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Abstract: Learning to construct good scientific explanations is an important aspect of learning science. To this 

end it is important to also consider that the detailed standards for good explanations differ across the sciences. 

Practitioners face these differences, for instance, when interdisciplinary work is attempted. This paper reports 

on a comparative qualitative study of exemplar explanations on polymers from molecular biology and polymer 

physics aiming to map the differences in standards for good explanations between the two domains. The study 

gives detail to the theoretical expectation that mechanistic explanations are the ideal in molecular biology 

whereas derivations play the central role in polymer physics. Mechanistic explanations in molecular biology 

focus on material objects with a function-determining structure. In polymer physics derivations are the 

preferred kind of explanation. Derivations focus on variables, particularly, physical quantities like energy and 

entropy, whereas the three dimensional structure of polymers is often ignored. Differences in the kinds of 

explanations-seeking questions deemed relevant within the two domains are also identified. 
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1 Introduction 
Explanations of natural phenomena, theoretical results and more are important products of scientific practice. 

What characterizes a good scientific explanation has puzzled philosophers for decades, and an exhaustive 

answer still eludes us. Still, in most cases, individual scientists and teachers are able to judge whether an 

explanation is good or bad even if they are not able to explicate the standards they use. These standards are 

often referred to as the individual’s explanatory standards. Explanatory standards are not entirely idiosyncratic. 

Scientists from the same research domain tend to make very similar judgements about the quality of 

explanations on topics within their own research domain1. Explanatory standards are thus to a large extent 

shared within research domains2. However, they are not necessarily shared across research domains. In fact, it 

is widely recognized that different sciences have somewhat different explanatory standards (Woodward 2011). 

And yet, our knowledge about how explanatory standards differ across domains remains limited.  

Why is this observation important? From an educational perspective there are two related reasons: 1) Learning 

to construct and evaluate explanations is an important part of any science education, and (at least) in higher 

education it is important that the student learns the explanatory standards of the research domain she is being 

                                                           
1
 I use the term ‘research domain’ to refer to any social unit of science, be it a discipline, sub-discipline or smaller social 

unit of science (Collins 2011).   
2
 Following Kuhn (1996), one could say that the explanatory standards are part of the paradigm of the research domain.  
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enculturated into. Some argue that there should be more explicit discussion in the science classroom on what 

good explanations are (Peker, Wallace 2011; Chambliss, Christenson & Parker 2003; Unsworth 1997; Solomon 

1995). If so, it will be important not to draw an overly generalized picture, but to be sensitive to the differences 

across scientific domains (Dagher, Erduran 2014). A mapping of these differences will be valuable for this 

purpose. 2) In interdisciplinary problem solving where explanations must be acceptable to all domains 

involved, the differences in explanatory standards can become an obstacle if they are not identified and 

addressed ((Lélé, Norgaard 2005; Love 2008; O’Rourke, Crowley 2013; Green, Fagan & Jaeger 2014) see also 

(Goddiksen 2014, introduction & ch. 3)). A person who has previously reflected on the explanatory standards of 

her domain and how they differ from those of other domains, perhaps guided by philosophical insights, will, 

other things being equal, be better prepared for this process than a person who has not (cf. (Goddiksen 2014, 

ch. 3). Thus, from an educational perspective, mappings of the existing differences in explanatory standards 

across scientific domains are relevant, both in relation to the aim of enabling the student to solve problems 

within her own domain and with respect to the aim of teaching the student to solve interdisciplinary problems. 

Unfortunately, philosophers have, with few exceptions3, neglected to provide such mappings and instead 

focused on commonalities within various types of explanations. 

Commonalities in explanatory standards across the sciences were very much in focus in the early studies of 

scientific explanations that aimed to find the shared characteristics of scientific explanations (e.g. (Hempel 

1965; Friedman 1974; Van Fraassen 1980)). Specific types of scientific explanations have also been studied in 

great detail. Noticeably, causal explanations have been attempted characterized across all science domains 

(e.g. (Salmon 1998; Woodward 2003)), while recognizing that not all scientific explanations are causal. Others 

have attempted to characterize explanations within particular domains (see section 3). These studies are 

valuable, but do not in themselves provide a detailed picture of the differences in explanatory standards across 

domains (see the (Goddiksen 2014, introduction).   

In this paper I therefore take a first step towards mapping the differences in explanatory standards across 

scientific domains. More specifically, I report on a comparative qualitative study of the explanatory standards 

of molecular biology and polymer physics, two domains that meet, for instance, in interdisciplinary 

nanoscience and biophysics. The aim of the study is to discover what types of explanation-seeking questions4 

are deemed relevant, and what standards exist for evaluating answers to such questions. I have specifically 

refrained, in this study, from asking about the detailed methods used in the two domains for constructing 

candidate explanations. I am merely interested in the types of questions asked and the standards for 

evaluating answers to such questions, however they may have been constructed.    

2 Method 
The study takes as its starting point the expectations that can be formulated based on the existing literature on 

explanations from (polymer) physics and molecular biology (presented in section 3). These expectations are 

                                                           
3
 Differences in explanatory standards within the biological sciences have received some attention (e.g. (Winther 2011)).  

4
 For more details on explanation-seeking questions (see (Goddiksen 2014, introduction) and the appendix to this paper). 
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then tested and refined through an analysis of a substantial empirical material in the form of exemplar 

explanations from the two domains5. Given that explanatory standards are rarely discussed explicitly in the 

science classroom, an important way for students to learn to judge the relevance of explanation-seeking 

questions and the quality of answers to these is through examples of explanations given by authorities from 

the relevant domain. That is, students learn explanatory standards through exemplars (Woody 2003; Kuhn 

1996, 1977). The explanatory standards of a given domain are embedded in the exemplar explanations that 

populate the pages of science textbooks and displayed to the students who internalize these by solving 

(theoretical and practical) problems similar to the exemplars. This means that the textbook exemplars used to 

educate future members of the community are a valuable source of knowledge about the explanatory 

standards of a given domain.  

The methodological considerations on how to select a good textbook sample and how to identify explanations 

within it are discussed in detail in (Goddiksen, forthcoming). In (Goddiksen, forthcoming) I argue that 

identification of explanations can be done through a set of reliable linguistic indicators of the presence of 

explanations in a piece of text, in the form of keywords like ‘why’ and ‘because’. A full list of the indicators used 

in this study is found in the appendix. 

There are two types of explanations in science textbooks. Firstly, many explanations in textbooks are given as 

explanations of something that once puzzled researchers within the domain, which they have now explained. 

These explanations are exemplar explanations par excellence. They display the structure of a satisfactory 

explanation in the given domain and refer to the kinds of things and processes that can be referred to in 

explanations within the domain (although the details of explanations in introductory textbooks may be 

simplified relative to explanations aimed at practicing researchers). Secondly, some explanations explain tools 

that can be used to solve puzzles, for instance, the meaning of a technical term, or how to read a certain 

diagram. There are quite a few of these in introductory textbooks as well, but they are usually rather short, 

whereas the volume of genuine exemplar explanations is much bigger. The analysis presented in section 4 is 

based primarily on explanations of the first type. 

Once identified, the exemplar explanations from the two domains can be compared in order to identify 

interesting differences using the theoretical expectations as a guide. Using expectations generated from the 

existing literature which often draws on case studies from scientific practice, as a starting point for the 

empirical analysis, rather than making the study completely bottom-up, counters the possible objection that 

results on differences in explanatory standards obtained from textbook material say little about the standards 

in actual practice. This possible objection would carry some weight if the aim of the investigation was to 

identify detailed methods for constructing good explanations. My aim here is to identify standards for 

evaluating explanations. Arguably, these standards are elaborated rather than changed during the course of a 

higher education, and textbook studies can thus give useful insights about the explanatory standards at play in 

scientific practice (cf. (Kuhn 1996, pp. 177ff)).  

                                                           
5
 Studies of explanations based on diverse samples of explanations are relatively rare. For some inspiring exceptions, see 

(Waskan et al. 2014; Overton 2013; Woody 2004; Ogborn et al. 1996; Dagher, Cossman 1992). 
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Differences in the standards displayed by the exemplar explanations in the two sets of textbooks will be easiest 

to detect when comparing explanations on similar topics. Occasionally scientists from two or more domains 

will be interested in similar objects although they ask different questions about them, and perhaps even 

conceptualize them in different ways; what Star and Griesemer (1989) called a boundary object. When 

comparing explanations across domains it is thus helpful to focus on explanations concerning a shared 

boundary object. This study aims to compare the explanatory standards of molecular biology and polymer 

physics. Polymers – large molecules composed of a few different monomers combined in large numbers - are 

one example of a class of objects that are of interest to both of these research domains (as well as others). Bio-

polymers such as DNA, RNA and proteins play important and diverse roles in living organisms and are of 

fundamental interest to biologists. Polymer materials, such as rubbers and plastics, have been of major interest 

to chemists and physicists for many years both because of their commercial potential, and because they can 

have unusual physical properties6. Furthermore, polymers are a central topic in crossdisciplinary fields like 

biophysics and nanoscience that draw on both biological and physical sciences. Polymers are thus a topic 

where there is a potential need to negotiate explanatory standards in actual interdisciplinary practice. 

                                                           
6
 For instance, anyone who has left a rubber band from an open pack of frozen peas on the kitchen table for a while will 

know that, contrary to most other materials, rubber contracts when heated.  
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Figure 1: Visually the books from the two domains look very different. Left: Page 274 from Alberts et al. (2006) with typical diagrams 
showing the structure of an important polymer (top), and a mechanism schema (bottom). Right: Page 322 from Strobl (1997) 
showing parts of a derivation and a graph of the relation among two variables. 

2.1 The textbook material 
The study is based on exemplar explanations from six widely used textbooks aimed at university students, 

three from each domain. The sample from each domain consists of both textbooks used at the introductory 

and intermediate undergraduate level (for polymer physics (Bower 2002; Plischke, Bergersen 2006)7 for 

molecular biology (Watson et al. 2004; Alberts 2008)) as well as textbooks used in advanced undergraduate 

and graduate courses (for polymer physics (Strobl 1997) for molecular biology (Liljas et al. 2009)). The 

textbooks were selected through various criteria indicating wide use. Watson et al. (2004) is among the 

bestselling introductory books in molecular biology from one of the major publishing houses8. Looking at the 

recommended readings for more advanced courses at various institutions I identified acknowledged, but more 

advanced, books (Alberts 2008; Liljas et al. 2009; Plischke, Bergersen 2006; Strobl 1997). For the physics books, 

                                                           
7
 (Plischke, Bergersen 2006) is not exclusively a textbook on polymer physics, but introduces the methods from statistical 

physics in general and uses polymer physics as an area where they can be applied. 
8
http://www.pearsoned.co.uk/bookshop/subject.asp?item=297 (accessed June 12

th
 2014) 
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I also relied on personal communication with colleagues from physics with extensive research and teaching 

experience to point out relevant titles9. 

The general topic of the molecular biology textbooks is the workings of the living cell, and the study of 

polymers is a means to explain these. Entities that happen to be (made of) polymers – DNA, proteins, 

chromosomes etc. - are in almost constant focus, but the models presented often abstract away from this 

specific feature because it is not important in the specific explanation. In these cases the entities are not 

treated as polymers. In the data collection I chose to focus mainly on exemplar explanations where at least one 

entity is treated as a polymer. For instance, I have included treatments of DNA replication because, even 

though the proteins involved in this process are often not described as polymers, the DNA itself is. Conversely, I 

have ignored explanations of the later stages in cell division, where the DNA is compacted together with 

protein material to form chromosomes and the polymer nature of the various materials is completely ignored. 

In the polymer physics books, the topic is polymer materials and their properties, but otherwise the story is the 

same, explanations treating polymers as polymers have been included in the comparison.  

3 Theoretical expectations: Mechanisms vs. deductions 
In this section I briefly discuss the most relevant parts of the existing literature on explanations in physics and 

biology in order to see what differences one would expect to find in the empirical material. I start with biology.  

As illustrated, for instance, by Winter (2011), there is great diversity in the explanatory standards of the 

biological sciences. Focusing on molecular biology and closely related domains, the existing literature gives the 

impression that the main difference in explanations from physics in general, and molecular biology in 

particular, is that physics explanations rely heavily on mathematical deductions based on general principles 

(laws of nature), whereas it is often claimed that general laws similar to the laws of physics are not found in 

biology (Mitchell 2000). Instead, molecular biologists explain by describing (causal) mechanisms. Machamer 

and collaborators characterize mechanisms as follows: 

Mechanisms are entities and activities organized such that they are productive of 

regular changes from start or set-up to finish or termination conditions (Machamer, 

Darden & Craver 2000, p. 3)  

There are alternative definitions of mechanisms. Bechtel and Abrahamsen emphasise that biologists tend to 

talk about mechanisms as performing functions rather than being “productive of regular changes” (Bechtel, 

Abrahamsen 2005, p. 423)10. All definitions of mechanisms are intended to cover explanations from several 

domains within biology and are thus necessarily general. It will therefore be interesting to explore the further 

constraints that face the molecular biologist, in particular, in terms of the kinds of entities and activities that 

                                                           
9
 The final selection was partly based on what titles were available at the time of performing research.     

10
 Illari and Williamson (2012) further argue that mechanisms are often cyclic so they do not necessarily have neither “set-

up” nor “termination conditions”. 
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can be referred to in explanations, and see whether these constraints are different from the ones facing the 

polymer physicist. This question is addressed in section 4.1. 

Related to this topic is the question of whether there are differences in the use of diagrams in the two 

domains. Diagrams play diverse and important roles in scientific explanations. In the biological sciences, the 

function of diagrams is often to more or less abstractly represent the mechanisms described in explanations 

(Sheredos et al. 2013). Such diagrams are referred to as mechanism schemas (Darden, Tabery 2010). If the use 

of diagrams is tightly connected to the way of explaining that is prevalent in a given domain, then one would 

expect to find differences in the use of diagrams between two domains with differing explanatory standards. 

Section 4.1 discusses the differences that can be identified between molecular biology and polymer physics.      

I return to some further details of the philosophical studies of explanations in molecular biology later, but for 

now I turn to what has been said about explanations in physics.  

There are at the same time very many and very few studies of explanations in physics. There are very many 

because most of the studies that claim to deal with scientific explanations in general draw exclusively on 

physics as their source of scientific examples. However, the examples are often simplified and the pool of 

examples drawn upon is very limited. There are surprisingly few studies that aim to capture some of the 

diversity of explanations in physics and analyse specific authentic cases in detail11. 

In the general literature there are two influential accounts of what to expect when looking at explanations in 

physics. One states that explanations in physics are deductions involving general principles that we might call 

laws of nature. There are two general versions of this account: Hempel’s (1965) D-N model and the 

unifacationist accounts (Friedman 1974; Kitcher 1989). The other influential account of explanations in physics 

is Salmon’s causal mechanical account (Salmon 1998). Where Hempel and the unificationists focus on physics 

as a science of laws and deduction, Salmon’s causal mechanical account reminds us that (classical) physics is 

often also a science of colliding billiard balls and interlocking gears. The two views of explanations in physics 

need not be mutually exclusive. According to Salmon, an explanation can be both causal mechanical and a 

deduction from general principles, although it need not be (Salmon 1998, ch. 4). Woodward (2003, pp. 355) 

argues that while Salmon is right to remind us of the causal nature of many explanations in (classical) physics, 

his account of what characterises these causal explanations does not capture the way physicists explain using 

statistical mechanics - which is exactly what polymer physicists often do. Salmon’s detailed account is thus not 

particularly useful in this study. The main alternative to Salmon’s account is Woodward’s own account based 

on manipulability (Woodward 2003). Very roughly, Woodward argues that causal explanations show how the 

manipulation of the value of one variable effects a change in the value or probability distribution of another 

variable. In this way, causal explanations help us to answer questions about “what if things had been 

different?”. Woodward’s account is even more general than the various accounts of mechanistic 

explanations12. The generality of Woodward’s account means that even if explanations in polymer physics are 

completely captured by this account there are still a lot of open questions. Which variables are considered the 

                                                           
11

 For one exception, see (Weatherall 2011). 
12

 On Woodward’s account, mechanistic explanations are simply one type of causal explanations. 
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most relevant and why? How is the dependence between the variables argued for in polymer physics – is it 

through deductions from general principles as Hempel argued or something else, and is it the same way as 

molecular biologists argue for causal dependencies? These questions are considered throughout section 4. 

In short, the existing literature leads to the expectation that when comparing exemplar explanations from 

molecular biology and polymer physics differences will be found. Mechanistic explanations can be expected to 

be abundant in molecular biology books, but not necessarily in physics books, which are argued to rely more 

extensively on general principles and mathematical deduction in their explanations.          

4 Empirical Results 
The keyword searches in the textbooks identified hundreds of indicators and a large and diverse set of 

connected explanations to be compared, but since many of the explanations identified are parts of other 

explanations which are again interwoven with others, it would not be meaningful to state a specific number of 

explanations identified. Some explanations are short, for instance, explaining the appropriateness of a specific 

approximation. Others cover whole sections - chapters even - and contain multiple sub-explanations. For 

instance, the entire twelfth chapter of Watson et al. (2004) is framed as an answer to the explanation-seeking 

question of “how the series of bases in the DNA directs the production of RNAs and proteins that perform 

cellular functions and define cellular activities” (p. 347). The theoretical expectations presented above were to 

some extent confirmed through this substantial empirical material, while significant nuances are also added. As 

expected, mechanistic explanations are abundant in the molecular biology books, whereas derivations (not 

deductions) of dependencies among variables take centre stage in the polymer physics books. The comparison 

also reveals interesting differences in the kinds of explanation-seeking questions asked, the details of the 

ontology of the two domains as well as differences in the relations among the models used in the explanations. 

The details are presented and discussed below in relation to three different themes: The ontology of change 

(section 4.1), modes of reasoning (section 4.2) and questions and models (section 4.3). In the discussion I rely 

on a few illustrative examples, but the conclusions drawn do not hinge on these specific examples. 

4.1 The ontology of change   
Visually, the two sets of explanations identified are very different (see figure 1). As expected, colourful 

diagrams including mechanism schemas play a central role in the molecular biology books. Mechanism 

schemas provide an overview of the mechanisms considered and can serve as a starting point for detailed 

discussions of the different kinds of entities involved in the mechanism. Mechanism schemas in the molecular 

biology books commonly represent multiple steps in the process through which the given mechanism produces 

a certain outcome. Arrows are ubiquitous. The different kinds of entities that are part of the mechanism are 
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important and must be clearly recognizable: 

strong colours are used13, and the individual 

entities in the mechanism are represented by 

distinct shapes (see figure 2). 

Not all diagrams in the molecular biology books 

are mechanism schemas. These other diagrams 

often represent the detailed three-dimensional 

structure of a polymer that plays an important 

role in a mechanism of interest (see figure 3). 

Common to all the diagrams is thus the focus on 

the structure of the different types of polymers, 

be it the primary, secondary, tertiary or 

quarternary structure (see figure 4), and how 

polymers with different structures interact to 

perform a given function.   

Diagrams are also abundant in the polymer 

physics books. Where the diagrams in the 

molecular biology books are often mechanism 

schemas, the most abundant kind of diagram in 

the polymer physics books is the graph depicting 

simultaneous values of (often no more than two) 

variables, or the development of the value of one 

variable over time (cf. figure 1). Mechanism 

schemas similar to those found in the molecular 

biology books are all but absent from the 

polymer physics books, but as in the molecular 

biology books, diagrams and pictures 

representing the instantaneous structure of 

individual polymers are found in the polymer 

physics books.  

                                                           
13

 The majority of the diagrams in all of the molecular biology books are in colour, whereas none of the polymer physics 
books have any illustrations in colour. 

Figure 2: Transport of mRNA out of the cell nucleus. Only mRNAs with 
the right proteins attached will be transported. Note how the different 
proteins are represented by distinct colors and shapes. Figure 13.27 
from Watson et al. (2004). 

Figure 3: Left: The detailed structure of the protein aquaporin. Right: 
Water molecules passing though the pores in aquaporin. Figure 10.9 
from Liljas et. al. (2009) 
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Figure 2: Four levels of polymer structure. Figure 5-7 from Watson et al. (2004).  

As expected, there is thus some difference in the kinds of diagrams used, noticeably a difference in the way 

change is represented through diagrams. In the molecular biology books change is represented in steps, often 

towards a previously described function. The diagrams that are part of these explanations show how functions 

are served though change in the structure and distribution of specific polymers. More generally the 

explanations identified in the molecular biology textbooks are almost always spelled out in terms of reactions, 

movements, interactions and changing of shape of polymers. This is also illustrated from the kinds of 

explanation-seeking questions that are posed in the texts. Explanation-seeking questions about how a certain 

function is performed are common. For instance, Alberts and collaborators discuss the function of motor 

proteins and ponder the general question “How do these machines work?” (2008, p. 182). This question is 

obviously too broad to be answered in general, and must be rephrased to focus on the features of specific 

interest to the molecular biologist. The question now becomes: “[…] How do cells use shape changes in 

proteins to generate directed movements?” (ibid). In a similar vein, Liljas and collaborators discuss the 

structure of the membrane protein aquaporin (figure 3) as the answer to the question “How can the passage 

[through a membrane] of small ions or protons be avoided while permitting water to pass?” (2009, p. 346). 

These examples illustrate how explanation-seeking questions are phrased in terms of functions and answers 

are expected in terms of reactions, movements, interactions and changing of shape of polymers. The diagrams 

used in these explanations depict the polymers as they change shape, interact and react. 

In the polymer physics books it is often a different kind of change that is represented and change is generally 

represented in a different way. Functions are less in focus, although polymer scientists are in practice often 

interested in identifying a polymer material that can serve a certain function. Change is represented through 
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continuous graphs depicting how a change in one variable affects a change in another variable without 

necessarily considering the reason for manipulating a variable in one way or another. In this sense they are 

simply answers to questions about “what if things had been different” (cf. section 3). This difference in the 

preferred way of representing change illustrates a more fundamental difference found in the textbooks from 

the two domains in thinking about what it is that changes when change occurs. They show that the two 

domains do not have the same ontology of change. The molecular biology books explain change as changes in 

the distribution, composition and interactions among material objects14. Explanations of this kind are 

sometimes sketched in the polymer physics books, but the detailed explanations, especially in the more 

advanced books, explicitly consider changes as change in the value of variables, often variables representing 

what we might call physical quantities such as entropy and different types of energy.  

Although the polymer physics books conceptualise change as change in the value of variables, it does not mean 

that all explanations rely on abstract mathematical reasoning. More qualitative explanations of causal 

mechanisms are also found in the texts.  However, the kinds of entities and activities that are described in 

these mechanistic explanations of polymer behaviour are different from those included in the molecular 

biology books. In the molecular biology books, material objects (polymers) encounter other material objects, 

and their interactions change and depend on the structure of these material objects. In the polymer physics 

books material objects commonly encounter entities like potential barriers or forces which are not easily 

interpreted as material objects. These encounters change not only the structure of the polymers, but also the 

value of variables like the entropy or internal energy of the polymer. I consider a detailed example below. 

Qualitative mechanistic explanations are thus displayed as valuable in both the polymer physics and molecular 

biology books. However, the polymer physics books will often indicate that these explanations are not as 

satisfying as derivations, at least if presented as the only explanation of a given phenomenon. Still, qualitative 

mechanistic explanations are included in the textbooks either because the explanation based on a derivation  is 

too long or complicated to be discussed in the text (see e.g. (Strobl 1997, p. 139)), because they are the best of 

the available explanations, or because a qualitative mechanistic explanation supplements an explanation in the 

form of a derivation of mathematical relations among variables.  

To illustrate the focus on variables and the importance of derivations in polymer physics, consider the problem 

of why rubber – a polymer material – is so elastic. This problem is treated in almost all textbooks on polymer 

physics, and all books give basically the same explanation: First a derivation showing that at constant 

temperature the force inside a stretched rubber sample pulling it back into shape depends only on the rate of 

change in the entropy of the sample. The next step is to derive the exact relation between these variables. To 

                                                           
14

 One important exception to the focus in molecular biology on material objects and their structure is the pervasive talk 
about information. Like energy, information is a quantity that can flow from one place to another (but unlike energy, 
information is not a conserved quantity). In physical theory, information is represented mathematically and has even been 
linked to other physical quantities. The heavy reliance by many molecular biologists on the concept information has struck 
some philosophers as controversial and unnecessary (Darden, Tabery 2010). It is controversial because the information 
concept used in molecular biology is clearly not the same as in other fields, noticeably it is not the same as physicists 
represent in their equations, and it has not been clearly defined. Looking at the textbooks, one notes that information is 
not treated mathematically as a quantity, but is used exclusively within the mechanistic framework described.        
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this end, a theoretical model of the rubber sample is constructed based on the, to the student, familiar 

Gaussian chain model15. It is derived that in this model the entropy of the sample decreases when the sample is 

stretched, and the resulting force inside the sample increases linearly as the sample is stretched. The 

explanation ends with considerations on how the results derived on the basis of the fairly simple model 

compare with experimental results. The specific material structure of the polymer chains in the rubber plays no 

role in this explanation. Versions of this explanations can be found in both Bower (2002, sec. 6.4) and Strobl 

(1997, sec. 7.1).  

There are other ways of explaining the elasticity of rubber. An alternative mechanistic explanation – explicitly 

referring to the rubber polymers as material objects bumping increasingly into one another as they get 

stretched, forcing them to recoil - is sketched in the introductory book (Bower 2002, pp. 178-179). This 

approach is quickly abandoned however, in place of “developing an entropic, or statistical, theory of rubber 

elasticity in a quantitative way […]” (p. 179). The more advanced book does not explore alternative ways of 

explaining the phenomenon. Bower even provides reasons for preferring the quantitative, variable based 

explanation. Although the variable based explanation is in many cases only empirically accurate to the extent 

that it fits experimental data “to a first approximation” (p. 183), Bower lists three benefits of “the statistical 

theory” compared to “phenomological theories” (p. 183). One is that it relates the macroscopic properties of 

rubber to “the most important features of the molecular structure of real rubber” (ibid), the other two reasons 

point to specific examples of relations among variables that the model used in the explanation allows us to 

derive and thus “predict” (ibid). An additional virtue of the model which the explanation is based on is that it 

can be further developed to make it more empirically accurate. In fact, Bower proceeds to consider these 

extensions of the model in the section following the derivation just presented.  

So, the explanation of the elasticity of rubber that relates it, in a quantitative way, to the entropy of the rubber 

while not directly considering the interactions among the polymers in the material is not just an explanation, it 

is a good explanation according to the polymer physicist. It is good because it refers to the variables – or 

“features” – that polymer physicists find most relevant when characterizing polymer materials, in this case not 

the material polymers themselves, but two physical quantities: the entropy and the internal force of the rubber 

sample. Furthermore, the explanation is good because it is based on a model and approach that allows exact 

mathematical relations between relevant variables to be derived. The model can even be further developed to 

become more precise with respect to specific systems (see section 4.3). 

This explanation illustrates the more general point that the polymer physicist emphasises certain parts of his 

ontology in his explanations. Although he does not deny that polymer materials consist of material polymers 

with a specific structure, it is not the “most important feature” of the polymer material. Conversely, the 

molecular biologist does not deny that the energy and entropy of polymers change as they change shape, but 

physical quantities like these are rarely referred to in explanations. Instead the molecular biologist emphasises 

the material structure of polymers as the main explanatory features.     

                                                           
15

 The Gaussian chain is a very important model discussed further in section 4.3. It represents a single polymer chain that 
can change shape without energetic or geometrical constraints. The model can be extended in various ways, in this case 
by considering interactions between multiple Gaussian chains.   
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The observed differences in the ontology of change in the two domains are relevant when considering how 

cognitive resources from the two domains can be integrated. Within biology there is an increasing interest in 

developing models of living systems that have the quantitative character of physics and engineering models. 

This has, for instance, led to new interdisciplinary research fields like systems biology (Green, Wolkenhauer 

2014). The discussion above illustrates that the transition to quantitative models often means significant 

changes in the way, and perhaps even the extent, to which these models are explanatory. As Weisberg (2007b) 

points out, one thing is to have a model that gives an accurate output compared to experimental data, what 

Weisberg calls dynamical fidelity, another is having a model that is accurate for the right reasons, what he calls 

representational fidelity. Changing from a typical molecular biology model based on material objects to a more 

physics inspired model not only means thinking about the same entities and activities in a quantitative way. In 

many cases it will mean adopting a different ontology of change and start thinking about different kinds of 

entities and activities, which in the eyes of some practitioners also means that these quantitative models have 

less explanatory power (see e.g. (Green, Fagan & Jaeger 2014; Morrison 2009)). 

Integrating approaches from polymer physics into the study of polymers within molecular biology, or vice 

versa, thus implies not only that practitioners must learn something about the methods and language of the 

other domain, but also to engage in more fundamental reflections on what the important and interesting 

aspects of polymers are (cf. (Goddiksen 2014, ch. 3).  

4.2 Derivations and structural reasoning 
The rubber example presented above illustrates how the physics students are trained in explaining using 

derivations from early on, even if alternative strategies exist that, at the time, may be more intuitive to the 

student. Derivations allow physicists to answer some of the explanation-seeking questions they are most highly 

interested in: how the different variables depend on each other given certain conditions, and how the value of 

a specific variable can be computed. Physicists are well aware that they cannot answer every explanation-

seeking question of interest through derivations. But, the textbooks from polymer physics tend to focus on 

questions that can be answered through derivations and to favour models and variables that allow for 

derivations. In this sense, explanatory standards not only constrain the possible answers to explanation-seeking 

questions, they also constrain what questions are considered in the first place (cf. (Kuhn 1996, pp. 36)). When 

explanation through derivation is not an option, qualitative mechanistic explanations are offered as an 

alternative. In this section, I look closer into what derivations are and compare them to the preferred way of 

theoretical reasoning in molecular biology, largely based on the construction of mechanism schemas and other 

diagrams from experimental results and, in turn, using these mechanism schemas to design new experiments.   

Philosophers tended to equate derivations with deductions (cf. section 3). This implies that the quality (or 

soundness) of derivations is to be evaluated against the standards of deductive logic which dictate that quality 

depends on whether the assumptions that the deduction is based on are true, and whether the logical 

structure is valid. However, it has long since been observed that this move implies that very many explanations 

found in physics textbooks and in the most high-ranking physics journals are not up to the standards (see e.g. 

(Scriven 1962)). Derivations in physics are often based on assumptions that are known to be false (strictly 

speaking) and rely on general results that are known to be approximations (see also (Cartwright 1983)). This is 
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also true for the explanations identified in this study. For instance; in order to make the statistical treatment of 

individual polymer chains feasible, it is standardly assumed that the individual chains in a polymer material can 

be treated as infinitely long16. Plischke and Bergersen write: 

The degree of polymerization or the number N of [monomer] units is variable but can be 

of the order of 105 or more. This fact is what makes the use of statistical methods in the 

descriptions of even a single polymer chain possible, and we shall always assume that 

we may take the thermodynamical limit 𝑵 → ∞ for any quantity that we calculate. 

(2006, p. 384).         

The general results derived based on this assumption and used later on in other explanations are conditioned 

on the appropriateness of this and other assumptions and approximations made in the course of the 

derivation17. This is not a problem for the polymer physicists, but it is a problem for the philosopher who 

maintains that explanations based on unrealistic assumptions are always inadequate. Clearly, practitioners 

disagree with philosophers on this important issue, and if we aim to capture the explanatory standards of 

actual practice we need to nuance our view of what derivations are. 

So, if derivations are not deductions what are they? Although they are often based on assumptions known to 

be false, derivations are often intended to have the structure of a mathematical deduction to the widest extent 

possible. So, parts of the structure of a derivation are analogous to a deduction. Often, it is not possible to 

construct an explanation of a given result solely through mathematical deduction from a set of assumptions, 

typically because it is not possible to solve the equations that can be deduced. To reach a result it is therefore 

necessary to make simplifying assumptions or approximations. Terms in equations may be simplified using 

familiar mathematical techniques and results, such as linear expansion or Stirling’s formula. Properties of the 

system under consideration may be completely ignored or treated only in a simplified way, or the system may 

be considered only under very specific conditions that make it easier to handle mathematically. For instance, 

the system may be considered only under specific pressure or temperature conditions, where it can be argued 

that specific interactions can be ignored. This limits the scope of the explanation, but at least it enables a 

partial explanation rather than no explanation (example below). Treating derivations as something different 

than deductions thus points our attention to the use of false but reasonable assumptions as the basis for 

derivations, and the use of approximations and simplifying assumptions in the course of the derivation. This 

leads to the important question of what the standards are for using these. What, to the polymer physicist, is 

the difference between a good false assumption and a bad one? 

                                                           
16

 In some models, like the Rouse model, it is furthermore assumed that the individual chain can be divided into multiple 
sections that can all be treated as infinite (Strobl 1997, sec. 6.2).  
17

 Morrison (2008, 2009) distinguishes abstract models from idealised models. The models in the polymer physics books 
are often abstract models because very unrealistic assumptions form the basis of the model: removing them would make 
the model useless. Morrison argues that biologists are often sceptic about the use of abstract models, and the molecular 
biology books contain mainly what Morrison calls idealized models. Idealized models may also rely on false and even 
unrealistic assumptions but these are made to ease the use of specific approaches not enable them, and they can thus be 
made more realistic without making the general approach infeasible.   
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Explanations based on theoretical models can be subverted by empirical evidence. So, of course it is important 

to consider whether an approximation compromises the empirical accuracy of the explanation. Thus, a 

common way of justifying simplifications of terms in equations is considerations on the size of the error 

introduced by this move. If the error is much smaller than what it is possible to measure in a feasible 

experiment, then the approximation is in many cases justified. Thus, a common trick when facing a difficult 

equation is to perform a linear expansion of it and disregard all but the first two terms in the expansion, since 

the remaining terms are insignificant under most circumstances. However, empirical accuracy is not the 

ultimate aim in every explanation. The rubber example shows that the physicist will sometimes prefer an 

explanation that is spelled out as a derivation of the relation among variables considered important, even if the 

explanation is not very accurate. In such explanations, approximations are sometimes justified simply through 

their fruitfulness. If explanation through derivation can be obtained by ignoring specific features of a given 

system, or by treating it only under very specific circumstances, then this can in some circumstances be enough 

to justify the approximation. To illustrate: To obtain a polymer material with a desired set of properties, it is 

often useful to mix two different polymers. Whether a mixture of two different polymers forms a homogenous 

phase or a two phase structure depends on a number of factors including the temperature and the molecular 

weight of the different polymers. Strobl (1997, sec. 3.2.1) explains the temperature and molecular weight 

dependence of the mixing properties of two polymers using a model due to Flory and Huggins. It is argued that 

a homogenous phase will occur if the mixing of the two types of polymers lowers the Gibbs free energy. An 

equation is set up dividing the change in the Gibbs free energy into two different contributions, one that is 

always negative and one that can be positive or negative depending on the specific conditions. The next step is 

to derive equations that enable calculations of the size of these two contributions. However, this is not possible 

in the model considered so far. So, to enable this next step, a mean field approximation is introduced into the 

model. This assumes that the complex interactions between an individual chain and the surrounding chains can 

be described as interactions between an individual chain and an external field. Using this approximation it is 

possible to derive approximate results that, although imprecise, provide “a basic understanding of the 

occurrence of different types of phase diagrams” (p. 83). 

Compared to the polymer physics books, the molecular biology books display a different ideal for explaining 

from early on in the education. Molecular biologists usually learn some mathematics during their training, and 

the textbooks do contain a very limited number of equations including chemical equations. These few 

equations are mainly used as definitions (but only in the early “chemistry” chapters) or ‘amount calculating 

devices’. No manipulations of the equations are performed, and the equations play no significant role in the 

explanations identified in the molecular biology texts. Thus, equations are not promoted as valuable tools for 

explaining dynamics, but only to determine specific quantities when necessary, for instance, in data analysis. 

Instead, the student is shown how to construct explanations through mechanistic thinking, focusing on the 

structures of polymers and the interactions that these different structures enable. The heuristic that structure 

determines function is prevalent, and affects the ways in which polymers are represented and reasoned about. 

As figure 2 illustrated, mechanism schemas often reduce complex polymers to simple shapes, abstracting away 

all other properties. Reasoning with mechanism schemas is thus a different challenge than reasoning with the 

more mathematical models used in polymer physics. Whereas a mathematical model requires mathematical 
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tools to be reasoned with, the mechanistic models rely on strong visualization skills and the ability to envision 

how results of mechanistic interactions can be detected in the laboratory, and vice versa, whether results of 

interventions on mechanisms in the laboratory affect the details of known mechanism schemas. Theoretical 

exercise questions ask students to explain, for instance, how interventions on the presented mechanisms 

would affect the mechanism, how the mechanisms explained in the chapters can be used to explain 

experimental results, and what experimental results reveal about the details of the mechanisms described.  

4.3 A question of models 
My aim in this paper is to identify differences between polymer physics and molecular biology, both in the 

kinds of explanation-seeking questions that are deemed relevant in the two domains, and the standards for 

good answers to such questions. So far, I have mainly focused on the standards for good answers. I argued that 

the explanations from molecular biology focus on mechanisms or parts of mechanisms, and that these are 

represented and reasoned with, for instance, through theoretical models such as mechanism schemas showing 

the specific activities and structure of the material objects that are part of the mechanism. The explanations 

from polymer physics, on the other hand, are either derivations of relations among variables based on 

mathematical models or qualitative mechanistic explanations based on the variable centred ontology of change 

of polymer physics. In this section, I consider more systematically some differences in the explanation-seeking 

questions that are asked within the two domains. 

The molecular biology books display to the student that relevant explanation-seeking questions about 

polymers can be asked about the mechanisms they are part of and the functions these mechanisms serve, the 

structure of individual polymers, and experimental procedures for studying these mechanisms or parts of 

mechanisms. Substantial parts of the molecular biology books are devoted to answering questions about how 

mechanisms such as DNA replication or protein synthesis normally work in healthy cells. Important are also 

explanations of how perturbations to these mechanisms, for instance, through experimental manipulations or 

natural mutations, can affect the workings of the mechanism, potentially leading to diseases, but also to new 

knowledge about the details of the mechanism. Models, both theoretical and experimental, are important 

parts of the answers to the explanation-seeking questions posed in the molecular biology books. Experimental 

models, noticeably model organisms like the bacterium Escherichia coli or the yeast Saccharomyces cerevisiae, 

are important in the construction of the explanations, but they can also transform the explanation-seeking 

questions answered in the textbooks. To answer an explanation-seeking question, for instance, about the 

mechanism of DNA replication, initially formulated generally about cells, it is often necessary to transform it 

into a question about a model organism, such as yeast, and subsequently consider whether the answer can be 

extrapolated back to become an answer to the initial general question. Often, the diversity of living systems 

means that this is not entirely possible, and so parts of the explanation presented in the textbook applies only 

to systems reasonably similar to the model organism. To illustrate, consider the discussion in Alberts et. al. 

(2008, pp. 281-289) of how cells initiate DNA replication, specifically the answer to the explanation-seeking 

question: “how are replication forks created in a double stranded DNA molecule?” (p. 281). This question, 

posed about cells in general, is first broken down into two questions; one about bacteria, and one about 

eukaryotes (Archea are not considered). The question about bacteria is answered by presenting the relevant 
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mechanism identified in the model organism E. coli. Similarly, the question about eukaryotes is transformed 

into a question about yeast. After presenting the relevant mechanism in yeast, where a protein complex 

abbreviated ORC recognises specific sequences in the DNA and initiates the replication, the text goes on (p. 

288) to consider whether the results obtained by studying yeast as a model organism can be extrapolated into 

an answer to the question about eukaryotes. Is the mechanism, for instance, the same in humans? Not quite. 

At least, it has been difficult to identify specific DNA sequences similar to the ones that the ORC complex binds 

to in yeast. The text concludes: 

Thus, as is true in many other areas of cell biology, the mechanism of DNA replication 

initiation in yeast may vividly highlight the core processes, while the situation in humans 

represents an elaborate variation on the theme (Alberts 2008, p. 288).      

So, the text set out to answer an explanation-seeking question about DNA replication initiation in cells in 

general, and did so by first transforming it into two questions about model organisms and providing a detailed 

answer. With these answers at hand, it was considered whether they could be extrapolated into an answer to 

the original question. It was concluded that the mechanisms in other cells are likely to be “similar in outline” (p. 

288) to the mechanism described for the model organisms, but the details will differ.   

Theoretical models in the form of diagrams are also indispensable parts of the textbook explanations, and an 

important tool of reasoning for the molecular biologist, but unlike the experimental models, explanation-

seeking questions are not asked about the theoretical models. Furthermore, the questions which the 

theoretical models are used to answer are not about something defined through a theoretical model. 

Commonly they are about some mechanism, or part of a mechanism identified in the laboratory, which the 

theoretical model can provide some further understanding of.   

Similar to the molecular biology books, the polymer physics books display to the student that relevant 

explanation-seeking questions about polymers can be asked about the properties of polymer materials or 

individual polymer chains that can be studied in the laboratory. As in the molecular biology books, general 

explanation-seeking questions may be answered by transforming them into a question about a specific 

experimental model material, e.g. polyethylene, and the explanation is noted to apply only to systems 

sufficiently similar to this experimental model (e.g. (Bower 2002, sec. 5.3.2)). However, the polymer physics 

books display an additional kind of explanation-seeking questions that can be relevant to ask within the 

domain; namely explanation-seeking questions about theoretical models. These questions fall in two different 

categories. One is the theoretical analogue to the questions about experimental models. A question initially 

posed about some kind of material thing, e.g. a piece of rubber, may be transformed into a question about a 

theoretical model of this thing. Once the question has been answered within the theoretical model, it is 

necessary to consider how accurate the model is when compared to actual data. The example considered in 

section 4.1, of what the exact relation between the decrease in the entropy of a rubber sample and the 

magnitude of the force inside the rubber pulling it back into shape as it is stretched, illustrates this approach. 

Here, the explanation-seeking question was initially asked about a familiar class of objects, rubbers. To answer 

the question, it was transformed into a question about a model constructed for the occasion. This model is 
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based on a more general model called the Gaussian chain model which has been introduced earlier in the book 

(see below). Within this model, an exact relation can be derived which can be compared to experimental 

results. As noted in section 4.1, this particular model is not very accurate, but has the virtues of being 

mathematically tractable and based on variables that figure prominently in the ontology of change of polymer 

physics. 

The other category of explanation-seeking questions about theoretical models asked in the polymer physics 

books are initially formulated as questions about theoretical models. Unlike the molecular biology books, the 

polymer physics books introduce important theoretical models with characteristic names like the Rouse model 

or the Gaussian chain and initially explore them simply as interesting models18. Consider, for instance, the 

Gaussian chain or “feely jointed chain”. This model is introduced in all the textbooks from polymer physics 

simply as an interesting model. It represents a single polymer molecule, alone in the universe, as a chain of N 

points jointed by one-dimensional links of equal length. Furthermore, it is assumed that the chain can change 

shape without geometric or energetic constraints. Because the model is so highly idealized, it is mathematically 

tractable, and interesting results can be derived within it quite easily if it is assumed that N is practically infinite 

(cf. the quote in section 4.2). After introducing a general model like the Gaussian chain, the books proceed to 

ask explanation-seeking questions about the model. How is the value of a given variable determined within the 

model? How does the model relate to other theoretical models? What is the effect of adding new assumptions 

to the basic model? Only subsequently is the question of how accurate the model is compared to particular 

systems considered. Once this is determined, the books may return to the model and ask how the accuracy can 

be improved. The answer is often to introduce further assumptions into the model which may make it less 

general and more difficult to handle mathematically. The Gaussian chain model, for instance, can be made 

more precise by adding self-avoidance to the model - i.e. the constraint that two segments of the chain cannot 

occupy the same position in space. This makes it more challenging to perform calculations within the model, 

but it improves the model’s dynamical fidelity. Textbooks from other parts of physics will introduce general 

theoretical models in much the same way as the Gaussian chain is introduced in the polymer physics books. A 

general theoretical model like the harmonic oscillator is thus commonly introduced in this way in textbooks on 

classical or quantum mechanics (Giere 1988; Cartwright 1983). Importantly, such general theoretical models 

are not introduced as models of an interesting class of systems described independently of the model. Rather, 

the models define a new class of systems, namely the systems which the model can reasonably be applied to. 

Once the Gaussian chain model has been introduced, it is possible to divide polymer materials into those that 

have “Gaussian properties” (Strobl 1997 p. 304), i.e. materials where the behaviour of the individual polymers 

can be described though the Gaussian chain model, and those that do not have Gaussian properties. The 

results derived within the Gaussian model will, by definition, apply to any system that can be argued to have 

Gaussian properties. The next challenge is therefore to find out how many actual systems with Gaussian 

properties exist. Of course, if there were none, the model would not have ended up in the textbook.    

The observation that additional types of explanation-seeking questions are asked in the polymer physics books 

compared to the molecular biology books raises two related questions: What does the polymer physicist gain 
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 The section on polymers from Pliscke and Bergesen (2006) consider only such general theoretical models. 
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by asking these additional questions? And, given that the physicist actually gains something: Why are questions 

about theoretical models not asked in the molecular biology books? 

To answer the first question, consider the related question of which theoretical models a physicist gains 

something from introducing and exploring as general models. The following are important characteristics of the 

general models introduced in the polymer physics books:  

1. The general models enable the polymer physicist to construct explanations as derivations referring to 

variables that figure prominently in the domain’s ontology of change (representational fidelity), although 

these explanations are not always very precise compared to experimental results (dynamical fidelity). 

2. If the dynamical fidelity of the basic model is low, it is important that it can be improved by adding 

assumptions to it. In this way, it can become a more precise model of the class of systems defined by the 

original model. The price is often that the model becomes less mathematically tractable.  

3. The general models can be extended to become tractable models of particular experimental systems, as 

illustrated when the Gaussian chain model was extended to become a model of a piece of rubber (cf. 

section 4.1). 

Weisberg (2007a, 2007b) provides some useful distinctions for understanding the benefits of models with 

these characteristics from an epistemological perspective. The dynamical fidelity of the general models 

discussed in the polymer physics books may not be very good. But dynamical fidelity is not always the primary 

aim of explanatory models. The general theoretical models introduced in the polymer physics books can be 

categorized as what Weisberg (2007a) calls minimal models, i.e. models that attain a satisfactory degree of 

dynamical fidelity by including as few factors as possible. Because they attain some degree of dynamical fidelity 

and at the same time can be applied to a large and diverse set of systems, they arguably have a high degree of 

representational fidelity and can be used to identify the variables within the domain’s ontology of change that 

are the most important. The representational fidelity of the general models is then inherited by more specific 

models constructed, based on the general models, although the additions made may of course spoil the 

representational fidelity of the more specific model.19 

The benefits of introducing general models that define a new kind of entities can also be viewed from a more 

cognitive perspective. Giere (1988, ch 3) argued, based on studies of textbooks in classical mechanics, that the 

theoretical models introduced in textbooks are connected in families. What connects the families of models 

varies. The theoretical models in the molecular biology books are connected by being models of the whole of 

or parts of the same mechanism or models of interacting mechanisms. They are thus connected through the 

relations among the objects or mechanisms they represent, and these can be identified without reference to 

the theoretical models in the family. Models in the polymer physics books are also connected in this way. 

However, in line with Giere’s observations from classical mechanics, I argue that the theoretical models in the 

polymer physics books are connected into an additional set of hierarchical families. Many of the theoretical 

models in the polymer physics books are in addition connected by representing systems of a kind defined by a 

                                                           
19

 Based on a historical argument, Morrison (2007) shows that having a model or mathematical framework that can be 
applied with modifications to a great many systems is no reliable indicator of the truth of the framework.    
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general model introduced in the textbooks and explored for its own sake. The model of a rubber sample 

discussed in section 4.1 is thus both part of a family of theoretical models of rubber, and part of a family of 

theoretical models of polymer materials with Gaussian properties. Similarly, in classical mechanics a model of a 

ball rolling in a bowl is part of a family of models of spheres rolling on a surface which also includes, for 

instance, the model of a ball rolling down an inclined plane, and the family of models that are extensions of the 

general model of the harmonic oscillator which also includes, for instance, the model of the pendulum. There is 

an important difference between these two families of models. While the models in the first family are models 

used in solutions to problems with similar surface features, but solved through rather different problem solving 

techniques, the models in latter family are used in solutions to problems that in spite significant differences in 

surface features are solved using very similar techniques including the techniques learned by exploring the 

general theoretical model that defines the family. So, while recognizing a theoretical problem, for instance, the 

problem of describing the motion of a ball rolling in a bowl, as a problem that can be modelled using a model in 

the spheres-on-a-surface family of models suggests a wide range of problem solving strategies that may or may 

not be useful, recognizing it as a version of the familiar harmonic oscillator problem, provides a fairly narrow 

set of techniques that are very likely to be useful for solving the problem.  

Chi and collaborators (1981) showed that the families of models set up by introducing a general model and 

exploring it for its own sake are utilized by expert physicists when categorizing theoretical problems. They 

showed that expert physicists categorize classical mechanics problems according to the general heuristics 

relevant for solving the problem, whereas novices categorise largely according to the kinds of entities 

described in the problem. They argued (pp. 134-38) that a plausible interpretation of why experts and novices 

categorize differently is that they form different (mental) models when presented with a problem. The expert 

physicist first constructs a highly idealised model of the problem and then considers whether there are 

peculiarities of the specific system that need to be put back into the model. A benefit of this strategy is that it 

enables the expert to identify a known general model that is likely to apply with modifications to the specific 

problem. However, this is only valuable if the known general model has been explored previously, thus relating 

a problem solving strategy to it. Recognizing a specific problem as an instance of the more general type of 

problem thus allows the expert to go in at the top of a hierarchical family of theoretical models and use the 

general strategies for solving problems of that type. From here, the physicist can look down through levels of 

generality in the family of models for existing extensions of the general model that may be valuable in the 

concrete case. The physicist may not find a suitable existing model, but only inspiration on how to extend the 

general model to make it fit the specific case. If so, and if the problem is eventually solved, the novel solution 

can become an extension of the established family of models and the problem solving strategies associated 

with it. 

There is thus a rationale for why the polymer physicist finds it relevant to ask explanation-seeking questions 

about theoretical models. So why do the molecular biology books refrain from asking this type of explanation-

seeking question?20 Finding a complete answer to this question would require a historical investigation that 
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Explanation through mathematical models is common within other domains within biology, and there is some debate 

within the biological sciences over the explanatory value of these models (Winther 2011; Green, Fagan & Jaeger 2014).  
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goes well beyond the textbook material considered in this study. I therefore limit myself to some 

considerations on why the benefits gained from asking explanation-seeking questions about theoretical models 

in polymer physics would not necessarily be gained by starting to ask them in molecular biology. 

The epistemological benefits from asking explanation-seeking questions about general but minimal models 

discussed above are conditioned on the possibility of constructing minimal models that have representational 

fidelity as well as some dynamical fidelity with respect to a diverse class of systems. This possibility depends 

both on the complexity of the systems of interest in a given domain and on the domain’s ontology of change. I 

argued in section 4.1 that the ontology of change in molecular biology is different from that of polymer physics. 

So, even when the two domains are interested in similar systems, it is not obvious that it is possible to 

construct very general models with a sufficient degree of representational and dynamic fidelity relative to the 

ontology of change of molecular biology, i.e. models representing to the distribution, composition and 

interactions among material objects, just because it is possible relative to the ontology of change of polymer 

physics.  

The cognitive benefits discussed above of using general models to establish additional families of models have 

only been documented for theoretical problem solving. Especially, the more advanced polymer physics books 

are aimed clearly at a theoretical audience, for whom these benefits will be substantial. The molecular biology 

books on the other hand present explanations that have been constructed through laboratory research on 

model organisms. The benefit demonstrated by Chi and collaborators of recognizing a problem as a variant of a 

problem solved using a theoretical model from a family of models connected through a general theoretical 

model is that it suggest a narrow set of theoretical strategies for solving the problem. It is not obvious that the 

same family of models will always suggest an equally narrow set of experimental strategies for investigating 

the problem. Only if this can be established can the cognitive part of the rationale for asking explanation-

seeking questions about theoretical models in polymer physics be directly transferred to molecular biology. 

So, although a rationale for asking explanation-seeking questions about theoretical models in polymer physics 

can be established, differences in ontology and research methods mean that this rationale does not necessarily 

transfer to molecular biology, or other research domains for that matter.                    

5 Conclusions 
In the preceding pages I outlined the differences in explanatory standards displayed in exemplar explanations 

from molecular biology and polymer physics. The discussion partly confirmed the expectation that mechanistic 

explanations are promoted in molecular biology, whereas derivations are in focus in polymer physics. However, 

the empirical analysis also provided important nuances to these expectations. I showed that mechanistic 

explanations are also valued in polymer physics, although not as much as derivations. I showed that the specific 

entities and activities in focus in the molecular biology books are changes in the distribution, composition and 

interactions among material objects, whereas the ontology of change is different in polymer physics, which 

explains referring to variables, noticeably physical quantities like energy and entropy. I also showed that 

explanations as derivations are importantly different from explanations as deductions. To understand 
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explanations as derivations, it is important to pay attention to the approximations and simplifications used, and 

the details of how these are justified. Finally, I showed that only the polymer physics books display 

explanations-seeking questions about theoretical models as a relevant kind of explanation-seeking questions 

and considered possible rationales for this difference. 

I argued in the introduction that mappings of differences in explanatory standards across science domains are 

not just of interest to philosophers; they are relevant to educators as well.  Differences in explanatory 

standards can become an obstacle in interdisciplinary problem solving if they are not identified and addressed. 

They are thus part of the reasons why it can be surprisingly difficult to integrate cognitive resources from 

different domains. If the aim of future education is to increasingly enable the students to perform integration 

of cognitive resources from a number of domains, as many argue it should be (see e.g. (NAS 2004; Roco, 

Bainbridge 2003; European Commission 2008)), it will be important that the students learn not only science 

content from different domains, but also to discuss differences in fundamental standards for good research, 

including good explanations, across domains, and how these differences may be bridged (Öberg 2009; 

Eigenbrode et al. 2007). To this end, descriptive studies like the one presented in this paper will be of value. 

6 Appendix: On the keywords used to identify explanations 
The exemplar explanations that formed the empirical basis for this study were identified through a set of 

keywords that were taken to be reliable indicators of a passage being an explanation (for more details, see 

(Goddiksen, forthcoming). The keywords were: 

 All version of ‘explain’ and ‘explanation’ 

 Why 

 ‘How’, except when used in questions about how much.  

 All versions of ‘understand’ and ‘understanding’ 

 Because 

Explanations are generally conceptualized as answers to explanations-seeking questions (Goddiksen 2014, 

introduction). ‘How’ (except ‘how much’) and ‘why’ indicate explanation-seeking questions, and the answers to 

such questions can be considered explanations when found in textbooks. Explanations provide understanding, 

so identifying passages providing understanding will identify explanations. However, other kinds of discourse – 

including thought experiments - may also provide understanding. A list is found in (Lipton 2009). Passages that 

were judged as not being of a kind of discourse on this list were considered explanations. 
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