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Introduction 
The main focus of economic analysis is on equilibrium steady states, e.g. on 

prices determined by the intersection of supply and demand.  The preoccupation with 
equilibrium is perhaps due to the fact that many markets operate for protracted 
periods of time under fairly stationary conditions.  The awareness that there may be 
multiple equilibria, some of which are bad for all concerned, has raised interest in 
why behaviour might converge to one equilibrium and not to another.  As a result, 
there is renewed interest among economists in mathematical models of learning that 
were studied by psychologists extensively over thirty years ago.  This paper will 
describe two of those models, “reinforcement learning” and Bayesian “belief 
learning.”  These models and their generalizations will be discussed in the context of 
a binary prediction task, which may generate behaviour that is known in the 
psychology literature as “probability matching.”  

The second part of the paper uses these learning models to analyze behaviour 
in an economic market where firms choose prices.  Markets and games are more 
complex than individual decision tasks in the sense that people’s choices affect 
others’ beliefs.  One role of learning models in such situations is to provide an 
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explanation of the dynamic paths of prices, which can shed light on the nature of 
adjustment toward equilibrium.  The equilibrium is characterized by an unchanging 
(steady-state) distribution of beliefs across individuals, which we call a “stochastic 
learning equilibrium.”  

Types of Learning Models 
We will introduce the learning basic learning models in the contest of a binary 

prediction task that has been familiar to psychologists for over fifty years.  This task is 
also of special interest, since humans are thought to be slow learners in this context.  
The typical setup involves two lights, each with a corresponding lever or computer 
key.  A signal light indicates that a decision can be made, and the n one of the levers is 
pressed.  Finally, one of the lights is illuminated.  Animal subjects like rats and chicks 
are reinforced with food pellets when the prediction is correct.  Human subjects are 
sometimes told to “do your best” to predict accurately or to “maximize the number of 
correct choices.”  In other studies, humans are paid small amounts, typically pennies, 
for each correct choice, and penalties may be deducted for each incorrect choice.   

The general result seems to be that humans are subject to “probability 
matching,” predicting each event with a frequency that approximately matches the 
frequency with which it actually occurs.  For example, if the Left light illuminates 
three-fourths of the time, then subjects would come to learn this by experience and 
then would tend to predict Left three-fourths of the time.  This behavior is not 
rational, since predicting the more likely event will be correct three-fourths of the 
time.  Matching behavior will only generate a correct prediction with a probability of 
(3/4)(3/4) + (1/4)(1/4), where the first term corresponds to predicting the more likely 
event with probability 3/4 and being correct with this prediction three-fourths of the 
time, and the second term is analogous.  The probability of being correct under 
probability matching, therefore, is: 10/16 = 5/8 < 3/4. 

In a recent summary of the probability matching literature, the psychologist 
Fantino (1998, pp. 360-361) concludes “human subjects do not behave optimally.  
Instead they match the proportion of their choices to the probability of 
reinforcement…. This behaviour is perplexing given that non-humans are quite adept 
at optimal behaviour in this situation.”   For example, Mackintosh (1996) conducted 
probability matching experiments with chicks and rats, and the choice frequencies 
were well above the probability matching predictions in most treatments.   

The resolution of this paradox may be found in the work of Sidney Siegel, 
who is perhaps the psychologist who has had the largest impact on experiments in 
economics.  His early work forty years ago provides a high standard of careful 
reporting and procedures, appropriate statistical techniques, and the use of financial 
incentives where appropriate.  His experiments on probability matching are a good 
example of this work.  In one experiment, 36 male Penn State students were allowed 
to make predictions for 100 trials, and then 12 of these were brought back on a later 
day to make predictions in 200 more trials (Siegel et al., 1964).  The proportions of 
predictions for the more likely event are graphed in Figure 1, with each point being 
the average over 20 trials.   

The 12 subjects in the “no-pay” treatment were simply told to “do your best” 
to predict which light bulb would be illuminated.  These averages are plotted as the 
heavy dashed line, which begins at about 0.5 as would be expected in early trials with 
no information about which event is more likely.  Notice that the proportion of 
predictions for the more likely event converges to the level of 0.75 (shown by a 
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horizontal line on the right) predicted by probability matching, with a leveling off at 
about trial 100.  

In the “pay-loss” treatment, 12 participants received 5 cents for each correct 
prediction, and they lost 5 cents for each incorrect decision.  The 20-trial averages are 
plotted as the dark solid line in the figure.  Notice that the line converges to a level of 
about 0.9, as shown by the upper horizontal line on the right.  A third “pay” treatment 
offered a 5-cent reward but no loss for an incorrect prediction, and the results (not 
shown) are in between the other two treatments, and clearly above 0.75.  Clearly, 
incentives matter, and probability matching is not observed with incentives in this 
context. 
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Figure 1.  Prediction Proportions for the Event with Frequency 0.75 

Source: Siegel et al. (1964) 
 
   
Siegel’s findings suggest a resolution to the paradox that rats are smarter than 

humans in binary prediction tasks.  You cannot tell a rat to “do your best” and 
incentives such as food pellets must be used.  Consequently the choice proportions are 
closer to those observed with financially motivated human subjects.   In a recent 
survey of over fifty years of probability matching experiments, Vulcan (1998) 
separates those studies that used real incentives from those that did not, and he 
concluded that probability matching is generally not observed with real payoffs, 
although humans can be surprisingly slow learners in this simple setting.  For this 
reason, probability matching data are particularly interesting for evaluating alternative 
learning theories. 
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Reinforcement Learning 
 One prominent theory of learning associates changes in behaviour to the 
reinforcements actually received.  Initially, when no reinforcements have been 
received, it is natural to assume that the choice probabilities for each decision are 
equal to one-half.  We will model this in terms of a positive parameter, α , which will 
be explained below.  
 

(1)  Pr(L)   and  Pr(R)       (priors),
α α

α α α α
= =

+ +
 

 
Of course, at this point α plays no role since the above probabilities are both equal to 
one-half.   

Suppose that in the experiment there is a reinforcement of x for each correct 
prediction and nothing otherwise.  So if one predicts event L and is correct, then the 
probability of choosing L should increase.  The extent of the behavioral change is 
assumed to depend on the size of the reinforcement.  One way to model this is to let 
the choice probability be: 
 

(2)  Pr(choose L)   and  Pr(choose R)  . 
x

x x
α α

α α α α
+= =

+ + + +
 

 
Reinforcements for the Right choice are defined similarly.  Notice that the α 
parameters determine how quickly learning responds to the reinforcements.  

As additional reinforcements are received they are added into the relevant 
numerator, and to both denominators to ensure that the probabilities add to 1.   
Suppose that event L has been predicted NL times and that the predictions have  
sometimes been correct and sometimes not.  Then the total earnings for predicting L, 
denoted eL , would be less than xNL.  Similarly, let eR be the total earnings from the 
correct R predictions.  The choice probabilities would then be: 
 

(3)  Pr(choose L)   and  Pr(choose R)  . 
2 2

L R

L R L R

e e
e e e e

α α
α α

+ += =
+ + + +

 

 
This kind of model might explain some aspects of behaviour in probability 

matching experiments with financial incentives.  The choice probabilities would be 
equal initially, but a prediction of the more likely event will be correct 75 percent of 
the time, and the resulting asymmetries in reinforcement would tend to raise 
prediction probabilities for that event, and the total earnings for this event would tend 
to be much larger than for the other event.  If L is the more likely event, then eL would 
be growing faster, so that eR /eL would tend to get smaller as eL gets larger.  Thus the 
probability of choosing L in (3) would tend to converge to 1. 

The learning model in (3) can be simulated by using past accumulated 
earnings to compute choice proba bilities. Then a random-number generator 
determines the actual choices.  To be comparable we simulate decisions of a cohort of 
twelve individuals for 300 periods and calculate the twenty-period choice averages for 
the more likely event.  The simulations were done for α = 5 and x = 1.  The value of α 
was chosen to create some initial inertia in behaviour, which will disappear after forty 
or fifty periods.  It is apparent from (3) that an α equal to 5 is analogous to having had 
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each decision reinforced five times.  The dashed line in Figure 2 shows simulated 
choice averages together with Siegel’s original data.  The simulated data are smoother 
and start somewhat higher, but the general pattern and final tendencies are quite 
similar.  Erev and Roth (1997) have used reinforcement learning to explain behavior 
in simple matrix games. 
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Figure 2.  Data and Simulations for Siegel’s Probability Matching Experiment   

 
 

A Simple Model of Belief Learning 
 With reinforcement learning, beliefs are not explicitly modeled.  An 
alternative approach that is more natural to economists is to model learning in terms 
of (Bayesian) updating of beliefs. Given the symmetry of Siegel’s experimental setup, 
a person’s initial beliefs ought to be that each event is equally likely, but the first 
observation should raise the probability associated with the event that was just 
observed.  As before, we model initial beliefs for the probability of events L and R in 
terms of parameter β:  
 

(4)  Pr(L)   and  Pr(R)       (priors),
β β

β β β β
= =

+ +
 

 
If event L is observed, then Pr(L) should increase, so let us add 1 to the 

numerator for Pr(L).  To make the two probabilities sum to 1, we must add 1 to the 
denominators for each probability expression: 
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(5)  
1

Pr(L)   and  Pr(R)       (after observing L).
1 1

β β
β β β β

+
= =

+ + + +
 

 
Note that β determines how quickly the probabilities respond to the new information; 
a large value of β will keep these probabilities close to 1/2.  Continuing to add 1 to the 
numerator of the probability for the event just observed, and to add 1 to the 
denominators, we have a formula for the probabilities after NL observations of event L 
and NR observations of event R.  Let N be the total number of observations to date.  
Then the resulting probabilities are:   
 

(6)  Pr(L)   and  Pr(R)       (after  observations).
2 2

L RN N
N

N N
β β
β β
+ += =
+ +

 

 
where N = NL + NR.  This formula for calculating probabilities can be derived from 
Bayesian statistical principles (see DeGroot, 1970, p. 160).  In the early periods, the 
totals, NL and NR, might switch in terms of which one is higher, but the more likely 
event will soon dominate, and therefore Pr(L) will be greater than 1/2.   

The beliefs in (6) determine the expected payoffs (or utilities) for each 
decision, which in turn determine the decisions made.  In theory, the decision with the 
highest expected payoff is selected with certainty.  The prediction of the belief-
learning model is, therefore, that all people will eventually start to predict the more 
likely event every time. 

In an experiment, however, some randomness in decision-making might be 
expected if the expected payoffs for the two decisions are not too different.  This 
randomness may be due to changes in emotions, calculation errors, selective 
forgetting of past experience, etc.  Following Luce (1959) we introduce some “noise” 
via a probabilistic choice model, where decision probabilities are positive but not 
perfectly related to expected payoffs.  Let πL and πR denote the expected payoffs from 
choosing Left and Right respectively.  Luce provided a set of axioms under which the 
choice probability is calculated as: 

 

(7)  
1/ 1/

1/ 1/ 1/ 1/

( ) ( )
Pr(choose L)    and  Pr(choose R) .

( ) ( ) ( ) ( )
L R

L R L R

µ µ

µ µ µ µ

π π
π π π π

= =
+ +

 

 
The parameter µ is an “error” parameter and determines the sensitivity of choice 
probabilities to differences in expected payoffs.  In the limit when µ tends to zero, the 
decision with the higher expected payoff is selected with probability 1.  In the other 
extreme as µ gets large, behavior is random and independent of payoffs.   

In the probability matching experiment, the expected payoff of choosing Left 
is the reward of 1 times the probability of Left that represents the person’s beliefs.  
Thus the expected payoff of Left is Pr(L) and, similarly, the expected payoff of Right 
is Pr(R).  It follows from (7) that the probability of choosing Left is greater than one-
half if Left is more likely, and the error parameter µ determines how close the choice 
probability for the more likely event is to 1.   

Figure 3 shows a simulation of the belief learning model in (6) for β = 20.  
The thin solid line represents the average of the belief probabilities for  the 12 
simulated subjects.  Notice that beliefs start close to one -half and converge to true 
probability of the more likely event (0.75).  The dashed lines show the simulated 
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average choice frequencies for three different levels of the error parameter.  With high 
error (µ = 1), the dashed line choice frequencies bounce around the belief line, which 
would correspond to probability matching.  This result can be expected from (7), 
since expected payoffs are equal to belief probabilities.  Therefore the denominator on 
the right side of (7) is 1 when µ = 1 and hence the probability of choosing Left equals 
πL , which is equal to the belief probability.  As the error is reduced the dashed lines 
representing simulated choice frequencies move upward toward the optimal level of 1.  
The top dashed line with µ = 1/3 converges to the level of about 0.9, which is close to 
the choice frequency observed by Siegel. 
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Figure 3.  Data and Simulations for Siegel’s Probability Matching Experiment 

 

Generalizations 
Both of the learning models discussed here are somewhat simple, which is part 

of their appeal.  The reinforcement model builds in some randomness in behaviour 
and has the appealing feature that incentives matter.  But it has less of a cognitive 
element; there is no reinforcement for decisions not made.  For example, suppose that 
a person chooses L three times in a row (by chance) and is wrong each time.  Since no 
reinforcement is received, the choice probabilities stay at 0.5, which seems like an 
unreasonable prediction.  Obviously, people learn something in the absence of 
previously received reinforcement, since they realize that making a good decision 
may result in higher earnings in the next round.  Camerer and Ho (1999) have 
developed a generalization of reinforcement learning that contains some elements of 
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belief learning.  Roughly speaking, outcomes that are observed received partial 
reinforcement even if nothing is earned.   

These learning models can be enriched in other ways to obtain be tter 
predictions of behaviour.  For example, the sums of event observations in the belief 
learning model weigh each observation equally.  It may be reasonable to allow for 
“forgetting” in some contexts, so that the observation of an event like L in the most 
recent trail may carry more weight than something observed a long time ago.  This 
can be done by replacing sums with weighted sums.  For example, if event L was 
observed three times, NL in (6) would be 3, which can be thought of as 1+1+1.  If the 
most recent observation (listed on the right in this sum) is twice as prominent as the 
one before it, then the prior event would get a weight of one half, and the one before 
that would get a weight of one -fourth, etc.  This type of “recency” effect will be 
discussed in the next section in the context of an interactive market game. 

Finally, the “Luce probabilistic choice rule” in (7) is often replaced with the 
“logit rule:” 

 

(8)                          

exp( / )
Pr(choose L) , 

exp( / ) exp( / )

exp( / )
Pr(choose R) ,

exp( / ) exp( / )

L

L R

R

L R

π µ
π µ π µ

π µ
π µ π µ

=
+

=
+

 

 
where µ is an error parameter as before.  The Luce and logit rules are often similar in 
effect, and both are commonly used.  The logit probabilities are unchanged when all 
payoffs are increased by a constant, and the Luce probabilities are unchanged when 
all payoffs are multiplied by a positive constant. 

Learning and Price Dynamics in a Market Game 
We use a simple price competition example from Capra et al. (2002) to illustrate the 
effects of learning in an interactive setting.  Consider a market game in which firms 1 
and 2 simultaneously choose prices p1 and p2 in the range [60, 160].  Demand is assumed 
to be a fixed total quantity (“perfectly inelastic”).  The sales quantity of the firm with the 
low price, pmin, is normalized to be one, so the low-price firm earns an amount equal to 
its price.  The high-price firm sells a “residual” amount R, which is less than 1.  The 
degree to which this residual is less than 1 indicates the degree of buyer responsiveness 
to price. The high-price firm has to match the lower price in order to make any sales, but 
some sales are lost due to the initially higher price.  We assume that the high-price firm 
only earns Rpmin, where R < 1.  In the event of a tie, the 1+ R  sales units are shared 
equally, so each seller earns (1+R) pmin.   

As long as the high-price firm obtains less than half the market (R < 1), the 
Nash equilibrium prediction is for both firms to set the lowest possible price of 60.  
To see this, note that at any common price, firms have an incentive to undercut the 
other by a small amount to increase market share.  Therefore, the unique Nash 
equilibrium involves both firms charging the lowest possible price.  The harsh 
competitive nature of the Nash prediction seems to go against simple economic 
intuition that the degree of buyer inertia will affect the behaviour of firms.  When 
R = 0.8 say, the loss from having the higher price is relatively small, and firms should 
be more likely to set prices above 60 when there is a small chance that rivals will do 
the same.  Indeed, in the extreme case when R = 1 it becomes a dominant strategy for 
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both firms to choose the highest possible price of 160.  While a standard Nash 
analysis predicts no change as long as R < 1 (and then an abrupt change when R $ 1), 
it seems plausible that prices will gradually rise with R.   
 We ran an experiment based on this market game, using six cohorts of 10 
subjects.  Each group of ten subjects was randomly paired with new partners in each of 
ten periods.  A period began with all subjects selecting a price in the interval [60, 160].  
After these prices were recorded, subjects were matched, and each person was informed 
about the other’s price choice.  Payoffs were calculated as described above: the low-
price firm earned an amount equal to its price, and the high-price firm earned R times the 
lowest price.  Three sessions were done with R = 0.2 and three with R = 0.8.  Figure 4 
shows the period-by-period average price choices. The upper solid line shows the 
average prices whe n buyers were relatively unresponsive (R = 0.8) and the lower solid 
line shows average prices for the other treatment (the dashed lines are simulation results 
explained below).  Recall that the Nash equilibrium was 60 for both treatments as shown 
by the horizontal dashed line at 60.  As intuition suggests, changes in the buyers’ 
responsiveness has a large impact on price, even though the Nash equilibrium remains 
unchanged. 
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Figure 4.  Data and Simulations (plus or minus two standard deviations) 

 
 
 Notice that prices start high and stay high in the R = 0.8 treatment, while prices 
decline before leveling off in the R = 0.2 treatment.   Standard economic models cannot 
explain either the levels or the patterns of adjustment.  Our approach is to consider a 
naive learning model in which players use observations of rivals' past prices to update 
their beliefs about others' future actions.  In turn, the expected payoffs based on these 
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beliefs determine players' choice probabilities via a logit rule.  This model was used to 
simulate behaviour in the experiment. 
  To obtain a tractable model, the price range [60, 160] is divided into 101 one-
cent categories.  Players assign weights to each category and use observations of their 
rival's choices to update these weights as follows: each period all weights are 
"discounted" by a factor ρ and the discounted weight of the observed category is 
increased by 1.  In other words, the weight, w, of an observed category is updated as w 6 
ρ w + 1, whereas the other weights are discounted by ρ : w 6 ρ w.   The belief 
probabilities in each period are obtained by dividing the weight of each category by the 
sum of all weights.  Hence, the model is one in which the learning parameter, ρ, 
determines the importance of new observations relative to previous information.  Since 
the most recent observation gets a weight of 1, a lower value of ρ reduces the importance 
of prior history and increases recency effects. 

Generally ρ will be between 0 and 1.  When ρ = 0, the observations prior to the 
most recent one are ignored, and the model is one of best response to the previously 
observed price (Cournot dynamics).  At the other extreme, when ρ = 1, the model 
reduces to "fictitious play" in which each observation is given equal weight, regardless 
of the number of periods that have elapsed since that observation.  For intermediate 
values of ρ , the weight given to past observations declines geometrically over time.   
 The expected payoff for player i choosing a price in category j is denoted by 
πi

e(j|ρ), which determines player i's decision probabilities via the logit rule in (8): 
 

(9)  .
exp

exp
 101  ,..  ,1  =j        ,

) / )  | k ( ( 

) / )  |j  ( ( 
  =  )  |j  ( P

e
i

101

1 = k

e
i

i

µρπ

µρπρ

∑
 

 
The ρ notation indicates the dependence of choice probabilities and expected payoffs on 
the learning parameter.  In this dynamic model, beliefs and hence choices depend on the 
history of what has been observed up to that point.  Since individual histories are 
realizations of a stochastic process, the predictions of this model will be stochastic and 
can be ana lyzed with simulation techniques. 

The structure of the computer simulation program matches that of the experiment 
to be reported below: for each session or "run" there are 10 simulated subjects who are 
randomly matched in a sequence of 10 periods. We specify initial prior beliefs for each 
subject to be uniform on the integers in the set [60, 160].  These priors determine 
expected payoffs for each price, which in turn, determine the choice probabilities via the 
logit rule in (9).  The simulation begins by determining each simulated player's actual 
price choice for period 1 as a draw from the logit probabilistic response to the payoffs 
for priors that are uniform on [60, 160].  The simulated players are randomly divided 
into five pairs, and each one "sees" the other's actual price choice.  These price 
observations are used to update players' beliefs using the naive learning rule explained 
above, with a learning parameter ρ = 0.72 (which was estimated from the data).  The 
updated beliefs, which become the priors for period 2, will not all be the same if the 
simulated subjects encountered different price choices in period 1.  Next, the process is 
repeated, with the period 2 priors determining expected payoffs, which in turn determine 
the logit choice probabilities , and hence the observed price realizations for that period.  
The whole process is repeated for 10 periods.  

Figure 4 shows the sequences of average prices (thick dashed lines) obtained 
from 1,000 simulations together with plus or minus two standard deviations of the 
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average (thin dashed lines).  These simulation results predict that average prices decline 
in the R = 0.2 treatment and stay the same in the R = 0.8 treatment as observed in the 
data.  To summarize, the learning model explains the salient features of the experimental 
data, both the directions of adjustment and the steady-state levels.  

Stochastic Learning Equilibrium 
Next we consider what the learning model implies about the long-run steady-

state distribution of price decisions.  In particular, will learning generate a price 
distribution that corresponds to some equilibrium?   

At any point in time, different people will have different experiences or histories.  
These differences may be due to the randomness in individuals’ decisions or to 
randomness in the random matching.  For each person, the history of what they have 
seen will determine a probability distribution over their decisions.  This mapping of 
histories to decision probabilities may be direct as in reinforcement learning.  
Alternatively , histories may generate beliefs, which in turn produce decisions via a 
probabilistic choice rule.  The decisions made are then appended to the existing histories 
thereby forming new histories.  Due to the randomness in decision-making there will be 
a probability distribution over all possible histories.  In a steady state of the learning 
model, the probability distribution over histories remains unchanged over time.  The 
stochastic learning equilibrium is defined as the steady-state probability distribution 
over histories.  This formulation is general and includes many learning models as special 
cases.  Goeree and Holt (2002) show that this equilibrium always exist when there are a 
finite number of decisions and players have finite, but possibly long, memories. 

Given a specific learning rule, it is possible to solve for the stochastic learning 
equilibrium.  To illustrate, consider the market price game under to extreme cases, 
fictitious play (ρ = 1) and Cournot best response (ρ = 0).  Since there is no 
"forgetfulness" in fictitious play, any steady state distribution of decisions will 
eventually be fully learned by all players, i.e. the empirical frequencies of price draws 
from the distribution will converge to that distribution.  In this case, each player is 
making a logit probabilistic best response to the empirical distribution, and these best 
responses match the empirical distribution.  Notice that all players must have identical 
beliefs in this equilibrium.  (Incidentally, this is known as a “quantal response 
equilibrium” as defined by McKelvey and Palfrey, 1995).  

When ρ = 0, a player’s history is simply the most recent observation, and beliefs 
are necessarily different across players.  These differences in individuals’ beliefs adds 
extra randomness into the steady state.  Figure 5 illustrates these observations for the 
high-R treatment of the price-choice game.  The solid line represents the stochastic 
learning equilibrium with an infinite memory (ρ = 1) and the dashed line traces out the 
price distribution for the case of one-period memory (ρ = 0).  Both of these distributions 
are hump-shaped with means near the observed price average in the experiment.  
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Figure 5.  Stochastic learning equilibrium distribution of prices for R  = 0.8. 

 

Summary 
 The main ideas can be recapped by reviewing the five figures.  The probability 
matching data in Figure 1 display a relatively slow learning process that never really 
settles down, as the jagged patterns in 20 period averages continue for many periods.  
Simulations of learning in Figure 2 are too smooth.   This is because these simulations 
were done with reinforcement learning rules that do not allow anything to be 
forgotten, so the effects of new draws are rapidly overwhelmed by the weight of  all 
past history.  One way to introduce recency effects is to let past observations receive 
diminishing weights, as is the case for the geometrically declining weights used in the 
belief learning simulations described above.  These effects will cause choices to 
bounce around as beliefs continue to me moved by the more recent observations.   

Recency effects are even more likely in interactive systems where the 
observations being predicted (e.g. others’ prices) are not exogenous, but rather, are 
themselves generated by learning mechanisms and stochastic choice.  For example, 
consider an extreme case where a person can only remember the two most recent 
observations.  There are four possible remembered histories in the probability 
matching experiment: LL, LR, RL, and RR, with exogenously determined 
probabilities of (3/4)(3/4), (3/4)(1/4), (1/4)(3/4), and (1/4)(1/4) respectively.  In an 
interactive market or game, histories are generated by players’ decisions, so they will 
depend on additional factors such as the payoffs and error parameters from the 
stochastic choice rules.   

A stochastic learning equilibrium (Goeree and Holt, 2002) is a steady-state 
probability distribution over all possible histories.  The formulation of this model in 
terms of histories (instead of single -period choice distributions) allows the possibility 
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dynamic effects such as cycles and endogenous learning rules.  The focus on histories 
(sequences of vectors of players’ decisions) also facilitates the proof that a stochastic 
learning exists under fairly general conditions.   

Figure 5 shows the implications of two special cases of the stochastic learning 
equilibrium for the market price game: the (limiting) case of an infinite history (ρ = 1) 
and the case of a one-period history (ρ = 0).  The implied distribution of price choices 
is flatter and more dispersed for the latter case, since beliefs are being moved around 
by recent observations, which introduces extra randomness.  Both of these extreme 
cases, however capture the salient feature of the prices observed in the high R 
treatment of the market experiment, i.e. that price averages are more than twice as 
high as the unique Nash equilibrium prediction.   

When maximum likelihood techniques are used to estimate the learning 
parameter from the choices made by the human subjects, the resulting estimate (ρ = 
0.72) is intermediate between the extreme cases shown in Figure 5, and the resulting 
steady-state price distribution will also be intermediate.  In fact, the weights 
determined by products of 0.72 decline very quickly, and the equilibrium price 
distribution is quite close to the flatter (ρ = 0) case, as we confirmed with computer 
simulations.  Simulations of individual cohorts of ten subjects (not shown) also show 
the same up-and-down patterns exhibited by comparably sized cohorts of humans.  
The simulation averages shown in Figure 4 track the main features of the human data: 
prices start high and stay high in one treatment, and they start high and decline toward 
the Nash prediction in the other.  Thus computer simulations of learning models can 
explain the data patterns that are not predicted with standard equilibrium techniques.   
In fact, we ran the computer simulations before we ran the experiments with human 
subjects, using the learning and error parameter estimates from a previous experiment 
(Capra et al., 1999).  The simulations helped us select the two values of the treatment 
parameter, R, which would ensure that there would be a strong treatment effect that is 
not predicted by the Nash equilibrium.   

The learning models used here were pioneered by Bush and Mosteller (1955), 
and the stochastic choice models were introduced by the mathematical psychologist 
Luce (1959) and others.  These techniques no longer receive much attention in the 
psychology literature, where the main interest is on theories of learning, biases, and 
heuristics that have a richer cognitive content.  We wish to stress that the classical 
learning and stochastic choice techniques have proved to yield important insights in 
explaining economics experiments where the anonymity and repetitiveness of market 
interactions dominate, although the incorporation of insights from the heuristics and 
biases literature may also prove to be valuable in the future.        
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