation’. Compare [41], in particular Chap. 6 on elementary
systems.
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3 Simple models of the electron

In this section we will give a self-contained summary of the basic features of sim-
ple electron models. The first model corresponds to that developed by Abraham [1],
which was mentioned by Goudsmit and Uhlenbeck as already explained.19 We will
see that this model can only account forg factors in the interval between3/2 and11/6

if superluminal speeds along the equator are to be avoided. We also critically discuss
the assumption made by Goudsmit and Uhlenbeck that this (i.e. Abraham’s) model
predictsg = 2. Since this model neglects the stresses that are necessary to prevent
the charge distribution from exploding, we also discuss a second model in which such
stresses (corresponding to a negative pressure in the electron’s interior) are taken into
account, at least in some slow-rotation approximation. This model, too, has been dis-
cussed in the literature before [7]. Here it is interesting to see that due to those stresses
significantly higher values ofg are possible, though not for small charges as we will
also show.20 Finally we discuss the restriction imposed by the condition of energy
dominance, which basically says that the speed of sound of the stress-supporting ma-
terial should not exceed the speed of light. This sets an upper bound ong given by
9/4. Note that all these statements are made only in the realm where the slow-rotation
approximation is valid. I do not know of any fully special-relativistic treatment on
which generalisations of these statements could be based. In that sense, the general
answer to our main question posed above is still lacking.

3.1 A purely electromagnetic electron

Consider a homogeneous charge distribution,ρ, of total chargeQ on a sphere of radius
R centred at the origin (again we writer := ‖~x‖ and~n := ~x/r):

ρ(~x) =
Q

4πR2
δ(r − R) . (22)

For the moment we shall neglect the rest mass of the matter that sits atr = R and
also the stresses it must support in order to keep the charge distribution in place. The
charge is the source of the scalar potential

φ(~x) =
1

4πε0

∫
ρ(~x ′)

‖~x − ~x ′‖
d3x ′ =

Q

4πε0 R

{
1 for r < R ,

R/r for r > R ,
(23)

with corresponding electric field

~E(~x) =
Q

4πε0 R2

{
~0 for r < R ,

~n for r > R .
(24)

19 Since we are mainly concerned with the spin aspects, we will ignore the differences between Abra-
ham’s and, say, Lorentz’ model (rigid versus deformable), which become important as soon as trans-
lational motions are considered. We mention Abraham not for any preference for his ‘rigid’ model,
but for the reason that he considered rotational motion explicitly. Its interaction with the translational
motion was further worked out in detail by Schwarzschild in [30], but this is not important here.

20 This is another example of a special-relativistic effect which has nothing to do with large velocities.
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Let now the charge distribution rotate rigidly with constant angular velocity~ω. This
gives rise to a current density

~j(~x) = (~ω× ~x) ρ(~x) =
Q

4πR2
(~ω× ~x) δ(r − R) , (25)

which, in turn, is the source of a vector potential according to

~A(~x) =
µ0

4π

∫ ~j(~x ′)

‖~x − ~x ′‖
d3x ′ =

µ0Q

12πR
~ω×

{
~x for r < R ,

~x (R/r)3 for r > R .
(26)

Hence, in the rotating case, there is an additional magnetic field in addition to the
electric field (24):

~B(~x) =
µ0

4π

{
2 ~M/R3 for r < R ,(
3~n(~n · ~M) − ~M

)
/r3 for r > R ,

(27)

where
~M := 1

3QR2 ~ω . (28)

For r < R this is a constant field in~ω direction. Forr > R it is a pure dipole field (i.e.
all higher multipole components vanish) with moment (28).

3.1.1 Energy

The general expression for the energy of the electromagnetic field is21

E =

∫
R3

1
2

(
ε0E

2(~x) + 1
µ0

B2(~x)
)

d3x . (29)

For the case at hand, the electric and magnetic contributions to the energy are respec-
tively given by

Ee =
Q2

8πε0 R

{
0 from r < R

1 from r > R
(30a)

Em =
µ0

4π
M2/R3

{
2/3 from r < R

1/3 from r > R .
(30b)

The total magnetic contribution can be written as

Em =
µ0

4π
M2/R3 = 1

2 I ω2 , (31)

where
I :=

µ0

18π
Q2R (32)

may be called theelectromagnetic moment of inertia[1]. It has no mechanical inter-
pretation in terms of a rigid rotation of the electrostatic energy distribution (see below)!

21 From now on we shall denote the modulus of a vector simply by its core symbol, i.e.,‖~E‖ = E etc.
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The total electromagnetic energy can now be written as

E = Ee + Em =
Q2

8πε0 R

{
1 + 2

9β2
}

, (33)

where we usedε0µ0 = 1/c2 and setβ := Rω/c. The ratio of magnetic (‘kinetic’) to
total energy is then given by

Em

E
=

β2

9/2 + β2
, (34)

which is a strictly monotonic function ofβ bounded above by 1 (as it should be).
However, if we requireβ < 1, the upper bound is2/11.

3.1.2 Angular momentum

The momentum density of the electromagnetic field vanishes forr < R and is given
by

~p(~x) =
µ0

16π2
Q ( ~M× ~n)/r5 (35)

for r > R (1/c2 times ‘Poynting vector’). The angular-momentum density also van-
ishes forr < R. Forr > R it is given by

~̀(~x) = ~x× ~p(~x) =
µ0

16π2
Q

~M − ~n(~n · ~M)

r4
. (36)

Hence the total linear momentum vanishes, whereas the total angular momentum is
given by

~J :=

∫
r>R

~̀(~x)d3x = I~ω (37)

with thesameI (moment of inertia) as in (32).

3.1.3 The gyromagnetic factor

The gyromagnetic ratio now follows from expressions (28) for~M and (37) for~J:

M

J
=

6πR

µ0 Q
=: g

Q

2m
, (38)

wherem denotes the total mass, which is here given by

m := E/c2 =
µ0

8π

Q2

R

{
1 + 2

9β2
}

. (39)

Henceg can be solved for:

g =
3

2

{
1 + 2

9β2
}

, (40)

so that
3
2 < g < 11

6 if 0 < β < 1 . (41)

Even with that simple model we do get quite close tog = 2.
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3.1.4 Predictingg = 2?

It is sometimes stated that Abraham’s model somehow ‘predicts’g = 2 (e.g., [24]
p. 39 or [27] p. 206), though this is not at all obvious from [1]. My interpretation for
how such a ‘prediction’ could come about can be given in terms of the present special-
relativistic model.22 It rests on an (inconsistent) combination of the following two
observations. First, if we Lorentz transform the purely electric field (24) into constant
translational motion with velocityw, we obtain a new electric and also a non-vanishing
magnetic field. The integrated Poynting vector then gives the total electromagnetic
momentum of the charged shell at speedw:

p =
4

3

mew√
1 − w2/c2

, (42)

where

me := Ee/c2 =
µ0

8π

Q2

R
. (43)

The infamous factor 4/3 results from the contribution of the (unbalanced) electromag-
netic stresses.23 In this way one is led to assign to the electron a dynamically measur-
able rest-mass ofm = 4

3me if one neglects the rotational energy. Second, we may
ask how fast the electron is to spin for (39) to just givem = 4

3me (rest energy of the
spinning electron). The immediate answer is, that this is just the case if and only if
1 + 2

9β2 = 4
3 , which in view of (40) is equivalent tog = 2.

It is now obvious how this argument rests on the conflation of two different notions
of mass. The factor4/3 will consistently be dealt with by taking into account the
stresses that balance electrostatic repulsion, not by trying to account for it in letting
the electron spin fast enough.

3.2 A side remark on the kinematics of Faraday lines

In the Introduction we stressed that the emancipation of the notion of angular mo-
mentum from the usual kinematical notion of rotation in space had already begun in
classical field theory. More precisely this applies to Maxwell’s theory, in which the
notion of a field differs from that of, say, hydrodynamics in that it isnot thought of
as being attached to a material carrier. This has consequences if we wish to apply
kinematical states of motion to the field itself.

At first sight, Faraday’s picture of lines of force in space suggests to view them
as material entities, capable of assuming different kinematical states of motion. If

22 Here we ignore Abraham’s rigidity condition which would complicate the formulae without changing
the argument proper. Also recall footnote 19.

23 Generally speaking, the factor 4/3 marks the discrepancy between two definitions of ‘electromagnetic
mass’, one through the electromagnetic momentum, the other, calledme above, through the electro-
static energy. This discrepancy is nothing to get terribly excited about and simply a consequence of
the non-conservation of the electromagnetic energy-momentum tensor, i.e.,∇µTµν

em 6= 0, a result of
which is that the (unbalanced) electromagnetic stresses contribute to the electromagnetic momentum
another third of the expressionp = mew/

p
1 − w2/c2 that one naively obtains from just formally

transforming total energy and momentum as time and space components respectively of a four vector.
Much discussion in the literature was provoked by getting confused whether this state of affairs had
anything to do with Lorentz non-covariance. See, e.g., [6] for a good account and references.
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so, the time-dependence of the electromagnetic field might then be interpreted as, and
possibly explained by, the motions of such lines (given by some yet unknown equations
of motion, of which the Maxwell equations might turn out to be some coarse grained
version). That this is not possible has been stressed by Einstein in his 1920 Leiden
address “Ether and the Theory of Relativity”, where he writes

If one wishes to represent these lines of force as something material in
the usual sense, one is tempted to interpret dynamical processes [of the
em. field] as motions of these lines of force, so that each such line can be
followed in time. It is, however, well known that such an interpretation
leads to contradictions.
In general we have to say that it is possible to envisage extended physical
objects to which the notion of motion [in space] does not apply. ([34],
Vol. 7, Doc. 38, p. 315)

The reason why we mention this is that the notion of an “electromagnetic moment
of inertia”, introduced in (32), nicely illustrates this point. Assume that the electrostatic
energy densityρe of the Coulomb field of chargeQ corresponded to a mass density
according to a local version ofE = mc2, i.e.,

ρm(~x) := ρe(~x)/c2 =
( µ0

32π2

) Q2

r4
. (44)

If the electrostatic energy is now thought of as being attached to the somehow individ-
uated lines of force, a moment of inertia for the shellR < r < R ′ would result, given
by

I(R ′) =

∫
R<r<R ′

ρm(~x) (r sinθ)2 d3x =

(
2µ0

27π

)
Q2 (R ′ − R) . (45)

But this diverges asR ′ → ∞, in contrast to (32), showing that we may not think of
the energy distribution of the electromagnetic field as rigidly rotating in the ordinary
sense.

3.3 An electron model with Poincaŕe stresses

In this section we will modify the previous model for the electron in the following
three aspects

1. The infinitesimally thin spherical shell is given a small rest-mass of constant
surface densitym0/4πR2.

2. Stresses in the shell are taken into account which keep the electron from explod-
ing. They are called “Poincaré stresses” since Poincaré was the first in 1906 to
discuss the dynamical need of balancing stresses [28][23].

3. The rotational velocity is small, so that(Rω/c)n terms are neglected forn ≥ 2.
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3.3.1 Poincaŕe stress

The second modification needs further explanation. If we view the surfacer = R as a
kind of elastic membrane, there will be tangential stresses in the surface of that mem-
brane that keep the charged membrane from exploding. In the present approximation,
which keeps only linear terms inω, these stresses need only balance the electrostatic
repulsion, which is constant over the surfacer = R. In quadratic order the stresses
would, in addition, need to balance the latitude dependent centrifugal forces, which
we neglect here.

To calculate the surface stress that is needed to balance electrostatic repulsion we
recall the expression (30a) for the electrostatic energy as function of radiusR:

Ee =
Q2

8πε0 R
. (46)

Varying R gives us the differential of work that we need to supply in order to change
the volume through a variation ofR. Equating this to−pdV = −p 4πR2 dR gives the
pressure inside the electron:

p =

(
1

4πε0

)
Q2

8πR4
. (47)

Now, imagine the spherer = R being cut into two hemispheres along a great cir-
cle. The pressure tries to separate these hemispheres by acting on each with a total
force of strengthpπR2 in diametrically opposite directions.24 This force is distributed
uniformly along the cut (the great circle), whose length is2πR. Hence the force per
length is justpR/2. The surface stress,σ, (force per length) that is needed to prevent
the electron from exploding is just the negative of that. Using (47), we therefore get

σ = −

(
1

4πε0

)
Q2

16πR3
. (48)

3.3.2 Energy-momentum tensor

The energy-momentum tensor now receives a contribution that accounts for the pres-
ence of the surface stress (48) that acts tangential to the surfacer = R in the local rest
frame corresponding to each surface element of the rotating sphere. The four-velocity
of each surface element is given by25

u = ∂t + ω ∂ϕ , (49)

which is normalised (g(u, u) = c2) up to termsω2 (which we neglect). Recall that
the space-time metric of Minkowski space in spatial polar coordinates is (we use the
“mostly plus” convention for the signature)

g = − c2 dt⊗ dt + dr⊗ dr + r2 dθ⊗ dθ + r2 sin2 θ dϕ⊗ dϕ . (50)
24 This follows immediately from the general fact that the total force along a given direction that a con-

stant pressure exerts on a surface is given by the pressure times the area of the planar projection of
that surface perpendicular to the given direction. Alternatively it may be verified directly through in-
tegrating the element of force in polar direction (i.e. perpendicular to the surface spanned by the great
circle),dF = (p cosθ)(R2 sinθdθdϕ), over a hemisphere.

25 I use spacetime coordinates(t, r, θ, ϕ) where the latter three are standard spherical polar coordinates.
I also employ the notation∂µ := ∂/∂xµ for the chart-induced vector fields, so that, e.g.,∂ϕ := ∂/∂ϕ.
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The energy-momentum tensor has now three contributions, corresponding to the
matter of the shell (subscriptm), the Poincaŕe stresses within the shell (subscriptσ),
and the electromagnetic field (subscriptem):

T = Tm + Tσ + Tem . (51a)

The first two comprise the shell’s contribution and are given by

Tm =
m0

4πR2
δ(r − R)u⊗ u , (51b)

Tσ = −

(
1

4πε0

)
Q2

16πR3
δ(r − R) P . (51c)

HereP is the orthogonal projector onto the 2-dimensional subspace orthogonal tou

and∂r, which is the subspace tangential to the sphere in each of its local rest frames.
It can be written explicitly in terms of local orthonormal 2-legs,n1 andn2, spanning
these local 2-planes. For example, we may taken1 := 1

r∂θ and write (sincen2 must
be orthogonal to∂r and∂θ) n2 = a∂t + b∂ϕ, where the coefficientsa, b follow from
g(u, n2) = 0 and normality. This gives

P = n1 ⊗ n1 + n2 ⊗ n2 , (52a)

where

n1 := 1
r2 ∂θ , (52b)

n2 := c−2ω r sinθ ∂t + (r sinθ)−1∂ϕ . (52c)

Note thatg(n1, n1) = g(n2, n2) = 1 and g(n1, n2) = 0. Equation (52a) may
therefore be be written in the form (again neglectingω2 terms)

P = r−2 ∂θ ⊗ ∂θ + (r sinθ)−2 ∂ϕ ⊗ ∂ϕ + c−2ω
(
∂t ⊗ ∂ϕ + ∂ϕ ⊗ ∂t

)
. (53)

For us the crucial term will be the last one, which is off-diagonal, since it will con-
tribute to the total angular momentum. More precisely, we will need to invoke the
integral of ∂t · P · ∂ϕ) (the dot (· ) refers to the inner product with respect to the
Minkowski metric) over the spherer = R:∫

(∂t · P · ∂ϕ)R2 sinθdθdϕ =

∫
c−2 ωgttgϕϕ R2 sinθdθdϕ = − 8π

3 ωR4 . (54)

where we usedgtt := g(∂t, ∂t) = −c2 andgϕϕ := g(∂ϕ, ∂ϕ) = R2 sin2 θ from (50).

3.3.3 A note on linear momentum and von Laue’s theorem

The addition of the stress part has the effect that the total energy-momentum tensor is
now conserved (here in the slow-rotation approximation):

∇µTµν = 0 , (55)
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as one may explicitly check. Note that since we use curvilinear coordinates here we
need to invoke the covariant derivative.26 Indeed, writing the shell’s energy momen-
tum tensor asTs := Tm + Tσ, it is not difficult to show that∇µT

µν
s is zero forν 6= r,

and forν = r is given byp δ(r−R) with p as in (47). But this clearly equals−∇µT
µν
em

since, according to Maxwell’s equations, this quantity equals minus the electromag-
netic force density on the charge distribution, which is obviously−p δ(r − R). In fact,
this is precisely the interpretation that we used to determinep in the first place.

The conservation equation (55) generally ensures that total energy and total mo-
mentum form, respectively, the time- and space component of a four vector. Let us
now show explicitly thatTσ removes the factor4/3 in the calculation of the linear
momentum when the system is boosted in ,say, thez direction. To do this we need
to calculate the integral of∂z · Tσ · ∂z over all of space and show that it precisely
cancels the corresponding integral of the electromagnetic part, i.e. the integral over
∂z · Tem · ∂z. Noting thatg(∂θ, ∂z) = r sinθ, we have∫

dV
(
∂z · Tσ · ∂z

)
=

∫
drdθ dϕ

(
σ δ(r − R) r2 sin3 θ

)
= 8π

3 σR2 = −1
3Ee , (56)

whereas the tracelessness ofTem together with isotropy immediately imply∫
dV

(
∂z · Tem · ∂z

)
= 1

3

∫
dV c−2

(
∂t · Tem · ∂t

)
= 1

3Ee . (57)

That the sum of (56) and (57) vanishes is a consequence of Laue’s theorem, which
basically states that the integral over all of space of the space-space components of a
time-independent conserved energy-momentum tensor vanish. Here this was achieved
by including stresses, which subtracted one third of the electromagnetic linear mo-
mentum.27 Similarly, the stresses will also subtract from the electromagnetic angular
momentum, this time even the larger portion of three quarters of it. Moreover, since the
magnetic moment is the same as before, the stresses will have the tendency to increase
the gyromagnetic ratio. This we will see next in more detail

3.3.4 Angular momentum

The total angular momentum represented by (51) is calculated by the general formula

J = −
1

c2

∫
∂t · T · ∂ϕ d3x = Jm + Jσ + Jem . (58a)

The matter part,Jm, corresponding to (51b), yields the standard expression for a mass-
shell of uniform density:

Jm = 2
3m0ωR2 . (58b)

26 We have∇µTµν = ∂µTµν + Γ
µ
µλTλν + Γν

µλTµλ, whereΓν
µλ := 1

2
gνσ

`
−∂σgµλ +∂λgσµ +∂µgλσ

´
,

with gµν taken from (50). TheΓ ’s are most easily computed directly from the geodesic equation.
27 The requirement on the stress partTσ to be such that the total energy and momentum derived from

Tem +Tσ should transform as a four vector clearly still leaves much freedom in the choice ofTσ. The
choice made here is such that the total rest energy equals the electrostatic self energy. But other values
for the rest energy (like, e.g., 4/3 of the electrostatic contribution) would also have been possible. In
particular, the ‘covariantisation through stresses’ does not as such prefer any of the ‘electromagnetic
masses’ mentioned above (footnote 23), as has also been demonstrated in an elegant and manifestly
covariant fashion in [31].
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The electromagnetic part is the same as that already calculated, since the electromag-
netic field is the same. Therefore we just read off (37) and (32) that

Jem = 2
3 ·

2
3 meωR2 . (58c)

Finally, using (54), the contribution of the stresses can also be written down:

Jσ = − 1
2 ·

2
3 meωR2 = − 3

4 Jem . (58d)

Adding the last two contributions shows that the inclusion of stresses amounts to re-
ducing the electromagnetic contribution from the value given by (58b) to a quarter of
that value:

Jem + Jσ = Jem − 3
4Jem = 1

4Jem (58e)

In total we have
J =

(
m0 + 1

6me

)
2
3ωR3 . (58f)

To linear order inω the kinetic energy does not contribute to the overall mass,m,
which is therefore simply given by the sum of the bare and the electrostatic mass

m = m0 + me . (59)

Using this to eliminateme in (58f) gives

J =

(
1 + 5m0/m

6

) (
2

3
mωR2

)
. (60)

3.3.5 The gyromagnetic factor

Since the electromagnetic field is exactly as in the previous model, the magnetic mo-
ment in the present case is that given by (28). The gyromagnetic factor is defined
through

M

J
= g

Q

2m
, (61)

which leads to

g =
6

1 + 5m0/m
. (62)

This allows for a range ofg given by

1 ≤ g ≤ 6 , (63)

whereg = 1 corresponds tom = m0, i.e., no electromagnetic contribution andg = 6

corresponds tom0 = 0, i.e., all mass is of electromagnetic origin. The interval (63)
looks striking, given the modern experimental values for the electron and the proton:

gelectron= 2.0023193043622 and gproton = 5.585694713 . (64)

However, we have not yet discussed the restrictions imposed by our slow-rotation as-
sumption. This we shall do next.
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3.3.6 Restrictions by slow rotation

Our model depends on the four independent parameters,P = (m0,Q, R,ω). On
the other hand, there are four independent physical observables,O = (m,Q, g, J)

(M is dependent through (61)). Our model provides us with a functional dependence
expressing the observables as functions of the parameters:O = O(P). SinceQ is
already an observable, it remains to displaym,g, J in terms of the parameters:

m(m0,Q, R) = m0 +
µ0

8π

Q2

R
=: m0 + me(Q,R) , (65a)

g(m0,Q, R) =
6

1 + 5m0/m(m0,Q, R)
, (65b)

J(m0,Q, R,ω) =
(
m0 + 1

6me(Q,R)
)

2
3ωR2 . (65c)

These relations can be inverted so as to allow the calculation of the values of the
parameters from the values of the observables. If we choose to displayβ := Rω/c

rather thanω, this gives

m0(m,g) = m
6 − g

5g
, (66a)

me(m,g) = m − m0 = m
6(g − 1)

5g
, (66b)

R(m,Q, g) =
µ0

8π

Q2

me
=

µ0

8π

Q2

m

5g

6(g − 1)
(66c)

β(J, Q, g) = 2J

[
Q2

4πε0c

]−1
9(g − 1)

5
, (66d)

where the last equation (66d) follows from (65c) using (66a-66c). It is of particular
interest to us since it allows to easily express the slow-rotation assumptionβ � 1. For
this it will be convenient to measureQ in units of the elementary chargee andJ in
units ofh̄/2. Hence we write

Q = nQ e and 2J = nJ h̄ . (67)

Then, using that the fine-structure constant in SI units readsα = e2/(4πε0ch̄) ≈
1/137, we get

β =
nJ

n2
Q

α−1 9(g − 1)

5
. (68)

This nicely shows that the slow-rotation approximation constrains the given combina-
tion of angular momentum, charge, and gyromagnetic factor. In particular, any gyro-
magnetic factor up tog = 6 can be so obtained, given that the charge is sufficiently
large. If we setg = 2 andnJ = 1 (corresponding to the electron’s values), we get

nQ �
√

nJ(g − 1)247 ≈ 16 . (69)

This means that indeed we cannot cover the electrons values with the present model
while keeping the slow-rotation approximation, though this model seems to be able
to accommodate values ofg up to six if the charge is sufficiently high. However,
we did not check whether the assumption that the matter of the shell provided the
stabilising stresses is in any way violating general conditions to be imposed on any
energy-momentum tensor. This we shall do next.
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3.3.7 Restrictions by energy dominance

Energy dominance essentially requires the velocity of sound in the stress-supporting
material to be superluminal. It is conceivable that for certain values of the physical
quantities(m,Q, g, J) the stresses would become unphysically high. To check that, at
least for the condition of energy dominance, we first note from (51c) and (43) that the
stress part of the energy-momentum tensor can be written in the form

Tσ = −
1

2

me

4πR2
c2δ(r − R)P . (70)

Hence the ratio between the stress within the shell (in any direction given by the unit
spacelike vectorn tangent to the shell, so thatn · P · n = 1) and its energy density, as
measured by a locally co-rotating observer, is given by∣∣∣∣n · T · nu · T · u

∣∣∣∣ =
me

2m0
=

3(g − 1)

6 − g
, (71)

where we used (66a) and (66b) in the last step. The condition of energy dominance
now requires this quantity to be bounded above by 1, so that

3(g − 1)

6 − g
≤ 1 ⇐⇒ g ≤ 9

4
. (72)

Interestingly this depends ong only. Hence we get, after all, an upper bound forg,
though from the condition of energy dominance, i.e. a subluminal speed of sound in
the shell material, and not from the condition of a subluminal rotational speed.

3.3.8 The size of the electron

What is the size of the electron? According to (66c), its radius comes out to be

R =
1

4πε0c2

e2

2m

5

3
, (73)

where we setQ = −e andg = 2. On the other hand, in Quantum Mechanics, the
Compton wavelength of the electron is

λ =
2πh̄

mc
, (74)

so that their quotient is just

R

λ
=

5

6

α

2π
≈ 2 · 10−3 . (75)

This might first look as if the classical electron is really small, at least compared to its
Compton wavelength. However, in absolute terms we have (fm stands for the length
scale “Fermi”)

R ≈ 2 · 10−15m = 2 fm , (76)

which is very large compared to the scale of10−3 fm at which modern high-energy
experiments have probed the electron’s structure, so far without any indication for
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substructures. At that scale the model discussed here is certainly not capable of pro-
ducing any reasonable values for the electron parameters, since the electrostatic mass
(and hence the total mass, if we assume the weak energy-condition,m0 > 0, for the
shell matter) comes out much too large and the angular momentum much too small
(assumingβ < 1).

One might ask whether the inclusion of gravity will substantially change the situ-
ation. For example, one would expect the gravitational binding to reduce the electro-
static self-energy. An obvious and answerable questions is whether the electron could
be a Black Hole? What is particularly intriguing about spinning and charged Black
Holes in General Relativity is that their gyromagnetic factor isg = 2, always and
exactly!28 For a massM of about10−30 kg to be a Black Hole it must be confined to
a region smaller than the Schwarzschild radiusRs = 2GM/c2 ≈ 10−57 m, which is
almost 40 orders of magnitude below the scale to which the electron structure has been
probed and found featureless. Hence, leaving alone Quantum Theory, it is certainly a
vast speculation to presumes the electron to be a Black Hole. But would it also be
inconsistent from the point of view of General Relativity? The Kerr-Newman family
of solutions for the Einstein-Maxwell equations allow any parameter values for mass
(except that it must be positive), charge, and angular momentum. As already stated,
g = 2 automatically. Hence there is also a solution whose parameter values are those
of the electron. However, only for certain restricted ranges of parameter values do
these solutions represent Black Holes, that is, possess event horizons that cover the
interior singularity; otherwise they contain naked singularities.

More precisely, one measures the massM, angular momentum per unit massA,
and chargeQ of a Kerr-Newman solution in geometric units, so that each of these
quantities acquires the dimension of length. If we denote these quantities in geometric
units by the corresponding lower case letters,m, a, andq respectively, we have

m = M
G

c2
, (77a)

a =
A

c
, (77b)

q = Q

√
µ0

4π

G

c2
. (77c)

The necessary and sufficient condition for an event horizon to exist is now given by( a

m

)2
+

( q

m

)2
≤ 1 . (78)

The relevant quantities to look at are therefore the dimensionless ratios29

a

m
=

A

M
· c

G
≈ A[m2 · s−1]

M[kg]
· 5.5 · 1018 , (79a)

q

m
=

Q

M
·
√

µ0

4π

c2

G
≈ Q[C]

M[kg]
· 1010 . (79b)

28 It is known thatg = 2 is already a preferred value in special-relativistic electrodynamics [4], a fact on
which modern precision measurements ofg − 2 rest. See [27] and [13] for instructive discussions as
to what makesg = 2 also a special value in General Relativity.

29 We writeP[X] to denote the number that gives the physical quantityP in units ofX.
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Now, if we insert the parameter values for the electron30 (we take forQ the moduluse
of the electron charge) we arrive at the preposterous values

a

m

∣∣∣
electron

≈
(
5 · 1025

)(
5.5 · 1018

)
≈ 2.5 · 1044 , (80a)

q

m

∣∣∣
electron

≈
(
1.6 · 1011

)
· 1010 ≈ 1.6 · 1021 , (80b)

so that we are indeed very far from a Black Hole. Classically one would reject the
solution for the reason of having a naked singularity. But note that this does not exclude
the possibility that this exterior solution is valid up to some finite radius, and is then
continued by another solution that takes into account matter sources other than just the
electromagnetic field.31

4 Summary

Understanding the generation of new ideas and the mechanisms that led to their accep-
tance is a common central concern of historians of science, philosophers of science,
and the working scientists themselves. The latter might even foster the hope that im-
portant lessons can be learnt for the future. In any case, it seems to me that from all
perspectives it is equally natural to ask whether a specific argument is actually true or
just put forward for persuasive reasons.

Within the history of Quantum Mechanics the history of spin is, in my opinion, of
particular interest, since it marks the first instance where a genuine quantum degree of
freedom without a classically corresponding one were postulated to exist. If this were
the general situation, our understanding of a quantum theory as the quantisation of a
classical theory cannot be fundamentally correct.32 On the other hand, modern theories
of quantisation can explain the quantum theory of a spinning particle as the result of
a quantisation applied to some classical theory, in which the notion of spin is already
present.33 Hence, from a modern perspective, it is simply not true that spin has no
classical counterpart. That verdict (that is has no classical counterpart), which is still

30 We haveA = S/M with S = 1
2
h̄ (modulus of electron spin) and use the approximate values ¯h[J · s] ≈

10−34, M[kg] = 10−30, andQ[C] = 1.6 · 10−19.
31 Even in mesoscopic situationsa < m means a very small angular momentum indeed. Recall that

in Newtonian approximation the angular momentum of a homogeneous massive ball of radiusR is
2MR2ω/5, so thata/m ≤ 1 translates to the following inequality for the spin periodT = 2π/ω:

T ≥ 4π

5

R

c

R

m
≈ R2[m]

M[kg]
· 10

19 sec, (81)

which for a ball of radius one meter and mass103 kilogrammes sets an upper bound forT of 3 ·
108 years! In fact, (81) is violated by all planets in our solar system.

32 I take this to be an important and very fundamental point. Perhaps with the exception of Axiomatic
Local Quantum Field Theory, any quantum theory is in some sense the quantisation of a classical
theory. Modern mathematical theories of ‘quantisation’ understand that term as ‘deformation’ (in a
precise mathematical sense) of the algebra of observables overclassicalphase space; cf. [40].

33 Namely in the sense that it has a corresponding classical state space given by a two-sphere, which is
a symplectic manifold. However, this state space is not the phase space (i.e. cotangent bundle) over
some space of classical configurations, so that one might feel hesitant to call it a classicaldegree of
freedom.
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often heard and/or read34, is based on a narrow concept of ‘classical system’, which
has been overcome in modern formulations, as was already mentioned in footnote 18
to which I refer at this point. From that point of view, spin is no less natural in classical
physics than in Quantum Theory, which has now become the standard attitude in good
textbooks on analytical mechanics, e.g. [33][19] as well as in attempts to formulate
theories of quantisation [40][41].

In the present contribution I concentrated on another aspect, namely whether it
is actually true that classical models for the electron (as they were already, or could
have been, established around 1925) are not capable to account for the actual values of
the four electron parameters: mass, charge, angular momentum, and the gyromagnetic
factor. This criticism was put forward from the very beginning (Lorentz) and was often
repeated thereafter. It turns out that this argument is not as clear cut as usually implied.
In particular,g = 2 is by no means incompatible with classical physics. Unfortunately,
explicit calculations seem to have been carried out only in a simplifying slow-rotation
approximation, in which the Poincaré stresses may be taken uniform over the charged
shell. In the regime of validity of this approximationg = 2 is attainable, but not for
small charges. I do not think it is known whether and, if so, how an exact treatment
improves on the situation. In that sense, the answer to the question posed above is not
known. An exact treatment would have to account for the centrifugal forces that act on
the rotating shell in a latitude dependent way. As a result, the Poincaré stresses cannot
retain the simple (constant) form as in (51c) but must now also be latitude dependent.
In particular, they must be equal in sign but larger in magnitude than given in (48) since
now they need in addition to balance the outward pushing centrifugal forces. On one
hand, this suggests that their effect is a still further reduction of angular momentum for
fixed magnetic moment, resulting in still larger values forg. On the other hand, fast
rotational velocities result in an increase of the inertial mass according to (8) and hence
an increase of angular momentum, though by the same token also an increase in the
centrifugal force and hence an increase in stress. How the account of these different
effects finally turns out to be is unclear (to me) without a detailed calculation.35 It
would be of interest to return to this issue in the future.
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Archive for History of Exact Sciences, 10(3-5):207–328, 1973.

[24] Abraham Pais. George Uhlenbeck and the discovery of electron spin.Physics
Today, 42(12):34–40, 1989.

[25] Wolfgang Pauli. Exclusion principle and quantum mechanics. Online available
via 〈http://nobelprize.org〉. Nobel Lecture delivered on December 13th 1946 for
the 1945 Nobel Prize in Physics.

[26] Wolfgang Pauli. Zur Quantenmechanik des magnetischen Elektrons.Zeitschrift
für Physik, 43(9-10):601–623, 1927.

[27] Herbert Pfister and Markus King. The gyromagnetic factor in electrodynamics,
quantum theory and general relativity.Classical and Quantum Gravity, 20:205–
213, 2003.
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