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Abstract

The Routley-Meyer relational semantics for relevant logics is extended to give a sound
and complete model theory for many propositionally quantified relevant logics (and some
non-relevant ones). This involves a restriction on which sets of worlds are admissible as
propositions, and an interpretation of propositional quantification that makes ∀pA true
when there is some true admissible proposition that entails all p-instantiations of A.

It is also shown that without the admissibility qualification many of the systems consid-
ered are semantically incomplete, including all those that are sub-logics of the quantified
version of Anderson and Belnap’s system E of entailment, extended by the mingle axiom
and the Ackermann constant t. The incompleteness proof involves an algebraic semantics
based on atomless complete Boolean algebras.

1 Introduction

Propositional quantification played a role in the early development of ideas about relevant
implication. Anderson and Belnap observed in [2] that enriching their entailment system E
by quantifiers ∀p, ∃p binding propositional variables allowed the definition of other condi-
tionals. Thus an enthymematic conditional A ⊃ B, i.e. one with a suppressed true assump-
tion, could be defined as

∃p(p ∧ (A ∧ p→ B)),

where→ is the implication of system E. Strict implication A J B could be defined as

∃p(Np ∧ (A ∧ p→ B)),

where N is the necessity modality defined by taking Np to be (p → p) → p. They stated
that adding the quantifiers to the positive fragment of E gives a system whose theorems
in J, ∧ and ∨ coincide exactly with the positive fragment of Lewis’s system S4 of strict
implication, and whose theorems in ⊃, ∧ and ∨ coincide exactly with the positive fragment
of Heyting’s system of intuitionistic logic. Also, if the negation ¬A is defined as A ⊃ (∀p)p,
then the theorems in⊃, ¬, ∧ and ∨ coincide exactly with the full intuitionistic propositional
calculus. Here (∀p)p serves as the Falsum, an absurdity implying every proposition.

No axioms for the quantifiers were stated in [2], but these were supplied by Anderson
in [1], extending E and the system R of relevant implication to logics E† and R† whose
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quantifier axioms were the universal closures of the schemes

∀pA→ A[B/p]
∀p(A→ B)→ (∀pA→ ∀pB)
∀pA ∧ ∀pB → ∀p(A ∧B)
∀p(A→ B)→ (A→ ∀pB), with p not free in A.
∀p(A ∨B)→ (A ∨ ∀pB), with p not free in A.
(∀p(p→ p)→ A)→ A.

Meyer in [9] gave alternative axiomatisations of these logics, calling them EP and RP. He
studied the above conditional definitions and others, verifying the assertions about connec-
tions with intuitionistic logic and S4. He also noted that the Ackermann constant t, thought
of as the conjunction of all truths, could be quantificationally defined as ∀p(p→ p).

The volume [3] devoted its first chapter to relevant systems extended by propositional
quantification, using the notation (which we adopt) S∀p for some system S thus extended.

A semantics for propositional quantifiers was discussed by Routley and Meyer when
they introduced their possible-worlds style model theory for the logic R in [10]. Their model
structures carry a quasi-order≤, and propositions are interpreted to be subsets of the struc-
ture that are hereditary, i.e. closed upward under the quasi-order, as in Kripke’s intuitionistic
semantics. They observed that taking ∀ to mean “for all hereditary subsets” gives a sound
semantics – all theorems of RP are validated – but stated their belief that completeness fails.
This was by analogy with Henkin’s primary interpretations of higher-order logic [6], given
that this interpretation of ∀was second-order in nature. Kremer [7] eventually proved their
conjecture by showing that the set of formulas validated by the Routley-Meyer primary
semantics for RP is not recursively axiomatisable.

The present paper provides a complete relational semantics for RP, EP and other propo-
sitionally quantified relevant logics. The initial idea is to restrict the class of hereditary
sets that are admissible as propositions. Each model structure will have a fixed collection
Prop of hereditary sets over which the propositional variables range. We require Prop to
be closed under the operations interpreting the logical connectives. This approach has been
successfully used to model non-quantified (Boolean) propositional modal logics that are
incomplete for their Kripke semantics, and has also been applied to some substructural log-
ics1. But here we have the new question of how to interpret the propositional quantifiers
relative to Prop.

Our answer, in brief, is an old one from algebraic logic: a universal quantifier is inter-
preted by a greatest lower bound in the lattice of propositions, this being the natural interpre-
tation of arbitrary conjunctions. An approach of this kind was developed for quantification
of individual variables in [8]. Here it is adapted to quantification of propositional variables.
To explain how this works, let ∀pA be a sentence, and A(P ) be the result of replacing free
p in A by the hereditary set (proposition) P , viewed as a constant. Let |∀pA| and |A(P )| be
the hereditary sets of worlds at which these sentences are true, respectively. The Routley-
Meyer primary semantics in effect takes ∀pA to have the same meaning as the conjunction
of the A(P )’s as P ranges over all hereditary sets, so puts

|∀pA| =
⋂
{|A(P )| : P is hereditary}.

This makes |∀pA| the greatest lower bound of the |A(P )|’s in the set of all hereditary sets
under the partial order ⊆ of set inclusion. That partial order is also the interpretation of the
entailment relation between propositions.

In a model whose set Prop of admissible propositions contains only some of the heredi-
tary sets, we take

|∀xA| =
l

P∈Prop

|A(P )|,

1For instance in [4], where admissible propositions for an Action Logic related to dynamic logic are taken to be
certain “stable” subsets of a canonical model. That paper does not discuss propositional quantification.
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where
d

denotes greatest lower bound in the ordered set (Prop,⊆). Our definition of
“model” will require that

d
P∈Prop |A(P )| always exists in Prop. But it may not be equal

to the intersection
⋂
{|A(P )| : P ∈ Prop}. Instead it will be the largest admissible proposition

included in this intersection, and hence the union of all admissible propositions included in
the intersection. Writing a |= ∀pA for “∀pA is true at world a”, i.e. a ∈ |∀xA|, we get that

a |= ∀pA iff there is some X ∈ Prop such that a ∈ X and X ⊆
⋂

P∈Prop |A(P )|.
Thus

∀pA is true at a iff some admissible proposition true at a entails every admissible
instantiation A(P ) of A.

Our “old” use of greatest lower bounds as conjunctions provides a new semantic proposi-
tional analysis of the meaning of ∀p.

To develop a semantics that can interpret all formulas and not just sentences, we need
to assign propositions to variables. A formula A with n free variables p1, . . . , pn can be
seen as defining an n-ary propositional function, i.e. a function of the form Propn → Prop,
taking each n-tuple P1, . . . , Pn of admissible propositions to the proposition |A(P1, . . . , Pn)|
expressed by A when each pi is assigned the value Pi. Since different formulas may have
different numbers of free variables, this approach would involve handling finitary propo-
sitional functions of different arities, which would quickly become cumbersome. A more
convenient and equally natural approach is to use functions of the form Prop ω → Prop,
where ω = {0, 1, 2, . . . }. An element f ∈ Prop ω is a function f : ω → Prop that serves as a
valuation assigning the proposition f(n) to the variable pn for all n ∈ ω, and so is a device
that gives a value to all variables simultaneously. Such an f can be thought as a sequence
f(0), . . . , f(n), . . . of admissible propositions. Each formula A determines a propositional
function |A| : Prop ω → Prop, taking each f ∈ Prop ω to the admissible proposition |A|f ex-
pressed by A when its free variables are interpreted according to f . |A| is defined formally
by induction on the length of A, as will be seen in Section 3.

Now just as we do not admit arbitrary hereditary sets as propositions, so too we do not
expect an arbitrary function from Prop ω to Prop to be the interpretation of a logical for-
mula. In addition to Prop, our model structures have a fixed collection PropFun of admis-
sible propositional functions that is closed under function-building operations interpreting
the connectives and quantifiers. These closure properties ensure that |A| ∈ PropFun for
any formula A, and hence that |A|f is always admissible.

As well as proving soundness and completeness of many logics under our semantics,
we also give incompleteness results showing that our admissible-propositions approach is
essential. These results demonstrate that many of our logics are incomplete for validity in
models in which every hereditary set is admissible. This is done by exhibiting a particular
sentence that is valid in all such models but not a theorem of the logic in question. The
latter part of the proof requires the development of an algebraic semantics using Boolean
algebras that are order-complete but atomless.

The next section defines the many logics we study and gives their pertinent proof-
theoretic properties. Section 3 defines our model structures and models, and gives the
soundness theorem for the weakest logic. Section 4 proves the completeness theorem for
this logic by a canonical model construction, and then Section 5 extends these results to all
the other logics. The final Section 6 gives the incompleteness results via algebraic semantics.

2 Logics

Our formal language is based on a countably infinite set V ar = {p0, p1, p2, . . .} of proposi-
tional variables, and a countably infinite set Con of propositional constants (we will usually
use the letter c, possibly with subscripts, to refer to members of Con). Formulas are gener-
ated from these variables and constants in the standard way, using the connectives→,∧,¬;
a special propositional constant t; and the universal quantifiers ∀pn. We also employ the
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abbreviations
A ∨B =df ¬(¬A ∧ ¬B)
A↔ B =df (A→ B) ∧ (B → A)
∃pA =df ¬∀p(¬A).

The notions of free and bound occurrences of variables and of pn being free for B in A,
are as usual. A formula is closed, or is a sentence, if it has no free variables. To deal with
substitution of formulas for variables the notation

A[B0/p0, . . . , Bn/pn, . . .]

will refer to the formula resulting from simultaneous substitution of each Bi for all free
occurrences of pi inA. A single substitutionA[p0/p0, . . . , B/pi, . . . , pn/pn, . . .] will be abbre-
viated to A[B/pi], and similarly we define any finite substitution A[B0/pn0 , . . . , Bm/pnm

] in
the obvious way.

Axiom Schemes:

A1. A→ A
A2. A ∧B → A
A3. A ∧B → B
A4. (A→ B) ∧ (A→ C)→ (A→ B ∧ C)
A5. A→ A ∨B
A6. B → A ∨B
A7. (A→ C) ∧ (B → C)→ (A ∨B → C)
A8. A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧ C)
A9. ¬¬A→ A
A10. ∀pnA→ A[B/pn] (where pn is free for B in A)

Rules: 2

(R1)
A→ B
A
B

(R2)
A
B

A ∧B

(R3)
A→ B

(B → C)→ (A→ C)
(R4)

B → C
(A→ B)→ (A→ C)

(R5)
A→ ¬B
B → ¬A (R6)

t→ A
A

(R7)
A

t→ A
(RIC)

A→ B
A→ ∀pnB

if pn is not free in A

By a logic we mean any set L of formulas that includes all instances of these axioms and is
closed under these rules. We call formula A an L-theorem, and write `L A, whenA ∈ L. The
smallest logic will be called Bt∀p.

The labels A1–A9 and R1–R5 are as used in chapters 4 and 5 of [11], what we call R6
here is called CR1 there and what we call R7 here is called CR7 there. It will be noted that
R6 and R7 are the rules tE and tI stated by Anderson and Belnap when extending their
systems with t (for an overview see [3, §R2]). The label RIC stands for “Rule of Intentional
Confinement”.

From R7, RIC and R6, it is evident that any logic is closed under the rule

2The rules are read: “from the formulas above the horizontal line (premisses), infer the formula (conclusion)
below the horizontal line”.
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(UG)
A
∀pnA

of Universal Generalisation. The schemes

• ∀pnA ∧ ∀pnB → ∀pn(A ∧B)

• A→ ∀pnA with pn not free in A

are derivable in any logic.

Lemma 2.1. For any formula A with at most one free variable pn, and for any closed formulas B
andC, if `L B → C and `L C → B then `L A[B/pn]→ A[C/pn] and `L A[C/pn]→ A[B/pn].

Proof. This is by induction on the complexity of A. We give only the inductive cases for the
quantifiers.

If A = ∀pnD, then (∀pnD)[B/pn] = ∀pnD = (∀pnD)[C/pn], so `L (∀pnD)[B/pn] →
(∀pnD)[C/pn] and `L (∀pnD)[C/pn]→ (∀pnD)[B/pn] by axiom A1.

If A = ∀pmD with m 6= n, then (∀pmD)[B/pn] = ∀pm(D[B/pn]) as B is closed, and
similarly for C. Then we have

1. `L ∀pmD[B/pn]→ D[B/pn] A10
2. `L D[B/pn]→ D[C/pn] Induction Hypothesis
3. `L ∀pmD[B/pn]→ D[C/pn] 1, R3, 2, R1
4. `L ∀pmD[B/pn]→ ∀pmD[C/pn] 4, RIC.

Similarly `L ∀pmD[C/pn]→ ∀pmD[B/pn].

To consider some of the relevant (and irrelevant) logics that have been discussed in the
literature, we list some optional axioms below.

B1. (A ∧ (A→ B))→ B
B2. (A→ B) ∧ (B → C)→ (A→ C)
B3. (A→ B)→ ((B → C)→ (A→ C))
B4. (B → C)→ ((A→ B)→ (A→ C))
B5. (A→ (A→ B))→ (A→ B)
B6. A→ ((A→ B)→ B)
B7. (A→ (B → C))→ (B → (A→ C))
B8. (A→ (B → C))→ ((A→ B)→ (A→ C))
B9. (A→ B)→ ((A→ (B → C))→ (A→ C))
B10. A→ (B → B)

B11. B → (A→ B)
B12. A→ (B → (C → A))
B13. A→ (B → (A ∧B))
B14. (A→ B)→ ((A→ C)→ (A→ (B ∧ C)))
B15. ((A ∧B)→ C)→ (A→ (B → C))
B16. A ∨ (A→ B)
B17. (A→ B) ∨ (B → A)
B18. A→ (A→ A)
B19. (A ∨B)→ ((A→ B)→ B)
B20. ((A ∧B)→ C)→ ((A→ C) ∨ (B → C))

C1. (t→ A)→ A
C2. (A ∧ (A→ B) ∧ t)→ B
C3. ((A→ B) ∧ t)→ ((B → C)→ (A→ C))
C4. t→ (A ∨ ¬A)
C5. A→ (t→ A)
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D1. ((A ∧B)→ C)→ ((A ∧ ¬C)→ ¬B)
D2. A ∨ ¬A
D3. (A→ ¬A)→ ¬A
D4. (A→ ¬B)→ (B → ¬A)
D5. B → (A ∨ ¬A)
D6. A→ (¬A→ B)
D7. ¬(A→ B)→ (B → A)
D8. (A→ ¬(B → C))→ (¬B → ¬A)

E1. ∀pn(A→ B)→ (∀pnA→ ∀pnB)
E2. ∀pn(A ∨B)→ (A ∨ ∀pnB), where pn is not free in A.
E3. (∀p(p→ p)→ A)→ A

The axioms B1–B20, C1–C5 and D1–D8 are taken directly from Chapter 4 of [11], though
with some labeling differences in the case of the t axioms C1–C5. Rt∀p is the smallest logic
containing B3–B6, D4, E1 and E2. E3 is derivable in Rt∀p. RP is Rt∀p without R6 and R7, in
the language without the constant t.

Any logic containing E1 also contains

∀pn(A→ B)→ (A→ ∀pnB)

whenever pn is not free in A.
Now if Σ is any subset of this collection of optional axiom schemas, let LΣ be the smallest

logic that includes all instances of the members of Σ. A logic of the form LΣ will be called
inductively generated. Theoremhood in an inductively generated logic is determined by finite
proof sequences: `LΣ A iff there is a finite sequence A0, . . . , An = A such that each Ai is
either an instance of A1–A10 or of a member of Σ, or is derivable from earlier members of
the sequence by one of the rules R1–R7, RIC. Using this fact, we can show

Lemma 2.2. Every inductively defined logic is closed under the rules

RIC(con):
A→ B[c/pn]
A→ ∀pnB

if c is not in A or B, and pn is not free in A.

UG(con):
A[c/pn]
∀pnA

if c is not in A.

Sub:
A[cm0/pm0 , . . . , cmn/pmn ]

A
if cm0 , . . . , cmn

are distinct and not in A.

Proof. The derivations of RIC(con) and UG(con) are similar to Lemmas 6.6 and Corollary
6.7 of [8], using the finite proof-sequence characterisation of theoremhood in the logic.

For Sub, if ` A[cm0/pm0 , . . . , cmn/pmn ] then ` ∀pmnA[cm0/pm0 , . . . , cmn−1/pmn−1 ] by
UG(con), and hence ` A[cm0/pm0 , . . . , cmn−1/pmn−1 ] from A10. Repeating that argument
n times leads to ` A.

3 Semantics

Our models use structures of the form 〈K, 0, R, ∗〉, where K is some set (of worlds or set-
ups, or situations . . . ), 0 is a subset of K (the regular, or base worlds), R is a ternary relation
on K and ∗ is a unary function on K. We write a ≤ b to mean that there is some x ∈ 0 such
that Rxab. A set P ⊆ K is hereditary if it is closed upward under this relation, i.e. if a ∈ P
and a ≤ b then b ∈ P . We call this a basic model structure if it satisfies:

(P1) 0 is hereditary.

(P2) ≤ is reflexive and transitive.

(P3) Rbcd and a ≤ b implies Racd.

(P4) a∗∗ = a.

(P5) a ≤ b implies b∗ ≤ a∗.
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Operations⇒ and − on the powerset ℘K of K are defined by

P ⇒ Q =df {a ∈ K : ∀b, c ∈ K(Rabc and b ∈ P implies c ∈ Q)}
−P =df {a ∈ K : a∗ /∈ P}

Then P ⇒ Q is hereditary by (P3), and −P is hereditary if P is, by (P5).
Now fix a set Prop ⊆ ℘K. For any S ⊆ ℘K, let

l
S =df

⋃
{X ∈ Prop : X ⊆

⋂
S}.

This operation will be used to interpret the universal quantifiers ∀pn. In general
d
S ⊆

⋂
S,

and if
⋂
S ∈ Prop, then

d
S =

⋂
S. But it is also possible to have

d
S ∈ Prop while⋂

S /∈ Prop. If S ⊆ Prop and
d
S ∈ Prop, then

d
S is the greatest lower bound of S in the

partially ordered set (Prop,⊆).
By a propositional function, relative to Prop, we will mean a function from Prop ω to Prop.

From such functions ϕ,ψ : Prop ω → Prop we specify new functions ϕ ∩ ψ, ϕ ∪ ψ, ϕ ⇒ ψ,
−ϕ and ∀nϕ on Prop ω . For the definition of ∀nϕwe need functions that “update” a variable
assignment f , so we write f [P/n] for the function that is identical to f except that it assigns
the value P to n. Now we put

(ϕ ∩ ψ)f =df (ϕf) ∩ (ψf)
(ϕ ∪ ψ)f =df (ϕf) ∪ (ψf)

(ϕ⇒ ψ)f =df (ϕf)⇒ (ψf)
(−ϕ)f =df −(ϕf)

(∀nϕ)f =df

l

P∈Prop

(ϕf [P/n]).

A Bt∀p-model structure, or just model structure, can now be defined as a structure

K = 〈K, 0, R, ∗, P rop, PropFun〉

such that 〈K, 0, R, ∗〉 is a basic model stucture, Prop is a set of hereditary subsets of K, and
PropFun is a set of functions from Prop ω to Prop, satisfying the following conditions:

CProp: 0 ∈ Prop and if X and Y are in Prop, then X ∩ Y ∈ Prop, X ⇒ Y ∈ Prop and
−X ∈ Prop.

CTee: The function ϕt is in PropFun, where ϕt(f) = 0 for all f ∈ Prop ω .
CEval: The evaluation function ϕn is in PropFun for each n ∈ ω, where ϕn(f) = f(n) for

all f ∈ Prop ω .
CImp: If ϕ,ψ ∈ PropFun, then ϕ⇒ ψ ∈ PropFun.
CConj: If ϕ,ψ ∈ PropFun, then ϕ ∩ ψ ∈ PropFun.
CNeg: If ϕ ∈ PropFun, then −ϕ ∈ PropFun.
CAll: If ϕ ∈ PropFun, then ∀nϕ ∈ PropFun for all n ∈ ω.

The condition CProp, which clarifies some of the structure of Prop, is derivable from the
others:

Lemma 3.1. If PropFun satisfies the conditions CTee, CEval, CImp, CConj and CNeg, then Prop
satisfies CProp.

Proof. By CTee it must be that 0 ∈ Prop. Now take any P,Q ∈ Prop and consider some
f ∈ Prop ω such that f(1) = P and f(2) = Q. By CEval ϕ1, ϕ2 ∈ PropFun and so by CConj,
ϕ1∩ϕ2 ∈ PropFun. Now (ϕ1∩ϕ2)f = ϕ1f∩ϕ2f = f(1)∩f(2) = P∩Q, hence P∩Q ∈ Prop.
Similar arguments using CImp or CNeg show that P ⇒ Q ∈ Prop and −P ∈ Prop.

A Bt∀p-model, or just model, is a structure

M = 〈K , V 〉

where K is a Bt∀p-model sructure, and V : Con→ Prop is a function (providing a valuation
of the propositional constants) such that:
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CMod: For any propositional constant c ∈ Con, the constant function ϕc is in PropFun,
where ϕc(f) = V (c) for all f ∈ Prop ω .

Each model has a truth/satisfaction relationM, a, f |= A between worlds a ∈ K, vari-
able assignments f ∈ Prop ω , and formulas A. This is defined for each a and f by induction
on the complexity of A, and uses the notion of the truth set of A under f as the set |A|Mf
of worlds at which A is true, i.e.

|A|Mf =df {b ∈ K :M, b, f |= A}.

The inductive definition of |= is as follows.

• M, a, f |= c iff a ∈ V (c)

• M, a, f |= pn iff a ∈ f(n)

• M, a, f |= t iff a ∈ 0

• M, a, f |= ¬A iffM, a∗, f 6|= A

• M, a, f |= A ∧B iffM, a, f |= A andM, a, f |= B

• M, a, f |= A→ B iff ∀b∀c (M, b, f |= A and Rabc impliesM, c, f |= B)

• M, a, f |= ∀pnA iff there is someX ∈ Prop such that a ∈ X andX ⊆
⋂

P∈Prop

|A|Mf [P/n].

These truth conditions could alternatively be stated as an inductive definition of the truth
sets |A|Mf :

• |c|Mf = V (c)

• |pn|Mf = f(n)

• |t|Mf = 0

• |¬A|Mf = −|A|Mf
• |A ∧B|Mf = |A|Mf ∩ |B|Mf
• |A→ B|Mf = |A|Mf ⇒ |B|Mf

• |∀pnA|Mf =
l

P∈Prop

|A|Mf [P/n] = ∀n|A|Mf .

It turns out that that the map f 7→ |A|Mf that interprets A is a propositional function in
the model, i.e. a member of Propfun. To show this, for each formula A we define the
propositional function ϕMA inductively on the complexity of A:

• ϕMc = ϕc

• ϕMpn
= ϕn

• ϕMt = ϕt

• ϕM¬A = −ϕMA
• ϕMA∧B = ϕMA ∩ ϕMB
• ϕMA→B = ϕMA ⇒ ϕMB

• ϕM∀pnA = ∀nϕ
M
A .

Note that each ϕMA is indeed in PropFun by the conditions CMod, CEval, CTee, CNeg,
CConj, CImp and CAll.

Lemma 3.2. Let A be an arbitrary formula. Then in any model, ϕMA f = |A|Mf for any f ∈
Prop ω . Hence |A|Mf is a proposition, i.e. a member of Prop.

Proof. By induction on the complexity of A. The base cases are

ϕMc f = ϕcf = V (c) = |c|Mf
ϕMpn

f = ϕnf = f(n) = |pn|Mf
ϕMt f = ϕtf = 0 = |t|Mf

The inductive cases follow similarly from the correspondence of the definitions.
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Since Prop consists of hereditary sets, we get

Corollary 3.3 (Hereditariness). In any model, for any formula A, if a ≤ b andM, a, f |= A then
M, b, f |= A. �

We say that a formula A is satisfied by the assignment f in the modelM whenM, a, f |= A
for all base worlds a ∈ 0. A is valid in the modelM, writtenM |= A, if it is satisfied by every
assignment f ∈ Prop ω . A is valid on the model-structure K , written K |= A, if it is valid in
every model based on K .

The following is proved as in [10, Lemmas 2 and 3].

Lemma 3.4 (Semantic Entailment). For any modelM, the formula A→ B is satisfied by f inM
iff for any world a ∈ K,M, a, f |= A impliesM, a, f |= B i.e. iff |A|Mf ⊆ |B|Mf . �

Next we show that the satisfaction relation depends only on the value assignment to free
variables.

Lemma 3.5. For any formula A and f, g ∈ Prop ω , if f and g agree on the free variables of A then
|A|Mf = |A|Mg (and hence ϕMA f = ϕMA g by Lemma 3.2).

Proof. By induction on the complexity of A. If A = pn, then as f and g agree on the free
variable pn, |pn|Mf = f(n) = g(n) = |pn|Mg.

The cases of A = c ∈ Con and A = t, are straightforward, as are the induction cases for
∧,→, and ¬.

For A = ∀pnB:

|∀pnB|Mf =
l

P∈Prop

|B|Mf [P/n] =
l

P∈Prop

|B|Mg[P/n] = |∀pnB|Mg

by induction hypothesis as, for each P , f [P/n] and g[P/n] must clearly agree on all free
variables in B by assumption.

The semantics of formula-substitution is characterised by updating of variable assign-
ments, in a similar manner to first-order predicate logic (see for example [8, Lemma 7.1]):

Lemma 3.6. In any model, for any f ∈ Prop ω , formulas A,B, and variable pn, if pn is free for B
in A, then |A[B/pn]|Mf = |A|Mf [|B|Mf/n].

Proof. First note that |A|Mf [|B|Mf/n] is indeed a well-defined notion, as |B|Mf ∈ Prop
by Lemma 3.2, hence f [|B|Mf/n] ∈ Prop ω . We will let f ′ = f [|B|Mf/n] and proceed by
induction on the complexity of A.

For A = pn,
|pn[B/pn]|Mf = |B|Mf = f ′(n) = |pn|Mf ′;

while for A = pm with m 6= n,

|pm[B/pn]|Mf = |pm|Mf = f(m) = f ′(m) = |pm|Mf ′.

The cases of A = c ∈ Con and A = t, and the induction cases for ∧,→, and ¬, are left to
the reader.

For A = ∀pmC where pn does not occur free in A,

|(∀pmC)[B/pn]|Mf = |∀pmC|Mf = |∀pmC|Mf ′

follows by Lemma 3.5 as f and f ′ differ only in their assignment to pn, hence they agree on
the free variables of A = ∀pmC.
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For A = ∀pmC with pn free in A,

|(∀pmC)[B/pn]|Mf = |∀pm(C[B/pn])|Mf (a) – see below
=

l

Q∈Prop

|C[B/pn]|Mf [Q/m] (b)

=
l

Q∈Prop

|C|Mf [Q/m][|B|Mf [Q/m]/n] (c)

=
l

Q∈Prop

|C|Mf [Q/m][|B|Mf/n] (d)

=
l

Q∈Prop

|C|Mf [|B|Mf/n][Q/m] (e)

=
l

Q∈Prop

|C|Mf ′[Q/m] (f)

= |∀pmC|Mf ′, (g)

with each step justified as follows:

(a) as pn is assumed free for B in A = ∀pmC.
(b) by the truth condition for ∀pm.
(c) by induction hypothesis.
(d) as for any Q, |B|Mf = |B|Mf [Q/m]. This holds because the assumption that pn is

free for B in A, implies that B has no free variables that would become bound in
A[B/pn] = (∀pmC)[B/pn]. So in particular pm does not occur free in B. Thus f and
f [Q/m] agree on the free variables of B (for any Q), hence by Lemma 3.5 |B|Mf =
|B|Mf [Q/m].

(e) as m 6= n (else pn would not occur free in A).
(f) by the definition of f ′.
(g) by the truth condition for ∀pm.

Theorem 3.7 (Bt∀p-Soundness). For any formula A, if A is a Bt∀p-theorem, then A is valid in all
Bt∀p-model structures.

Proof. Let M be any model on a Bt∀p-model structure. We need to show that the axioms
A1–A10 are valid in M, and that the rules R1–R7, RIC preserve this validity. For A1–A9
and R1–R7, this proceeds as in [11, §4.5].

For A10, supposeM, a, f |= ∀pnA. Let B be a formula such that no free variable in B
becomes bound in A[B/pn] (i.e. pn is free for B in A) and define f ′ = f [|B|Mf/n]. Now by
the truth condition for ∀pn there is someX ∈ Prop such thatX ⊆

⋂
P∈Prop |A|Mf [P/n] and

a ∈ X . In particular, if we take P as |B|Mf , then we see X ⊆ |A|Mf ′. So a ∈ |A[B/pn]|Mf
by Lemma 3.6, i.e.M, a, f |= A[B/pn]. Hence by Semantic Entailment (Lemma 3.4) and the
arbitrary choice of f , ∀pnA→ A[B/pn] is valid inM.

For RIC, Suppose A → B is valid in M, where pn does not occur free in A. By the
definition of validity and Semantic Entailment we have that |A|Mg ⊆ |B|Mg for any g ∈
Prop ω , so ⋂

P∈Prop

|A|Mf [P/n] ⊆
⋂

P∈Prop

|B|Mf [P/n].

Now as pn is not free in A, Lemma 3.5 ensures that |A|Mf = |A|Mf [P/n] for any P ∈ Prop.
It follows that

|A|Mf ⊆
⋂

P∈Prop

|B|Mf [P/n].

Hence as |A|Mf ∈ Prop by Lemma 3.2,

|A|Mf ⊆
⋃
{Q ∈ Prop : Q ⊆

⋂
P∈Prop

|B|Mf [P/n]},

i.e. |A|Mf ⊆ |∀pnB|Mf . So by Semantic Entailment, A→ ∀pnB is valid inM.
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4 Completeness of Bt∀p

Fix an arbitrary logic L. We construct a characteristic modelML that validates precisely the
theorems of L. This adapts the Henkin-style constructions of [10] and [11, §4.6], in which
the points of the model are certain theories, i.e. sets of formulas with suitable proof-theoretic
closure conditions. We take much of the propositional-logic aspect of the construction as
known from these references, and focus on its extension to our interpretation of the quanti-
fiers.

For sets of formulae Γ,∆, we write Γ VL ∆ if there are some A1, . . . , An ∈ Γ and
B1, . . . , Bm ∈ ∆ such that `L A1∧ . . .∧An → B1∨ . . .∨Bm. The pair (Γ,∆) is L-independent
when Γ 6VL ∆. Γ is an L-theory if for any formula B, ΓVL {B} implies B ∈ Γ. An L-theory
Γ is prime when A ∨ B ∈ Γ implies A ∈ Γ or B ∈ Γ, and regular when `L A implies A ∈ Γ.
The appropriate version of Lindenbaum’s Lemma in this context is

Lemma 4.1. [11, Lemma 4.3] If (Γ,∆) is L-independent, there there exists some prime L-theory Γ′

such that Γ ⊆ Γ′ and (Γ′,∆) is L-independent. �

Corollary 4.2. If 0L A, there is a regular prime L-theory not containing A.

Proof. Take Γ = {B : `L B} and ∆ = {A} in the Lemma.

Now let KL be the set of all prime L-theories and 0L be the set of all regular prime
L-theories. Then for each closed formula A, define ‖A‖L =df {a ∈ KL : A ∈ a}. Put

PropL = {‖A‖L : A is a closed formula}.

From this definition we get an analogue of the Semantic Entailment Lemma 3.4:

Lemma 4.3. For any closed formulas A,B we have that ‖A‖L ⊆ ‖B‖L iff `L A→ B.

Proof. Suppose ‖A‖L ⊆ ‖B‖L. If 6`L A → B then ({A}, {B}) is an L-independent pair. So
by Lemma 4.1 there is some prime L-theory Γ exdending {A} such that (Γ, {B}) is an L-
independent pair. Therefore Γ ∈ KL (as Γ is a prime L-theory), A ∈ Γ and B /∈ Γ. But then
Γ ∈ ‖A‖L and Γ /∈ ‖B‖L contradicting ‖A‖L ⊆ ‖B‖L. Hence `L A→ B.

Conversely, suppose `L A → B and consider any a ∈ ‖A‖L. Then A ∈ a, and as a is an
L-theory (closed under L-implication), B ∈ a, so a ∈ ‖B‖L. Hence ‖A‖L ⊆ ‖B‖L.

We need a particular way of naming members of PropL, since for a given closed B there
will be infinitely many closed B′ with ‖B‖L = ‖B′‖L. So we assume there is some fixed
enumeration of all the closed formulas of our language, and for each Q ∈ PropL, define BQ

to be the first formula in this enumeration such that ‖BQ‖L = Q. Then for any formula A
and Q0, Q1, . . . ∈ PropL, let

A[Q0/p0, . . . , Qn/pn, . . .] =df A[BQ0/p0, . . . , BQn/pn, . . .].

This definition may be restricted to single substitutionsA[Q/pn] or to any finite substitution
A[Q0/pn0 , . . . , Qm/pnm

] in the obvious way. We will also allow ourselves the liberty of
specifying mixed proposition and formula substitutions, e.g. where Q ∈ Prop and C is a
formula, A[Q/pm, C/pn] = A[BQ/pm, C/pn].

To show that our choice of an enumeration of closed formulas does not really matter, we
have

Lemma 4.4. For any formula A with at most one free variable pn, and for any closed formulas B
and C, if ‖B‖L = ‖C‖L then ‖A[B/pn]‖L = ‖A[C/pn]‖L.

Proof. If ‖B‖L = ‖C‖L then by Lemma 4.3 `L B → C and `L C → B. Now by Lemma
2.1 we get `L A[B/pn] → A[C/pn] and `L A[C/pn] → A[B/pn]. Then ‖A[B/pn]‖L =
‖A[C/pn]‖L by Lemma 4.3 again.

Corollary 4.5. For any formula A, given closed formulas B0, . . . , Bn, . . . and C0, . . . , Cn, . . ., if
‖Bi‖L = ‖Ci‖L for all i ∈ ω then ‖A[B0/p0, . . . , Bn/pn, . . .]‖L = ‖A[C0/p0, . . . , Cn/pn, . . .]‖L.
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Proof. Take some m ∈ ω such that A[B0/p0, . . . , Bm/pm] = A[B0/p0, . . . , Bn/pn, . . .] (i.e.
all the free variables of A occur among p0, . . . , pm). Also, given each Bi or Ci is a closed
formula, it does not matter what order we substitute them into A. In particular, for any i,

A[B0/p0, . . .] = A[B0/p0, . . . , Bi−1/pi−1, Bi+1/pi+1, . . .][Bi/pi].

Now using this information and Lemma 4.4 we see that

‖A[B0/p0, . . . , Bn/pn, . . .]‖L
= ‖A[B0/p0, . . . , Bm/pm]‖L
= ‖A[B1/p1, . . . , Bm/pm][B0/p0]‖L
= ‖A[B1/p1, . . . , Bm/pm][C0/p0]‖L
= ‖A[C0/p0, B1/p1, . . . , Bm/pm]‖L

...
= ‖A[C0/p0, C1/p1, . . . , Bm/pm]‖L

...
= ‖A[C0/p0, . . . , Cm/pm]‖L
= ‖A[C0/p0, . . . , Cn/pn, . . .]‖L.

Given f ∈ Prop ω
L , for any formula A, let

Af =df A[f(0)/p0, . . . , f(n)/pn, . . .] = A[Bf(0)/p0, . . . , Bf(n)/pn, . . .].

It is clear that if A is closed then Af is just A. Furthermore, Af will always be closed, as a
free pi in A is replaced by some closed formula Bf(i) (where ‖Bf(i)‖L = f(i)). So for any
A and f we have ‖Af‖L ∈ PropL. The substitution operator f 7→ Af commutes with the
connectives: (A ∧B)f = (Af ∧Bf ), (A→ B)f = (Af → Bf ) and (¬A)f = ¬(Af ).

Lemma 4.6. If f(i) = ‖Ci‖L for all i ∈ ω, then ‖Af‖L = ‖A[C0/p0, . . . , Cn/pn, . . .]‖L.

Proof. Take Bi = Bf(i) in Corollary 4.5.

Now for each formula A, define ϕA
L : Prop ω

L → PropL by ϕA
Lf = ‖Af‖L. Put

PropFunL = {ϕA
L : A is a formula}.

The canonical L-model structure is

KL = 〈KL, 0L, RL, ∗L, P ropL, P ropFunL〉,

where

• RLabc iff A→ B ∈ a and A ∈ b implies B ∈ c,
• a∗L = {A : ¬A /∈ a} for any a ∈ KL,

and the other items are already defined. The canonical L-model is ML = 〈KL, VL〉, where
VL(c) = ‖c‖L for all c ∈ Con.

Now KL can be shown to be a Bt∀p-model structure. The authors of [11, §4.6] show that
〈KL, 0L, RL, ∗L〉 is a basic model structure, in which a ≤ b iff a ⊆ b. They also show that
0L = ‖t‖L, ‖A‖L ∩ ‖B‖L = ‖A ∧ B‖L, ‖A‖L ⇒ ‖B‖L = ‖A → B‖L and −‖A‖L = ‖¬A‖L.
This implies that KL satisfies the condition CProp.

For CTee, observe that ϕt
L ∈ PropFunL, where ϕt

L : f 7→ ‖tf‖L. But as t is a closed
formula, ‖tf‖L = ‖t‖L = 0L. So ϕt

L satisfies the definition for ϕt, therefore ϕt ∈ PropFunL.
For CEval, we have ϕpn

L ∈ PropFunL, where ϕpn

L : f 7→ ‖pn
f‖L. Now

pf
n = pn[Bf(0)/p0, . . . , Bf(n)/pn, . . .] = Bf(n),

so ϕpn

L : f 7→ ‖pn
f‖L = ‖Bf(n)‖L = f(n). So ϕpn

L satisfies the definition for ϕn and therefore
ϕn ∈ PropFunL.
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That PropFunL satisfies CImp, CConj and CNeg follows from the results

(ϕA
L ⇒ ϕB

L ) = ϕA→B
L

(ϕA
L ∩ ϕB

L ) = ϕA∧B
L

−(ϕA
L) = ϕ¬A

L .

(4.1)

For the first of these,

(ϕA
L ⇒ ϕB

L )f = ‖Af‖L ⇒ ‖Bf‖L = ‖Af → Bf‖L = ‖(A→ B)f‖L = (ϕA→B
L )f,

and the others are similar.
Our main burden is to show that that CAll holds on the canonical model. The following

two lemmas are analogous to Lemmas 9.3 and 9.4 of [8].

Lemma 4.7. For any closed formula ∀pnA, and any prime L-theory a, we have that a ∈ ‖∀pnA‖L
iff there is some X ∈ PropL such that a ∈ X and X ⊆ ‖A[Q/pn]‖L for all Q ∈ PropL, i.e.

‖∀pnA‖L =
l

Q∈PropL

‖A[Q/pn]‖L.

Proof. Suppose a ∈ ‖∀pnA‖L i.e. ∀pnA ∈ a. Let X = ‖∀pnA‖L. Then a ∈ X ∈ PropL as
∀pnA is closed. Consider any Q ∈ PropL, and recall that Q = ‖BQ‖L. Now as ∀pnA ∈ a
and `L ∀pnA → A[BQ/pn] (axiom A10, applicable as BQ is a closed formula), by closure
of L-theories under L-implication we get A[BQ/pn] ∈ a and hence a ∈ ‖A[BQ/pn]‖L. So
X ⊆ ‖A[BQ/pn]‖L =df ‖A[Q/pn]‖L.

Conversely, suppose there is some X ∈ PropL such that a ∈ X and X ⊆ ‖A[Q/pn]‖L
for all Q ∈ PropL. By definition of PropL, there is some closed formula BX such that
‖BX‖ = X . Hence BX ∈ a. Choose a constant c ∈ Con that does not occur in A or BX . Let
Q = ‖c‖L ∈ PropL.

Now if 6`L BX → A[c/pn], then ({BX}, {A[c/pn]}) is an L-independent pair. So by
Lemma 4.1 there is some prime L-theory Γ, extending {BX}, such that (Γ, {A[c/pn]}) is
an L-independent pair. So BX ∈ Γ, giving Γ ∈ ‖BX‖L = X , and A[c/pn] /∈ Γ, giving
Γ /∈ ‖A[c/pn]‖L. But as ‖c‖L = ‖BQ‖L we have that ‖A[c/pn]‖L = ‖A[BQ/pn]‖L by Lemma
4.4. Hence Γ /∈ ‖A[BQ/pn]‖L. But ‖A[Q/pn]‖L =df ‖A[BQ/pn]‖L = ‖A[c/pn]‖L, and as such
it must be that Γ /∈ ‖A[Q/pn]‖L. But Γ ∈ X , so Γ witnesses X 6⊆ ‖A[Q/p]‖L, contradicting
our original supposition.

Therefore it must be that `L BX → A[c/pn], so by the rule RIC(con) of Lemma 2.2,
`L BX → ∀pnA. So finally, as a is a L-theory and BX ∈ a, closure of L-theories under
L-implication gives ∀pnA ∈ a, i.e. a ∈ ‖∀pnA‖L.

Lemma 4.8. ∀nϕ
A
L = ϕ∀pnA

L . Hence PropFunL satisfies CAll.

Proof. We begin with a definition. If f ∈ Prop ω
L and n ∈ ω, then

Af\n =df A[f(0)/p0, . . . , f(n− 1)/pn−1, pn/pn, f(n+ 1)/pn+1, . . .]

is the (possibly open) formula which applies the substitution f to all variables except pn,
which remains unchanged. This satisfies:

Af\n[Q/pn] = Af [Q/n] (4.2)

∀pn(Af\n) = (∀pnA)f . (4.3)

Equation (4.2) holds because, as was mentioned in the proof of Corollary 4.5, when sub-
stituting closed formulas it does not matter in what order they are substituted for their
respective variables (as long as we only try substituting once for each variable, which we
do in Af\n[Q/pn] and Af [Q/n]).

13



For equation (4.3) we note that ∀pn(Af\n) = (∀pnA)f\n (for, as f\n leaves pn unchanged,
it makes no difference if it is forced to leave it unchanged, as in (∀pnA)f\n). And clearly
(∀pnA)f\n = (∀pnA)f as pn is not free in ∀pnA.

Now for any ϕA
L ∈ PropFunL, f ∈ Prop ω

L and n ∈ ω we have

(∀nϕ
A
L)f =

l

Q∈Prop

ϕA
L(f [Q/n]) by definition of ∀n

=
l

Q∈Prop

‖Af [Q/n]‖L by definition of ϕA
L

=
l

Q∈Prop

‖Af\n[Q/pn]‖L by (4.2)

= ‖∀pn(Af\n)‖L by Lemma 4.7
= ‖(∀pnA)f‖L by (4.3)
= (ϕ∀pnA

L )f by definition of ϕ∀pnA
L .

Therefore ∀nϕ
A
L = ϕ∀pnA

L ∈ PropFunL, and so CAll holds.

That completes the proof that KL is a Bt∀p-model structure. To show thatML is a Bt∀p-
model, it remains only to show that it satisfies CMod. But if c ∈ Con, then by definition,
ϕc

L ∈ PropFunL, where, as c is closed,

ϕc
Lf =df ‖cf‖L = ‖c‖L =df VL(c).

Hence ϕc
L satisfies the definition for ϕc, and therefore ϕc ∈ PropFunL as required for

CMod.

Lemma 4.9 (Truth Lemma). For any formula A, ϕML

A = ϕA
L . Equivalently (by Lemma 3.2), for

all f ∈ Prop ω
L we have |A|MLf = ‖Af‖L, and so for all a ∈ KL we have that

ML, a, f |= A iff Af ∈ a.

Proof. By induction on the complexity of A. For the proof we writeML just asM.
For the base cases, by definition we have ϕMpn

= ϕn, ϕMc = ϕc and ϕMt = ϕt. But we saw
above that ϕn = ϕpn

L , ϕc = ϕc
L and ϕt = ϕt

L, so the Lemma holds when A = pn, c or t.
For the inductive case of A = B → C, we have

|B → C|M = |B|M ⇒ |C|M = ϕB
L ⇒ ϕC

L

by induction hypothesis, which equals ϕB→C
L by the first equation of (4.1). The cases of

A = B ∧ C and A = ¬B are similar.
Finally, for the case A = ∀pnB: |∀pnB|M = ∀n|B|M = ∀nϕ

B
L by induction hypothesis,

which equals ϕ∀pnB
L as in the proof of Lemma 4.8 above.

Corollary 4.10. `L A impliesML |= A.

Proof. Let `L A, and choose n such that the free variables of A are among p0, . . . , pn. By
the rule UG, `L ∀p0 · · · ∀pnA. Hence using axiom A10, for any closed formulas B0, . . . , Bn

we get `L A[B0/p0, . . . , Bn/pn]. In particular, for any f ∈ Prop ω , we have `L Af . As a
regular L-theory contains all L-theorems, this implies that for all a ∈ 0L, Af ∈ a, hence
ML, a, f |= A by the Truth Lemma. Thus A is valid inML as required.

Theorem 4.11. If L is an inductively defined logic, thenML |= A implies `L A.

Proof. Suppose 0L A, and choose n such that the free variables of A are among p0, . . . , pn.
Choose distinct constants c0 . . . cn not occurring in A. Then by the rule Sub of Lemma 2.2,
0L A[c0/p0, . . . , cn/pn]. Hence by Corollary 4.2 there is some regular prime L-theory Γ such
that A[c0/p0 . . . cn/pn] /∈ Γ, so Γ /∈ ‖A[c0/p0 . . . cn/pn]‖L.

Now take any f ∈ Prop ω
L such that f(i) = ||ci||L for all 0 ≤ i ≤ n. Then by Lemma 4.6,

‖Af‖L = ‖A[c0/p0, . . . , cn/pn]‖L. Hence Γ /∈ ||Af ||L. But ||Af ||L = |A|MLf by the Truth
Lemma 4.9, soML,Γ, f 6|= A. Since Γ ∈ 0L, this shows that A is not valid inML.
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Corollary 4.12 (Bt∀p-Completeness). For any formulaA, ifA is valid in all Bt∀p-model structures,
then A is a Bt∀p-theorem.

Proof. If A is valid in all Bt∀p-model structures, then it is valid inML where L is the induc-
tively defined logic Bt∀p.

5 Completeness for Inductively Defined Logics

An inductively defined logic is one specified by adding to the axiomatisation of Bt∀p some
set Σ of axioms from the long list of optional axioms given at the end of Section 2. Now we
give, for each axiom from that list, a corresponding condition on model structures. We use
the following definitions:

R2abcd iff there is some x ∈ K such that (Rabx and Rxcd)

R2a(bc)d iff there is some x ∈ K such that (Rbcx and Raxd)

R3ab(cd)e iff there is some x ∈ K such that (R2abxe and Rcdx).

(CB1) Raaa
(CB2) Rabc implies R2a(ab)c
(CB3) R2abcd implies R2b(ac)d
(CB4) R2abcd implies R2a(bc)d
(CB5) Rabc implies R2abbc
(CB6) Rabc implies Rbac
(CB7) R2abcd implies R2acbd
(CB8) R2abcd implies R3ac(bc)d
(CB9) R2abcd implies R3bc(ac)d
(CB10) Rabc implies b ≤ c
(CB11) Rabc implies a ≤ c
(CB12) R2abcd implies a ≤ d
(CB13) Rabc implies (a ≤ c and b ≤ c)
(CB14) R2abcd implies (Racd and Rbcd)

(CB15) R2abcd implies there is some x such that b ≤ x, c ≤ x and Raxd
(CB16) (a ≤ b and x ∈ 0) implies a ≤ x
(CB17) a ≤ b or b ≤ a
(CB18) Rabc implies (a ≤ c or b ≤ c)
(CB19) Rabc implies (Rbac and a ≤ c)
(CB20) (Rabc and Rade) implies there is some x such that (b ≤ x and d ≤ x and (Raxc or

Raxe))

(CC1) x ∈ 0 implies Raxa
(CC2) x ∈ 0 implies Rxxx
(CC3) for any x ∈ 0, R2xbcd implies R2b(xc)d
(CC4) for any x ∈ 0, x∗ ≤ x
(CC5) for any x ∈ 0, Raxc implies a ≤ c

(CD1) (Rabc and Rade) implies there is some x such that (b ≤ x and c∗ ≤ x and Raxb∗)
(CD2) for any x ∈ 0, x∗ ≤ x
(CD3) Raa∗a
(CD4) Rabc implies Rac∗b∗

(CD5) a∗ ≤ a
(CD6) Rabc implies a ≤ b∗
(CD7) (Rabc and Ra∗de) implies (d ≤ c or b ≤ e)
(CD8) Rabc implies there is some x such that (Rac∗x and for any d, e (Rx∗de implies

d ≤ b∗))
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(CE1) ∀n(ϕ⇒ ψ)f ⊆ (∀nϕ⇒ ∀nψ)f
(CE2)

d
P∈Prop(ϕf ∪ ψf [P/n]) ⊆ (ϕ ∪ ∀nψ)f

(CE3) (∀n(ϕn ⇒ ϕn)⇒ ψ)f ⊆ ψf

The conditions other that (CE1)–(CE3) are those given in [11, pp. 300-301, 352] for dealing
with the non-quantified axioms.

Fix any inductively defined logic L = LΣ. An L-model structure is a Bt∀p-model structure
that satisfies all of the above conditions corresponding to the members of Σ. An L-model is
a Bt∀p-model on an L-model structure. We will show that L is characterised by validity in
L-model structures.

Theorem 5.1 (Soundness). Every L-theorem is valid in all L-model structures.

Proof. It is shown in [11] that all of our non-quantificational optional axioms are valid in all
basic model structures that satisfy their corresponding conditions. We show the same here
for the quantification axioms E1–E3.

Consider an arbitrary L-model M. We repeatedly use the result ϕMA f = |A|Mf of
Lemma 3.2, together with the inductive definitions of ϕMA f and |A|Mf .

(E1) Suppose CE1 holds. Let f ∈ Prop ω . Then using Lemma 3.2 etc. we have

|∀pn(A→ B)|Mf = ϕM∀pn(A→B)f

= ∀n(ϕMA ⇒ ϕMB )f
⊆ (∀nϕ

M
A ⇒ ∀nϕ

M
B )f by CE1

= |∀pnA→ ∀pnB|Mf.

HenceM |= ∀pn(A→ B)→ (∀pnA→ ∀pnB) by the Semantic Entailment Lemma 3.4.

(E2) Suppose CE2 holds, and pn is not free in A. Then

|∀pn(A ∨B)|Mf =
l

P∈Prop

(|A|Mf [P/n] ∪ |B|Mf [P/n])

=
l

P∈Prop

(|A|Mf ∪ |B|Mf [P/n]) by Lemma 3.5

=
l

P∈Prop

(ϕMA f ∪ ϕMB f [P/n])

⊆ (ϕMA ∪ ∀nϕ
M
B )f by CE2

= |A ∨ ∀pnB|Mf.

HenceM |= ∀pn(A ∨B)→ (A ∨ ∀pnB) by Semantic Entailment.

(E3) Suppose (CE3) holds. Then

|∀pn(pn → pn)→ A)|Mf = (∀n(ϕn ⇒ ϕn)⇒ ϕMA )f
⊆ ϕMA f = |A|Mf by CE3,

soM |= (∀pn(pn → pn)→ A)→ A by Semantic Entailment.

Lemma 5.2. ML is an L-model structure.

Proof. It has to be shown that KL is an L-model structure. We prove here the cases for the
conditions CE1–CE3, and refer the reader to Chapters 4 and 5 of [11] for the cases of the
conditions corresponding to other possible axioms of L. Take any ϕ,ψ ∈ PropFunL, so by
definition ϕ = ϕA

L and ψ = ϕB
L for some formulas A and B. We make repeated use of the

equations of (4.1) and Lemma 4.8, along with (4.3) and the definition of ϕA
Lf as ‖Af‖L.

(CE1) We have

∀n(ϕA
L ⇒ ϕB

L )f = (ϕ∀pn(A→B)
L )f = ‖∀pn(A→ B)f‖L = ‖∀pn(Af\n → Bf\n)‖L.
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But ‖∀pn(Af\n → Bf\n)‖L ⊆ ‖∀pn(Af\n) → ∀pn(Bf\n)‖L by axiom E1 and Lemma
4.3. Since

‖∀pn(Af\n)→ ∀pn(Bf\n)‖L = ‖(∀pnA)f → (∀pnB)f‖L = (∀nϕ
A
L ⇒ ∀nϕ

B
L )f,

this proves ∀n(ϕA
L ⇒ ϕB

L )f ⊆ (∀nϕ
A
L ⇒ ∀nϕ

B
L )f , giving CE1 for KL.

(CE2) Fix an f ∈ Prop ω and, to avoid confusion of value-assignments, writeA′ for the closed
formula Af . Then for any P ∈ Prop,

ϕA
Lf ∪ ϕB

Lf [P/n] = ‖A′ ∨ (Bf [P/n])‖L.

But by (4.2) and the fact that A′ is closed and hence unchanged by substitution,

A′ ∨ (Bf [P/n]) = A′ ∨ (Bf\n[P/pn]) = (A′ ∨B)f\n[P/pn].

Hence
l

P∈PropL

(ϕA
Lf ∪ ϕB

Lf [P/n]) =
l

P∈PropL

‖(A′ ∨B)f\n[P/pn]‖L = ‖∀pn((A′ ∨B)f\n)‖L

by Lemma 4.7. But by axiom E2, as pn is not free in A′,

‖∀pn((A′ ∨B)f\n)‖L = ‖∀pn(A′ ∨ (Bf\n))‖L ⊆ ‖A′ ∨ ∀pn(Bf\n)‖L.

Since ‖A′ ∨∀pn(Bf\n)‖L = ϕA
Lf ∪‖(∀pnB)f‖L (by (4.3)) = ϕA

Lf ∪ϕ
∀pnB
L f , this all leads

to l

P∈PropL

(ϕA
Lf ∪ ϕB

Lf [P/n]) ⊆ (ϕA
L ∪ ∀nϕ

B
L )f,

establishing CE2 for KL.

(CE3) Since ϕn = ϕpn

L in KL,

(∀n(ϕn ⇒ ϕn)⇒ ϕA
L)f = ‖(∀pn(pn → pn)f → Af )‖L = ‖(∀pn(pn → pn)→ Af )‖L

as ∀pn(pn → pn) is closed. But using axiom E3,

‖(∀pn(pn → pn)→ Af )‖L ⊆ ‖Af‖L = ϕA
Lf,

so CE3 follows for KL.

Corollary 5.3 (Completeness). For any inductively defined logic L, if A is valid in all L-model
structures, then A is an L-theorem.

Proof. By Lemma 5.2 and Theorem 4.11.

6 Incompleteness

A model structure or model is called full if its set Prop of admissible propositions contains
every one of its hereditary subsets. In that case, if S ⊆ Prop then

⋂
S is admissible, being

hereditary, and so
d
S =

⋂
S. It follows that in any full model,

|∀pnA|Mf =
⋂

P∈Prop

|A|Mf [P/n], (6.1)

and so universal quantifiers have the standard semantics

M, a, f |= ∀pnA iff M, a, f [P/n] |= A for all P ∈ Prop.
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Routley and Meyer speculated in [10, p. 235] that the system RP is incomplete for its full
model-structures, i.e. that there are formulas valid in all full RP-model structures that are
not RP-theorems. This was confirmed by Kremer in [7] by proving that the set of all for-
mulas valid in all full RP-model structures is not recursively axiomatisable, and indeed is
recursively isomorphic to full second-order logic. This shows that the use we have made of
models with a restricted set of admissible propositions is essential for providing a complete
relational semantics for RP.

But what of other logics, such as EP? In this final section we show that there are nu-
merous inductively defined logics that are incomplete for their full model-structures. To
state our results most generally, let LAlg be the smallest logic that contains all of the axiom
schemes

A1–A9, B1–B5, B8–B10, B14, B18, C1–C4 and D1–D5.

We will define a particular formula Inc such that

(1) Inc is valid in all full model structures whatsoever; and

(2) Inc is not a theorem of LAlg .

It follows that every sublogic L of LAlg is incomplete for its full model-structures, since Inc
is valid in all full L-models by (1), but is not a theorem of L by (2). In particular, it can be
shown that EP is a sublogic of LAlg , as is EMt∀p, the extension of EP by t and the mingle
axiom (A → B) → ((A → B) → (A → B)), so the incompleteness applies to these logics,
and to all of their sublogics.

Now to define Inc, let Exm (for Excluded Middle) be the sentence ∀p(p ∨ ¬p), and let
Atm (for Atom) be the sentence

∃q(q ∧ ∀r(q → r ∨ q → ¬r)).

Then Inc is the sentence Exm ∧ t→ Atm.
After showing (1) we will show (2) by defining a semantics, using Boolean algebras, in

which Atm asserts of an algebra that it contains an atom (in a sense: see Lemma 6.5). Bull
[5] used a similar atomicity assertion to show the incompleteness of the propositionally
quantified modal logic S5 for its full models.

The main fact about full models that we need, in addition to their standard semantics
for quantifiers, is that in a full model the hereditary sets [a) = {b : a ≤ b} generated by each
point are admissible.

Lemma 6.1. In any full modelM, if x ∈ |Exm|M then x∗ ≤ x.

Proof. Note that as Exm is a sentence, the value |Exm|Mf is independent of f by Lemma
3.5, so the notation |Exm|M is justified. Using (6.1) we see that

|Exm|M =
⋂

P∈Prop

(P ∪ −P ).

Suppose x ∈ |Exm|M. As M is full, the hereditary set [x∗) = {a : x∗ ≤ a} is in Prop
and therefore x ∈ [x∗) ∪ −[x∗). But if x ∈ −[x∗), then x∗ /∈ [x∗) by the definition of −[x∗),
contradicting the reflexivity of ≤ (P2). So it must be that x /∈ −[x∗) and hence x ∈ [x∗), i.e.
x∗ ≤ x.

To analyse the sentenceAtmwe first describe the semantics of the defined notion ∃pnA =df

¬(∀pn(¬A)) when interpreted in full models.

Lemma 6.2. For any full modelM and f ∈ Prop ω ,

|∃pnA|Mf =
⋃

P∈Prop

|A|Mf [P/n], (6.2)

so existential quantifiers have the standard semantics

M, a, f |= ∃pnA iff M, a, f [P/n] |= A for some P ∈ Prop.
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Proof. |∃pnA|Mf = −
⋂

P∈Prop−|A|Mf [P/n], so a ∈ |∃pnA|M iff a∗ /∈
⋂

P∈Prop

−|A|Mf [P/n]

iff there is some P ∈ Prop such that a∗ /∈ −|A|Mf [P/n]. But a∗ /∈ −|A|Mf [P/n] iff a =
a∗∗ ∈ |A|Mf [P/n].

Lemma 6.3. In any full modelM, if x∗ ≤ x ∈ 0, then x ∈ |Atm|M.

Proof. Suppose x∗ ≤ x ∈ 0. Using (6.1) and (6.2) we see that

|Atm|M =
⋃

Q∈Prop

(Q ∩
⋂

R∈Prop

((Q⇒ R) ∪ (Q⇒ −R)).

Now let Q = [x) = {a : x ≤ a}. Then x ∈ Q ∈ Prop, asM is full. Thus it suffices to show

x ∈
⋂

R∈Prop

((Q⇒ R) ∪ (Q⇒ −R))

to conclude from this that x ∈ |Atm|M.
So take any R ∈ Prop and suppose x /∈ ([x) ⇒ R). Then there must be some a, b ∈ K

such that Rxab, a ∈ [x) and b /∈ R. So we know that x∗ ≤ x, x ≤ a, and a ≤ b as x ∈ 0.
Hence b∗ ≤ a∗ ≤ x∗ ≤ x by (P5), hence b∗ ≤ x by transitivity (P2). Given b∗∗ = b /∈ R it
follows that b∗ ∈ −R, and as −R is hereditary (R ∈ Prop and Prop closed under −) and
b∗ ≤ x we have that x ∈ −R. Now to show x ∈ ([x)⇒ −R) take any c, d ∈ K and suppose
Rxcd and c ∈ [x). Then x ≤ c and c ≤ d, hence x ≤ d. So as x ∈ −R it follows that d ∈ −R.
Therefore x ∈ ([x)⇒ −R).

Putting all this together, we see that for any R ∈ Prop, either x ∈ ([x) ⇒ R) or x ∈
([x)⇒ −R), so

x ∈
⋂

R∈Prop

([x)⇒ R) ∪ ([x)⇒ −R))

as required.

Theorem 6.4. Every full model validates the sentence Exm ∧ t→ Atm.

Proof. LetM be full and x ∈ |Exm|M ∩ |t|M. Then x∗ ≤ x by Lemma 6.1, and x ∈ 0, so
x ∈ |Atm|M by Lemma 6.3. Hence M |= Exm ∧ t → Atm by the Semantic Entailment
Lemma 3.4.

To show that Exm ∧ t → Atm is not a theorem of LAlg we turn to algebraic semantics,
using Boolean algebras

B = 〈B,∧B,∨B,−B, 0B, 1B〉

that are complete in the sense of having a meet
∧
S and join

∨
S of every subset S ⊆ B. On

such a Boolean algebra we define an binary operation⇒ by

a⇒ b =

{
1B if a ≤ b,
0B otherwise.

This will be used to interpret the connective→.
A Boolean algebraic model has the form M = 〈B, V 〉, where B is a complete Boolean

algebra and V is a function V : Con → B providing a valuation of the constants of our
propositional language. In such a model, for each function f : ω → B, acting as a variable-
assigment, we inductively define a value |A|Mf in B for each formula A. The base of the
induction is given by |c|Mf = V (c), |pn|Mf = f(n) and |t|Mf = 1B. The connectives
→,∧,¬ are inductively interpreted by the operations⇒,∧B,−B, and the quantifier case is
given by

|∀pnA|Mf =
∧
b∈B

|A|Mf [b/n].
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Then we get |A ∨B|Mf = |A|Mf ∨B |B|Mf and

|∃pnA|Mf =
∨
b∈B

|A|Mf [b/n],

as usual for Boolean algebraic semantics. A formula A is valid in M if |A|Mf = 1B for every
f ∈ Bω .

It can be shown that every theorem of LAlg is valid in every Boolean algebraic model.
All of the axioms

A1–A10, B1–B5, B8–B10, B14, B18, C1–C4 and D1–D5

are valid, and all the rules R1–R7, RIC, and E1–E3 preserves that validity. Showing this
involves a great deal of fairly routine algebraic reasoning which is left to the interested
reader. Proof of validity of the quantifier axioms makes use of analogues of Lemmas 3.5
and 3.6, namely:

• If f and g agree on the free variables of A, then |A|Mf = |A|M g.

• If pn is free for B in A, then |A[B/pn]|Mf = |A|Mf [|B|Mf/n].

These algebraic models do not validate such schemes as B6, B7 and C5, so our incomplete-
ness method does not apply to RQ. But that logic was dealt with by Kremer’s result.

We now show that there are Boolean algebraic models invalidating Inc. Recall that an
atom of a Boolean algebra is a non-zero element a such that if b ≤ a, then b = a or b = 0.
Equivalently, a non-zero a is an atom iff a ≤ b or a ≤ −b for all b. Note that as Atm is a
sentence with no constants, it has a fixed value in any model that is independent of V , and
so can be denoted |Atm|B.

Lemma 6.5. If |Atm|B 6= 0, then B has an atom.

Proof. Suppose |Atm|B 6= 0. Then as

|Atm|B =
∨
a∈B

(
a ∧B

∧
b∈B

(a⇒ b ∨B a⇒ −b)

)
,

there must be some a ∈ B with

a ∧B

∧
b∈B

(a⇒ b ∨B a⇒ −b) 6= 0.

Hence a 6= 0, and for every b, (a ⇒ b ∨B a ⇒ −b) 6= 0, so either a ⇒ b 6= 0 or a ⇒ −b 6= 0,
hence a ≤ b or a ≤ −b. Thus a is an atom.

Corollary 6.6. If B is a complete and atomless Boolean algebra, then Exm∧ t→ Atm is not valid
in B.

Proof. By the Lemma, |Atm|B = 0. But

|Exm ∧ t|B =

(∧
a∈B

(a ∨B −a)

)
∧B 1 = 1,

So |Exm ∧ t→ Atm|B = 1⇒ 0 = 0.

Since there do exist complete atomless Boolean algebras — for instance the algebra of
regular open subsets of the real line — it follows that there are algebraic models that vali-
date LAlg but do not validate Inc. So Inc is not an LAlg -theorem, which gives our overall
incompleteness result.
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