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Abstract. Let n be a positive integer and FA`(n) be the free abelian lattice-
ordered group on n generators. We prove that FA`(m) and FA`(n) do not satisfy
the same first-order sentences in the language L={+,−, 0,∧,∨} if m 6= n. We
also show that Th(FA`(n)) is decidable iff n ∈ {1, 2}. Finally, we apply a similar
analysis and get analogous results for the free finitely generated vector lattices.
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1. Introduction.

The class of lattice-ordered abelian groups forms a variety. We will consider the
theories of the free lattice-ordered abelian groups FA`(n) on n generators, for n ∈ Z+,
in the language L:={+,−, 0,∧,∨}. We are concerned with the issue of decidability
and elementary equivalence as n varies; i.e., with the analogue of Tarski’s famous
problem for the category of groups.

Recently Sela, and Kharlampovich & Miasnikov, have lectured on their work on
Tarski’s problem for free groups on finitely many generators, and posted various
papers on the world-wide web ([9] and [8]). The papers will take time to referee,
but we are cautiously optimistic that solutions to some parts of Tarski’s problem for
abstract free groups have been found.

If one considers the analogue of Tarski’s problem for free abelian groups on finitely
many generators, a complete answer can be deduced from Szmielew’s classification of
the theories of abelian groups (see [10]). (The essential idea to distinguish between
their theories is the observation that if G is a free abelian group, then G is freely gen-
erated by exactly n elements iff the index of the subgroup of the 2-divisible elements
in the whole group is equal to 2n (i.e., [G : 2.G] = 2n).)

We show that, as in the case of free abelian groups, one can distinguish between
the theories of free lattice-ordered abelian groups by the number of generators, but
one gets undecidable theories for n > 2. Note that FA`(1) is just the direct product
Z× Z with the usual addition and lattice order: (m,n) ≥ 0 iff m ≥ 0 and n ≥ 0; it
is generated by (1,−1) since (1,−1) ∨ (0, 0) = (1, 0). This structure is decidable by
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the Feferman-Vaught Theorem [3] (Proposition 6.3.2) and the decidability result of
Presburger for (Z,+, 0, 1, <) (see for instance [4]).

Using the decidability of Presburger arithmetic, we will first establish that FA`(2)
is decidable. Next, we will note that FA`(2) 6≡ FA`(n) for any n > 2. We will
then prove that FA`(m) 6≡ FA`(n) if n 6= m. As a consequence of our proof and an
undecidability result (due to Grzegorczyk) of some topological theories [6], we will
derive that the theory of FA`(n) is undecidable if n > 2.

Finally, as one might expect, we will show that one can prove parallel results for
the free finitely generated vector lattices.

2. Preliminaries.

Let n be a positive natural number. Consider the additive group of continuous
functions from Rn to R with the pointwise ordering, and let πi : Rn → R, 1 ≤ i ≤ n,
be the projection functions: πi(x1, · · · , xn) = xi. Then, the lattice-ordered sublat-
tice subgroup generated by these n projections is (isomorphic to) the free lattice-
ordered abelian group FA`(n) on n generators [5] Theorem 5.A. It has the follow-
ing representation: FA`(n) := {f =

∧
i

∨
j fij : fij ∈ Hom(Zn,Z)}. Note that any

g ∈ Hom(Zn,Z) is equal to
∑

i∈S zi.πi, where zi ∈ Z, S = {1 ≤ j ≤ n : g(ej) 6= 0} and
g(ei) = zi. To take full advantage of the geometry of Euclidean n-space, we will often
regard the elements of FA`(n) as functions from Rn to R. Let FA`(n)+ be the set of
elements of FA`(n) such that g(x) ≥ 0 for all x ∈ Rn. Let FA`(n)+ = FA`(n)+\{0}.

Definition 2.1. A subspace
∑n

i=1mixi = 0 (with all mi ∈ Z) will be called an
integral hyperspace, and the corresponding n-dimensional subsets

∑n
i=1mixi > 0,∑n

i=1mixi < 0,
∑n

i=1mixi ≥ 0,
∑n

i=1mixi ≤ 0 (with all mi ∈ Z) will be called
integral half spaces. A cone in Rn is a subset which is invariant under multiplication
by elements of R+. A closed cone is a cone which is closed in the topology of Rn and
which contains the origin. We will always confine ourselves to such cones defined by
integral half spaces. A closed (or open) integral polyhedral cone is a cone obtainable
by finite unions and intersections from closed (or open) integral half spaces. It is
convex if it is obtained using only intersections.

Zero sets of the elements of FA`(n) will play a crucial role in our solution.

Definition 2.2. For f ∈ FA`(n), let Z(f) be the zero set of f ; i.e.,

Z(f) = {x ∈ Rn : f(x) = 0}.
Let S(f) be the support of f ; i.e.,

S(f) = {x ∈ Rn : f(x) 6= 0}.

Let K be a subset of Rn; then SK(f) is the support of f on K (={x ∈ K : f(x) 6= 0}).

We will make constant use of elementary ideas from linear geometry, particularly
concerning dimension. Convex integral polyhedral cones can be thought of as (irre-
ducible) varieties [7] and zero sets as algebraic sets. As in classical algebraic geom-
etry, each algebraic set is a finite union of varieties. If Z(f) =

⋃
{Z(fj) : j ∈ J}
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with each Z(fj) a variety, then we will call these Z(fj) the constituent varieties
of Z(f). We define the dimension of Z(f) to be the maximum of the dimensions
of its constituent varieties. For example, if f1 = πn ∨ 0 and f2 = −πn ∨ 0, then
Z(f1) = {(x1, . . . , xn) ∈ Rn : xn ≤ 0} and Z(f2) = {(x1, . . . , xn) ∈ Rn : xn ≥ 0},
both of which have dimension n. These are the constituent varieties of Z(f) if
f = f1∧f2. However, f is the zero function whose zero set is the entire space Rn. So,
viewing f as 0 one obtains a single constituent variety; but viewing f as f1∧f2 yields
two constituent varieties (whose union is Rn). Thus the definition is dependent on
the representation of the function as an infimum of a supremum of group expressions.

Definition 2.3. If f ∈ FA`(n) and Z(f) has dimension k, then Z(f) is said to have
only one piece of dimension k if the union of the constituent varieties of dimension k
is itself a single closed convex polyhedral cone of dimension k. In this case, there is
g ∈ FA`(n) such that g = f and g has exactly one constituent variety of dimension
that of Z(f). In this sense, if Z(f) can be written so as to have only one piece of
its dimension, then it can be written so as to have exactly one constituent variety of
this dimension.

We recall some results and notions that appear in [1].

Proposition 2.1. ([1], Lemma 3.2) The zero sets Z(f), f ∈ FA`(n), are precisely
the closed integral polyhedral cones in Rn.

Given an element f of a lattice-ordered abelian group, we define |f | = f+ + f−
where f+ = f ∨ 0 and f− = (−f) ∨ 0. Then f+ ⊥ f− where we write a ⊥ b for
a ∧ b = 0.

Proposition 2.2. ([1], Lemma 3.3) Let f , g ∈ FA`(n) and let K be a closed integral
polyhedral cone in Rn. Suppose that SK(f) ⊂ SK(g). Then there is an natural number
m such that |f | ≤ m.|g| on K.

A subset C of FA`(n) is called convex if c1, c2 ∈ C and g ∈ FA`(n) with c1 ≤ g ≤ c2
always implies that g ∈ C. The convex sublattice subgroups of FA`(n) are called
`-ideals. They are the kernels of homomorphisms of L-structures.

Corollary 2.3. Let J be an `-ideal of FA`(n). Suppose that g ∈ J and S(f) ⊂ S(g).
Then f ∈ J .

Given an element f ∈ FA`(n + 1), let < f >cl be the `-ideal generated by f ; i.e.,
the subgroup generated by all elements g with |g| ≤ m.|f |, for some natural number
m.

So, in particular, we have that if S(f) = S(g), then < f >cl is equal to < g >cl.
Finally, we have the Baker-Beynon Duality Theorem (see Theorem 5.B in [5]).

Proposition 2.4. (Beynon [2]) Let f ∈ FA`(n) and g ∈ FA`(m). Then
FA`(n)/ < f >cl is isomorphic to FA`(m)/ < g >cl (as L-structures) iff there is a
piecewise integral linear homeomorphism θ from Rm to Rn such that θ(Z(g)) is equal
to Z(f).
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3. Decidability results for FA`(2).

Let f ∈ FA`(2). Then, if r ∈ R+, for any (x1, x2) ∈ R2, we have r.f(x1, x2) =
f(r.x1, r.x2).

Let C be the circle in R2 of radius 1 and centre (0, 0), and C0 := C∩{(cos θ, sin θ) :
tan θ ∈ Q ∪ {±∞}}. Let [0, 2π)0 = {θ ∈ [0, 2π) : (cos θ, sin θ) ∈ C0}. Each element
f of FA`(2) has the form

∨
j∈J

∧
i∈I mij.π1 + nij.π2, with mij, nij ∈ Z. There are

(0 = r`+1 = r0 < r1 < · · · < r`), with rk ∈ [0, 2π)0 such that f is linear on each arc
[ei.rk , ei.rk+1 ] — we abuse notation and also write the points of C in the simpler form
eir (0 ≤ r < 2π). That is, on each arc f has the form mk.π1 + nk.π2, and moreover
satisfies the obvious compatibility conditions at the {ei.rk : k = 0, . . . , n}. Conversely,
any finite sequence of linear functions satisfying these compatibility conditions gives
rise to an element of FA`(2).

Definition 3.1. Let z1, z2 ∈ C0 and (g1, · · · , gm) be a tuple of elements of FA`(2).
We say that the order type of (g1, · · · , gm) is the same at z1 and z2 iff

gσ(1)(z1) ≤ · · · ≤ gσ(m)(z1)←→ gσ(1)(z2) ≤ · · · ≤ gσ(m)(z2),

for any permutation σ of {1, · · · ,m}.

Now given a tuple ḡ = (g1, · · · , gm) of elements of FA`(2), there is a cell-like
decomposition for it in the following sense. There exists a finite subset of C0 such
that each gi is linear on each interval of the corresponding subdivision and the order
type of ḡ is the same at any two points of the same interval.

Notation. Let L := {+,−, 0,∧,∨}, L0 := {+,−, 0,∧,∨, ./n : n ∈ Z+}, and
L≤ := {+,−, 0, 1,≤, ./n : n ∈ Z+} where the unary functions /n are defined by:
z/n := z′ iff ORn−1

i=0 z = z′.n+ i.

Remarks:
(1) If |w| = w ∨ −w, then (in any abelian lattice-ordered group) |w| ≥ 0 with

equality iff w = 0 (see, [5], Corollary 2.3.9). Indeed, op. cit., w1 = 0 & . . . & wn = 0
iff (|w1|∨ · · ·∨ |wn|) = 0. Thus every open L-formula can be written as a conjunction
of formulae each of which is a disjunction of atomic formulae and at most one negation
of an atomic formula.

(2) The composition of the unary functions /n is well behaved: (u/n)/m =
u/(n.m), and (a + b)/n = a/n + b/n + 1 if (a − n.(a/n)) + (b − n.(b/n)) ≥ n,
and (a + b)/n = a/n + b/n otherwise. If we consider the discretely ordered abelian
group Z, we can either view it as an L0-structure or an L≤-structure: we will denote
these by ZL0 and ZL≤ , respectively.

Recall

Proposition 3.1. [Presburger (see [4] chapter 3, (paragraph 2)] ZL≤ admits quanti-
fier elimination.

Note that, in ZL≤ we have x ≥ j is equivalent to x/j > 0 and x ∈ jZ is equivalent
to x− j.(x/j) = 0 (j ∈ Z+). Thus we have
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Proposition 3.2. Let θ(y, ȳ) be an open L0-formula. Then one can effectively con-
struct an open L≤-formula φ(y, ȳ) (each of whose disjuncts has the form max{ti(ȳ)} ≤
n.y ≤ min{sj(ȳ)}, where sj(ȳ), ti(ȳ) are L≤-terms and /n occurs in θ) such that for
any ḡ, f ⊆ Z, we have

ZL0 |= θ(f, ḡ) iff ZL≤ |= φ(f, ḡ).

2

Proposition 3.3. Let g1, · · · , gm ∈ FA`(2), and let θ, θj, (j ∈ J) be open L0-
formulae. Then one can effectively construct open L0-formulae θ′, θ′j (j ∈ J) such
that

∃y ∈ FA`(2)[(∀u ∈ Z2) Z |= θ(y(u), ḡ(u)) and &j∈J(∃uj ∈ Z2) Z |= θj(y(uj), ḡ(uj))]

iff [(∀u ∈ Z2) Z |= θ′(ḡ(u)) and &j∈J(∃uj ∈ Z2) Z |= θ′j(ḡ(uj))]

Proof: We first show that, for n ∈ Z+, the existential formula

(∃f)[(
∨
i

t1i) ≤ n.f ≤ (
∧
j

t2j)]

is equivalent in Z to the open L0-formula

max{t1i} ≤ min{t2j} and [(min{t2j}−max{t1i})/n > 0 or ((min{t2j}−max{t1i})/n
= 0 and max{t1i}+ (n− (max{t1i} − n · (max{t1i}/n))) ≤ min{t2j})].

Let t = max{t1i} and u = min{t2j}. Clearly, there is z ∈ Z with t ≤ n.z ≤ t+n ≤ u
if (u− t)/n > 0 (and hence a solution to (∃f)(t ≤ n.(f/m) ≤ u)). If (u− t)/n = 0,
then there is a solution iff nZ ∩ {t, t+ 1, . . . , u} 6= ∅. These are the above conditions
since if t = nk + r, then t− (n · (t/n)) = r.

Now consider the existential formula in parameters ḡ = (g1, . . . , gm) ∈ FA`(2)m:

(∃f)[(
∨
i

t1i(ḡ)) ≤ d · f ≤ (
∧
j

t2j(ḡ))].

Its satisfaction in FA`(2) is equivalent to:

(∃f)∀x ∈ C0 [h1(x) ≤ d · f(x) ≤ h2(x)],

where h1 :=
∨

i t1i(ḡ) and h2 :=
∧

j t2j(ḡ) (so h1, h2 ∈ FAl(2)).

Let (r0, r1, · · · , r`) be a subdivision of C0 such that g1, . . . , gm are linear on each
interval (rk rk+1) (k = 0, . . . , ` − 1) and of the same order type (whence h1 and h2

are linear on each interval, too). Thus the original inequality is equivalent to

(∃f)
`−1∧
k=0

∀x ∈ (rk rk+1) [h1(x) ≤ d.f(x) ≤ h2(x)].

Provided that limx→rk− fk(x) = limx→rk+ fk(x) for all k, this is equivalent to

`−1∧
k=0

(∃fk)∀x ∈ (rk rk+1) [h1(x) ≤ d.fk(x) ≤ h2(x)].
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Claim: This is equivalent to

`−1∧
k=0

∀x ∈ (rk rk+1) (∃z)[h1(x) ≤ d.z ≤ h2(x)],

(which in turn is equivalent to:

∀x ∈ C0 (∃z)[h1(x) ≤ d.z ≤ h2(x)]).

Proof of Claim: Fix k ∈ {0, . . . , ` − 1} and let hj(x) = mjx1 + njx2 on the
interval (rk, rk+1) (j = 1, 2). We assume, without loss of generality, that π is one of
the rj.

We will consider two cases separately: firstly, the interval [rk, rk+1] does not
contain π/2 or 3π/2; secondly, the interval [rk, rk+1] contains either π/2 or 3π/2.

Case 1: We suppose that the closed interval [rk, rk+1] is included in [0, π/2), the
other three possibilities being similar. Now (cos rk, sin rk) = (cos rk)(1, q1) and
(cos rk+1, sin rk+1) = (cos rk+1)(1, q2), where q1, q2 ∈ Q+ and q2 > q1. Let M be the
linear transformation mapping (1, 0) to (1, q1) and (0, 1) to (1, q2); it is represented
by the matrix

M =

(
1 1
q1 q2

)
.

Let q1 = a1/b and q2 = a2/b where a1, a2, b ∈ Z+. Then

M−1 = 1/(a2 − a1).

(
a2 −b
−a1 b

)
.

Note that M−1 is a matrix with integral coefficients if a2 − a1 = 1.
The interval [rk, rk+1] determines an integral cone Dk of Z2; any element ū of Dk

has the form M.

(
v1

v2

)
, where (v1, v2) ∈ D := {(x1, x2) ∈ Z2 : x1, x2 ≥ 0}.

Our formula (restricted to [rk, rk+1]) is equivalent to

∀x̄ ∈ Dk ∃y h1(x1, x2) = m1.x1 + n1.x2 ≤ d.y ≤ h2(x1, x2) = m2.x1 + n2.x2.

Replacing x̄ by Mv̄ with (v1, v2) ∈ D, we get that

h1(Mv̄) = (m1 + n1.q1).v1 + (m1 + n1.q2).v2 and

h2(Mv̄) = (m2 + n2.q1).v1 + (m2 + n2.q2).v2.

Assume that m′, n′ ∈ Z are such that

∀(v1, v2) ∈ D h1(Mv̄) ≤ d.m′.(v1 + v2) + d.n′.(q1.v1 + q2.v2) ≤ h2(Mv̄).

Evaluating the functions at (1, 0), we get that

(m1 + n1.q1) ≤ d.(m′ + n′.q1) ≤ (m2 + n2.q1)

— or equivalently that

(m1.b+ n1.a1) ≤ d.(m′.b+ n′.a1) ≤ (m2.b+ n2.a1);

and at (0, 1) we get that

(m1 + n1.q2) ≤ d.(m′ + n′.q2) ≤ (m2 + n2.q2)
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— or equivalently that

(m1.b+ n1.a2) ≤ d.(m′.b+ n′.a2) ≤ (m2.b+ n2.a2).

To establish the claim, we show how to choose m′, n′ ∈ Z independent of the
point in [rk, rk+1]. To achieve this we need to consider the sign of (m1 + n1.q1) and
(m2+n2.q2). Suppose first that they are both positive. Let m′ (respectively, n′) be the
least integer greater than or equal to (m1.b+n1.a1)/d (respectively (m1.b+n1.a2)/d).
Then for all (v1, v2) ∈ D, we have that

h1(v1, v2) ≤ d.(m′.v1 + n′.v2) ≤ h2(v1, v2).

Next suppose that (m1 + n1.q1) ≥ 0 and (m2 + n2.q2) ≤ 0. Let m′ be as above and
n′ := b(m1.b+ n1.a2)/dc. Then for all (v1, v2) ∈ D, we have that

h1(v1, v2) ≤ d.(m′.v1 + n′.v2) ≤ h2(v1, v2).

The remaining sign distinction cases are similar.

Finally, let v̄ = M−1

(
u1

u2

)
, with ū ∈ Dk. Then

h1(a2.u1 − b.u2,−a1.u1 + b.u2) ≤ d.[(m′.a2 − n′.a1).u1 + (−b.m′ + n′.b).u2] ≤

≤ h2(a2.u1 − b.u2,−a1.u1 + b.u2).

This completes Case 1.

Case 2: Suppose that the interval [rk, rk+1] contains π/2 or 3π/2.
We consider only the case that π/2 ∈ [rk, rk+1], the other case being similar.
Evaluating h1, h2 at the point (0, 1), we suppose first that

n1 ≤ d.z ≤ n2

and evaluating them at the point (z′1, z
′
2) ∈ C0 (with the additional hypotheses that

0 < z′1 ≤ 1, z′2 > 0), that

m1.z
′
1 + n1.z

′
2 ≤ d.z′ ≤ m2.z

′
1 + n2.z

′
2.

If n1 is not divisible by d, we seek a coefficient a such that

m1.x1 + n1.x2 ≤ a.x1 + d.z.x2 ≤ m2.x1 + n2.x2

holds for 0 ≤ x1 ≤ z′1 and 1 ≥ x2 ≥ z′2.
This is equivalent (for x1 6= 0) to

m1 + (n1 − d.z).x2/x1 ≤ a ≤ m2 + (n2 − d.z).x2/x1.

Now the left hand side tends to −∞ and the right hand side to +∞ if x2/x1 goes
to +∞. So we can always find (z′′1, z

′′
2) and a with a divisible by d for which the

inequalities hold for 0 ≤ x1 ≤ z′′1 ≤ z′1 and 1 ≥ x2 ≥ z′′2 ≥ z′2. Therefore, letting r
be such that ei.r = (z′′1, z

′′
2), we refine our interval [rk, rk+1] into [rk, r], [r, π/2],

(π/2, rk+1]. We have just described what to do for the second of these intervals; for
the first and third of these intervals proceed as in Case 1.

Now suppose that n1 is divisible by d. We seek a coefficient a such that

m1.x1 ≤ a.x1 ≤ m2.x1 + (n2 − d.z).x2
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for 0 ≤ x1 ≤ z′1 and 1 ≥ x2 ≥ z′2. Provided that x1 6= 0, this is equivalent to

m1 ≤ a ≤ m2 + (n2 − d.z).x2/x1,

and so to finding a coefficient a which is divisible by d. We refine our interval as in
the previous case and proceed as before.

We deal with strict inequations at a finite number of points similarly.
This completes the proof of the claim.

For the general case, write θ and θj in conjunctive normal form. Then, with the
same subintervals of C0 as above, the satisfaction of

∃y ∈ FA`(2)[(∀u ∈ Z2) Z |= θ(y(u), ḡ(u)) and &j∈J(∃uj ∈ Z2) Z |= θj(y(uj), ḡ(uj))]

is equivalent to the solution of a finite system of “basic” L0-inequalities and strict
inequalities at the endpoints of these intervals each of which is handled as above.
The proposition follows. 2

Proposition 3.4. For any L-formula φ, one can effectively construct open L0-
formulae θi (i ∈ I), and θ′j (j ∈ Ji) such that for any tuple of elements ḡ of FA`(2),

FA`(2) |= φ(ḡ)←→ ORi∈I

{
(∀u ∈ Z2) Z |= θi(ḡ(u))

&j∈Ji
(∃uj ∈ Z2) Z |= θ′j(ḡ(uj)).

Proof: By induction on the complexity of φ. The proposition is clear for atomic
L-formulae and negated atomic L-formula s(x̄) 6= 0. By Remark (1) above, the
proposition follows for all quantifier-free open L-formulae.

If the proposition holds for φ, then it clearly holds for ¬φ,and similarly for the
disjunction of φ1 or φ2 if it holds for φ1 and φ2.

Suppose now that the induction hypothesis holds for ψ(f, x̄) and that φ(x̄) is of
the form ∃fψ(f, x̄). Let θi, θ

′
j be open L0-formulae (i ∈ I, j ∈ Ji) such that

FA`(2) |= ∃fψ(f, ḡ)←→
ORi (∃f ∈ FA`(2)) [(∀u ∈ Z2) Z |= θi(f(u), ḡ(u)) & &j∈Ji

(∃uj ∈ Z2) Z |=
θ′j(f(uj), ḡ(uj))].

By Proposition 3.3, we can effectively construct open L0-formulae θ′′i , θ
′′′
j (i ∈

I ′, j ∈ J ′i) such that this last equivalent is equivalent to
ORi [(∀u ∈ Z2) Z |= θ′′i (ḡ(u)) & &j∈J ′i

(∃uj ∈ Z2) Z |= θ′′′j (ḡ(uj))]. 2

Corollary 3.5. Let σ be an L-sentence. Then, one can effectively obtain an open
L0-sentence θ such that FA`(2) |= σ ←→ Z |= θ.

Corollary 3.6. FA`(2) is decidable.

Proof: This follows from the results of this section since Z is decidable as a lattice-
ordered group and the procedure to associate θ with σ is effective by the preceding
corollary. 2
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4. Undecidability results.

We will prove that the lattice-ordered abelian groups FA`(n) are not elementarily
equivalent if n 6= m, and (as a consequence of the method) that for n > 2 their
theories are undecidable.

The proof relies on the fact that one can obtain formulae in our language which
express the dimension of the zero set of an element of FA`(n). We will get these
formulae by induction on n.

If one factors out 〈πn+1〉cl from FA`(n+1), then the quotient is isomorphic (as an
L-structure) to FA`(n). And one can hope to use this correspondence to inductively
define the dimension of a zero set in FA`(n + 1). This we will achieve in a series
of lemmata. One cannot capture πn+1 by automorphisms of L-structures, and so
certainly not by first order sentences in the language. However, one can capture
(using the first order language L) elements in FA`(n+ 1) which are “πn+1-like”. We
will then use the dimension of zero sets in the resulting quotient FA`(n) to define
the dimension of a zero set in FA`(n+ 1) correctly.

The key idea to do this is to cover the n-sphere with two n-dimensional pieces
(the zero sets of f1, f2 > 0 intersected with the n-sphere), so that f1 ∧ f2 = 0 and
the overlap of these restricted zero sets (the zero set of f = f1 ∨ f2 intersected
with the n-sphere) is of dimension n − 1. This will be characterised by the formula
χ(f, f1, f2) in Lemma 4.5. If f, f1, f2 are such that the restricted zero set of f is
minimal with this property, then we next obtain relativised formulae ξr(x̄, y) so that
FA`(n) ∼= FA`(n + 1)/〈f〉cl |= ξ(h̄ + 〈f〉cl) iff FA`(n + 1) |= ξr(h̄, f) (Lemma
4.6). Finally, we will use these relativised formulae to transfer (the expressibility
of) the dimension of zero sets in FA`(n) to (the expressibility of) the corresponding
dimension theory for all zero sets of elements in FA`(n + 1), and thereby complete
the proofs of the theorems.

Let Sn be the n-sphere; i.e., {ȳ ∈ Rn+1 : d(ȳ, 0) = 1}. To any nonzero x̄ ∈ Rn+1,
we associate the point p̄ ∈ Sn with ∃r ∈ R+(r · x̄ = p̄). Let φ be this map, the
projection of x̄ from the origin onto Sn. Now for each f ∈ FA`(n+1) and x̄ ∈ Rn+1,
we have f(x̄) = r · f(φ(x̄)),where r is the norm of x̄. So for inductive purposes it is
enough to consider the images of Z(f) and S(f) under φ; we denote these by Z(f)
and S(f), respectively. We will regard Z(f) as a finite union of irreducible varieties
Z(fj), analogously to Z(f).

Since Z(g) = Z(|g|), we need only consider the zero sets of positive elements.

By our conventions, we have

Z(f) ∪ Z(g) = Z(f ∧ g) and Z(f) ∩ Z(g) = Z(f ∨ g), and so

Z(f) ∪ Z(g) = Z(f ∧ g) and Z(f) ∩ Z(g) = Z(f ∨ g).

Our first result (Theorem 4.2) is that we can easily distinguish Th(FA`(2)) from
all Th(FA`(n)) with n > 2 (in the language L). (We can distinguish FA`(1) from
all the others by noting that the index of the subgroup 2.FA`(1) in FA`(1) is equal
to 4.)
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For convenience, we begin with a lemma in which we express, in FA`(n), that a
zero-set has dimension n.

We will check that our formulae are invariant under the equivalence relation on
FA`(n)+ given by f ∼ f ′ iff Z(f) = Z(f ′).

Lemma 4.1. For every n, there are formulae ψn,n−1(x), φn,n−1(x) such that for all
f ∈ FA`(n)+,

(1) FA`(n) |= ψn,n−1(f) iff dim(Z(f)) = n.
(2) FA`(n) |= φn,n−1(f) iff Z(f) has only one piece of dimension n.

Proof:
We first express (in the language L) that the zero set of one element contains the

support of another. Then we go on to express (in the language L) that the zero set
of an element has dimension n. Let

ψn,n−1(f, g) := (g ⊥ f and g 6= 0), and ψn,n−1(f) := (∃g)ψn,n−1(f, g).

Note that dim(S(g)) = n−1 for all g 6= 0; and (g 6= 0 and f ⊥ g) implies S(g) ⊆ Z(f)
(or, equivalently, S(g) ⊆ Z(f)). Since dim(Z(f)) = n− 1 implies that Z(f) includes
a closed convex polyhedral cone of dimension n (which, necessarily, contains the
support of an element of FA`(n)+), we get (for f, g > 0)

FA`(n) |= ψn,n−1(f, g) iff S(g) ⊆ Z(f),

and
FA`(n) |= ψn,n−1(f) iff dim(Z(f)) = n− 1.

Observe that ψn,n−1 is an existential formula and that it is invariant under the
equivalence relation ∼ .

We next express that the support, S(h), of an element h > 0, is connected. Let
θ(h) be the formula:

(h > 0) and ¬((∃h1, h2 > 0)(h1 ⊥ h2, and h1 ∨ h2 = h)).

Clearly, for f > 0, the algebraic set Z(f) has only one n-dimensional piece iff

FA`(n) |= ψn,n−1(f) and (∀g > 0)(g ⊥ f → (∃h ≥ g)(h ⊥ f and θ(h))).

Denote this formula by φn,n−1(f).
Again, it is invariant under the equivalence relation ∼. The complexity of this

formula is ∀∃∀. 2

We can now distinguish FA`(2) from the other FA`(n).

Theorem 4.2. FA`(2) 6≡ FA`(n) for any n > 2.

Proof:
Consider the sentence:

(∀f1, f2 > 0)
∧
i=1

2
(∀hi,1, hi,2)[(f1 ⊥ f2 and

∧
i=1

2
fi = hi,1 ∨ hi,2 and hi,1 ⊥ hi,2 and
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θ(hi,1) and θ(hi,2)]→ [
∧

i=1,2 k=1,2

(∃h′i,k > 0)( h′i,k ≤ hi,k and θ(h′i,k) and

(
∧

i=1,2

∃gi ≥ (h′i,1 ∨ h′i,2) and (g1 ⊥ g2) and θ(g1) and θ(g2)))].

It holds in FA`(n) if n > 2, but not in FA`(2). 2

We next wish to prove

Theorem 4.3. The structures (FA`(n),+,−,∧,∨, 0) and (FA`(m),+,−,∧,∨, 0)
with 2 < m < n, m,n ∈ Z+, are not elementarily equivalent.

Proof:
Our goal is to find formulae in the language L which encode in FA`(n) the usual

notion of the dimension of a variety in Euclidean space En. This we achieve by
induction.

Induction hypothesis: for every m ∈ {2, . . . , n} and m− 1 ≥ k ≥ −1, we have

FA`(m) |= ψm,k(f)

iff

dim(Z(f)) = k

iff

Z(f) contains the positive span of (k+ 1) R-linearly independent vectors in Em (but
not (k + 2) such).

The case n = 2 of the induction is summed up in the following lemma:

Lemma 4.4. Let f ∈ FA`(2)+. Then

(1) FA`(2) |= ψ2,1(f) iff Z(f) contains an interval;
(2) FA`(2) |= ψ2,0(f) iff Z(f) is a non-empty finite set of points;
(3) FA`(2) |= ψ2,−1(f) iff Z(f) = ∅.

Proof: We have already defined the formula ψ2,1(f) in Lemma 4.1.
Define ψ2,0(f) by:

¬ψ2,1(f) and (∃f1, f2 > 0)(f = f1 ∨ f2 and
∧

i=1,2

ψ2,1(fi) and φ2,1(f1 ∧ f2)).

Note that there is nothing specific to the case n = 2 in this formula.
(In fact, one can show that the formula ψn,n−2(f) obtained by replacing ψ2,1 by

ψn,n−1 and φ2,1 by φn,n−1 encodes in FA`(n) the zero sets of dimension n− 2.)
It remains to express that a zero set is empty. This can simply be done with the

formula

¬ψ2,1(f) and ¬ψ2,0(f).

Alternatively, we can use the equivalent (in FA`(2)) formula ψ2,−1(f):

¬ψ2,1(f) and ¬ψ2,0(f) and (∀f1, f2 > 0)[(f = f1 ∨ f2 and φ2,1(f1) and φ2,1(f2))
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→ (∀h1, h2)[(
2∧

j=1

hj ⊥ fj)→ (∀h ≥ h1 ∨ h2)(¬(θ(h)) or h 6⊥ (f1 ∧ f2)]].

Note that in this case we use the geometry of the circle to ensure that this formula
has the desired meaning. 2

Assume our induction hypothesis up to n ≥ 2. We wish to deduce it for FA`(n+1).
This will be undertaken in the three following lemmata. Our main technical tool will
be the Baker-Beynon Duality Theorem (see [2] Theorem 4.1 or Section 2 above). We
will apply it as follows:

Suppose that an element f ∈ FA`(n+ 1)+ behaves like πn+1 in the sense that

FA`(n+ 1)/ < f >cl
∼= FA`(n).

This property holds iff Z(f) and Rn are piecewise homogeneous integral linear home-
omorphic, which entails that the above isomorphism can be described quite ex-
plicitly. Namely, let θ be a piecewise linear integral homeomorphism from Rn to
Rn+1 sending Zn onto Z(f). It is of the form: θ(x̄) = (u1(x̄), · · · , un+1(x̄)) with
u1, · · · , un+1 ∈ FA`(n). Let T (θ) be the induced map from FA`(n + 1) to FA`(n)
sending h to h ◦ θ. One may identify h ◦ θ with h|Z(f). The kernel of T (θ) is the
`-ideal < f >cl . For convenience we will denote the image T (θ)(f) by f θ and write
T ∗(θ) for the induced `-isomorphism between FA`(n+1)/ < f >cl and FA`(n). (see
Corollary 5.2.2 in [5].)

Lemma 4.5. There is a formula χ(y) such that if f ∈ FA`(n+1)+ and FA`(n+1) |=
χ(f), then there exists f ′ ≥ f such that FA`(n+ 1) |= χ(f ′) and, say, ϑ : FA`(n+
1)/ < f ′ >cl' FA`(n). Moreover, this element f ′ satisfies the following minimality
condition: for any g ∈ FA`(n+ 1)+ with Z(g) ( Z(f ′), then FA`(n+ 1)+ |= ¬χ(g).
In addition, we have that, for k ∈ {−1, 0, . . . , n− 1}

dimZ(ϑ(h+ < f ′ >cl)) = k iff dim(Z(h) ∩ Z(f ′)) = k.

Proof: Let

χ(f, f1, f2) := f > 0 and f = f1 ∨ f2 and ¬ψn+1,n(f) and
2∧

i=1

φn+1,n(fi) and f1 ⊥ f2.

Let
χ(f) := (∃f1 > 0,∃f2 > 0)χ(f, f1, f2).

Again note that this formula is invariant under the equivalence relation ∼.
We first check that χ(|πn+1|) holds. Let p1 := (−πn+1 ∨ 0) and p2 := (πn+1 ∨ 0).

Then we have that |πn+1| = p1 ∨ p2, p1 ⊥ p2 and
∧2

i=1 φn+1,n(pi).
Next we show the minimality property for |πn+1|. Take any element h > 0 such

that Z(h) ( Z(πn+1). We claim that ¬χ(h) holds.
Suppose that χ(h) holds. Then there are positive elements h1 and h2 (each Z(hj)

having exactly one n-dimensional piece) such that Z(h1) ∪ Z(h2) = Sn and Z(h1) ∩
Z(h2) = Z(h). Denote the n-dimensional piece of Z(hj) by Zn(hj) (j = 1, 2).
Since Z(h1) ∪ Z(h2) = Sn and Z(h1) ∩ Z(h2) ⊆ Z(πn+1), we cannot have both
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Zn(h1) ∩ Z(p1) 6⊆ Z(πn+1) and Zn(h2) ∩ Z(p1) 6⊆ Z(πn+1). Mutatis mutandis with
p2 in place of p1. Thus one may assume that Zn(hj) ⊆ Z(pj) (j = 1, 2). On
the other hand, the positive span of u1, · · · , um is strictly included in Z(πn+1) (by
assumption), so either Zn(h1) ( Z(p1) or Zn(h2) ( Z(p2). This contradicts the fact
that Z(h1) ∪ Z(h2) = Sn. Hence ¬χ(h) holds.

Let θ be the embedding of Rn into Rn+1 sending (x1, · · · , xn) to (x1, · · · , xn, 0) and
T ∗(θ) be the induced `-isomorphism between FA`(n+ 1)/ < |πn+1| >cl and FA`(n).

Let f, f1, f2 ∈ FA`(n + 1)+ be such that FA`(n + 1) |= χ(f, f1, f2). Then, since
φn+1,n(fi) hold for i = 1, 2, we get that (to within lower dimensional varieties) Z(f1)
has one piece of dimension n+1 (that is equal to a finite union of (n+1)-dimensional
polyhedral cones) and that Z(f2), also up to varieties of lower dimension, is equal to
the the closure of the complement of Z(f1). In particular, Z(f1) contains an (n+ 1)-
dimensional closed polyhedral cone C1 whose boundary is included in Z(f1 ∨ f2),
positively generated by at least n+ 1 R-linearly independent elements u1, · · · , un+1.
Define f ′1 ≥ f1 to be a function whose zero set is equal to C1 and f ′2 ≥ f2 a function
whose zero set is the closure of the complement of C1. Let f ′ = f ′1 ∨ f ′2. We have
that Z(f ′) = Z(f ′1 ∨ f ′2) ⊆ Z(f1 ∨ f2). The boundary of the cone C1 is piecewise
linearly homeomorphic to Z(|πn+1|); so denoting this homeomorphism by τ , we have
that < f ′ >cl is equal to < |πn+1|τ >cl. Let τ̂ be the induced `-isomomorphism of
FA`(n+ 1). Thus χ(|πn+1|)↔ χ(|πn+1|τ ). Moreover, χ is invariant under ∼, and so
we get that χ(f ′) holds. Indeed, this function f ′ is minimal such. For let g be such

that Z(g) ( Z(f ′),. Then Z(gτ−1
) ( Z(|πn+1|), so FA`(n+ 1) |= ¬χ(gτ−1

). But τ̂ is
an `-isomorphism and so we also get that FA`(n+ 1) |= ¬χ(g).

Let ϑ be the composition T ∗(θ) ◦ τ̂−1. Then, ϑ is an ` isomorphism between:
FA`(n+ 1)/ < f ′ >cl and FA`(n). Moreover,

h+ < f ′ >cl 7→ h|Z(f ′)

is well-defined since h ∈< f ′ >cl iff Z(h) ⊇ Z(f ′).
The last assertion of the lemma follows from the fact that we may identify hϑ with

h|Z(f ′). 2

Lemma 4.6. There is a definable relation R(h, f), such that whenever f ∈ FA`(n+
1)+ is such that χ(f) holds and if Z(f ′) ( Z(f) then ¬χ(f ′), then R(h, f) iff Z(h)
contains the n-dimensional-part of Z(f). Further, for any formula ξ(x̄) one can ex-
plicitly construct a formula ξr(x̄, y) such that for any h̄ ⊆ FA`(n+ 1),

FA`(n+ 1)/ < f >cl|= ξ(h̄+ < f >cl) iff FA`(n+ 1) |= ξr(h̄, f).

Proof: Define R(h, f) by

(∃f1 > 0)(∃f2 > 0)(χ(f, f1, f2) and

(∃h1 ≥ 0)(∃h2 ≥ 0)[h = h1 ∨ h2 and
2∧

i=1

∀k((k ⊥ fi)↔ (k ⊥ hi)]).

This relation R expresses that the (n + 1)-dimensional part of Z(hi) is equal to
that of Z(fi) for i = 1, 2. Now the minimality hypothesis of Z(f) implies that its
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n-dimensional part is equal to the intersection of the (n + 1)-dimensional part of
Z(f1) and Z(f2).

We define ξr by induction on the complexity of the formula ξ. For an atomic
formula ξ(x̄) := (t(x̄) = 0), we define ξr(x̄, y) as R(t(x), y). For a quantifier-free
formula ξ(x̄) (i.e., a Boolean combination of atomic formulae ξi(x̄) := ti(x̄) = 0),
we define ξr(x̄, y) to be the same Boolean combination of ξr

i (x̄, y). Finally, if ξ(x̄)
is in prenex form Q(z̄)ξ(z̄, x̄), where Q(z̄) is a block of quantifiers, define ξr(x̄, y) as
Q(z̄)ξr(z̄, x̄, y).

We now prove the equivalence: for any h̄ ∈ FA`(n+ 1),

FA`(n+ 1)/ < f >cl|= ξ(h̄+ < f >cl) iff FA`(n+ 1) |= ξr(h̄, f),

by induction on the complexity of the formula. It suffices to prove it for atomic
formulae. This is immediate as t(h̄+ < f >cl) = 0 iff t(h̄) ∈< f >cl iff t(h̄)|Z(f) = 0
iff Z(t(h̄)) ⊇ Z(f). By the minimality of Z(f) (subject to χ(f)), the zero set of f
comprises a single piece of dimension n; hence the last equivalent condition holds iff
R(t(h̄), f). 2

Let f > 0 be such that FA`(n + 1)/ < f >cl
∼= FA`(n) and let ϑ be this isomor-

phism. By the induction hypothesis on FA`(n), we get that

FA`(n) |= ψn,k(ϑ(h+ < f >cl) iff dim(Z(h) ∩ Z(f)) = k,

for k = −1, · · · , n− 1. Since ϑ is an isomorphism, we also get that

FA`(n+ 1)/ < f >cl|= ψn,k(h+ < f >cl) iff dim(Z(h) ∩ Z(f)) = k.

We are now ready to define the formulae ψn+1,i(x), for i = −1, · · · , n.

Definition 4.1. Recall that ψn+1,n(x) has been defined by:

∃g (g ⊥ x and g 6= 0).

Then for −1 ≤ i ≤ n− 1, define ψn+1,i(x) to be the formula

¬ψn+1,n(x) and ∃f [χ(f) and ∀f ′ ≥ f (χ(f ′)→ ψr
n,i(x, f

′))] and

¬[∃f(χ(f) and
∨

0<j<n−i

ψr
n,i+j(x, f))].

Remarks: (1) If we denote the block of quantifiers of maximal complexity in the
formulae ψm,k in prenex forms by Q (where 0 ≤ k ≤ m− 1 and 2 ≤ m ≤ n), then we
get that the complexity of the formulae ψn+1,k is at most max{∃∀∃∀∃,∃∀Q, ∀¬Q}.

(2) By construction, these formulae ψn+1,i, −1 ≤ i ≤ n, are pairwise inconsistent.

It remains to prove that they really capture the notion of dimension (in En+1).

Lemma 4.7. Let h ∈ FA`(n+ 1)+. Suppose that dim(Z(h))=i, for some −1 ≤ i ≤
n− 1. Then there is f ∈ FA`(n+ 1)+ such that χ(f) and dim(Z(h) ∩ Z(f))=i and
FA`(n+ 1) |= ψn+1,i(h).

Conversely, if FA`(n+ 1) |= ψn+1,i(h), then dim(Z(h))=i.
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Proof: Let h > 0 and assume that dim(Z(h))=i. So its zero set contains the positive
span of (i + 1) R-linearly independent elements: u1, · · · , ui+1. Without loss of gen-
erality, we may assume that this span is maximal with these properties. Complete
this set to a basis of Zn+1 and obtain u1, · · · , un+1. Let σ be the transformation
sending (u1, · · · , un+1) to (e1, · · · en+1) the canonical basis of Zn+1. It is a piecewise
linear integral homeomorphism. Let f ∈ FA`(n + 1)+ with zero set the R-span of
u1, · · · , un. Then, FA`(n+ 1)/ < f >cl

∼= FA`(n+ 1)/ < πn+1 >cl
∼= FA`(n). Denote

by ς the isomorphism between FA`(n+ 1)/ < f >cl and FA`(n). As in the proof of
Lemma 4.5, we have that FA`(n + 1) |= χ(f) and FA`(n + 1) |= ¬χ(f ′) whenever
Z(f ′) ( Z(f).

By the induction hypothesis applied to FA`(n), we have dim Z(ς(h+ < f >cl)) = i
iff FA`(n) |= ψn,i(ς(h+ < f >cl) iff FA`(n + 1)/ < f >cl|= ψn,i(h+ < f >cl)
iff, by the preceding Lemma, FA`(n + 1) |= ψr

n,i(h, f). Finally, we have that dim
Z(h) ∩ Z(f) = i iff dim Z(ς(h+ < f >cl)) = i.

Now assume that FA`(n+1) |= ψn+1,i(h); so there is f > 0 such that for all f ′ ≥ f
with χ(f ′) we have ψr

n,i(h, f
′). Choose f ′ as in Lemma 4.5; i.e., such that

FA`(n+ 1)/ < f ′ >cl
∼= FA`(n+ 1)/ < πn+1 >cl

∼= FA`(n)

and f ′ also satisfies the minimality assumption. Let ς be the above isomorphism.
We may apply Lemma 4.6. By hypothesis, we have that FA`(n+ 1) |= ψr

n,i(h, f
′); it

follows that FA`(n+ 1)/ < f ′ >cl|= ψn,i(h+ < f ′ >cl). Hence we get that FA`(n) |=
ψn,i(ς(h+ < f ′ >cl)). By induction hypothesis, we have that dim(Z(ς(h+ < f ′ >cl

)))=i. So, by Lemma 4.5 again, we have that dim(Z(f ′) ∩ Z(h)) = i. Therefore,
dim(Z(h)) ≥ i. Suppose that dim(Z(h)) = j > i. Then by the first part of the
lemma, there would be g > 0 such that χ(g) and FA`(n + 1) |= ψr

n,j(h, g). This
contradicts FA`(n+ 1) |= ψn+1,i(h). 2

Proof of Theorem 4.3 (continued): We apply Lemmata 4.5, 4.6 and 4.7.

Observe first that the formulae ψn,n−1(x, y) and θ(x) are independent of n. So if
m ≤ n and h ∈ FA`(m)+, then

FA`(m) |= ψn,n−1(h) iff FA`(m) |= ψm,m−1(h)

and

FA`(m) |= φn,n−1(h) iff FA`(m) |= φm,m−1(h).

It follows that χ(x, y, z) and χ(x) are likewise independent of n, whence so is the
passage from a formula ξ(x̄) to ξr(x̄, y).

Let n > j and let σn,j be the sentence (∃h > 0)ψn,j(h). By Lemmata 4.5, 4.6 and
4.7, FA`(n) |= σn,j.

So to prove the theorem, it is enough to establish (by induction on m ≥ 2)

(∀n > m) FA`(m) |= ¬σn,0 (Hyp(m)).

We first establish Hyp(2).
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Let h ∈ Zk
+. We write Z(h) for {i ∈ {1, . . . , k} : h(i) = 0}. By the definitions of

ψ2,1, φ2,1 and χ,
(I) Zk |= ψ2,1(h) iff Z(h) 6= ∅, and
(II) Z(h) = ∅ if Zk |= χ(h).
Hence
(III) Z2 |= χ(h) iff Z(h) = ∅, and
(IV) Zk 6|= χ(h) if k ≥ 3.

Further, by taking g = (1, 1) in the formula φ2,1 and noting that any (x, y) with
x, y > 0 can be written as (x, 0) ∨ (0, y), it follows that

(V) Z2 6|= φ2,1(0)

Note that if f ∈ FA`(2)+ and FA`(2) |= χ(f), then Z(f) is a finite set of points,
say k, with k ≥ 2. Thus by (I) — (V), we have FA`(2)/〈f〉cl ∼= Zk. Therefore

(VI) FA`(2) |= ψr
2,1(h, f) and χ(f) iff dim(Z(h)) ≥ 0.

Moreover if f, f ′ ∈ FA`(2)+ are such that FA`(2) |= χ(f) and χ(f ′), then

(VII) FA`(2) |= χr(f, f ′) iff Z(f) ∩ Z(f ′) = ∅.
Now assume m = 2 and n = 3. By the way of contradiction, suppose that

FA`(2) |= ψ3,0(h) for some h ∈ FA`(2)+. By the last clause of the definition of ψ3,0

and (VI), we know that dim(Z(h)) = −1. Further, by the previous clause in that defi-
nition, there is f ∈ FA`(2)+ with |Z(f)| = 2 such that FA`(2) |= χ(f) and ψr

2,0(h, f).

Hence Z2 ∼= FA`(2)/〈f〉cl |= ψ2,0(h+ 〈f〉cl). By the definition of ψ2,0 and (I) we have
h+ 〈f〉cl = (a, b) with a, b > 0 (since Z2 |= ¬ψ2,1(h+ 〈f〉cl) ), whence f1 = (a, 0) and
f2 = (0, b) in the definition. Since f1 ∧ f2 = 0, it follows that Z2 |= φ2,1(0). This
contradicts (V) and establishes the m = 2, n = 3 case.

To complete the proof of Hyp(2), let n > 3. We prove that FA`(2) |= ¬σn,j for all
j with −1 ≤ j ≤ n− 4. Indeed, we will show that for any h ∈ FA`(2)+,

FA`(2) |= ψn,n−1(h) or (∃f > 0) [χ(f) and (ψr
n−1,n−2(h, f) or ψr

n−1,n−3(h, f))].

Suppose that h ∈ FA`(2)+.

Case 1. dim(Z(h)) = 1.
By Lemma 4.4, FA`(2) |= ψ2,1(h) iff Z(h) is 1-dimensional. Since ψn−1,n−2(x)

is exactly the same formula as ψ2,1(x), when we take the relativized formula with
respect to Z(f), we get that FA`(2) |= ψr

n−1,n−2(h, f).

Case 2. dim(Z(h)) = 0.
Choose f ∈ FA`(2)+ such that |Z(f)| = 2 (whence FA`(2) |= χ(f)). Then

FA`(2) |= ψr
n−1,n−2(h, f) by (VI).

Case 3. dim(Z(h)) = −1.
Thus FA`(2) |= ¬ψn,n−1(h) and ¬[∃f(χ(f) and ψr

n−1,n−2(h, f))].
Choose f, f ′ ∈ FA`(2)+ with |Z(f)| = 2 = |Z(f ′)| and Z(f ′)∩Z(f) = ∅. Therefore,
by (VII),

FA`(2) |= χr(f ′, f) and ∀g ≥ f ′ (χr(g, f)→ ψr(2)

n−2,n−3(h, g, f)).



FREE ABELIAN LATTICE-ORDERED GROUPS 17

Hence Hyp(2) as

FA`(2) |= (∃f > 0) [χ(f) and (ψr
n−1,n−3(h, f))].

Now assume Hyp(k) holds but Hyp(k + 1) fails. Then for some h ∈ FA`(k + 1)+

and n+ 1 > k + 1, we have FA`(k + 1) |= ψn+1,0(h). By definition, we have that

FA`(k + 1) |= ¬ψn+1,n(h) and ∃f [χ(f) and ∀f ′ ≥ f (χ(f ′)→ ψr
n,0(h, f

′))] and

¬[∃f(χ(f) and
∨

0<i<n

ψr
n,i(h, f))].

Since the formula ψn+1,n does not depend on n, it is equivalent to ψk+1,k; so Z(h)
has dimension k0, say, with k0 ≤ k − 1. Since any f ∈ FA`(k + 1)+ satisfying χ has
dim(Z(f)) = k − 1, we can choose f ∈ FA`(k + 1)+ so that

(i) Z(f) ∩ Z(h) = ∅, and
(ii) f satisfies χ with the additional property that

FA`(k + 1)/ < f >cl
∼= FA`(k).

Hence FA`(k) |= ψn,0(h̄), where h̄ is the image of h+ < f >cl in FA`(k)+. This
contradiction to Hyp(k) completes the induction step, and hence the proof of the
theorem. 2

By the above, one can express by formulae (though of different complexities in each
FA`(n)) the fact that a zero set is empty. We now show that we can interpret in
each FA`(n) the lattice of zero sets of elements of FA`(n) for n ≥ 2. For n > 2, this
will imply the desired undecidability results. The idea of the proof is to use a result
of A. Grzegorczyk on the undecidability of some topological theories (see Theorems
5 and 6 in [6]). By interpreting Peano arithmetic, he showed that (assuming certain
separation axioms) the theory of a class of closed subsets is undecidable.

Define a topology on φ(Zn+1)∩Sn as follows. The closed sets are the images under φ
of the closed polyhedral cones in Zn+1, the zero sets of the elements of FA`(n+1) (by
Proposition 2.1). Let Zer(Sn) denote this set of closed subsets of Sn. We next observe
that for n ≥ 2, the topological space Zer(Sn) satisfies Grzegorczyk’s conditions and
furthermore, in any FA`(n + 1), we can interpret the lattice of these closed subsets
of Sn. To prove this we recall the separation and connectedness conditions required
on the space:

The topological space must be Hausdorff, connected, and satisfy the axiom of
normality (namely, two disjoint closed sets have disjoint neighbourhoods), the second
axiom of countability (namely it has a countable basis), any non-empty closed subset
has to contain an atom (i.e. a closed subset which is minimal). Further, if A and B
are two finite closed subsets, then
(i) if A ∩ B = ∅ and A ∪ B is included in a connected open subset E, then there
exist two connected open sets C ⊃ A and D ⊃ B such that the intersection of their
closures is empty and their union included in E; and
(ii) if there exists a bijection between A and B, then there exists a closed set C such
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that A ∪ B ⊂ C and every component D of C contains exactly one point of A and
one point of B (see paragraphs 2 and 3 in [6]). (Recall that a component is the union
of all connected subsets of C containing a given element of C.)

Note that properties (i) and (ii) fail in S1.

Theorem 4.8. (Zer(Sn),∩,∪,−,=,0,1) is interpretable in (FA`(n+1),+,−,∧,∨, 0).

Proof: In the proof of Theorem 4.3 we obtained a formula expressing that the zero set
of a positive element f is empty; for simplicity, we will write Z(v) = ∅ for the formula
expressing this. We also have the definability of the lattice operations in Zer(Sn).
The constant 1 is given by 1 = Z(0), the constant 0 = Z(f) for any function f for
which ψn+1,−1(f) holds; i.e., for which Z(f) = ∅.

We have already defined the union and intersection of zero sets of positive elements;
they correspond to the lattice operations in FA`(n+ 1).

We next define the complement; this is done using the fact that we can express
the fact that a zero set is empty.

Assume that f, g > 0. The relative complement Z(g) in Z(f) will be defined as
Z(h), where h > 0 and satisfies the formula θ′′(h, f, g); this latter will be a formula
θ′(h, f, g) with an additional minimality assumption. Let θ′(h, f, g) be:

h ≥ f and (∀k ≥ f)Z(k ∨ [h ∧ (f ∨ g)]) 6= ∅,
and θ′′(h, f, g) be θ′(h, f, g) and

¬[(∃h1 ≥ h)[θ′(h1, f, g) and (∃h2 > 0)(h ≥ h1 ∧ h2 and Z(h1 ∨ h2) = ∅ 6= Z(h2)).

Finally, observe that the equivalence relation ∼ is now definable in FA`(n+ 1) since
Z(f) = Z(g) iff their symmetric difference is empty. 2

Corollary 4.9. (FA`(n),+,−,∧,∨, 0) is undecidable, for n ≥ 3. 2

Remark: We can now express the decomposition of a zero set into its “component
pieces”, the (irreducible) varieties for an appropriate choice of element with this zero
set. Let h > 0 and suppose that for some k we have that dim(Z(h)) = k. We say
that this zero set is k-irreducible if there do not exist h1, h2 > 0 such that h = h1∧h2,∧2

i=1 dim(Z(hi)) = k and dim(Z(h1 ∨ h2)) < k − 1.
A zero set is an (irreducible) variety if there do not exist h1, h2 > 0 such that

h ≤ h1∧h2,
∨n

i,j=1 dim(Z(h1)) = i, dim(Z(h2)) = j and dim(Z(h1∨h2)) < min{i, j}.

5. Free vector lattices.

Let FV `(n), n ∈ Z+, be the free vector lattice (over R) on n generators. We will
consider it as an LR-structure where LR:={+,−, 0,∧,∨, r· : r ∈ R}, and r· is an
unary function symbol that will be interpreted by scalar multiplication by r ∈ R.
FV `(n) can be represented as the real vector lattice of all continuous piecewise-
linear functions from Rn to R with pointwise operations and scalar multiplication by
elements of R. All the technical results we developed for FA`(n) also hold in FV `(n).
[Usually, they are first proved for free vector lattices and then adapted to FA`(n).]
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So, applying the same techniques as previously, we get:

Theorem 5.1. For n = 1, 2, the structures FV `(n) have decidable theories, and for
n > 2, the theories are undecidable. Moreover, they are pairwise non-elementarily
equivalent.

Proof: The decidability result for n = 1, 2 relies this time on the quantifier elimination
and decidability results for the theory of divisible totally ordered abelian groups. 2
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