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Abstract

While there is a longstanding discussion about the interpretation of the
extended, general principle of relativity, there seems to be a consensus
that the special principle of relativity is absolutely clear and unproblem-
atic. However, a closer look at the literature on relativistic physics reveals a
more confusing picture. There is a huge variety of, sometimes mataphoric,
formulations of the relativity principle, and there are different, sometimes
controversial, views on its actual content. The aim of this paper is to de-
velop a precise language in order to provide a precise formulation of the
principle. In view of the fact that the special relativity principle is consid-
ered as a universal meta-law, which must be valid for all physical laws in
all situations, we try to keep the formalism as general as possible. The ben-
efit of the formal reconstruction is that it makes explicit all the necessary
conceptual components of the principle; it brings out many subtle details
and the related conceptual problems.

1 Introduction

While there is a longstanding discussion about the interpretation of the ex-
tended, general principle of relativity, there seems to be a consensus that the
special principle of relativity (RP) is absolutely clear and unproblematic. How-
ever, a closer look at the literature on relativistic physics reveals a far more
complex picture. There is a huge variety of, sometimes metaphoric, formula-
tions of the relativity principle, and there are different, sometimes controver-
sial, views on its actual content. Let us illustrate this with only a few quo-
tations: “the laws of physical phenomena should be the same, whether for
an observer fixed, or for an observer carried along in a uniform movement of
translation” (Poincaré 1956, p. 167); “If a system of coordinates K is chosen so
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that, in relation to it, physical laws hold good in their simplest form, the same
laws hold good in relation to any other system of coordinates K′ moving in
uniform translation relatively to K.” (Einstein 1923. p. 111); “it is impossible
to measure or detect the unaccelerated translatory motion of a system through
free space or through any ether-like medium” (Tolman 1949, p. 12); “all phys-
ical phenomena should have the same course of development in all system of
inertia, and observers installed in different systems of inertia should thus as a
result of their experiments arrive at the establishment of the same laws of na-
ture” (Møller 1955, p. 4); “the laws of Physics take the same mathematical form
in all inertial frames” (Sardesai 2004, p. 1); “The same laws of nature are true
for all inertial observers.” (Madarász 2002, p. 84)1 “The uniform translatory
motion of any system can not be detected by an observer traveling with the
system and making observations on it alone.” (Comstock 1909, p. 767); “The
laws of nature and the results of all experiments performed in a given frame of
reference are independent of the translational motion of the system as a whole.
More precisely, there exists a [. . .] set of equivalent Euclidean reference frames
[. . .] in which all physical phenomena occur in an identical manner. (Jackson
1999, p. 517); “If we express some law of physics using the quantities of one
inertial frame of reference, the resulting statement of the law will be exactly
the same in any other inertial frame of reference. [. . .] we write down exactly
the same sentence to express the law in each inertial frame.” (Norton 2013);
“all inertial frames are equivalent for the performance of all physical experi-
ments” (Rindler 2006, p. 12); “the laws of physics are invariant under a change
of inertial coordinate system” (Ibid., p. 40); “The outcome of any physical ex-
periment is the same when performed with identical initial conditions relative
to any inertial coordinate system.” (Ibid.); “experience teaches us that [. . .] all
laws of physical nature which have been formulated with reference to a def-
inite coordinate system are valid, in precisely the same form, when referred
to another co-ordinate system which is in uniform rectilinear motion with re-
spect to the first. [. . .] All physical events take place in any system in just the
same way, whether the system is at rest or whether it is moving uniformly and
rectilinearly.” (Schlick 1920, p. 10); “laws must be Lorentz covariant. Lorentz
covariance became synonymous with satisfaction of the principle of relativity”
(Norton 1993, p. 796); “The laws of physics don’t change, even for objects mov-
ing in inertial (constant speed) frames of reference.” (Zimmerman Jones and
Robbins 2009, p. 84); “the basic physical laws are the invariant relationships,
the same for all observers” (Bohm 1996, p. viii); “laws of physics must satisfy
the requirement of being relationships of the same form, in every frame of ref-
erence” (Ibid. p. 54).

We are hopeful that our analysis in this paper helps to clarify many of the
aspects reflected in the above quotations. Our aim is to develop a precise lan-
guage in order to provide a precise formulation of the principle. In view of
the fact that the special relativity principle is considered as a universal meta-
law, which must be valid for all physical laws in all situations, we try to keep
the formalism as general as possible. The benefit of the formal reconstruction
is that it makes explicit all the necessary conceptual components of the prin-
ciple; moreover, it brings out many subtle details and the related conceptual
problems.

1This verbal statement is formalized on page 85.
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(A) (B)

(C) (D)

Figure 1: The descriptions of the same phenomenon in different inertial frames
are different: (A) and (B). In contrast, different phenomena, (A) and (C), have
descriptions of the same form in the two different (co-moving) inertial frames:
(A) and (D)

2 Preliminary considerations

In trying to understand the precise meaning of the principle one encounters
several obvious questions. First of all, it must be clear that the laws of physics
“in” or “in relation to” a reference frame K are meant to be the laws of physics
as they are ascertained by an observer living in reference frame K; less anthro-
pomorphically, as they appear in the results of the measurements, such that the
measuring equipments—and in some sense the objects to be measured, too—
are at rest relative to K. At this point we encounter the first, and, as will be
discussed below, highly non-trivial conceptual problem: when can we say that
a physical object, in general, is at rest relative to an inertial frame of reference?

Of course, it is the same laws of physics which must take the same form
in all inertial frames. It would be absurd to require that, say, the second law
of thermodynamics in K must have the same form as Newton’s force law in
K′. But, what are the same laws of physics in different inertial frames? It is
quite natural to say that the laws of physics can be identified by means of the
physical phenomena they describe. If so, then one can think that the descrip-
tions of the same physical phenomenon must have the same form in all frames
of reference; the same physical phenomenon must “have the same course of
development in all system of inertia”. This is however obviously not the case.
For example, consider the electromagnetic field of a charged particle at rest in
K. This phenomenon is described in K as it is depicted in Fig. 1A. As is well
known, the description of the same phenomenon in K′ is completely different,
Fig. 1B—just take the Lorentz transformation of the situation in Fig. 1A. (For
more details, see Remark 6.)
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Thus, the opposite must be true: the RP is about different physical phenom-
ena; different phenomena must have descriptions of the same form in the dif-
ferent inertial frames of reference. In our example, ‘the static electromagnetic
field of the rest charge’ is one phenomenon (Fig. 1A) and ‘the time-dependent
stationary electromagnetic field of the same charge in motion with velocity
v = V’ is the other (Fig. 1C). What the RP asserts is this: the description in the
co-moving inertial frame K′ of the phenomenon depicted in Fig. 1C takes ex-
actly the same form as the description of the phenomenon in Fig. 1A in inertial
frame K (see Fig. 1D). But, in what general sense these two phenomena are the
counterparts of each other?

The next problem is how the phrase “same form” should be understood.
For, formulas (equations, relations, functions, etc.) which are—for example
logically—equivalent may have completely different forms/shapes in some al-
gebraic/typographic sense. So, “same form” must be understood as “same
form up to some equivalent transformations”. Generally, two formulas must be
regarded as equivalent if they express the same physical content, in the sense
that they determine the same relations between the same physical quantities.

This immediately raises the next question: How do we identify the physical
quantities defined by the different observers in different inertial frames? As
Grøn and Vøyenli (1999, p. 1731) points out:

A law fulfilling the restricted covariance principle, has the same
mathematical form in every coordinate system, and it expresses a
physical law that may be formulated by the same words (without
any change of meaning) in every reference frame [. . .]

In our understanding, the “meanings of the words” by which a physical law
is formulated are determined by the empirical/operational definitions of the
quantities appearing in the law. The obvious solution is, therefore, that we
identify the physical quantities which have identical empirical definitions. It is
however far from obvious how these identical empirical definitions are actu-
ally understood. For the empirical/operational definitions require etalon mea-
suring equipments. But how do the observers in different reference frames
share these etalon measuring equipments? Do they all base their definitions
on the same etalon measuring equipments? Is the principle of relativity really
understood in this way? Is it true that the laws of physics in K and K′, which
ought to take the same form, are expressed in terms of physical quantities de-
fined/measured with the same standard measuring equipments? Not exactly.
Consider how Einstein describes a simple application of the relativity principle
in his 1905 paper:

Let there be given a stationary rigid rod; and let its length be l as
measured by a measuring-rod which is also stationary. We now imagine
the axis of the rod lying along the axis of x of the stationary system
of co-ordinates, and that a uniform motion of parallel translation
with velocity v along the axis of x in the direction of increasing x
is then imparted to the rod. We now inquire as to the length of the
moving rod, and imagine its length to be ascertained by the follow-
ing two operations:

(a) The observer moves together with the given measuring-rod and the
rod to be measured, and measures the length of the rod directly
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by superposing the measuring-rod, in just the same way as if all
three were at rest.

(b) By means of stationary clocks set up in the stationary system
and synchronizing in accordance with [the light-signal syn-
chronization], the observer ascertains at what points of the sta-
tionary system the two ends of the rod to be measured are lo-
cated at a definite time. The distance between these two points,
measured by the measuring-rod already employed, which in
this case is at rest, is also a length which may be designated
“the length of the rod.”

In accordance with the principle of relativity the length to be discovered
by the operation (a)—we will call it “the length of the rod in the mov-
ing system”—must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call “the
length of the (moving) rod in the stationary system.” This we shall
determine on the basis of our two principles, and we shall find that
it differs from l. [all italics added] (Einstein 1905, pp. 41–42)

That is to say, if the standard measuring equipment by means of which the ob-
server in K defines a physical quantity ξ is at rest in K and, therefore, moving
in K′, then the observer in K′ does not define the corresponding ξ ′ as the phys-
ical quantity obtainable by means of the original standard equipment—being
at rest in K and moving in K′—but rather as the physical quantity obtainable
by means of the standard equipment in another state of motion; namely, at rest
relative to K′ and in motion relative to K. Consequently the measurement op-
erations and the measurement outcomes in K′ are not the same physical phe-
nomena as their counterparts in K.

Taking into account the above considerations, as a first step toward the pre-
cise formulation, we give the following preliminary formulation of the princi-
ple (Szabó 2004):

The description of a phenomenon exhibited by a physical system co-moving
as a whole with an inertial frame K, expressed in terms of the results of
measurements obtainable by means of measuring equipments co-moving
with K, takes the same form as the description of the same phenomenon
exhibited by the same physical system, except that the system is co-moving
with another inertial frame K′, expressed in terms of the measurements
with the same equipments when they are co-moving with K′.

3 Conceptual components of the RP

Let K and K′ be two arbitrary inertial frames of reference; and let V be the
velocity of K′ relative to K.

Measurement outcomes in K Denote by Σ the set of all possible measure-
ment operations with certain measuring devices being at rest in inertial frame
K. Let σs denote the set of the possible outcomes of measurement s ∈ Σ. We
assume that σs1 ∩ σs2 = Ø for all s1 6= s2. Let E denote the union of all possible

outcomes of all possible measurement: E
de f
=
⋃

s∈Σ σs.
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Measurement outcomes in K′ Similarly, denote by Σ′ the set of all possible
measurement operations with certain measuring devices being at rest in inertial
frame K′. Let σ′s′ denote the set of the possible outcomes of measurement s′ ∈

Σ′. We assume that σ′s′1
∩ σ′s′2

= Ø for all s′1 6= s′2. Finally, E′
de f
=
⋃

s′∈Σ′ σ
′
s′ .

The counterparts The RP requires identification between the physical quan-
tities in different inertial frames; we need to be able to say which measurement
operation and measurement outcome in K correspond to which measurement
operation and measurement outcome in K′. In other words, we need to have a
pair of one-to-one maps

P1 :E→ E′

P2 :Σ→ Σ′

such that for all s ∈ Σ,
P1(σs) = σ′P2(s)

(1)

Remark 1. P1 and P2 are not simply arbitrary one-to-one relations between
the measurement operations and measurement outcomes somehow assigned
to inertial frames K and K′, satisfying (1), but they must express the following
physically meaningful correspondence: P2(s) must be the same measurement
operation with the same measuring equipment as measurement s, except that
everything is in a collective motion with velocity V relative to K. Similarly,
the measurement outcome P1(ωs) must be the same physical phenomenon as
the measurement outcome ωs, except that everything is in a collective motion
with velocity V relative to K. For example, if measurement outcome ωs con-
sists in that the pointer of a measuring device at rest relative to K is in a certain
position, then the measurement outcome P1(ωs) must be the phenomenon con-
sisting in that the pointer of the same measuring device is in the same position,
except that everything—the device, the pointer, the scale—is in a collective mo-
tion with velocity V relative to K. y

For the sake of simplicity, in what follows we restrict the discussion for a
finite number of measurements s1, s2, . . . sn ∈ Σ. Let Ω denote the set of the
possible outcome combinations:

Ω
de f
= ×n

i=1σsi

The counterparts are P2(s1), P2(s2), . . . P2(sn) ∈ Σ′ and

Ω′
de f
= ×n

i=1σ′P2(si)

Putting primes Maps P1 and P2 determine the following bijection

P : Ω→ Ω′

(ω1, ω2, . . . ωn) 7→ (P1(ω1), P1(ω2), . . . P1(ωn)) (2)
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Admissible values In the above sense, the points of Ω and the points of Ω′

range over all possible measurement outcome combinations (ω1, ω2, . . . ωn)
and

(
ω′1, ω′2, . . . ω′n

)
. It might be the case however that some combinations

are impossible, in the sense that they never come to existence in the physical
world. Let us denote by R ⊆ Ω and R′ ⊆ Ω′ the physically admissible parts of
Ω and Ω′. Note that P(R) is not necessarily identical with R′.2

Transformation law For the formulation of the RP we need to introduce the
concept of what we usually call the “transformation” of physical quantities;
another bijection between Ω and Ω′, more precisely, between R and R′. It is
conceived as a bijection

Λ : Ω ⊇ R→ R′ ⊆ Ω′ (3)

determined by the observable fact that whenever the measurements s1, s2, . . . sn
have outcomes (ω1, ω2, . . . ωn) ∈ R then the outcomes of the measurements
P2(s1), P2(s2), . . . P2(sn) are Λ (ω1, ω2, . . . ωn) ∈ R′, and vice versa. Since
s1, s2, . . . sn can be various physical measurements in the various contexts,
nothing guarantees that such a bijection exists. We assume however the ex-
istence of Λ.

Numeric values To bring our formalism closer to the ordinary language of
physics, without serious loss of generality, we assume that the measurement
outcomes can be labeled by real numbers. That is, there exist two coordinate
maps φ : Ω→ Rn and φ′ : Ω′ → Rn, such that for all ω ∈ Ω,

φ(ω) = φ′(P(ω)) (4)

Let us denote the coordinates by (ξ1, ξ2, . . . ξn) = φ(ω) and
(
ξ ′1, ξ ′2, . . . ξ ′n

)
=

φ′(ω′). We will refer to them as real valued physical quantities measured by
the measurements s1, s2, . . . sn and P2(s1), P2(s2), . . . P2(sn), respectively.

Remark 2. In spite of (4), it must be emphasized that ξ1, ξ2, . . . ξn and
ξ ′1, ξ ′2, . . . ξ ′n are different real valued physical quantities, due to the fact that the
operations by which the quantities are defined are performed under different
physical conditions. Thus, the same numeric values, say, (5, 12, . . . 61) ∈ Rn

correspond to different states of affairs when ξ1 = 5, ξ2 = 12, . . . ξn = 61 ver-
sus ξ ′1 = 5, ξ ′2 = 12, . . . ξ ′n = 61.

Remark 3. It is worthwhile to consider several examples.

(a) Let (ξ1, ξ2) be (p, T), the pressure and the temperature of a given (equilib-
rium) gas; and let

(
ξ ′1, ξ ′2

)
be (p′, T′), the pressure and the temperature of

the same gas, measured by the moving observer in K′. In this case, there
exists a one-to-one Λ:

p′ = p (5)

T′ = Tγ−1 (6)

2One can show however that P(R) = R′ if the RP, that is (9), holds.
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where γ =
(

1− V2

c2

)− 1
2 (Tolman 1949, pp. 158–159).3 A point ω ∈ Ω

of coordinates, say, p = 101325 and T = 300 (in units Pa and ◦K) repre-
sents the class of physical constellations—the class of possible worlds—in
which the gas in question has pressure of 101325 Pa and temperature of
300 ◦K. Due to (6), this class of physical constellations is different from the
one represented by P (ω) ∈ Ω′ of coordinates p′ = 101325 and T′ = 300;
but it is identical to the class of constellations represented by Λ (ω) ∈ Ω′

of coordinates p′ = 101325 and T′ = 300γ−1.

(b) Let (ξ1, ξ2, . . . ξ10) be
(
t, x, y, z, Ex, Ey, Ez, rx, ry, rz

)
, the time, the space co-

ordinates where the electric field strength is taken, the three components
of the field strength, and the space coordinates of a particle. And let(
ξ ′1, ξ ′2, . . . ξ ′10

)
be
(

t′, x′, y′, z′, E′x, E′y, E′z, r′x, r′y, r′z
)

, the similar quantities

obtainable by means of measuring equipments co-moving with K′. In this
case, there is no suitable one-to-one Λ, as the electric field strength in K
does not determine the electric field strength in K′, and vice versa.

(c) Let (ξ1, ξ2, . . . ξ13) be
(
t, x, y, z, Ex, Ey, Ez, Bx, By, Bz, rx, ry, rz

)
and let(

ξ ′1, ξ ′2, . . . ξ ′13
)

be
(

t′, x′, y′, z′, E′x, E′y, E′z, B′x, B′y, B′z, r′x, r′y, r′z
)

, where

Bx, By, Bz and B′x, B′y, B′z are the magnetic field strengths in K and K′. In
this case, in contrast with (b), the well known Lorentz transformations
of the spatio-temporal coordinates and the electric and magnetic field
strengths constitute a proper one-to-one Λ. y

Description of a phenomenon Next we turn to the general formulation of the
concept of description of a particular phenomenon exhibited by a physical system,
in terms of physical quantities ξ1, ξ2, . . . ξn in K. We are probably not far from
the truth if we stipulate that such a description is, in its most abstract sense, a
relation between physical quantities ξ1, ξ2, . . . ξn; in other words, it can be given
as a subset F ⊂ R.

Remark 4. Consider the above example (a) in Remark 3. An isochoric process
of the gas can be described by the subset F that is, in φ-coordinates, determined
by the following single equation:

F {p = κT (7)

with a certain constant κ.
To give another example, consider the case (b). The relation F given by

equations

F



Ex(t, x, y, z) = E0

Ey(t, x, y, z) = 0

Ez(t, x, y, z) = 0
rx(t) = r0 + v0t
ry(t) = 0

rz(t) = 0

(8)

3There is a debate over the proper transformation rules (Georgieu 1969; Sewell 2008).
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Figure 2: The relativity principle

with some specific values of E0, r0, v0 describes a neutral particle moving with
constant velocity in a static homogeneous electric field. y

Physical equations Of course, one may not assume that an arbitrary relation
F ⊂ R has physical meaning. Let E ⊂ 2R be the set of those F ⊂ R which
describe a particular behavior of the system. We shall call E the set of equations
describing the physical system in question. The term is entirely justified. In
practical calculations, two systems of equations are regarded to be equivalent
if and only if they have the same solutions. Therefore, a system of equations
can be identified with the set of its solutions. In general, the equations can be
algebraic equations, ordinary and partial integro-differential equations, linear
and nonlinear, whatever. So, in its most abstract sense, a system of equations
is a set of subsets of R.

Now, consider the following subsets of Ω′, determined by an F ∈ E :

Primed solution P(F) ⊂ Ω′: the “primed F”, that is a relation “of exactly the
same form as F, but in the primed variables ξ ′1, ξ ′2, . . . ξ ′n”. The quotation marks
are important. Since one and the same F ⊂ Ω can be given in many different
“forms”, by means of different numbers of different equations, functions, rela-
tions, of different types. That is why we formalized the concept of a descrip-
tion of a phenomenon as an abstract relation between quantities ξ1, ξ2, . . . ξn,
given in the form of a subset of Ω. Similarly, subset P(F) is an abstract rela-
tion between ξ ′1, ξ ′2, . . . ξ ′n, which can be thought of in many different equivalent
“forms”. So, whether F and P(F) are “of the same form” may or may not be
manifestly apparent (cf. Friedman 1983, p. 150). Also note that relation P(F)
does not necessarily describe a true physical situation, since it can be not real-
ized in nature.

Same solution expressed in primed variables Λ(F) ⊆ R′: which is the same
description of the same physical situation as F, but expressed in the primed
variables.
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The same but in different state of motion We need one more concept. The
RP is about the connection between two situations: one is in which the system,
as a whole, is at rest relative to inertial frame K, the other is in which the system
shows the similar behavior, but being in a collective motion relative to K, co-
moving with K′. In other words, we assume the existence of a map M : E → E ,
assigning to each F ∈ E , stipulated to describe a phenomenon exhibited by
a system co-moving with inertial frame K, another relation M(F) ∈ E , that
describes the same physical system exhibiting the same phenomenon as the
one described by F, except that the system is in motion with velocity V relative
to K, that is, co-moving with inertial frame K′.

4 The formal statement of the RP

Now, applying all these concepts (Fig. 2), what the RP states is the following:

Λ (M(F)) = P(F) for all F ∈ E (9)

or equivalently,

P(F) ⊂ R′ and M(F) = Λ−1 (P(F)) for all F ∈ E (10)

Remark 5. Notice that, for a given fixed F, everything on the right hand side of
the equation in (10), P and Λ, are determined only by the physical behaviors of
the measuring equipments when they are in various states of motion. In contrast,
the meaning of the left hand side, M(F), depends on the physical behavior of
the object physical system described by F and M(F), when it is in various states
of motion. That is to say, the two sides of the equation reflect the behaviors of
different parts of the physical reality; and the RP expresses a law-like regularity
between the behaviors of these different parts. y

Remark 6. Let us illustrate these concepts with a well-known textbook exam-
ple of a static versus uniformly moving charged particle. The static field of a
charge q being at rest at point (x0, y0, z0) in K is the following (Fig. 1 (A)):

F



Ex(t, x, y, z) =
q (x− x0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Ey(t, x, y, z) =
q (y− y0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Ez(t, x, y, z) =
q (z− z0)(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)3/2

Bx(t, x, y, z) = 0
By(t, x, y, z) = 0

Bz(t, x, y, z) = 0

(11)

The stationary field of a charge q moving at constant velocity V = (V, 0, 0)
relative to K can be obtained (Jackson 1999, pp. 661–665) by solving the equa-
tions of electrodynamics (in K) with the time-depending source (Fig. 1 (C)):
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M(F)



Ex(t, x, y, z) =
qX0(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ey(t, x, y, z) =
γq (y− y0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ez(t, x, y, z) =
γq (z− z0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Bx(t, x, y, z) = 0

By(t, x, y, z) = −c−2VEz(t, x, y, z)

Bz(t, x, y, z) = c−2VEy(t, x, y, z)

(12)

where where (x0, y0, z0) is the initial position of the particle at t = 0, X0 =
γ (x− (x0 + Vt)).

Now, we form the same expressions as (11) but in the primed variables of
the co-moving reference frame K′ (Fig. 1 (D)):

P (F)



E′x′(t
′, x′, y′, z′) =

q′ (x′ − x′0)((
x′ − x′0

)2
+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

E′y′(t
′, x′, y′, z′) =

q′ (y′ − y′0)((
x′ − x′0

)2
+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

E′z′(t
′, x′, y′, z′) =

q′ (z′ − z′0)((
x′ − x′0

)2
+
(
y′ − y′0

)2
+
(
z′ − z′0

)2
)3/2

B′x′(t
′, x′, y′, z′) = 0

B′y′(t
′, x′, y′, z′) = 0

B′z′(t
′, x′, y′, z′) = 0

(13)

By means of the Lorentz transformation rules of the space-time coordinates,
the field strengths and the electric charge (e.g. Tolman 1949), one can express
(13) in terms of the original variables of K (Fig. 1 (C)):

Λ−1 (P(F))



Ex(t, x, y, z) =
qX0(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ey(t, x, y, z) =
γq (y− y0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Ez(t, x, y, z) =
γq (z− z0)(

X2
0 + (y− y0)

2 + (z− z0)
2
)3/2

Bx(t, x, y, z) = 0

By(t, x, y, z) = −c−2VEz(t, x, y, z)

Bz(t, x, y, z) = c−2VEy(t, x, y, z)

(14)
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We find that the result is indeed the same as (12) describing the field of the
moving charge: M(F) = Λ−1 (P(F)). That is to say, the RP seems to be true in
this particular case.

Reversely, assuming that the particle + electromagnetic field system satisfies
the RP, that is, (10) holds for the equations of electrodynamics, one can derive
the stationary field of a uniformly moving point charge (12) from the static field
(11). y

5 Covariance

Now we have a strict mathematical formulation of the RP for a physical system
described by a system of equations E . Remarkably, however, we still have not
encountered the concept of “covariance” of equations E . The reason is that the
RP and the covariance of equations E are not equivalent—in contrast to what
is so often claimed in the literature. As Norton (1993, p. 796) writes:

The lesson of Einsteins’s 1905 paper was simple and clear. To con-
struct a physical theory that satisfied the principle of relativity of
inertial motion, it was sufficient to ensure that it had a particular
formal property: its laws must be Lorentz covariant. Lorentz co-
variance became synonymous with satisfaction of the principle of
relativity of inertial motion and the whole theory itself, as Einstein
(1940, p. 329) later declared:

The content of the restricted relativity theory can accordingly be
summarized in one sentence: all natural laws must be so condi-
tioned that they are covariant with respect to Lorentz transfor-
mations.

In fact, the precise relationship between the two conditions is much more com-
plex. To see this relationship in more detail, we previously need to clarify a
few things.

Consider the following two sets: P(E) = {P(F)|F ∈ E} and Λ(E) =
{Λ(F)|F ∈ E}. Since a system of equations can be identified with its set of
solutions, P(E) ⊂ 2Ω′ and Λ(E) ⊂ 2R′ can be regarded as two systems of
equations for functional relations between ξ ′1, ξ ′2, . . . ξ ′n. In the primed vari-
ables, P(E) has “the same form” as E . Nevertheless, it can be the case that
P(E) does not express a true physical law, in the sense that its solutions do not
necessarily describe true physical situations. In contrast, Λ(E) is nothing but
E expressed in variables ξ ′1, ξ ′2, . . . ξ ′n.

Now, covariance intuitively means that equations E “preserve their forms
against the transformation Λ”. That is, in terms of the formalism we devel-
oped:

Λ(E) = P(E) (15)

or, equivalently,
P(E) ⊂ 2R′ and E = Λ−1 (P(E)) (16)

The first thing we have to make clear is that—even if we know or presume
that it holds—covariance (16) is obviously not sufficient for the RP (10). For, (16)
only guarantees the invariance of the set of solutions, E , against Λ−1 ◦ P, but
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Figure 3: The RP only implies that Λ(E) ⊇ Λ (M (E)) = P (E). Covariance of
E would require that Λ(E) = P(E), which is generally not the case

it says nothing about which solution of E corresponds to which solution. The
concept of covariance does not even refer to the concept of a particular solution
describing a particular behavior of an object. In contrast, it is the very essence
of the statement of RP that Λ−1 (P(F)) is the solution that describes the same
physical system exhibiting the same phenomenon as the one described by F,
except that the system is in motion with velocity V relative to K. For example,
the mere covariance of the physical laws only implies that the Lorentz con-
tracted configuration of a solid rod is one of the possible configurations admitted
by the laws of physics governing the rod’s behavior. But it does not imply that
this configuration is the one that constitutes the rod in motion with velocity V
relative to K.

It must be clear that the fact that covariance (16) does not imply the RP (10)
is simply a logical fact. This fact is prior to the physical problem of whether
the RP holds for a given physical situation or not; whether we have physically
meaningful maps P1,P2; whether we have an unambiguous meaning of M(F)
describing “the system set anyhow in motion”. The confusion between covari-
ance and the RP differs from the more sophisticated problem discussed by J.
S. Bell in his famous two-spaceship paper. The essence of Bell’s observation is
this:

Lorentz invariance alone shows that for any state of a system at rest
there is a corresponding ‘primed’ state of that system in motion. But
it does not tell us that if the system is set anyhow in motion, it will
actually go into the ’primed’ of the original state, rather than into
the ‘prime’ of some other state of the original system. (Bell 1987,
p. 75)

That is to say, in some situations, in spite of the fact that the physical laws in
question are covariant, the Lorentz boosted solution Λ−1 (P(F)) is not identical
with the one describing the system set in motion (also see Jánossy 1971, pp.
207–210; Szabó 2004). The mere logical possibility of such a situation means
that covariance does not imply the RP.

Finally, let us note that, in a precise sense, covariance is not only not suffi-
cient for the RP, but it is not even necessary (Fig. 3). The RP only implies that

Λ(E) ⊇ Λ (M (E)) = P (E) (17)
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(9) implies (15) only if we have the following extra condition:

M (E) = E (18)

6 Initial and boundary conditions

Let us finally consider the situation when the solutions of a system of equa-
tions E are specified by some extra conditions—initial and/or boundary value
conditions, for example. In our general formalism, an extra condition for E is
a system of equations ψ ⊂ 2Ω such that there exists exactly one solution [ψ]E
satisfying both E and ψ. That is, E ∩ ψ = {[ψ]E}, where {[ψ]E} is a singleton
set. Since E ⊂ 2R, without loss of generality we may assume that ψ ⊂ 2R.

Since P and Λ are injective, P (ψ) and Λ (ψ) are extra conditions for equa-
tions P (E) and Λ (E) respectively, and we have

P ([ψ]E ) = [P (ψ)]P(E) (19)

Λ ([ψ]E ) = [Λ (ψ)]Λ(E) (20)

for all extra conditions ψ for E . Similarly, if P(E), P (ψ) ⊂ 2R′ then Λ−1 (P (ψ))
is an extra condition for Λ−1 (P (E)), and[

Λ−1 (P (ψ))
]

Λ−1(P(E))
= Λ−1

(
[P(ψ)]P(E)

)
(21)

If equations E satisfy the covariance condition (16), we have[
Λ−1 (P (ψ))

]
E
= Λ−1

(
[P(ψ)]P(E)

)
(22)

That is to say, solving the primed equation with the primed extra conditions is
equivalent to first expressing the primed extra conditions in the original quan-
tities and then solving the original equations (cf. Houtappel, Van Dam, and
Wigner 1963). Notice however that it by no means follows from the covariance of
equations E that the primed extra conditions determine the solution describing
the moving object; that is, it can be the case that

[
Λ−1 (P (ψ))

]
E 6= M ([ψ]E )—

this is the difference between the RP and the covariance requirement.
Now consider a set of extra conditions C ⊂ 22R

and assume that C is a
parametrizing set of extra conditions for E ; by which we mean that for all F ∈ E
there exists exactly one ψ ∈ C such that F = [ψ]E ; in other words,

C 3 ψ 7→ [ψ]E ∈ E (23)

is a bijection.
M : E → E was introduced as a map between solutions of E . Now, as there

is a one-to-one correspondence between the elements of C and E , it generates
a map M : C → C, such that

[M(ψ)]E = M ([ψ]E ) (24)

Thus, from (19) and (24), the RP, that is (9), has the following form:

Λ ([M(ψ)]E ) = [P(ψ)]P(E) for all ψ ∈ C (25)
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or, equivalently, (10) reads

[P(ψ)]P(E) ⊂ R′ and [M(ψ)]E = Λ−1
(
[P(ψ)]P(E)

)
(26)

One might make use of the following theorem:

Theorem 1. Assume that the system of equations E ⊂ 2R is covariant, that is, (15) is
satisfied. Then,

(i) for all ψ ∈ C, Λ (M (ψ)) is an extra condition for the system of equations P (E),
and, (25) is equivalent to the following condition:

[Λ (M(ψ))]P(E) = [P(ψ)]P(E) (27)

(ii) for all ψ ∈ C, P (ψ) ⊂ 2R′ , Λ−1 (P (ψ)) is an extra condition for the system of
equations E and (26) is equivalent to the following condition:

[M(ψ)]E =
[
Λ−1 (P (ψ))

]
E

(28)

Proof. (i) Obviously, Λ (E) ∩Λ (M (ψ)) exists and is a singleton; and, due to
(15), it is equal to P (E) ∩ Λ (M (ψ)); therefore this latter is a singleton, too.
Applying (20) and (15), we have

Λ ([M(ψ)]E ) = [Λ (M (ψ))]Λ(E) = [Λ (M (ψ))]P(E) (29)

therefore, (27) implies (26).
(ii) Similarly, due to P (ψ) ⊂ 2R′ and (16), E ∩Λ−1 (P (ψ)) exists and is a

singleton. Applying (21) and (16), we have

Λ−1
(
[P(ψ)]P(E)

)
=
[
Λ−1 (P (ψ))

]
Λ−1(P(E))

=
[
Λ−1 (P (ψ))

]
E

(30)

that is, (28) implies (26).

Remark 7. Let us note a few important—but often overlooked—facts which
can easily be seen in the formalism we developed:

(a) The covariance of a set of equations E does not imply the covariance of
a subset of equations separately. It is because a smaller set of equations
corresponds to an E∗ ⊂ 2R such that E ⊂ E∗; and it does not follow from
(15) that Λ(E∗) = P(E∗).

(b) Similarly, the covariance of a set of equations E does not guarantee the co-
variance of an arbitrary set of equations which is only satisfactory to E ; for
example, when the solutions of E are restricted by some extra conditions.
Because from (15) it does not follow that Λ(E∗) = P(E∗) for an arbitrary
E∗ ⊂ E .

(c) The same holds, of course, for the combination of cases (a) and (b); for
example, when we have a smaller set of equations E∗ ⊃ E together with
some extra conditions ψ ⊂ 2R. For, (15) does not imply that Λ(E∗ ∩ ψ) =
P(E∗ ∩ ψ).

(d) However, covariance is guaranteed if a covariant set of equations is re-
stricted with a covariant set of extra conditions; because Λ(E) = P(E) and
Λ(ψ) = P(ψ) trivially imply that Λ(E ∩ ψ) = P(E ∩ ψ). y
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7 Concluding discussions and open problems

As we have seen, the RP does not reduce to the covariance of the physical equa-
tions, and the precise formulation of the RP is a much more difficult matter. It
requires several conceptual plugins, without which the RP would be simply
meaningless. In section 3 we gave the explicit formulation of these concepts in
our formalism. The concrete meanings of these generally formalized concep-
tual plugins are to be specified in the concrete physical contexts.

It must be mentioned that one of these concepts, M : E → E , which car-
ries an essential part of the physical content of the RP, seems to be especially
problematic. For, what does it generally mean to say that a solution, M(F), de-
scribes the same physical system exhibiting the same phenomenon as the one
described by F, except that the system is in motion relative to K, with veloc-
ity V, together with inertial frame K′? As it was pointed out in (Szabó 2004),
there is no clear and unambiguous answer to this question, even in very simple
situations.

In fact the same question can be asked with respect to the definitions of
maps P1 and P2—and, therefore, with respect to the actual meanings of Λ and
P. For, according to Remark 1, ξ ′1, ξ ′2, . . . ξ ′n are not simply arbitrary variables
assigned to reference frame K′, in one-to-one relations with ξ1, ξ2, . . . ξn, but
the physical quantities obtainable by means of the same operations with the
same measuring equipments as in the operational definitions of ξ1, ξ2, . . . ξn,
except that everything is in a collective motion with velocity V. Therefore, we
should know what we mean by “the same measuring equipment but in collec-
tive motion”. From this point of view, it does not matter whether the system
in question is the object to be observed or a measuring equipment involved in
the observation.

At this level of generality we only want to point out two things. First, what-
ever is the definition of M : E → E in the given context, the following is a
minimum requirement for the RP to have the assumed physical meaning:

(M) Every relation F ∈ E must describe a phenomenon which can be
meaningfully characterized as such that the physical system ex-
hibiting this phenomenon is co-moving with some inertial frame
of reference.

Recall that this minimum requirement is, tacitly, already there in Galileo’s prin-
ciple. As Brown points out:

The process of putting the ship into motion corresponds [. . .] to
what today we call an active pure boost of the laboratory. A key
aspect of Galileo’s principle that we wish to highlight is this. For
Galileo, the boost is a clearly defined operation pertaining to a cer-
tain subsystem of the universe, namely the laboratory (the cabin
and equipment contained in it). The principle compares the out-
come of relevant processes inside the cabin under different states
of inertial motion of the cabin relative to the shore. It is simply as-
sumed by Galileo that the same initial conditions in the cabin can
always be reproduced. What gives the relativity principle empiri-
cal content is the fact that the differing states of motion of the cabin
are clearly distinguishable relative to the earth’s rest frame. (Brown
2005, p. 34)
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Figure 4: The stationary field of a uniformly moving point charge is in collec-
tive motion together with the point charge

A simple example for a system satisfying condition (M) is the one discussed in
Remark 6: solutions (11) and (12) both describe a system of charged particle +
electromagnetic field which are in collective rest and motion respectively. The
electromagnetic field is in collective motion with the point charge of velocity V
(Fig. 4) in the following sense:

E(t, x, y, z) = E(t− δt, x−Vδt, y, z) (31)
B(t, x, y, z) = B(t− δt, x−Vδt, y, z) (32)

But, generally, condition (M) by no means requires that the system be
in a simple stationary state and all parts move with the same collective
velocity—the objects contained in Galileo’s cabin may exhibit very complex
time-dependent behavior; the fishes may swim with their fins, the butterflies
may move their wings, the particles of the smoke may follow a very complex
dynamics.

Notice that requirement (M) does not even say anything about whether and
how the fact that the system in question is co-moving with a reference frame
is reflected in a solution F ∈ E . It does not even require that this fact can be
expressed in terms of quantities ξ1, ξ2, . . . ξn. It only requires that each F ∈ E
belong to a physical situation in which it is meaningful to say—perhaps in
terms of quantities different from ξ1, ξ2, . . . ξn—that the system is at rest or in
motion relative to an inertial reference frame. How a concrete physical situa-
tion can be so characterized is a separate problem, which can be discussed in
the particular contexts.4

The second thing to be said about M(F) is that it is a notion determined
by the concrete physical context; but it is not equal to the “Lorentz boosted
solution” Λ−1 (P(F)) by definition. —as the following reflections show:

(a) In this case, (10) would read

Λ−1 (P(F)) = Λ−1 (P(F)) (33)
4For example, even this minimum requirement can raise non-trivial questions in electrodynam-

ics (Gömöri and Szabó 2011).
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That is, the RP would become a tautology; a statement which is always
true, independently of any contingent fact of nature; independently of the
actual behavior of moving physical objects; and independently of the ac-
tual empirical meanings of physical quantities ξ ′1, ξ ′2, . . . ξ ′n. This would
contradict to the view—shared by a number of physicists and philoso-
phers (see Brading and Castellani 2008)—that the statement of relativ-
ity/covariance principle, like many other symmetry principles, must be
considered as a contingent, empirically falsifiable, statement. As Houtap-
pel, Van Dam, and Wigner (1963) warn us:

The discovery of Lee, Yang, and Wu, showing, among other
facts, that the laws of nature are not invariant with respect to
charge conjugation, reminded us of the empirical origin of the
laws of invariance in a forcible manner. Before the discoveries
of Lee, Yang and Wu, one could quote Fourier’s principle as an
earlier example of an invariance principle which had to be aban-
doned because of empirical evidence.

Earman points out a more general epistemological aspect:

[V]iewing symmetry principles as meta-laws doesn’t commit
one to treating them a priori in the sense of known to be true in-
dependently of experience. For instance, that a symmetry prin-
ciple functions as a valid meta-law can be known a posteriori by
a second level induction on the character of first-order law can-
didates that have passed empirical muster. (Earman 2004, p. 6)

Notice that even the transformation rules must be considered as empir-
ically falsifiable laws of nature. For, how can we verify even a single in-
stance of the covariance principle? One might think that the verification of
the covariance of a given law of physics is only a matter of mathematical
verification. But this is true only if we know the transformation laws of
the physical quantities—against which the physical law in question must
be covariant. Consequently, we must have an independent knowledge
of the transformation rules expressible in terms of the physical behavior
of the measuring equipments—in various states of motion—by means of
which the physical quantities are operationally defined.5 For, as Einstein
emphasizes:

A Priori it is quite clear that we must be able to learn something
about the physical behavior of measuring-rods and clocks from
the equations of transformation, for the magnitudes z, y, x, t are
nothing more nor less than the results of measurements obtain-
able by means of measuring-rods and clocks. (Einstein 1920, p.
35)

Note that a tautology is entirely different from a fundamental principle,
even if the principle is used as a fundamental hypothesis or fundamental
premise of a theory, from which one derives further physical statements.
For, a fundamental premise, as expressing a contingent fact of nature, is
potentially falsifiable by testing its consequences; a tautology is not.

5For a case study illustrating this, see Gömöri and Szabó 2013.
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(b) Even if accepted, M(F)
de f
= Λ−1 (P(F)) can provide physical meaning to

M(F) only if we know the meanings of Λ and P, that is, if we know the
empirical meanings of the quantities denoted by ξ ′1, ξ ′2, . . . ξ ′n. But, the
physical meaning of ξ ′1, ξ ′2, . . . ξ ′n are obtained from the physical mean-
ings of the maps P1 and P2. But they are based on the concepts of
the same measurement operations and the same measurement outcomes
with the same equipments when they are co-moving with K′ with ve-
locity V relative to K. Symbolically, we need, priory, the concepts of
M(ξi-equipment at rest). And this is a conceptual circularity: in order to
have the concept of what it is to be an M(brick at rest) the (size)’ of which
we would like to ascertain, we need to have the concept of what it is to be
an M(measuring rod at rest)—which is exactly the same conceptual prob-
lem.

(c) One might claim that we do not need to specify the concepts
of M(ξi-equipment at rest) in order to know the values of quantities
ξ ′1, ξ ′2, . . . ξ ′n we obtain by the measurements with the moving equipments,
given that we can know the transformation rule Λ independently of know-
ing the operational definitions of ξ ′1, ξ ′2, . . . ξ ′n. Typically, Λ is thought to be
derived from the assumption that the RP (10) holds. If however M is, by
definition, equal to Λ−1 ◦ P, then in place of (10) we have the tautology
(33), which does not determine Λ.

(d) Therefore, unsurprisingly, it is not the RP from which the transforma-
tion rules are routinely deduced, but the covariance (16). As we have
seen, however, covariance is, in general, neither sufficient nor necessary
for the RP. Whether (10) implies (16) hinges on the physical fact whether
(18) is satisfied. But, if M is taken to be Λ−1 ◦ P by definition, the RP be-
comes true—in the form of tautology (33)—but does not imply covariance
Λ−1 (P(E)) = E .

(e) Even if we assume that a “transformation rule” function φ′ ◦ Λ ◦ φ−1

were derived from some independent premises—from the independent
assumption of covariance, for example—how do we know that the Λ we
obtained and the quantities of values φ′ ◦Λ ◦ φ−1 (ξ1, ξ2, . . . ξn) are correct
plugins for the RP? How could we verify that φ′ ◦ Λ ◦ φ−1 (ξ1, ξ2, . . . ξn)
are indeed the values measured by a moving observer applying the same
operations with the same measuring equipments, etc.?—without having
an independent concept of M, at least for the measuring equipments?

(f) One could argue that we do not need such a verification; φ′ ◦ Λ ◦
φ−1 (ξ1, ξ2, . . . ξn) can be regarded as the empirical definition of the primed
quantities: (

ξ ′1, ξ ′2, . . . ξ ′n
) de f
= φ′ ◦Λ ◦ φ−1 (ξ1, ξ2, . . . ξn) (34)

This is of course logically possible. The operational definition of the
primed quantities would say: ask the observer at rest in K to perform
the measurements s1, s2, . . . sn with the equipments at rest in K, and then
perform the mathematical operation (34) on the results ξ1, ξ2, . . . ξn so ob-
tained. In this way, however, even the transformation rules would become
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tautologies; they would be true, no matter how the things are in the phys-
ical world.

(g) Someone might claim that the identity of M with Λ−1 ◦ P is not a simple
stipulation but rather an analytic truth which follows from the identity of
the two concepts. Still, if that were the case, RP would be a statement which
is true in all possible worlds; independently of any contingent fact of na-
ture; independently of the actual behavior of moving physical objects.

(h) On the contrary, as we have already pointed out in Remark 5, M(F) and
Λ−1 (P(F)) are different concepts, referring to different features of differ-
ent parts of the physical reality. Any connection between the two things
must be a contingent fact of the world. The map Λ−1 ◦ P is completely de-
termined by the physical behaviors of the measuring equipments. Conse-
quently, even if F is a description of a particular phenomenon exhibited by
a object physical system, nothing guarantees that Λ−1 (P(F)) has anything
to do with the behavior of the object system; the physical behaviors of the
measuring equipments do not grantee that Λ−1 (P(E)) ⊆ E , nor that the
elements of E satisfy condition (M). For example, from the information of
how the static field of a charge at rest looks like—formula (11)—and how
the transformation laws of electrodynamic quantities look like—regarded
as independent empirical facts about the measuring equipments—one can
determine the Lorentz boosted field (14), no matter how the system of
equations of electrodynamics looks like, no matter whether (14) is a solu-
tion of these equations or not, and no matter whether this solution is the
one describing the field of the uniformly moving charge.

(i) In the standard applications of the RP, M is used as an independent con-
cept, without any prior reference to the Lorentz boost Λ−1 ◦ P. Continuing
the above example, we do not need to refer to the transformations laws of
the electrodynamic quantities in order to understand the concept of ‘the
electromagnetic field of a uniformly moving point charge’; as we are capa-
ble to describe this phenomenon by solving the electrodynamic equations
for such a situation within one single frame of reference. y
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