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AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN
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Abstract. Since Frege’s predicate logical transcription of Aristotelian categorical logic, the stan-
dard semantics of Aristotelian logic considers ferms as standing for sets of individuals. From a
philosophical standpoint, this extensional model poses problems: There exist serious doubts that
Aristotle’s ferms were meant to refer always to sets, that is, entities composed of individuals. Clas-
sical philosophy up to Leibniz and Kant had a different view on this question—they looked at terms
as standing for concepts (“Begriffe”). In 1972, Corcoran presented a formal system for Aristotelian
logic containing a calculus of natural deduction, while, with respect to semantics, he still made
use of an extensional interpretation. In this paper we deal with a simple intensional semantics for
Corcoran’s syntax—intensional in the sense that no individuals are needed for the construction of a
complete Tarski model of Aristotelian syntax. Instead, we view concepts as containing or excluding
other, “higher” concepts—corresponding to the idea which Leibniz used in the construction of his
characteristic numbers. Thus, this paper is an addendum to Corcoran’s work, furnishing his formal
syntax with an adequate semantics which is free from presuppositions which have entered into
modern interpretations of Aristotle’s theory via predicate logic.

§1. Introduction.

1.1. Historical remarks. 1In 1972 Corcoran presented a formal system for Aristotelian
logic containing a calculus of natural deduction (Corcoran, 1972b). The basic building
blocks of this system are terms, as in Aristotle’s works, as well as in those of his successors
up to but not including Frege.! Corcoran’s whole system does not contain variables or con-
stants for individuals, and this conforms to the mainstream of the tradition in Aristotelian
logic from Aristotle himself via Leibniz and Kant up to the first “modern” term logical
system of Lukasiewicz (1957).
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' In his “Begriffsschrift” Frege (1967) laid the foundations of modern predicate logic, where he
introduced a by now classical transcription of Aristotelian logic by means of quantification
on individuals: The universal affirmative proposition “All S is P” is, in our modern notation,
translated into Vx : Sx — Px, and “Some S is P” into 3x : Sx A Px. A major objection to this
modeling of Aristotelian syntax is that it does not exactly reproduce the Aristotelian theorems;
more specifically: By the rules of First-Order Predicate Logic one cannot, for example, prove the
Law of Subalternation, A(S, P) — I(S, P), which plays a central role in Aristotle’s theory.
Whereas our undergraduate texts today still use to offer a simple “solution” to this problem,
called existential import, we know now that such auxiliary constructs have nothing to do with
problems of Aristotelian logic, but solely of its inadequate translation into a modern framework.
I agree with Nedzynski (1979): “The problem of existential import developed along with the
development of modern symbolic logic during the nineteenth century. The problem is peculiar to
the standard predicate calculus. There never was a real problem of existential import within the
traditional syllogistic logic—it was placed there in retrospect by the modern logicians.”

(© Association for Symbolic Logic, 2010
1 doi:10.1017/51755020309990396
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In Lukasiewicz’s as well as in Corcoran’s term logic, the proposition “All x is y” is
denoted by Axy, where x and y stand for Aristotelian terms like man, animal, soul, and so
forth.? In contrast to Frege’s First-Order Logic (FOL) formalization, term logic allows two
different types of interpretation, namely, intensional and extensional ones. This falls into
line with a vast literature on the question whether Aristotle’s terms were meant to stand
for concepts or for sets of individuals (objects). We will not go into the historical details of
these discussions (see Frisch, 1969) but just mention here that, since medieval times, the
use of a term has been split into its extensional and intensional aspects (see the following
Section 1.2).

Corcoran and Martin (1997), in their works on the completeness theorem for Aristotelian
logic, have chosen differing extensional interpretations. The justification for this naming
arises from the fact that, in these interpretations, each term is mapped to a certain set e(x),
and “All x is y” (Axy) is defined to be true iff

e(x) € e(y). (1.1)

This says that, in case of Axy being true, y has at least as great an extension as x: The
more general a concept is, the bigger is its extension.

From a historical and philosophical standpoint (see the following Section 1.2), it is
interesting to ask how an intensional interpretation of the ancient term logic could be
constructed. In such an intensional model, terms would be mapped onto sets i (x) standing
for sets of intensions or meanings contained in x, and the truth of “All x is y,” Axy, would
now be equivalent to

i(x) 2i(y). (1.2)
Thus this type of interpretation would reflect the idea that the intensional content grows
while proceeding to more and more special concepts, which is contrary to the way exten-
sions behave.

Leibniz was fully aware of the difference of these two methods of interpretation of
Aristotle’s logic, and he was the first to construct an intensional interpretation, if only in
terms of his characteristic numbers. It was his idea to use pairs of numbers which has lead
us to the general construction of a set theoretical intensional model of Aristotelian logic.
Leibniz of course did not put his ideas into the modern framework of syntax/semantics
interplay of the Tarski type, as we will do, but in hindsight it has been a big step in that
direction (Glashoff, 2002).

In the following section, we will first refer to some historical and technical details of
the concepts extension and intension, and we will also point out the intrinsic difficulty of
constructing intensional models of Aristotelian logic.

1.2. Extension and intension. The dichotomy of extension and intension (or, of ex-
tension and meaning (Quine, 1951), or, of extension and comprehension (Frisch, 1969),
or, of reference and meaning (Frege, 1967); in linguistics, the correponding naming is
denotation and connotation (Lyons, 1977)) has been a recurring major theme in ancient
European logic since Aristotle.? This theme goes back to Aristotle’s Theory of Categories,
which makes use of the terms genus and species in order to describe the relation between

2 In fact, Lukasiewicz’s makes use of his inconvenient infix notation, while Corcoran’s notation
deviates only slightly from the one used here.

3 “The Aristotelian notion of essence was the forerunner, no doubt, of the modern notion of
intension or meaning.” (Quine, 1951, p. 22).
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higher (genus) and lower (species) terms, and it appeared later in the shape of Porphyrian
trees.*

There is a long history of the development of a precise concept of extension and inten-
sion of a term (or a concept) from Porphyry (Emilsson, 2009; Porphyry, 1975) to Arnauld
and Nicole in their Port-Royal Logic.5 Leibniz and, later, Kant, defined the extension
(Umfang) of a concept to consist of those concepts that fall under the given concept; the
intension (Inhalt) of a concept are those concepts that occur within the given concept. For
example, to the extension of the concept “deciduous tree” there belong all the different
types of deciduous trees like “birch,” “cottonwood,” and so forth, and to the intension of
“deciduous tree” belong the—more general—concepts “tree,” “plant,” “casting leaves in
winter,” and so forth. Kant also formulated his “Law of reciprocity”:

LEINT3

“Intension and extension of a concept stand to each other in an reciprocal
relation. That is to say, the more a concept contains under it, the less it
contains in itself, and vice versa.”®

Leibniz’ and Kant’s aim of a precise definition of extension and intension was to provide
a sound basis for an interpretation of syllogistic logic.’

While these two possibilities of defining a semantics for the Aristotelian universal posi-
tive proposition Axy (see (1.1), (1.2)) are quite symmetrical and, by this symmetry, do not
seem to present any conceptual difficulty, there is an intrinsic complication caused by the
other types of Aristotelian propositions.

In an extensional interpretation, Exy (“No x is y”) is true if and only if the extensions of
x and y do not overlap; that is, if and only if there is no concept z which falls under x as
well as under y:

e(x)Ne(y) =40. (1.3)
By negation, /xy (“Some x is y”) holds true if and only if there is some concept z
which falls under x as well as under y.8 For example, the truth of “Some boats are houses”

depends on whether there is, within the semantic domain chosen, a concept “houseboat”
which falls under “house” as well as under “boat.”

The Theory of Categories is a “rich” theory, with many different types (categories) of predicates,
and with different types of relations between elements of these different categories: essential and
accidental predication, genus proxima and differentia specifica or, as Grice named it, 1zzing and
Hazzing (Code, 1986). In contrast to that, syllogistics—since the Analytica Priora up to Kant—is
“flat”: only one type of term—just terms, no further qualification.

The terms corresponding to extension and intension in Arnauld (1861) are étendue and
compréhension.

Kant (1991), my translation of: “Inhalt und Umfang eines Begriffs stehen gegeneinander in
umgekehrten Verhiltnis. Je mehr ndmlich ein Begriff unter sich enthilt, desto weniger enthilt
er in sich und umgekehrt.” An older translation by Richardson (Kant, 1836) reads: “The matter
and the sphere of a conception bear one another a converse relation. The more a conception
contains under it, the less it contains in itself; and vice versa.”

While “Kant bashing” is a common exercise in circles of modern logicians, we agree with
Tolley’s assessment, “...that many widely-held beliefs about Kant’s views on logic are gravely
mistaken and unfounded. I have in mind here primarily the beliefs that: (1) Kant simply inherits
and repeats what the tradition has taught about logic since Aristotle, (2) his logical doctrines carry
little weight in his philosophical system, and (3) his views have been so thoroughly superceded
by more recent work (e.g., by Frege) that they are unable to contribute anything to contemporary
debates.” (Tolley, 2007).

Aristotle sometimes argued in this way, called ecthesis, in his Analytica Priora.
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If we try to define a similar semantics with respect to intensional logic, we run into
problems. How should we interpret /xy solely in terms of the intensions of x and y? The
overlapping of intensions, that is, of concepts higher than x and y, taken as criterion for
the truth of /xy, will certainly not work, which is shown by the following example: The
concepts “red” and “green” have the common “higher” concept “color,” but of course /xy
will not be true in any reasonable domain. On the other hand, it is not difficult to imagine
situations where two concepts share no common superconcept, but nevertheless have a
common subconcept.

Thus, apparently there is an “extensional bias” built into the syntax of Aristotelian logic.
This is due to Aristotle’s choice of “downward quantors” E and / which impedes a simple
intensional definition of the truth of Exy and /xy.

It was Leibniz who, after trying for many years, found an ingenious solution to this
difficulty. Put into the formalism of his characteristic numbers, he associated, with each
concept x, two sets of other concepts: The first one consists, as usual, of all concepts
higher than x (it corresponds to all y such that Axy holds). The second one consists of
all concepts which are definitely not contained in x, corresponding to all y such that Exy
holds.

We will use this device in our definition of an intensional interpretation, and, making
use of this construction of pairs of sets of intensions, it will be possible to prove a com-
pleteness theorem for intensional models of Aristotle’s term logic. As a preparation for
the completeness theorem, we will now present an introduction to the formal concept of
interpretation and models of Aristotelian term logic.

Let: T denote the set of categorical terms, T = {x,y,z,...}, and let
A, I, E, O denote four logical constants. An Aristotelian sentence or
proposition is any expression of the form U&v, where U is one of the
logical constants, and &, v are categorical terms. Let £ denote the set of
all sentences or propositions, and let P denote a fixed subset of L.

1.2.1. Extensional semantics By an extensional interpretation e of Aristotelian term
logic we will denote the following construction. Let O be a set of nonempty subsets of a
given basic set M. ¢ is a function from T into O; that is, e assigns a nonempty subset
X = e(x) of M, belonging to O, to each term xeT. This function will be extended to a
function on £ by defining

e(Axy) = true iff e(x) Ce(y)

e(Oxy) = true iff e(Axy) = false
e(Exy) = true iff e(x)Ne(y) =0
e(lxy) = true iff e(Exy) = false.

For a set P C L of sentences, e is said to be a true interpretation, if e(d) = true for all
deP.

There are different methods of constructing extensional interpretations. Here we will
present the construction of the Henkin-style interpretation of Martin (1997)!® which is

9 Most often, @ will be the power set of M, that is, O = 2M
10 Martin’s work is an extension and a generalization of Corcoran’s. The construction of his
extensional interpretation makes use of the concept of saturation, well known from the
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easier to compare with our intensional interpretation to be presented later, than Corcoran’s
original one.

This method of constructing an extensional true interpretation for a given set P of
propositions goes roughly as follows. We choose @ = 27, that is, the set of all subsets
of the set of terms 7" and define, forx € T,

e(x)={x}U{yeT| Ayx € P}. (1.4)

This interpretation function assigns to each term x in 7T the set of those terms which are
“under” x with respect to A; thus it makes sense to name e(x) the extension of x M Itis
easy to see that e as defined in (1.4) satisfies the relation (1.1).

1.2.2. Intensional interpretation: Leibniz’s characteristic numbers The most obvious
idea for defining an intensional interpretation would, by symmetry with (1.4), be

i"(x) ={x}U{yeT | Axy € P}. (1.5)

This, however, does not work because—as we tried to explain above—it is not possible
to properly define the truth of i*(Exy) and i*(/xy) by referring to “superconcepts” i*(x)
and i*(y) alone. Within his framework of characteristic numbers, Leibniz overcame the
problem as follows. He considered a situation where, within the set 7' of terms, there exists
a denumerable set 7 C T of elementary or simple terms which he numbered using the
sequence of prime numbers from 2 on:

f:x1x2x3x4
2 3 5 7

Now each finite subset of 7' can be characterized by a unique number; for example, to
the subset {x2, x4} there will be assigned the number 3 x 7 = 21.12 Because of the unique
prime factorization theorem, also called Fundamental Theorem of Arithmetic, there exists,
for each number n, a unique finite subset of T, composed of all those simple terms x;
which belong to the prime factors of n.!3 Given a general, nonsimple term x € T, the
characteristic number of x, written by Leibniz as

+s—0 (1.6)

is defined as follows'*: s is the product of prime numbers of elementary properties con-
tained in x, that is, of all elementary properties y such that Axy holds true. On the other

completeness proof of FOL. In the Aristotelian context, saturation is directly connected to
Aristotle’s ecthesis. See also the alternative completeness theory by Smith (1983), based on
ecthesis.
Let us remark that this definition will work properly only for maximal consistent saturated sets
P (Martin (1997)), a concept which we will introduce in the next section.
Leibniz’s own example of how two terms combine intensionally into a term standing below these
two, is as follows: “If, for example, we assume that the item ‘animal’ is expressed by means of the
number 2 (or, in general, by a), and the item ‘rational’ by means of the number 3 (or, in general,
by r), then ‘man’ is expressed by 2 x 3, i.e. 6, as the result of the product of 2 by 3 (or, in general,
by the number a x r).” (My translation of Leibniz, 1999).
Multiple prime factors have to be ignored; that is, the number 63 = 32 x 7 denotes the same
subset {x7, x4}as the number 21 =3 x 7.
It is quite clear that +s — ¢ is an inventive notation for what we today call an ordered pair of
numbers, (s, o). The +/— sign added a lot of confusion to later readings of Leibniz’s papers. For
an extensive discussion of the details, see Glashoff (2002).

13

14
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hand, ¢ is the product of all primes belonging to those elementary properties z such that
Exz holds. In the context of our example from above: If there is a concept x characterized
by {Axxi, Axx3, Exx4}, then the characteristic number of x would be +10 — 7. In his
groundbreaking book, Lukasiewicz (1957) made use of Leibniz’ characteristic numbers
within the context of the proof of his completeness theorem. Later, in his thesis, Maldonado
(1998) also used this device for an arithmetical semantics of Corcoran’s syntax. The aim of
the present paper is to free Leibniz’ concept from the algebraic context and thus to establish
his ideas as a general tool for constructing intensional models of Aristotelian term logic.

Following this idea, let us define the interpretation function i a little more sophisticatedly
than according to (1.5) by an ordered pair of subsets of 7'

ix) = ({x}uf{yeT|Axye P},{yeT|Exye P} (1.7)
= (s(x),0(x)). (1.8)

This function can now be extended to sentences by the following definitions:

i(Axy) =true iff s(x)2Ds(y) and o(x)2Da(y)
and

i(Exy) =true iff sx)No(y)#8 or s(y)No(x)#9.
The interpretation of Oxy and Ixy results from negating Exy and Axy, respectively.

The rationale behind these definitions is: For x € T, s(x) collects the terms which are
“positively” (by means of Axy) contained in x, and ¢ (x) contains the terms “negatively”
contained in x, that is, by means of Exy. The definition given above for the interpretation
of Exy signifies that there is an overlap between the positive and negative components of
x and y, respectively.

§2. Syntax. In this section we will give a short account of Aristotelian syntax in
its modern form, based on a system of natural deduction as given by Corcoran (1972a,
1972b, 1974), and independently, by Smiley (1973).!5 We will also take into account the
generalized version of Martin (1997) although keeping to Corcoran’s somewhat simpler
formalism.

Let us, as above, denote by 7 = {x, y, ...} the Aristotelian terms, and by A, E, I, O the
logical constants. L, the language of Aristotelian logic, consists of all propositions U v,
where U is one of the four logical constants, and &, v are different!© arbitrary terms. For a
proposition d, Cd denotes the contradictory of d, the definition of which is given by

C(Axy) :== Oxy, C(Ixy):=Exy, and CCd:=d.

For a given set P of propositions, called the premises, the Aristotelian system allows for
the generation of new, additional sentences not contained in P governed by the following
rules.

15 Tet us also refer to the German work of Kurt Ebbinghaus (1964), which reconstructs an
“Aristotelian calculus” using Paul Lorenzen’s Operative Logic.

16 we agree with Corcoran (1972b) who points to the fact that, in Aristotle’s works, there is a
constant avoidance of sentences such as Axx and /xx. Therefore we also do not allow these
trivial sentences, although they would not constitute any formal difficulty.
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DEFINITION 2.1. The primitive rules of the syntax'’ are:

(1) Conversions:
(Cl) Exy b Eyx (E-conversion)
(C2) Axy t Iyx (partial A-conversion)
(C3) Ixy + Iyx (I-conversion)

(2) Perfect syllogisms:

(PS1) Axy, Ayz Axz (Barbara)

|_
(PS2) Exy,Azx b+ Ezy (Celarent)
|_

(PS3) Axy,Izx Izy  (Darii)

(PS4) Exy,Izx = Ozy (Ferio).

A proof or deduction of a proposition d from a set of premises P is of two different
types:
DEFINITION 2.2.

(1) A direct deduction of a sentence d from P is a finite list of sentences, beginning
with all or some sentences of P and ending with d, where each subsequent list
element is

— a repetition of a previous line
— a conversion of type (C1), (C2), (C3) of a previous line

— a result of applying one of the perfect syllogisms (P S1), (PS2), (PS3), (PS4)
to two previous lines.

(2) An indirect deduction of a sentence d from P is defined as a direct deduction of a
pair of contradictions e and C(e) from P U {C(d)} .

A set of propositions is inconsistent if there are two deductions having all premises in
the set and having contradictory conclusions. Otherwise, a set is consistent. A consistent
set having no consistent supersets is maximally consistent.

LEMMA 2.3. (Corcoran, 1972b; Martin, 1997) Let S be maximally consistent. Then the
following hold:

(1) d e Siff S +—d,;

2) de Siff C(d) ¢ S;

(3) exactly one of Axy, Oxy € S;
(4) exactly one of Ixy, Exy € S;
(5) atleastone of Ixy, Oxy € S;
(6) at most one of Axy, Exy € S.

17" Aristotle showed that, out of the following rules, the rules (C3), (PS3), (PS4) are redundant; they
can be considered as derived rules (see Boger, 1998; Glashoff, 2005).
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DEFINITION 2.4. (Martin, 1997) S is a saturated maximally consistent set iff S is
maximally consistent and

(1) Ixy e S iff, for some z, Azx, Azy € S;
(2) Oxy e Siff, for some z, Azx, Ezy € S.

LEMMA 2.5. (Martin, 1997) Every consistent set is extensible to a saturated maximally
consistent set.

§3. An intensional semantics. Let us go back to the notion of intensional interpreta-
tion of (1.2.2) which we will now define precisely.

Let M denote a nonempty set, let Q C 2" denote a nonempty subset of the power set of
M, andlet O = Q x Q.

DEFINITION 3.1.18 We will call a pair (O, i) consisting of © and a function
i : TUL-—> OUl{true, false}

an intensional interpretation of the Aristotelian syntax, iff

() IfxeT,ikx)=(6x),0x)eQxQands(x)#0,s(x)No(x)=¢
(2) Ifd € L, then

(a) ifd is some Axy, then i(d) = true iff s(y) C s(x) and o (y) C o (x);

(b) ifd is some Exy, theni(d) = trueiff s(x) No (y) # B ors(y) No(x) #0;
(c) ifd is some Ixy, theni(d) = true iff s(x) Na (y) = G and s(y) N o (x) = G;
(d) if d is some Oxy, then i(d) = true iff s(y) € s(x) or o (y) € o (x).

A (syllogistic) intensional semantics consists of a set of intensional interpretations F =
{(O, i)}(for varying O as well as i). It is useful to have at hand the following standard
notation:

DEFINITION 3.2. Let P denote a set of sentences of L, and let F be a given intensional
semantics.

f=(0,i) satisfies P iffforalld € P,i(d) = true;

P is satisfiable in F iff, for some f = (O, i) € F, i satisfies P;

P is unassailable in F iff, forany f = (O,i) € F, thereissome d € P, i(d) =

true;

P E=rdiff,forall f = (0,i) e F, f satisfies P only if i (d) = true;

Erdiffd Erd.
As usual, we write P = d iff P =x d for all intensional semantics JF. It is now easy to
confirm the following semantic version of some of the items of Lemma 2.3:

LEMMA 3.3. Using the notation of Section 2,

1. Axy E Ixy and Exy = Oxy;
2. {Axy, Exy} is not satisfiable and {Ixy, Oxy} is unassailable.

I8 This definition is a generalization of Leibniz’ concept of (pairs of) characteristic numbers, see
Glashoff (2002).
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Proof.

1. Let us assume i (Axy) = true for some intensional interpretation f = (O, i). Then,
by Definition 3.1 (2a), s(x) C s(y) and o (x) C o(y); in addition (by Definition 3.1
(1)), s(y) No(y) = 9. This implies s(x) No(y) = @ as well as s(y) No(x) = @;
hence, according to Definition 3.1 (2c), i (Ixy) = true. The proof of the second part
is similar.

2. If f = (O,i) is an interpretation such that i(Axy) = true, then, as we have just
seen in the proof of the first part of the lemma, i (/xy) = frue. But, by inspection of
Definition 3.1 (2b, 2c¢), this implies i (Exy) = false. This proves the first part. The
second part follows in the same way. g

LEMMA 3.4. Let P denote an arbitrary maximally consistent saturated set. Then there
is an intensional interpretation [ = (O, i) such that i(d) = true iffd € P.

Proof. Let Q =27 | and let us define, for x € T,
i(x) = ({x}U{yeT|AxyeP},{yeT|ExyeP)}
= (s(x),0(x)).

Let us first show that this defines indeed an intensional interpretation according to
Definition 3.1. For this, we have only to prove s(x) # @ and s(x) No(x) = @. (a): As
x € s(x) forany x € T, s(x) # 0. (b) Let z € T such that z € s(x) N o(x). Then, Axz
and Exz are in P, which is impossible by the consistency of P.

We then prove that, for any d = Uxy, U € {A, I, E, O}, x,y € T, it holds true that
d € Piffi(d) = true.

Case 1: d = Axy. “ = ” : First we show that d € P implies s(y) C s(x) and o (y) C
o (x). For any z € s(y), we have Ayz € P which, together with d = Axy € P, results
in Axz € P, by (PS1), thus z € s(x). Hence s(y) C s(x). Forany z € o(y), Eyz € P.
Together with Axy € P, this implies (by means of (PS2)) Exz € P, hence z € o(x).
Therefore, o (y) C o(x). “ < ” : Let us assume that s(y) C s(x) and o(y) C o(x),
but (reductio) Axy ¢ P. Since P is maximal, Oxy € P. By saturation, thereisaz € T
such that Azx, Ezy € P. Hence, z € o(y) and z € o (x). Hence, Ezx € P which is not
possible, since Azx € P has been assumed to hold.

Case 2:d = Exy.“ = 7 : As Exy € P implies Eyx € P, it follows that x € o (y),
implying s(x) N o (y) # @ because of x € s(x). According to the definition, i (d) = true.
“ < 7 : In the first case, assume s(x) N o (y) # @ ; hence there is a z € T such that
Axz € P and Eyz € P implying Exy € P by means of (PS2). Second: s(y) No (x) # @
implies Ayz, Exz € P for some z € P, hence again Exy € P.

Case 3: d = Ixy. “ = 7 : By saturation, there is a z € T such that Azx, Azy € P.
Hence s(x)Us(y) C s(z) and 6 (x) Ua (y) C o (z) (see Case 1 of this proof). By definition
of s(z) and 6 (z), s(z) No (z) = @. Hence s(x) No (y) = @ and s(y) N o (x) = @, implying
i(d) = true. “ < ” : Let us assume Ixy ¢ P; hence Exy € P by Lemma 2.3(4).
Case 2 of this proof shows that i (Exy) = true, hence i (Ixy) = false, which proves the
assertion.

Case 4: d = Oxy.*“ = 7 : By saturation, for some z € T, Azx, Ezy € P. Hence,
by Azx € P, s(x) C s(z),0(x) C o(z). Let us assume (reductio) that s(y) C s(x)
and o (y) C o(x), then s(y) C s(z) and o (y) C 0(z). Hence Ayz € P, contradicting
Ezy € P.“ < ” :Letus assume Oxy ¢ P, hence Axy € P by Lemma 2.3(3). Case 1 of
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this proof (“ = ) shows that i (Axy) = true, hence i(Oxy) = false, which proves the
assertion. 0

THEOREM 3.5. (Intensional correctness theorem): P E d iff P —d.
Proof.

1. Soundness (*“ < ) is proven by induction, checking the rules of the system—
conversions and syllogisms—one after another. We will skip this point.

2. Completeness (“ = ) will now be proven utilizing a standard HENKIN-style of
argumentation. Let P F d. Then, P U {C (d)} is inconsistent. If not, there would exist
by the foregoing lemma, an intensional interpretation f = (O, i) such that f satisfies
P and C(d). Because of i (C (d)) = true iff i (d) = false , the existence of i would
contradict P = d. The inconsistency of P U{C (d)} implies that there are finite subsets
0,0 c Pandag € L such that Q U{C(d)} g and Q' U{C(d)}  C(g). Hence
Q U Q' d by indirect deduction, Definition 2.2(2). Since QU Q' C P, P +~d. [
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