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Abstract

We consider the possibility that all particles in the world are fundamentally
identical, i.e., belong to the same species. Different masses, charges, spins, fla-
vors, or colors then merely correspond to different quantum states of the same
particle, just as spin-up and spin-down do. The implications of this viewpoint can
be best appreciated within Bohmian mechanics, a precise formulation of quantum
mechanics with particle trajectories. The implementation of this viewpoint in
such a theory leads to trajectories different from those of the usual formulation,
and thus to a version of Bohmian mechanics that is inequivalent to, though ar-
guably empirically indistinguishable from, the usual one. The mathematical core
of this viewpoint is however rather independent of the detailed dynamical scheme
Bohmian mechanics provides, and it amounts to the assertion that the configu-
ration space for N particles, even N “distinguishable particles,” is the set of all
N -point subsets of physical 3-space.

PACS numbers: 03.65.Ta (foundations of quantum mechanics)

1 Introduction and Overview

It is not a new idea that what appear to be two different species of particles may in fact

be two different states of the same species. It is particularly obvious that spin-up and
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spin-down are merely two states of the same particle because we often encounter super-

positions, such as spin-left, of these states. But even in cases in which superpositions

are extremely hard to obtain, such as of different quark flavors, it is not an unusual idea

that what is behind is the same particle, the quark. One may also consider the thought

that electrons and positrons are, despite their difference in charge, the same particle;

this is suggested in particular by the fact that, while electron states are positive energy

solutions of the Dirac equation, positron states are conjugate negative energy solutions

of the Dirac equation—a situation similar to left-handed and right-handed photons.

Moreover, any explanation of the particular values of masses of the elementary parti-

cles would probably have to consist in deriving the appropriate energy eigenvalues for

different states—of the same particle. Note also that supersymmetry suggests that the

same particle can appear as a boson or a fermion, another example of how one species

can appear as two.

We explore here the most extreme possibility of this kind: that all particles are

fundamentally identical, i.e., that fundamentally only one species of elementary particles

exists. Let us call this the identity hypothesis. This one species would then have to have

different states corresponding to being an electron, a quark, a neutrino, or whatever.

The consequences of the identity hypothesis are, in a sense, less dramatic than one

might expect: we shall point out how every quantum theory involving several particle

species can indeed be transformed into a theory of just one species, thus incorporating

the identity hypothesis, without any change in the predictions for experiments.

The identity hypothesis can be paraphrased as a statement about the configuration

space. The configuration space of a universe of N distinct particles is R3N , whereas the

configuration space of a universe of N identical particles is, as argued in [12, 13, 14, 5, 6],

the set of all N -element subsets of R3,

N
R

3 := {S ⊆ R3|#S = N} . (1)

This is a manifold of dimension 3N (for a mathematical discussion of this manifold, see

[6, 13]). While a configuration in R3N indicates that particle 1 is at location Q1 ∈ R3,

etc., a configuration from N
R

3 provides just N points in R3, but no further information

on which particle is where. The identity hypothesis amounts to the statement that N
R

3

should always be considered the natural configuration space, even for a system of N

“distinguishable” particles. As we shall show below, an implementation of this idea is

provided by a unitary transformation from the standard representation of wave functions

as elements of L2(R3N ,Ck1 ⊗ · · · ⊗ CkN ), to a new representation of square-integrable

cross-sections of a suitable bundle based on N
R

3.

To appreciate our proposal, it is helpful to keep in mind that even if a theory treats

particles of different species as different sorts of points, associated with different masses,

etc., the associated properties are not directly accessible to an observer. When we

want to find out whether a given particle is, say, an electron or a muon, we study
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the particle’s reaction to various electric fields or other external conditions under our

control. For example, when a wavepacket that is a superposition of an electron and a

muon is subjected to an electric field, the two contributions to the packet diverge due

to their difference in the charge–mass ratio, thus forming two disjoint packets; when the

particle is finally detected in the muon packet, we will say it is a muon. Thus, we know

that a point in front of us is a muon point rather than an electron point, not because

we look into its essence—whatever that would mean—but because its nature is encoded

in patterns in its environment. Once one realizes this, the identity hypothesis, which

might at first appear to be an outrageous notion, seems like a real possibility.

Within Bohmian mechanics—a precise formulation of quantum mechanics accounting

for all quantum phenomena in terms of point particles moving in physical space [4, 8, 10,

9]—this hypothesis acquires an even stronger justification since the theory is primarily

about particles, with the wave function having the dynamical role of governing their

motion. The choice of N
R

3 as configuration space corresponds to the insistence that

the actual configuration of an N -particle system be a set of N points in physical space,

with the points labeled in no way, neither by numbers 1, . . . , N , nor in the sense that

there could be different kinds of points in the world, such as electron points as distinct

from muon points or quark points. Given merely an actual configuration set Q ∈ N
R

3,

there is then simply no fact in the world about what sort of particle there is at a point

Q ∈ Q in physical space, only that there is a particle. This particle is not associated

with any label, mass, charge, spin, flavor, or color.

As we shall explain, the identity hypothesis has sharp consequences in the context

of Bohmian mechanics: the law of motion has to be suitably adjusted, thus leading to

trajectories different from those of the conventional version of the theory. Therefore,

the identity hypothesis has a genuine, nontrivial meaning in Bohmian mechanics (and

as well in stochastic mechanics [14]). However, arguably, no possible experiment can

confirm or disprove the identity hypothesis in the sense of distinguishing between these

two versions of Bohmian mechanics. Hence, the identity question remains empirically

undecidable—unless one day progress in physics leads to a refined, empirically testable

theory of elementary particles that needs the identity hypothesis. However, empirically

undecidable does not mean completely undecidable. There may be relevant differences

in simplicity and naturalness.

To our knowledge, the consequences of the identity hypothesis have never been dis-

cussed in the literature. We are not the first, however, to consider the identity hypoth-

esis. It is implicit in Bell’s “Beables for quantum field theory” [2], which has inspired

this work. Bell’s model, like Bohmian mechanics, involves additional variables beyond

the wave function, and as in Bohmian mechanics, these variables are basically particle

positions. More precisely, a configuration in Bell’s model is described by specifying the

number of particles present at every location in (a discrete version of) 3-space. These
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values are regarded as the actual values of a certain family of observables, given by

the fermion number operator at each point in 3-space, which is the sum of the number

operators over all (fermion) particle species. Thus, a configuration in Bell’s model, like

one in N
R

3, does not distinguish between different kinds of particles.

2 Standard Bohmian Mechanics

We begin by describing the conventional version of Bohmian mechanics [4, 10]. For the

sake of concreteness, let ψ : R3N → C
k1⊗· · ·⊗CkN = W be a quantum mechanical wave

function of an N -particle system, obeying (as a low-energy description) the Schrödinger

equation,

i~
∂ψ

∂t
= −

N∑
i=1

~
2

2mi

∇i · ∇iψ + V ψ , (2)

where mi denotes the mass of the i-th particle, and V the potential which is possibly

(Hermitian) matrix valued. The several components of ψ ∈W represent internal degrees

of freedom such as spin, flavor, or color. In the usual version of Bohmian mechanics,

the i-th particle moves according to

dQi

dt
=
ji(Q)

ρ(Q)
(3)

where Q = (Q1, . . . ,QN) is the configuration in R3N ,

ρ = ψ∗ψ (4)

(meaning a scalar product in W) is the probability density, and

ji =
~

mi

Imψ∗∇iψ (5)

is the probability current, more precisely the part of it corresponding to the i-th particle.

We have that if Q(0) is random with distribution ρ0 (as we shall assume in the

following), then Q(t) has distribution ρt for every time t. This follows from the fact

that ρ and the velocity field v on R3N defined in (3) and (4) obey, by virtue of the

Schrödinger equation (2), a continuity equation

∂ρ

∂t
= −div(ρv) (6)

on R3N . This is an extremely important property, as it expresses a certain compatibility

between the two equations of motion defining the dynamics, which we call the equiv-

ariance of ρ = |ψ|2 [8]. Such a notion plays a crucial role in establishing the empirical

import of the theory [4, 8, 9].
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3 Identity-based Bohmian Mechanics

Bohmian versions of quantum theory define a dynamics on some configuration space

Q; the choice Q = N
R

3 reflects the identity hypothesis, as the particles themselves are

then not associated with labels, masses, charges, etc.—which are implicit, though, in

the wave function, and relevant to its time evolution (2). With such a choice the actual

configuration Q(t) would move in N
R

3, whereas R3N would play a role merely for the

wave function.

A crucial observation is that a dynamics on N
R

3 is given by a symmetric (permutation

invariant) dynamics on R3N . However, (3) is not symmetric (and thus does not define a

dynamics on N
R

3 and fails to be compatible with the identity hypothesis), except in the

special case that the masses are all the same, the potential V is permutation invariant,

and the wave function is symmetric or antisymmetric.

We are thus led to consider the dynamics on R3N obtained by replacing (3) from the

conventional version with
dQi

dt
=

∑
σ jσ(i)(σQ)∑
σ ρ(σQ)

(7)

where the sums are taken over the group SN of permutations of N elements, and σQ =

(Qσ−1(1), . . . ,Qσ−1(N)).
1 In words, the velocity of (7) is obtained from the one of (3) by

symmetrizing the current and the density, i.e., by averaging over all permutations of the

N particles. Note that this is different from symmetrizing the wave function, a procedure

that would lead to zero in the presence of fermions. Note also that this is different from

directly symmetrizing the velocity (3), which would also define a dynamics on N
R

3, but

one for which, unlike with (7), the dynamics obtained will not be equivariant, see below.

Since (3) and (7) define different velocities, they lead to different trajectories and thus

inequivalent theories.

We emphasize that the theory defined by (7) is permutation invariant in a strong

sense, a sense in which the one defined by (3) is not: if Q(t) and Q′(t) are two solu-

tion curves of (7) in configuration space R3N , and if at some time Q′ = σQ for some

permutation σ ∈ SN , then Q′(t) = σQ(t) at all times t. By virtue of this permutation

invariance, (7) defines a dynamics on N
R

3 via projection. After all, if we know the set

of N points contained in the configuration Q ∈ R3N at some time, then this information

is sufficient to determine the configuration Q(t) at all times, modulo the ordering. We

call the dynamics on N
R

3 thus obtained identity-based Bohmian mechanics.

To get a handle on identity-based Bohmian mechanics and its symmetry properties,

consider the very simple example of two particles, say an electron (particle 1) and a

muon (particle 2), with scalar-valued wave function ψ(q1, q2) = φ(q1)χ(q2), which are,

1This means the particle at Qi gets the number σ(i), defining its new place in the ordering. Note
that jσ(i)(σQ) lies, for every σ, in the tangent space to R3 at Qi, if we wish to distinguish between
tangent spaces at different points.
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say, evolving according to the free Hamiltonian (so that factorization is preserved).

Then, according to (3), the equations of motion of standard Bohmian mechanics are

dQ1

dt
=

~

me

Im
∇φ(Q1)

φ(Q1)
(8)

dQ2

dt
=

~

mµ

Im
∇χ(Q2)

χ(Q2)
(9)

where me and mµ are respectively the masses of the electron and of the muon. On

the other hand, according to (7), the dynamics of motion of identity-based Bohmian

mechanics is given by

dQ1

dt
=

~

me
|χ(Q2)|2Im [φ(Q1)∗(∇φ)(Q1)] + ~

mµ
|φ(Q2)|2Im [χ(Q1)∗(∇χ)(Q1)]

|φ(Q1)|2|χ(Q2)|2 + |φ(Q2)|2|χ(Q1)|2
(10)

dQ2

dt
=

~

mµ
|φ(Q1)|2Im [χ(Q2)∗(∇χ)(Q2)] + ~

me
|χ(Q1)|2Im [φ(Q2)∗(∇φ)(Q2)]

|φ(Q1)|2|χ(Q2)|2 + |φ(Q2)|2|χ(Q1)|2
(11)

Note that now the two particle indices 1 and 2 do not carry any direct relation to the

particle species (as characterized by their masses): Contrary to the velocity formulas (8)

and (9), there is nothing in the right hand side of (10) and (11) that distinguishes Q1

from Q2. The two particles are distinguished, rather, only by the positions they happen

to have at any given time. Note in particular that if φ and χ have disjoint supports,

with, say, φ supported on “the left” and χ on “the right,” then only one term in the

numerator and one in the denominator of (10) and (11) will be nonvanishing. Then Q1

will behave like an electron, resp. like a muon, when it is on the left, resp. right. In

other words, the particle on the left behaves like an electron and the one on the right

like a muon, regardless of how we might label them.

More generally, for arbitrary two-particle wave function and Hamiltonian, consider

a configuration with an electron at x ∈ R3 and a muon at y ∈ R3, and another configu-

ration with the muon at x and the electron at y. In both configurations, (7) yields the

same velocity for the particle at x, regardless of whether it is the electron or the muon

(and the same velocity at y). With (3), in contrast, there is no reason why this should

be so.

The equation of motion for Q ∈ N
R

3 can be written as

dQ

dt
= vt(Q) (12)

where v = vt is a time-dependent vector field on N
R

3 that is determined by (7). Similarly,

the denominator of (7) defines a probability density ρ on N
R

3, while its numerator defines

a probability current J = ρv on N
R

3.
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As in conventional Bohmian mechanics, also in identity-based Bohmian mechanics

we have that if Q(0) is chosen at random with distribution ρ0, then Q(t) has distribution

ρt for every time t. This is a consequence of the fact that ρ and v obey the continuity

equation
∂ρ

∂t
= −div(ρv) (13)

on N
R

3, which follows from (6) by summing both sides over all permutations.

4 Wave Function on N
R

3

If the configuration space is Q = N
R

3, then one might imagine that the wave function

should also live on N
R

3 rather than on R3N . And that is possible! One may transform

any wave function ψ : R3N →W = C
k1 ⊗ · · · ⊗ CkN into a cross-section φ of a suitable

vector bundle E over N
R

3. The fiber space Eq at q ∈ N
R

3 of this bundle has dimension

N !k1 · · · kN and can be defined as

Eq =
⊕
ν∈Bq

W (14)

where Bq is the set of all bijections q → {1, . . . , N}; thus, ν runs through all possible

numberings, or all possible identifications of the N points with the N particle “identi-

ties.” In particular, Eq is the direct sum of N ! copies of W. (It follows that even for

k1 = · · · = kN = 1 (spinless particles), the wave function φ(q) has N ! components at

q ∈ Q, each component corresponding to a particular way of labeling the points.) We

define the scalar product in Eq in such a way that (14) is an orthogonal sum.

Another way of viewing Eq is this: every ν ∈ Bq defines an ordering of the N points

of q, and thus an element of R3N , namely q̂ = (ν−1(1), . . . , ν−1(N)). We shall sometimes

write (q, ν) for q̂. Eq is the direct sum of the value spaces (each being a copy of W) of

ψ at the points q̂ ∈ R3N . (This view of Eq allows a generalization to the case that ψ

is itself a cross-section of a vector bundle over R3N .) And this view is, in fact, how the

transformation of ψ into φ can best be understood:

φ(q) = ⊕νψ(q, ν) = ⊕νψ(q̂). (15)

Conversely, ψ can be reconstructed from φ at all configurations (q1, . . . , qN) without

coincidences (i.e., such that qi 6= qj whenever i 6= j):

ψ(q1, . . . , qN) = φν({q1, . . . , qN}) (16)

with ν(qi) := i. Since the configurations with coincidences form a null set in R3N ,

the transformation ψ 7→ φ defines a unitary identification between the Hilbert spaces
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L2(R3N ,W) → L2(E), where by L2(E) we denote the space of square-integrable cross-

sections of the bundle E.

(We note in passing that in identity-based Bohmian mechanics the notion of con-

ditional wave function for subsystems [8] is defined much less often than in standard

Bohmian mechanics. For example, in standard Bohmian mechanics the conditional wave

function for scalar-valued wave functions is always defined, but this is not the case in

identity-based Bohmian mechanics, due to the fact that the “particle identities” are

then internal degrees of freedom (see above), more or less like spin in standard Bohmian

mechanics. Thus in identity-based Bohmian mechanics only the notion of conditional

density matrix is always well defined [7]. This may appear paradoxical, in view of our

claim that the two theories are empirically equivalent (see below). There is, however,

no paradox: upon reflection we realize that whenever we would know, in a standard

Bohmian universe, that the wave function of a subsystem is ψ, then, for identity based

Bohmian mechanics, its conditional density matrix would in fact be |ψ〉〈ψ|.)

5 Dynamics in Terms of φ

For the sake of completeness, we explicitly describe in this section how the identity-

based Bohmian theory can be formulated purely in terms of the bundle cross-section φ.

First note that

|φ(q)|2 =
∑
ν∈Bq

|ψ(q, ν)|2,

so that ρ(q) = |φ(q)|2. A connection (covariant derivative operator) ∇ can be defined on

E in an obvious way.2 The component of the probability current relative to the particle

at q ∈ q is given by

jq(q) =
∑
ν

~

mν(q)

Imφ∗ν(q)∇qφν(q) ,

and we obtain the following formula for the vector field v in terms of φ:

vq =
jq
ρ
,

where vq is the component of v(q) corresponding to q ∈ q. In another notation,

dQ

dt
=
∑
ν

~

mν(Q)

Im
φ∗ν(Q)∇Qφν(Q)

φ∗(Q)φ(Q)
. (17)

2Here is the definition, in terms of parallel transport: if q(s), 0 ≤ s ≤ 1, is a curve in N
R

3 then
any bijection ν0 : q(0) → {1, . . . , N} can be transported along the curve by having the numbering
follow the points of q(s) as they move continuously from q(0) to q(1), thus defining a final bijection
ν1 : q(1) → {1, . . . , N}. Parallel transport of some element e(0) ∈ Eq(0) along the curve leads to
⊕ν1eν0(0) =: e(1) ∈ Eq(1). This connection is nontrivial (i.e., parallel transport along a loop may differ
from the identity) but flat (i.e., has curvature zero).
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The time evolution of φ obeys

i~
∂φν
∂t

(q) = −
∑
q∈q

~
2

2mν(q)

∇q · ∇qφν(q) + V (q, ν)φν(q) . (18)

6 A Remark on Identical Particles

It is interesting to see what happens when we apply the transformation (15) to a system

of identical particles, i.e., of bosons or fermions. If ψ, with value space W = (Ck)⊗N ,

represents a system of N bosons, then it must be symmetric under permutation. As

a consequence, ψ(q, ν) = Rν′◦ν−1ψ(q, ν ′), where for any permutation σ ∈ SN of the

particles, Rσ : (Ck)⊗N → (Ck)⊗N is the linear mapping that correspondingly permutes

the components of ψ. It follows that

φν = Rν′◦ν−1φν′ , (19)

so that φ is actually confined to a subbundle of E, characterized by (19) and having

dimension kN rather than N !kN . The subbundle is parallel with respect to the con-

nection, i.e., parallel transport will remain within the subbundle. For k = 1, Rσ is the

identity, and the subbundle defined by (19) is the trivial bundle Q × C, so that φ can

be identified with a function N
R

3 → C.

Now consider a system of fermions. Then ψ is anti-symmetric under permutations, so

that ψ(q, ν) = (−1)ν
′◦ν−1

Rν′◦ν−1ψ(q, ν ′) where (−1)σ denotes the sign of the permutation

σ, and consequently,

φν = (−1)ν
′◦ν−1

Rν′◦ν−1φν′ . (20)

In this case, φ is confined to another parallel subbundle of E, characterized by (20) and

also having dimension kN . For k = 1, this subbundle can be called the Fermi line bundle;

it has been described in [13, 15, 6]. The connection is such that parallel transport along

a closed curve in N
R

3 that realizes a permutation σ coincides with multiplication by

(−1)σ, the sign of σ.

Finally, when the system of N particles under consideration contains N1 identical

particles of species 1, . . . , and N` identical particles of species `, so that N1 + . . . +

N` = N , then φ is confined to a subbundle F of dimension (N !/N1! · · ·N`!) k
N1
1 · · · k

N`
` ,

characterized by one condition like either (19) or (20) for each species.

7 Another Approach to Identity-Based Bohmian Me-

chanics

In this section we briefly describe a different perspective on identity-based Bohmian

mechanics that lies outside the main line of this paper and in particular is not essential
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for an understanding of our main points. We have, in the previous sections, formulated

identity-based Bohmian mechanics on N
R

3, starting from conventional Bohmian me-

chanics on R3N . This brings us to the question as to whether one could arrive at this

formulation without ever invoking R3N . We now sketch how to do this for bosons. For

a discussion of fermions see [15, Section 5.9].

Suppose that the state space W , representing the internal degrees of freedom for a

single particle, is the sum of the state spaces Wj of ` different species,

W =
⊕̀
j=1

Wj, Wj = Ckj .

This means that the particle can be in a superposition of being an electron, a muon, etc.

For N bosons with state space W , the wave function φ is a cross-section of the bundle

E ′ defined by

E ′q =
⊗
q∈q

W ;

see [6] for a detailed discussion. The requirement that we have N1 particles of species

1, . . . , and N` particles of species ` defines a subbundle F ′ of E ′ which can be identified

with the bundle F introduced in the last paragraph of Section 6, in the case of bosons.

A cross-section of F ′ remains in F ′ under the Schrödinger evolution, and the obvious

Bohmian dynamics on N
R

3 associated with cross-sections of E ′ (see [15, 6] for the

explicit definition) agrees for cross-sections of F ′ with the dynamics defined by (17) for

the corresponding cross-section of F .

8 Empirical Equivalence

One may wonder whether identity-based and conventional Bohmian mechanics are em-

pirically distinguishable, i.e., whether any possible experiment could enable us to decide

between these two versions of Bohmian mechanics. The question is delicate since it

relates to the meaning of empirical equivalence in general; we touch a bit more on this

issue in a separate work [11]. That the answer arguably is no can however be appreciated

quite easily by reflecting upon the three following points:

• The outcomes of all conceivable experiments will be recorded in the unordered

configuration {Q1, . . . ,QN}. To illustrate this fact, we may imagine the outcome

as given by the orientation of a pointer on a scale; as the pointer consists of a

huge number of electrons and quarks, for reading off the orientation of the pointer

we need not be explicitly told which points are the electrons and which are the

quarks.
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• The label of a particle in a standard Bohmian universe is not directly perceptible

to an observer. We would base the decision whether, say, a given particle is an

electron or a muon on how the particle moves under certain conditions that we

control, say in terms of wave packets that spatially diverge due to differences (as

the charge–mass ratio) encoded in the wave function3 and finally grounded (after

the experiment has been completed) in macroscopic patterns in the environment.

This fact strongly suggests that only {Q1, . . . ,QN} and not (Q1, . . . ,QN) could

ultimately be empirically relevant.

• In conventional Bohmian mechanics, the distribution of the configuration Q is |ψ|2
at any time (see the end of Section 2).4 If we ignore the labeling of the particles,

we obtain from Q = (Q1, . . . ,QN) the set {Q1, . . . ,QN} ∈ N
R

3 whose (marginal)

distribution coincides with the distribution ρ of the configuration of identity-based

Bohmian mechanics (see the end of Section 3). Since any empirical decision, if it

can be made at some time (after, say, an experiment has been performed), must be

based on the configuration (of systems, apparatuses, and the rest of the universe)

at that time, two theories predicting the same distribution for the configuration

{Q1, . . . ,QN} cannot presumably be distinguished by experiment.

To sum up, it seems that no experiment could enable us to decide between conven-

tional and identity-based Bohmian mechanics. It is presumably also true of orthodox

quantum mechanics that no experiment could enable us to distinguish an identity-based

version from the conventional version; this conclusion is based on the special status

of position measurements—if only the positions of instrument pointers—a fact whose

relevance has been stressed with great force by Bell [3].
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