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Abstract
One of the open questions in Bayesian epistemology is how to rationally learn from 
indicative conditionals (Douven, 2016). Eva et al. (Mind 129(514):461–508, 2020) 
propose a strategy to resolve this question. They claim that their strategy provides 
a “uniquely rational response to any given learning scenario”. We show that their 
updating strategy is neither very general nor always rational. Even worse, we gener-
alize their strategy and show that it still fails. Bad news for the Bayesians.

1 Introduction

How should a rational Bayesian agent update her beliefs when she learns an indica-
tive conditional? Philosophers and cognitive scientists alike have tried hard to 
provide an answer.1Douven (2016, Ch. 6) surveys the extant answers to this ques-
tion and comes to the conclusion that none is satisfactory. Should Bayesians then 
abandon all hope and admit defeat when it comes to updating on conditionals? Not 
according to Eva et al. (2020) who put forth “a normatively privileged updating pro-
cedure for this kind of learning” (p. 461). Their procedure can be roughly glossed as 
follows. A Bayesian agent learns “If A then C” by minimizing the Inverse Kullback-
Leibler (IKL) divergence subject to two constraints, one on the conditional probabil-
ity Q(C∣A), the other on the probability of the antecedent Q(A).

Eva et al. argue that learning by minimizing the IKL divergence is normatively 
privileged. Their reasons are that this minimization method generalizes Jeffrey con-
ditionalizing, an update rule that is widely embraced as rational, and that it mini-
mizes expected epistemic inaccuracy. However, to learn “If A then C” by minimizing 
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the IKL divergence only subject to the constraint on Q(C∣A) keeps the probability of 
the antecedent fixed. In general, as Eva et al. (2020, p. 492) note, this is implausi-
ble. In many examples, the probability of the antecedent should intuitively change. 
Hence, they impose an additional constraint on Q(A).

Here we will show that Eva et al. (2020) general updating strategy for learning 
conditionals fails for two reasons.2 Firstly, their updating strategy does not account 
for cases where propositions besides the antecedent and consequent are relevant. 
This is surprising, to say the least, because they write in the first half of their paper 
“If more than two relevant propositions are involved, then these have to be accounted 
for and modelled in a proper way” (p. 475). Secondly, the constraint on Q(A) leads 
in many scenarios to intuitively false results. We generalize their updating strategy 
to overcome the restriction to two variables. And yet, as we will see, the constraint 
on Q(A) is still inappropriate for non-evidential conditionals.

We will present Eva et  al.’s 2020 updating strategy before we investigate its 
claimed generality. Then we will show that their updating strategy fails for a number 
of examples, including the Ski Trip Example. We generalize their updating strategy 
to give some hope to the Bayesians. Yet we conclude that Bayesians still don’t learn 
from conditionals.

2  Eva et al.’s (2020) Updating Strategy

Here is the framework of Eva et al. (2020). An agent’s initial degrees of beliefs, or 
simply beliefs, are represented by a joint probability distribution P over binary prop-
ositional variables A and C. Her beliefs after learning a conditional are represented 
by the posterior probability distribution Q. The prior probability distribution P is 
assumed to be given by the values for P(A), P(C∣A), and P(C∣¬A).

The idea behind Eva et  al.’s 2020 updating strategy goes as follows: an agent 
learns an indicative conditional “If A then C” by imposing the constraint Q(C∣A) 
> P(C∣A). If her prior belief in C is high (or low), this constraint indicates that A is 
rather coherent (or incoherent) with her prior beliefs. As a result, the probability of 
A should increase (or decrease). The question upon learning a conditional is thus 
how well the antecedent coheres with the agent’s prior belief in the consequent.

This is their updating strategy (see pp. 492–493). An agent has a prior proba-
bility distribution P specified by values in the open interval (0,1) for P(A), P(C∣A), 
and P(C∣¬A). The learning of the indicative conditional “If A, then C” imposes the 

2 We focus our criticism on Eva et al.’s proposal because we take it to be the most elaborate Bayesian 
account of learning conditionals. As Collins et al. (2020, p. 14) observe, Eva et al.’s procedure belongs 
to the distance-minimization approach which they call “the standard method to model updating on condi-
tionals”. We call an account of learning conditionals Bayesian if and only if it is compatible with the core 
Bayesian principles: probabilistic coherence and (Jeffrey) conditionalization (Hájek 2019, Sec. 3.3.4). 
The accounts of learning conditionals due to Douven (2016) and Günther (2017, 2018), for example, are 
not Bayesian on this understanding. Their rules for updating propositional beliefs deviate from (Jeffrey) 
conditionalization, and so may lead to posterior distributions that are different from and thus incompat-
ible with (Jeffrey) conditionalization.
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constraint 1 > Q(C∣A) > P(C∣A) on the posterior distribution. Upon learning the 
conditional, she will update her beliefs by minimizing the IKL divergence between 
Q and P. This happens in one of three ways:

(1) If P(C) > 1/2, she will update by minimizing the IKL divergence to the con-
straints

 (i) the value of Q(C∣A), and
 (ii) Q(A) > P(A).

(2) If P(C) = 1/2, she will update by minimizing the IKL divergence to the con-
straints

 (i) the value of Q(C∣A), and
 (ii) Q(A) = P(A).

(3) If P(C) < 1/2, she will update by minimizing the IKL divergence to the con-
straints

 (i) the value of Q(C∣A), and
 (ii) Q(A) < P(A).

Notice that the posterior probability value of the antecedent increases, remains 
the same, or decreases depending on the agent’s prior belief in the consequent C 
(constraint (ii) in each clause). If an agent’s prior belief in the consequent is low, for 
instance, then to learn that the probability of the consequent given the antecedent is 
higher than previously thought should decrease the belief in the antecedent.3 Before 
we show why the updating strategy fails, let us have a look at its generality.

3  Generality

Eva et al. (2020) claim that their updating strategy is “a single update procedure that 
provides a uniquely rational response to any given learning scenario” (p. 485). How-
ever, their updating strategy is not as general as they purport it to be. Here are some 
preliminary notes to better understand the restrictions of generality.

In their “general updating strategy”, an agent considers only two binary prop-
ositional variables A and C — let us call them basic propositions — and comes 

3 As Eva et al. (2020, p. 494) acknowledge, their threshold of 1/2 seems to be somewhat arbitrary. In 
response, they generalize their updating strategy by replacing the threshold value 1/2 with a Lockean 
threshold t ∈ [1/2, 1]. (For details about Lockean thresholds and Lockean theories of belief, see Foley 
(1993) and Leitgeb (2014, 2017). The outcome of their generalized strategy is still predetermined by the 
value of P(C) relative to the picked threshold. It will become clear that the Lockean updating strategy is 
thus as well susceptible — mutatis mutandis — to the arguments that follow. We therefore confine our-
selves to discussing the non-Lockean version of their updating strategy.
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equipped with a prior probability distribution P fully specified by the values for 
P(A), P(C∣A), and P(C∣¬A) (see pp. 492 and 466). Any probability distribution P 
is defined relative to a probability space ⟨Ω,F,P⟩ , where Ω is a set of “elemen-
tary events”, “possible worlds”, or “maximally specific propositions”, and F  is a 
σ-algebra of subsets of Ω that is closed under disjunction, conjunction, and nega-
tion. Importantly, P is defined on all members of F  , but on no other propositions 
(see, e.g., Hájek (2003, p. 278)).

The basic propositions A and C determine the following set of maximally specific 
propositions:

 It is easy to see that the σ-algebra F  of subsets of Ω does not contain any basic 
proposition other than A and C, and also no Boolean combination including any 
other basic proposition. F  contains, for example, no third basic proposition D. And 
while P(A) and P(A ∨ C), for instance, are defined, P(D) and P(D ∧¬A) are not.

We have just seen that the σ-algebra underlying their “general” updating strategy 
is limited to two basic propositions, the antecedent A and the consequent C. The 
crux is that, when learning “If A then C”, their agent comes equipped with a joint 
distribution only defined over the σ-algebra that has been generated by the binary 
variables A and C. As a consequence, their updating strategy cannot consider that 
there might be another basic proposition — apart from the antecedent and the con-
sequent — relevant to the learning of a conditional. This is surprising because they 
claim in the first half of the paper that there are learning scenarios where additional 
basic propositions “have to be accounted for and modelled in a proper way”.4 It 
remains unclear, however, how their updating strategy can account for additional 
basic propositions. The underlying algebra, metaphorically speaking, has simply no 
space for those additional propositions.

One may object to our point that it is obvious how the underlying σ-algebra is 
to be extended when an additional basic proposition is or becomes relevant. But we 
have learned from Williamson (2003) that extending the underlying language is a 
serious challenge to Bayesianism. Many authors think the extension should not affect 
the probability ratios of those propositions which have already been members of the 
σ-algebra (see, e.g., Wenmackers and Romeijn (2016) and Bradley (2017, Ch. 12)). 
However, Steele and Stefánsson (2020) convincingly argue against this obvious strat-
egy: there are cases where algebra extensions should affect the probability ratios of 
the “old” propositions. So far, it is an unresolved challenge for Bayesian accounts 
how the underlying algebra should be extended in general. Eva et  al. are silent on 
how the σ-algebra should be extended by additional basic propositions, or how the 
probabilities should be distributed when a new basic proposition comes into play. 
And so they fail to specify in their final account how additional basic propositions 
can influence what is learned. We consider a potential solution in Section 5.

Here is another limitation. Their updating strategy is restricted to the open 
interval, or what they call “non-strict” conditionals. In the first half of their paper, 

Ω = {A ∧ C,A ∧ ¬C,¬A ∧ C,¬A ∧ ¬C}.

4 A case in point is the Ski Trip Example, which we will discuss in the next section.
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they extensively deal with “strict” conditionals — conditionals that impose the 
strict constraint Q(C∣A) = 1. They defend the view that strict conditionals can 
be learned by minimizing the IKL divergence, or any other f -divergence for that 
matter (see p. 480). Crucially, the strategy for strict conditionals does not invoke 
a constraint like clause (ii) in their “general” updating strategy. And so their strat-
egy for strict conditionals is not guided by the rationale of their “general” updat-
ing strategy: the coherence with the prior belief in the conditional’s consequent 
plays no special role.

We do not see why strict conditionals require their own Bayesian updating strat-
egy based on a different rationale. To save the generality of their updating strategy, 
we thus proceed upon the assumption that it applies to strict conditionals as well. 
We believe this is reasonable — consider a case where an agent learns a conditional 
with probability 1 − 𝜖 with 𝜖 very close to 0 instead of learning a strict conditional. 
There is no obvious reason that rational learning ought to come with additional 
learning constraints regarding the antecedent just because one learns a conditional 
with 1 − 𝜖 probability instead of 1. In any case, we run into counterexamples even 
if we bite the bullet and restrict the generality of their updating strategy to non-strict 
conditionals as we show in the next section.5

Finally, learning a conditional “If A then C” imposes the constraint that the poste-
rior value of Q(C∣A) is higher than the prior value of P(C∣A). This constraint seems 
to preclude any Bayesian agent from learning that “If A then C” is less likely than 
previously thought. One “might learn that the probability of it raining, given that 
there is a thunderstorm, is much lower than previously imagined”, as Eva et  al. 
(2020, p. 465) observe themselves. They show that learning from conditionals 
should proceed by minimizing the IKL divergence with a constraint on Q(C∣A) = k 
regardless of whether k is greater than, equal to or less than P(C∣A) (see Corollary 1, 
p. 480 for strict conditionals and Proposition 5 (p. 490) for non-strict conditionals).6 
But their learning strategy goes beyond this corollary and the proposition because 
it also includes a constraint on the antecedent and it is not clear what the constraint 
on the antecedent ought to be in such cases. However, this limitation might be quite 
innocent. If Q(C∣A) < P(C∣A), the rationale of their updating strategy would presum-
ably prescribe that the constraint (ii) is reversed in the clauses (1)-(3). Alternatively, 
learning that “If A then C” is less likely than previously thought could be understood 
as learning the constraint that Q(¬C∣A) is more likely than previously thought.7 
While this limitation is relatively easy to fix this way or another, Eva et al. make us 
guess what their preferred fix is.

We have seen that their final updating strategy has no space in the underlying 
algebra for basic propositions in addition to the antecedent and consequent. Further-
more, they restrict their final updating strategy to non-strict conditionals without any 

5 Eva et  al.’s updating method is anyways not as general as the non-Bayesian account put forth by 
Günther (2018). His method of learning conditionals applies to strict and non-strict conditionals, and to 
conditionals whose antecedents have zero probability.
6 Thanks to an anonymous reviewer for pointing this out.
7 We would like to thank an anonymous referee for this alternative idea.
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need to do so. We will see more clearly in the next section why their updating strat-
egy is not as general as they claim it to be.

4  The Constraint on the Antecedent

Eva et al. (2020) make the following claim. Relative to the two constraints on the 
posterior, their updating strategy applies without contextual relativity. Specifically, 
“the contextual relativity occurs only at the stage at which the agent interprets the 
learned conditional as a set of such constraints” (p. 494). This claim clashes with 
their claim that relevant propositions other than the antecedent and the consequent 
are to be considered. Let us illustrate this clash by revisiting the Ski Trip Example: 

Harry sees his friend Sue buying a ski outfit. This surprises him a bit, because 
he did not know that she had any plans to go on a ski trip. He knows that she 
recently had an important exam and thinks it unlikely that she passed it. Then 
he meets Tom, his best friend and also a friend of Sue’s, who is just on his 
way to Sue to hear whether she passed the exam, and who tells him, ‘If Sue 
passed the exam, her father will take her on a ski vacation’. Recalling his ear-
lier observation, Harry now comes to find it more likely that Sue passed the 
exam. (Douven and Dietz 2011, p. 33)

In this example, the prior beliefs P(B), P(E), P(S) of “Sue buying a ski outfit”, of 
“Sue passing the exam”, and of “Sue’s father taking her on a ski vacation”, respec-
tively, are rather low. In the first half of their paper, Eva et al. (2020) observe that the 
agent must learn both in the Ski Trip Example, the conditional “If E, then S” and the 
proposition B (see pp. 469–471). In their Appendix B.2, they show that the minimi-
zation of the IKL divergence between Q and P subject to the constraints Q(B) = 1 
and Q(S∣E) = 1 leads to the desired result: the posterior probability of Sue passing 
the exam is higher than its prior.8

Their “general” updating strategy, however, does either not apply to the Ski Trip 
Example, leads to the intuitively false result, or shows that the constraint (ii) in 
clauses (1)-(3) should be given up, at least in general. Since the prior probability of 
Sue’s father taking her to a ski vacation is low, clause (3) of their updating strategy 
applies. By constraint (ii), the posterior probability of Sue passing the exam must be 
lower than its prior. But this is the intuitively false result contradicting (Eva et al., 
2020) solution of the Ski Trip Example in the first half of the paper. And notice, the 
constraint (ii) says Q(E) < P(E) independent of the value of Q(B). In fact, the propo-
sition B cannot be considered because their updating strategy is set up such that the 
agent considers only a σ-algebra over the antecedent E and the consequent S. Hence, 
their final updating strategy fails for the Ski Trip Example, an example they investi-
gate in the same paper.

8 In fact, they show the more general result that the minimization of any f-divergence leads to the desired 
result. Beware the typos at the beginning of their Appendix B.2, e.g., Q(B) = 0 should read Q(B) = 1 and 
the second occurrence of “Ski 1” should read “Ski 2”.
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You might think that their updating strategy does not apply to the Ski Trip Exam-
ple because a strict conditional is learned. Perhaps, the approach presented by Eva 
et  al. (2020) may be charitably interpreted as twofold: the “general” strategy we 
discuss here is only general with respect to non-strict conditionals, while learning 
from strict conditionals is governed by different rules described in the first half of 
their paper (pp. 461–475). After all, their strategy for strict conditionals handles the 
case with ease (pp. 469–471). However, we can easily imagine a very minor adap-
tion of the Ski Trip Example to show that the issue does not go away. To see this, 
just modify the example by replacing the strict constraint Q(S∣E) = 1 by the non-
strict constraint Q(S∣E) = .99. This is not an unreasonable possibility either: be it 
for testimonial or perceptual reasons. The source who tells the conditional might not 
be fully reliable or the statement is delivered in less than ideal circumstances (e.g., 
on a somewhat noisy street or over the phone). In any case, the situation is almost 
the same. Yet their “general” updating strategy still requires constraint (ii), Q(E) < 
P(E), which directly contradicts the desired result. Ignoring the restriction to the 
antecedent and consequent for a moment, the constraint (ii) excludes that the rel-
evant proposition B can have the desired impact.

To give up constraint (ii) would collapse their updating strategy to the minimiza-
tion of the IKL divergence subject to the constraint Q(C∣A).9 Yet this is no option 
either. Minimizing the IKL divergence keeps the probability of the antecedent fixed 
when there are no explicit constraints on the probability of the antecedent. This 
is bad news in light of examples like this, where the probability of the antecedent 
should intuitively change upon learning a conditional.

Consider a variation of the Ski Trip Example. Suppose Harry initially thinks it 
is just as likely as not that Sue’s father will take her on a ski vacation, that is P(S) 
= 1/2. He might simply be totally uncertain in this respect, or he might know the 
father to be very spontaneous. In either case, after learning that “If Sue passed the 
exam, her father will take her on a ski vacation” and seeing her buying a ski outfit, 
Harry should become more confident that she passed the exam. Yet, because of P(S) 
= 1/2, their updating strategy imposes the constraint Q(E) = P(E), which is trivially 
satisfied when minimizing the IKL divergence subject to the conditional probability 
constraint. Harry must apparently remain just as doubtful about his friend’s success 
as he initially was. Hence, simply giving up on the constraint (ii) and returning to 
the minimization of the IKL divergence subject to the constraint Q(C∣A) only also 
does not solve the problem.

Finally, we can easily construct a counterexample to show that the constraint (ii) 
of clause (1) also has unwanted implications: 

Bob has a friend Laura who regularly performs a rain dance but he does not 
know why. Their common friend Sarah explains to him that Laura believes the 
dance may bring rain and says ‘If it is sunny tomorrow, Laura will do a rain 
dance’. Upon learning this conditional, Bob’s degree of belief that it will be 
sunny tomorrow remains unchanged.

9 Indeed, Eva et al. (2020, p. 36) flirt with the idea that one could simply minimize the IKL divergence 
to the relevant conditional probability constraint.
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The relevant prior beliefs here are P(S) and P(D) of “It will be sunny tomorrow’ 
and ‘Laura will do a rain dance”, respectively. Because P(D) > 1/2 — Bob expects 
Laura to perform a rain dance — clause (1) applies and with it the constraint (ii): 
Q(S) > P(S). In other words, Bayesians who follow Eva et al. (2020) learning strat-
egy shall become more confident that it will be sunny because of (the high expecta-
tion of) the rain dance. Whether or not the dance exerts influence on the weather, 
this change in view seems rather absurd. We have thus demonstrated that all three 
clauses of their learning strategy are prone to counterexamples: clause (1) is threat-
ened by our Raindancer Example, (2) by our variant of the Ski Trip Example, and 
(3) by the original Ski Trip Example.

Another example Eva et al. investigate is Van Fraassen’s (1981) Judy Benjamin 
Problem. Judy learns the conditional “If you are in Red Territory (R), the odds are 
3:1 that you are in Second Company Area (S)”. The constraint on the posterior is 
thus Q(S∣R) = 3/4. They remark that “the learned conditional didn’t seem to tell her 
anything about whether or not she was in Red Territory. Rather, the learned con-
ditional only told her what she should expect under the supposition that she is in 
Red Territory” (p. 483, emphasis in original). From this, they infer that the con-
straint Q(R) = P(R) is “part of the content of the learned conditional” (p. 490). Their 
updating strategy is designed to impose this additional constraint since P(S) = 1/2 
in the Judy Benjamin Problem. But it is widely recognized in the literature that the 
“additional constraint” is rather a desideratum (see Van Fraassen 1981; Douven and 
Romeijn 2011). They explicitly build in their learning procedure what should follow 
from it.10

Eva et al. (2020) back up the claim that the learning of conditionals imposes the 
respective constraint (ii) on the antecedent by a generalized Judy Benjamin Prob-
lem, the Lena the Scientist Example. It is obvious that their updating strategy is 
motivated by the three cases of the Lena Example. Unsurprisingly, their updating 
strategy “yields the intuitively rational update in all of the Lena the scientist cases, 
and hence also in the Judy Benjamin example” (p. 493). But this argument seems to 
involve reverse engineering: the updating strategy is designed to capture the exam-
ples, and the examples then support the strategy. The argument would only convince 
if the updating strategy would apply successfully to other examples. But we have 
just shown that, as it stands, it faces a variety of counterexamples.

The previous paragraph suggests that their updating strategy is tailor-made for a 
few hand-picked examples. And indeed, in the Lena the Scientist Example with its 
three cases, Lena’s prior belief in the consequent determines whether the learned 
conditional is “evidence for, against, or irrelevant to the antecedent” (p. 493). But, 
of course, this evidential idea behind their updating strategy fails in general. As long 
as a conditional “does not tell anything” about the probability of the antecedent, 
but says only what should be expected under the supposition of its antecedent, their 
updating strategy leads generally to the intuitively false results. The conditional “If 

10 Consider a scenario that is just like the Judy Benjamin Problem except that P(S) = .6. For this sce-
nario, their updating strategy implies that the probability of being in Red Territory increases. But why 
should Q(R) > P(R) be the case if “the learned conditional didn’t seem to tell her anything about whether 
or not she is in Red Territory”?
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it rains, the match will be cancelled”, for instance, arguably says not much about 
the probability of rain. If the prior belief in the cancellation of the match is high or 
low, their updating strategy prescribes that the posterior of the antecedent is high or 
low, respectively. In particular, suppose your initial belief that the match will be can-
celled is low. Their updating strategy then commands that, upon learning the condi-
tional, you should decrease your belief that it rains. But, on a causal reading of the 
conditional, the probability for rain should not depend on whether the match will be 
cancelled.11

5  Generalizing Eva et al.’s, 2020 Updating Strategy

Is there a way to save Eva et al.’s updating strategy? We argue that there is no obvi-
ous way. Yet we may generalize their updating strategy in response to our criticisms. 
Let * be a variable ranging over {<, =, >}. There is a function *− 1 which gives > if 
* takes the value <, = if * takes the value =, and < if * takes the value >. The gener-
alization can be stated as follows.

An agent is represented by a prior probability distribution P0 that is defined on 
all members of a σ-algebra generated by all relevant basic propositions. Let P be the 
result from Jeffrey conditionalizing on any proposition F the agent comes to believe 
(to a certain degree). Learning an indicative conditional “If A then C” imposes a 
constraint Q(C∣A) * P(C∣A) on the posterior distribution Q, if P(A) > 0. The agent 
then updates her beliefs by minimizing the IKL divergence between Q and P subject 
to the value of Q(C∣A), and

(a) in case P(C) > 1/2, Q(A) * P(A) if Q(C∣A) * P(C∣A),
(b) in case P(C) = 1/2, Q(A) = P(A), and
(c) in case P(C) < 1/2, Q(A) *− 1P(A) if Q(C∣A) * P(C∣A).12

Let us revisit the generality issues. Our generalization of Eva et  al.’s updating 
strategy makes explicit how an agent learns that a conditional is less likely than 
previously thought. When you learn Q(C∣A) < P(C∣A) and P(C) > 1/2, clause (a) 
implies the constraint Q(A) < P(A). Provided C is more likely than not, you lower 
your belief in A upon learning that A and C do not cohere as good as you thought.

Similarly, when you learn Q(C∣A) < P(C∣A) and P(C) < 1/2, clause (c) implies 
the constraint Q(A) > P(A). Provided C is less likely than not, you increase your 
belief in A upon learning that A and C do not cohere as good as you thought. By 
means of an example, suppose that some mother is quite confident that if her child 

11 We acknowledge that the reading of the conditional, which their updating strategy presupposes, does 
make sense. If you are (nearly) certain that the match will not be cancelled, this is good evidence that 
it will not rain. However, we would maintain that a causal reading makes sense as well, and so no gen-
eral learning strategy for conditionals should simply exclude it. Günther (2022) proposes a distinction 
between causal and evidential conditionals. A similar distinction figures in the debate on evidential vs. 
causal decision theory. See, for instance, Gibbard and Harper (1978) and Joyce and Gibbard (1998).
12 Like Eva et al.’s updating strategy, the generalization is amenable to replace the threshold 1/2 by a 
Lockean threshold.



448 M. Günther, B. Trpin 

1 3

is vaccinated, the child will be autistic. She also believes that autism is relatively 
uncommon. After learning that the conditional “if you vaccinate your child, the 
child will become autistic” is a myth, she lowers her belief in the corresponding 
conditional probability. By clause (c) of our generalization, she becomes more cer-
tain that she should vaccinate her child. The generalized strategy thus provides the 
intuitively correct responses in the spirit of Eva et al.: the generalization keeps the 
evidential idea that your belief in A should change depending on your prior belief in 
C. At the same time, clauses (a) and (c) allow to reverse Eva et al.’s constraint (ii) 
when you learn that A and C cohere less than previously thought.

Our generalization represents an agent by a probability distribution that is defined 
on all members of a σ-algebra generated by all relevant basic propositions. This 
allows the agent to Jeffrey conditionalize on any relevant proposition the agent 
learns before learning a conditional. As compared to Eva et al.’s updating strategy, 
the prior probability distribution is replaced by the probability distribution after 
having conditionalized on all relevant non-conditional propositions. We can illus-
trate this difference by revisiting the Ski Trip Example. On our generalization, the 
prior probability P0(S) that Sue’s father takes her on a ski vacation is conditionalized 
on the observation B that Sue buys a skiing outfit. So P(S) = P0(S∣B). Intuitively, 
P0(S∣B) seems to be more likely than P0(S). But does P0(S∣B) surpass the threshold 
of 1/2?13 If so, how could one show this? This is but one remaining challenge.

Apart from this remaining challenge, the original strategy and the generalization 
still fail for non-evidential conditionals. Causal readings of conditionals — recall the 
above “If it rains, the match will be cancelled” — are one example of non-evidential 
conditionals. The rain causes the cancellation of the match. But the cancellation of 
the match does not cause it to rain. When you read the conditional causally, you do 
not believe that the weather depends on the cancellation. Believed causal relations 
may trump the evidential coherence of beliefs.

Finally, the generalization is not restricted to conditional probabilities in the open 
interval. The only restriction is that the probability of the antecedent must be greater than 
zero, P(A) > 0. Edgington (1995, pp. 264–265) thinks that this restriction is a defining 
feature of indicatives rather than a bug. And yet we can understand and learn condition-
als like “If the spinner landed exactly at noon, it was spinning slightly before noon”. We 
can learn this conditional although the probability of the antecedent is zero.14 As to the 
zero probability intolerance, we see no easy way out for the Bayesian.15

The generalization is still in the spirit of Eva et al.’s updating strategy. Both strat-
egies neglect by how much the probability of the antecedent changes if it does. And 
still, we admit that they might be approximately appropriate for many coherence 
or evidential conditionals. However, both cannot handle “if it rains” cases like the 
example of match cancellation and the Sundowners Example. Some conditionals are 
simply not evidential.

13 Our intuitions are not so clear: many people are not invited to a ski vacation by their father even 
though they buy a skiing outfit.
14 There are uncountably many points in time. So you cannot assign non-zero and equal probability to 
each point. Otherwise your probability measure would exceed 1 by far.
15 Perhaps, the Bayesian can retreat to non-standard probability measures, such as Popper measures.
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One might object that Eva et  al. can handle causal conditionals by introducing 
suitable enabling and disabling variables that have not been mentioned in the respec-
tive examples. To illustrate this objection, consider the Sundowners Example. 

Sarah and her sister Marian have arranged to go for sundowners at the 
Westcliff hotel tomorrow. Sarah feels there is some chance that it will rain, 
but thinks they can always enjoy the view from inside. To make sure, Mar-
ian consults the staff at the Westcliff hotel and finds out that in the event 
of rain, the inside area will be occupied by a wedding party. So she tells 
Sarah: ‘If it rains tomorrow (R), we cannot have sundowners at the West-
cliff (¬S)’. Upon learning this conditional, Sarah sets her probability for 
sundowners and rain to 0, but she does not adapt her probability for rain. 
Douven & Dietz (2011, pp. 645–646)

In the first half of their paper, Eva et al. treat “If R, then ¬S” as a strict con-
ditional. Upon learning the conditional and nothing else, Sarah’s belief in rain, 
P(R), would decrease. And note that Sarah does not know of any wedding party, 
she “thinks they can always enjoy the view from inside”. However, Eva et  al. 
argue that Sarah tacitly learns about a disabler D: “In the event of rain, something 
(for example a wedding party) will prevent us from having sundowners inside”. 
(p. 473) They furthermore argue that Sarah thinks R and D are probabilistically 
independent. This gives them the desired result: if Sarah conditionalizes her 
beliefs on the conditional and the disabler, P(R) remains unchanged.16

Eva et  al. take quite some liberty in postulating presumed facts that are not 
mentioned in the Sundowners Example, like the assumption that Sarah learns 
about a disabler and that this disabler is probabilistically independent of rain. 
Even if we were to grant this resolution of the Sundowners Example, it does 
not transfer to their updating procedure for non-strict conditionals, or our gener-
alization thereof. Sarah starts out with a prior probability distribution P0, which 
she then (Jeffrey) conditionalizes on D in order to obtain P. Her belief in rain 
remains unchanged because P(R) = P0(R∣D) = P0(R) — the disabling condition 
D is by Eva et al.’s own lights independent of rain.

By learning the conditional Sarah imposes the constraint Q(¬S∣R) > P(¬S∣R) on 
her posterior distribution Q. She then updates her beliefs by minimizing the IKL 
divergence between Q and P subject to the value of Q(¬S∣R) and the constraint Q(R) 
< P(R) of case (c). Her belief that they cannot have sundowners, P(¬S), is rather 
low: she thinks “there is some chance” that it will rain, and the disabler only says 
that they cannot have sundowners if it rains. Indeed, Sarah learns that rain and hav-
ing sundowners do not cohere as good as she previously thought. But this shouldn’t 
lower her probability of rain on a causal understanding of the conditional. Our 

16 Two observations may be of interest. First, the disabler D itself has an internal conditional structure 
that looks pretty much like the conditional Sarah is supposed to learn. Second, why do Eva et al. treat the 
Sundowners Example in a different way than the Judy Benjamin Problem? There, they don’t introduce 
a disabler, but say that the constraint Q(R) = P(R) is “part of the content of the learned conditional” 
because “the learned conditional didn’t seem to tell her anything about whether or not she was in Red 
Territory”. But in the Sundowners Example, the conditional Sarah learned likewise “didn’t seem to tell 
her anything about whether or not” it rains.
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consideration of the Sundowners Example has also illustrated that Eva et al.’s two 
updating strategies for strict and non-strict conditionals differ significantly.

6  Parting Thoughts

Eva et al. (2020) claim that they offer a rational and general updating strategy for 
the learning of conditionals. We have shown that their updating strategy is neither 
very general nor always rational: in many cases it is not applicable, and where it is, it 
sometimes delivers the intuitively false results.

We have extended their updating strategy to cover the cases, where more than 
two propositions need to be accounted for. Otherwise their updating strategy has not 
even the chance to deliver the intuitively correct results for the Ski Trip Example. 
We admit that their strategy, and more so our generalization in their spirit, might 
be appropriate for many coherence or evidential conditionals. The point is that 
both cannot handle weather conditionals like “if it is sunny” or “if it rains”, as in 
the Raindancer Example and the example of match cancellation. The culprit is the 
respective constraint on the posterior probability of the antecedent required by their 
updating strategy. Hence, even if their updating strategy is “normatively privileged”, 
it is inappropriate for the learning of indicative conditionals — at least in general. 
Some conditionals are simply not evidential.

Orthodox and heterodox Bayesians have put great effort to model the learning 
of indicative conditionals. However, the diverse and technically advanced tools 
of Bayesianism, such as conditional probabilities, probabilistic independences or 
Bayesian networks, and distance minimization do not seem to solve the problem of 
learning conditionals in its most general form.17 In a similar vein, Eva et al. (2020) 
write in their Conclusion “that no simple updating rule or distance-minimization 
procedure is capable of giving the intuitively correct verdict in all of the relevant 
thought experiments” (p. 495). While there might be a Bayesian solution a long way 
down the line, it may be time to look for other tools to model the learning of condi-
tionals. Great effort does not replace a hammer which fits the problem.18
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