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Abstract

Many recent results suggest that quantum theory is about informa-
tion, and that quantum theory is best understood as arising from prin-
ciples concerning information and information processing. At the same
time, by far the simplest version of quantum mechanics, Bohmian me-
chanics, is concerned, not with information but with the behavior of
an objective microscopic reality given by particles and their positions.
What I would like to do here is to examine whether, and to what
extent, the importance of information, observation, and the like in
quantum theory can be understood from a Bohmian perspective. I
would like to explore the hypothesis that the idea that information
plays a special role in physics naturally emerges in a Bohmian uni-
verse.

1 Introduction: The Status of the Wave Func-

tion

Few people have struggled as long and as hard with the foundations of quan-
tum mechanics as Jeffrey Bub, and even fewer have done so with as much
seriousness, honesty, and gentleness. Jeffrey has in fact explored more or less
all approaches to the interpretation of quantum mechanics, and has made
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seminal contributions to most of them. I am indeed pleased—and honored—
to have been invited to contribute to this volume in honor of Jeffrey, and
thank the organizers for having done so.

The question animating the foundations quantum mechanics, for Jeffrey
and everyone else in the field, is this: What is the nature of the reality, if
any, that lies behind the quantum mathematics? Now the reality issue, in
quantum mechanics and in general, is difficult and controversial. Here are
two quotations that, while expressing in very different ways the subtleties
involved, nonetheless get to the core of the problem—and its solution—and
indeed express pretty much the same thing:

What if everything is an illusion and nothing exists? In that case,
I definitely overpaid for my carpet. (Woody Allen)

I did not grow up in the Kantian tradition, but came to under-
stand the truly valuable which is to be found in his doctrine,
alongside of errors which today are quite obvious, only quite late.
It is contained in the sentence: “The real is not given to us, but
put to us (by way of a riddle).” This obviously means: There
is such a thing as a conceptual construction for the grasping of
the inter-personal, the authority of which lies purely in its valida-
tion. This conceptual construction refers precisely to the “real”
(by definition), and every further question concerning “the nature
of the real” appears empty. (Albert Einstein)

Many readers will perhaps find what Einstein [1, page 680] says here too
realistic. To others it will no doubt seem too positivistic. For me, however,
it is right on target.

Perhaps the most puzzling object in quantum mechanics is the wave func-
tion, concerning which many basic questions can be asked:

• Is it subjective or objective?

• Does it merely represent information or does it describe an observer
independent reality?

• If it is objective, does it represent a concrete material sort of reality, or
does it somehow have an entirely different and perhaps novel nature?

• What’s the deal with collapse?

There seems to be little agreement about the answers to these questions.
But we can at least all agree that one of the following crudely expressed
possibilities for the wave function must be correct:

1. The wave function is everything.
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2. The wave function is something (but not everything).

3. The wave function is nothing.

The second possibility, which amounts to the suggestion that there are, in
addition to the wave function, what are often called hidden variables, is
regarded by the physics community as the least acceptable and most implau-
sible of these three possibilities—the very terminology “hidden variables”
points to the unease. This is interesting since it would also seem to be the
most modest of the three.

The third possibility is best associated with the view that the wave func-
tion of a system is merely a representation of our information about that
system. However, supporters of this view very often also seem to subscribe
to the first possibility as well, at least insofar as microscopic reality is con-
cerned. (I shall argue later that also (2) and (3) are not as incompatible as
they seem to be.) But here we should recall the words of Bell [2, page 201],
concerning the theories that reject (1) in favor of (2):

Absurdly, such theories are known as “hidden variable” theories.
Absurdly, for there it is not in the wavefunction that one finds
an image of the visible world, and the results of experiments, but
in the complementary “hidden”(!) variables. Of course the extra
variables are not confined to the visible “macroscopic” scale. For
no sharp definition of such a scale could be made. The “micro-
scopic” aspect of the complementary variables is indeed hidden
from us. But to admit things not visible to the gross creatures
that we are is, in my opinion, to show a decent humility, and
not just a lamentable addiction to metaphysics. In any case, the
most hidden of all variables, in the pilot wave picture, is the wave-
function, which manifests itself to us only by its influence on the
complementary variables.

The idea that the wave function merely represents information, and does
not describe an objective state of affairs, raises many questions and problems:

• Information about what?

• What about quantum interference? How can the terms of a quantum
superposition interfere with each other, producing an observable in-
terference pattern, if such a superposition is just an expression of our
ignorance?

• The problem of vagueness: Quantum mechanics is supposed to be a
fundamental physical theory. As such it should be precise. But if it
is fundamentally about information, then it is presumably concerned
directly either with mental events or, more likely, with the behavior of
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macroscopic variables. But the notion of the macroscopic is intrinsically
vague.

• Simple physical laws are to be expected, if at all, at the most funda-
mental level—of the basic microscopic entities—and that messy com-
plications should arise at the level of larger complex systems. It is only
at this level that talk of information, as opposed to microscopic reality,
can become appropriate.

• The very form of the Hamiltonian and wave function strongly points
to a microscopic level of description.

• There is a widespread belief that large things are built out of small
ones, and that to understand even the large we need to understand the
small.

Nonetheless, many arguments suggest that quantum mechanics is about in-
formation, or that the wave function represents information. (This suggestion
is usually accompanied by the claim that if you ask for more—if you try to
regard quantum mechanics or the wave function as describing an objective
microscopic reality—you get into trouble.) I don’t want to directly criticize
these here. Rather I want to observe that Bohmian mechanics, the simplest
version of quantum mechanics—discovered by Louis de Broglie [3, page 119]
in 1927 and rediscovered by Jeffrey’s mentor David Bohm [4] in 1952—does
do more, and thus I want to try to understand how, from the perspective
of Bohmian mechanics, the informational aspect of the wave function or the
quantum state can seem natural. I wish to discuss in particular the following
three informational aspects of the wave function in Bohmian mechanics:

• The wave function as a property of the environment.

• The wave function as providing the best possible information about the
system (given by |ψ|2).

• The wave function as nomological.

I note as well that Bohm and Hiley [5] wrote of the wave function as “active
information.”

Before proceeding to the description of Bohmian mechanics, I would like
to recall the conventional wisdom on the subject. So here are three typical
recent statements about hidden variables and the like, the second from a
very popular textbook on quantum mechanics. The reader should bear these
in mind when reading about Bohmian mechanics. In particular, he or she
should contrast the simplicity of Bohmian mechanics with the complexity,
implausibility or artificiality suggested by the quotations.
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Thus, unless one allows the existence of contextual hidden vari-
ables with very strange mutual influences, one has to abandon
them—and, by extension, ‘realism’ in quantum physics—altogether.
(Gregor Weihs [6, The truth about reality])

Over the years, a number of hidden variable theories have been
proposed, to supplement q.m.; they tend to be cumbersome and
implausible, but never mind–until 1964 the program seemed emi-
nently worth pursuing. But in that year J.S. Bell proved that any
local hidden variable is incompatible with quantum mechanics.1

(D.J. Griffiths [7, page 423])

Attempts have been made by Broglie, David Bohm, and others
to construct theories based on hidden variables, but the theories
are very complicated and contrived. For example, the electron
would definitely have to go through only one slit in the two-slit
experiment. To explain that interference occurs only when the
other slit is open, it is necessary to postulate a special force on
the electron which exists only when that slit is open. Such arti-
ficial additions make hidden variable theories unattractive, and
there is little support for them among physicists. (Encyclopedia
Britannica [8])

2 Bohmian Mechanics

In Bohmian mechanics the state of an N -particle system is given by its wave
function ψ = ψ(q1 , . . . ,qN

) = ψ(q) together with the positions Q1 , . . . ,QN
,

forming the configuration Q, of its particles. The latter define the primitive
ontology (PO) [9] of Bohmian mechanics, what the theory is fundamentally
about. The wave function, in contrast, is not part of the PO of the theory,
though that should not be taken to suggest that it is not objective or real. It
plays a crucial role in expressing the dynamics for the particles, via a first-
order differential equation of motion for the configuration Q, of the form
dQ/dt = vψ(Q).

The defining equations of Bohmian mechanics are Schrödinger’s equation

i~
∂ψ

∂t
= Hψ , (1)

1I shall not address in this paper the issue of nonlocality. But what is misleading about
the last sentence is its suggestion that the source of the incompatibility is the assumption
of hidden variables [2, pages 143 and 150]. What Bell in fact showed is that the source of
the difficulty is the assumption of locality. He showed that quantum theory is intrinsically
nonlocal, and that this nonlocality can’t be eliminated by the incorporation of hidden
variables.
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where

H = −
N∑
k=1

~2

2mk

∇2
k + V, (2)

for the wave function, and the guiding equation

dQk

dt
=

~
mk

Im
ψ∗∇kψ

ψ∗ψ
(Q1 . . . ,QN

) (3)

for the configuration. In the Hamiltonian (2) the mk are of course the masses
of the particles and V = V (q) is the potential energy function. For particles
with spin, the products involving ψ in the numerator and the denominator
of (3) should be understood as spinor inner products, and when magnetic
fields are presents, the ∇k in (2) and (3) should be understood as a covariant
derivative, involving the vector potential A = A(q

k
).

For particles without spin, the ψ∗ in the guiding equation (3) cancels, and
the equation assumes the more familiar form

dQk

dt
=
∇kS

mk

(4)

where S arises from the polar decomposition ψ = ReiS/~ with S real and
R ≥ 0. Equation (3) however has two advantages:

• It is explicitly of the form Jk

ρ
with Jk the quantum probability current

and ρ = ψ∗ψ = |ψ|2 the quantum probability density, a fact of great
importance for the statistical implications of Bohmian mechanics.

• With the guiding equation in this form, Bohmian mechanics applies
without further ado also to particles with spin; in particular there is no
need to associate any additional discrete spin degrees of freedom with
the particles—the fact that the wave function is spinor valued entirely
takes care of the phenomenon of spin.

A surprising and striking fact about Bohmian mechanics is its simplic-
ity and obviousness. Indeed, given Schrödinger’s equation, from which one
immediately extracts J and ρ, related classically by J = ρv, it takes little
imagination when looking for an equation of motion for the positions of the
particles in quantum mechanics to consider the possibility that v = J/ρ,
which is precisely (3).

But even without having arrived at Schrödinger’s equation, or parallel
with doing so, we could easily guess the guiding equation (4) for particles
without spin: The de Broglie relation p = ~k is a remarkable and mysteri-
ous distillation of the experimental facts associated with the beginnings of
quantum theory. This relation, connecting a particle property, the momen-
tum p = mv, with a wave property, the wave vector k, immediately yields
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Schrödinger’s equation, giving the time evolution for ψ, as the simplest wave
equation that reflects this relationship. This is completely standard and very
simple. Even simpler, but not at all standard, is the connection between the
de Broglie relation and the guiding equation, giving the time evolution for
Q: The de Broglie relation says that the velocity of a particle should be the
ratio of ~k to the mass of the particle. But the wave vector k is defined for
only for a plane wave. For a general wave ψ, the obvious generalization of k
is the local wave vector ∇S(q)/~, and with this choice the de Broglie relation
becomes the guiding equation dQ/dt = ∇S/m.

3 The Implications of Bohmian Mechanics

That a theory is simple and obvious doesn’t make it right. And in the
case of Bohmian mechanics this fact suggests in the strongest possible terms
that it must be wrong. If something so simple could account for quantum
phenomena, it seems extremely unlikely that it would have been ignored or
dismissed by almost the entire physics community for so many decades—and
in favor of alternatives which seem at best far more radical.

Of course, one can see at a glance, see Fig. 1, that Bohmian mechanics

Figure 1: An ensemble of trajectories for the two-slit experiment, uniform in
the slits. (Drawn by G. Bauer from [10].)

seems to handle one of the characteristic mysteries of quantum mechanics,
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the two-slit experiment, quite well. One sees in Fig. 1, in this ensemble of
Bohmian trajectories with an approximately uniform distribution of initial
positions in the slits, how an interference-like profile in the pattern of trajec-
tories develops after the parts of the wave function emerging from the upper
and lower slits begin to overlap.

This of course does not prove that Bohmian mechanics makes the same
quantitative predictions for the two-slit experiment—let alone the same pre-
dictions for all quantum experiments—as orthodox quantum theory, but it in
fact does. Bohmian mechanics is entirely empirically equivalent to orthodox
quantum theory, as least insofar as the latter is unambiguous. This was ba-
sically shown by Bohm in his first papers [4, 11] on the subject, modulo the
status in Bohmian mechanics of the Born probability formula ρ = |ψ|2. That
issue was addressed in [12] and is now completely understood. In particular,
as a consequence of Bohmian mechanics one obtains the following:

1. familiar (macroscopic) reality

2. formal scattering theory [13]

3. operators as observables [4, 11, 14]

4. quantum randomness [12]

5. absolute uncertainty [12]

6. the wave function of a (sub)system [12]

7. collapse of the wave packet [14]

Concerning these, a few comments. Since macroscopic objects are nor-
mally regarded as built out of microscopic constituents, which of course could
be point particles, there can be no problem of macroscopic reality per se in
Bohmian mechanics. Less obvious, but reasonably clear [15], is the fact that
in a Bohmian universe macroscopic objects behave classically, for example
moving according to Newton’s equations of motion as appropriate.

The picture of what occurs in a Bohmian scattering experiment, in which
particles are directed at a target—or at each other—with which they collide
and scatter in an apparently random direction, is exactly the picture that an
experimentalist has in mind. Moreover, the additional structure (actual par-
ticles!) afforded by Bohmian mechanics allows one to considerably sharpen
traditional scattering theory both conceptually and indeed mathematically.

It should be noted that operators as observables play no role whatsoever
in the formulation of Bohmian mechanics. In fact the only quantum op-
erator that appears in the defining equations of Bohmian mechanics is the
Hamiltonian H, but merely as part of an evolution equation. Nonetheless, it
turns out that operators on Hilbert space are exactly the right mathematical
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objects to provide a compact representation of the statistics for the results
of experiments in a Bohmian universe.

I wish to focus here in more detail on items 4–7, which are quite relevant
to my main concern here, the informational aspects of the wave function in
Bohmian mechanics, and which, as it turns out, come together as a package.
For example, the statistical properties of the collapse of the wave packet
depend upon quantum randomness. It should be noted that the claim that
the collapse of the wave packet is an implication of Bohmian mechanics should
seem paradoxical, since Schrödinger’s equation is an absolute equation of
Bohmian mechanics, never to be violated—unlike the situation in orthodox
quantum theory.

A crucial ingredient in the emergence of quantum randomness is the
equivariance of the probability distribution on configuration space given by
ρψ = |ψ|2. This means that (

ρψ
)
t
= ρψt (5)

where on the left we have the evolution of the probability distribution under
the Bohmian flow (3) and on the right the probability distribution associated
with the evolved wave function ψt. That this is so for

ρψ(q) = |ψ(q)|2 (6)

is, by (3), equivalent to the quantum continuity equation. The equivariance of
ρψ = |ψ|2 means that if ρt0(q) = |ψt0(q)|2 at some time t0 then ρt(q) = |ψt(q)|2
for all t. It says that Schrödinger’s equation and the guiding equation are
compatible modulo ρ = |ψ|2.

The upshot of a long analysis [12] that begins with the equivariance of
ρψ = |ψ|2 is that the quantum equilibrium given by ρqe(q) = |ψ(q)|2 has a
status very much the same as that of thermodynamic equilibrium, described
in part by the Maxwellian velocity distribution ρeq(v) ∝ e−

1
2
mv2/kT for the

molecules of a gas in a box in equilibrium at temperature T . It has recently
been shown [16] that quantum equilibrium is unique. More precisely, it has
been shown that |ψ(q)|2 is the only equivariant distribution that is, in a
natural sense, a local functional of the wave function.

In order to grasp the meaning of quantum equilibrium, to appreciate the
physical significance ρqe(q) = |ψ(q)|2, one must first address this question: in
a Bohmian universe with wave function Ψ, what is to be meant by the wave
function ψ of a subsystem of that universe?

4 The Wave Function of a Subsystem

Consider a Bohmian universe. This is completely described by its wave
function Ψ, the wave function of the universe, and its configuration Q. Given
an initial condition Ψ0 and Q0 for this universe, the equations of motion (1)
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and (3) determine the trajectories of all particles throughout all of time
and hence everything that could be regarded as physical in this universe.
However, we are rarely concerned with the entire universe. What we normally
deal with in physics is the behavior of a system that is a subsystem of the
universe, usually a small one such as a specific hydrogen atom.

It is important to appreciate that a subsystem of a Bohmian universe is
not ipso facto itself a Bohmian system. After all, the behavior of a part is
entirely determined by the behavior of the whole, so we are not free to stip-
ulate the behavior of a subsystem of a Bohmian universe, in particular that
it be Bohmian, having its own wave function that determines the motion of
its configuration in a Bohmian way. Nonetheless, there is a rather obvious
candidate for the wave function of a subsystem, at least for a universe of
spinless particles, and this obvious candidate behaves in exactly the manner
that one should expect for a quantum mechanical wave function. (For parti-
cles with spin the situation is a little more complicated, so I will confine the
presentation here to the case of spinless particles.) This is the conditional
wave function, to which I now turn.

Fig. 2 depicts a system corresponding to particles in a certain region
(at a given time), a region surrounded by the rest of the universe, in which
are contained (at that time) the particles of what we’ll call the environ-
ment of the system. Corresponding to this system we we have a splitting

                                  Y  =  QenvX  =  Qsys

Figure 2: A subsystem of a Bohmian universe

Q = (Qsys, Qenv) = (X, Y ) of the configuration of the universe into the con-
figurations of system, Qsys = X, and environment, Qenv = Y .

The wave function ψ of the system must be constructed from Ψ, X, and
Y , since these provide the complete description of our Bohmian universe (at
a given time). The right construction is the following: The wave function ψ
of the system, its conditional wave function is given by

ψ(x) = Ψ(x, Y ). (7)

Putting in the explicit time dependence, we have that

ψt(x) = Ψt(x, Yt). (8)
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Here Yt is the evolving configuration of the environment, corresponding to the
configuration Qt = (Xt, Yt), which evolves according to the guiding equation
(3) (for the universe, with Ψ instead of ψ).

Note that the conditional wave function, as given in (7) and (8), need not
be normalized. In fact these equations should be understood projectively,
as defining a ray in the Hilbert space for the system, with wave functions
related by a (nonzero) constant factor regarded as equivalent. Of course it
is important in probability formulas involving the wave function that it be
normalized. In any such formulas it will be assumed that this has been done.

Because of the double time dependence in (8), the conditional wave func-
tion ψt evolves in a complicated way, and need not obey Schrödinger’s equa-
tion for the system. Nonetheless, it can be shown [12] that it does evolve
according to Schrödinger’s equation when the system is suitably decoupled
from its environment. While most readers are probably prepared to accept
this, since they are quite accustomed to wave functions obeying Schrödinger’s
equation, that this is so is a bit delicate. What is really easy to see, but what
most readers are likely to resist, is the fact, derived in the next subsection,
that this wave function collapses according to the usual textbook rules when
the system interacts with its environment in the usual measurement-like way.

But before turning to that we should pause to examine the construction
(7) of the conditional wave function a little more closely. We would expect a
property of a system to correspond to a function of its basic variables—e.g.,
of its configuration. Note, however, that ψ is a function of the configuration
Y of the environment—like a property of the environment! And to the extent
that we come to know ψ, that property of the environment can be identified
with what we would tend to regard as information about the system—so
that it is perhaps only a bit of a stretch to say that ψ represents, or is, our
information about the system. (But it is still a stretch.)

4.1 Collapse of the Wave Packet

Consider a quantum observable for the system, given by a self-adjoint op-
erator A on its Hilbert space. For simplicity we assume that A has non-
degenerate point spectrum, with normalized eigenstates ψα(x) = |A = α〉,
‖ψα‖ = 1,

Aψα(x) = αψα(x) (9)

corresponding to the eigenvalues α. According to standard quantum mea-
surement theory, what is called an ideal measurement of A is implemented
by having the system interact with its environment in a suitable way. (To
avoid complications we shall assume here that this environment consists of a
suitable apparatus, and that the rest of the environment of the system can
be ignored—for the the wave function evolution, for the evolution of the con-
figuration of system and apparatus, and for the definition of the conditional
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wave function of the system. Thus in what follows the configuration of the
apparatus will be identified with the configuration Y of the environment of
the system.)

The measurement begins, say, at time 0, with the initial (“ready”) state
of the apparatus given by a wave function Φ0(y), and ends at time t. The
interaction is such that when the state of the system is initially ψα it produces
a normalized apparatus state Φα(y) = |Aapp = α〉, ‖Φα‖ = 1, that registers
that the value found for A is α without having affected the state of the
system,

ψα(x)Φ0(y)
t→ ψα(x)Φα(y). (10)

Here
t→ indicates the unitary evolution induced by the interaction. If the

measurement is to provide useful information, the apparatus states must
be noticeably different, corresponding, say, to a pointer on the apparatus
pointing in different directions. We thus have that the Φα have disjoint
supports in the configuration space for the environment,

supp(Φα) ∩ supp(Φβ) = ∅, α 6= β. (11)

Now suppose that the system is initially, not in an eigenstate of A, but
in a general state, given by a superposition

ψ(x) =
∑
α

cαψα(x). (12)

We then have, by the linearity of the unitary evolution, that

Ψ0(x, y) = ψ(x)Φ0(y)
t→ Ψt(x, y) =

∑
α

cαψα(x)Φα(y), (13)

so that the final wave function Ψt of system and apparatus is itself a super-
position. The fact that the pointer ends up pointing in a definite direction,
even a random one, is not discernible in this final wave function. Insofar as
orthodox quantum theory is concerned, we’ve arrived at the measurement
problem.

However, insofar as Bohmian mechanics is concerned, we have no such
problem, because in Bohmian mechanics particles always have positions and
pointers, which are made of particles, always point—in a direction deter-
mined by the final configuration Yt of the apparatus. Moreover, in Bohmian
mechanics we find that the state of the system is transformed in exactly the
manner prescribed by textbook quantum theory.

We have—and this is no surprise—that the initial wave function of the
system is

ψ0(x) = Ψ0(x, Y0) = ψ(x)Φ0(Y0)
p
= ψ(x). (14)

And for the final wave function of the system we have that

ψt(x) = Ψt(x, Yt) =
∑
α

cαψα(x)Φα(Yt) = caψa(x)Φa(Yt)
p
= ψa(x) (15)
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when Yt ∈ supp(Φa). Here the
p
= refers to projective equality, and reminds us

that the wave function is to be regarded projectively in Bohmian mechanics.
Thus in Bohmian mechanics the effect of ideal quantum measurement on

the wave function of a system is to produce the transition

ψ(x) → ψa(x) with probability pa, (16)

where pa is the probability that Yt ∈ supp(Φa), i.e., that the value a is reg-
istered. Assuming the quantum equilibrium hypothesis, that when a system
has wave function Ψ its configuration is random, with distribution |Ψ(q)|2,
we find, by integrating |Ψt(x, y)|2 over supp(Φa), that pa = |ca|2, the usual
textbook formula for the probability of the result of the measurement.

4.2 The Fundamental Conditional Probability Formula

The analysis just given suggests—and it is indeed the case [12, 14]—that
Bohmian mechanics is empirically equivalent to orthodox quantum theory
provided we accept the quantum equilibrium hypothesis. But that the quan-
tum equilibrium hypothesis is true, and even what exactly it means, is a
tricky matter, requiring a careful analysis [12] involving typicality that I
shall not delve into here. Rather, I shall focus on a simple but important
ingredient of that analysis, a probability formula strongly suggesting a con-
nection, if not quite an identification, between the wave function of a system
and our information about that system.

This fundamental conditional probability formula is the following:

P (Xt ∈ dx |Yt) = |ψt(x)|2dx. (17)

Here P is the probability distribution on universal Bohmian trajectories aris-
ing from the distribution |Ψ0|2 on the initial configuration of the universe,
with the initial time t = 0 the time of the big bang, or shortly thereafter. Of
course, by the equivariance of the |Ψ|2 distribution, |Ψt|2 at any other time
t would define the same distribution on trajectories. The formula says that
the conditional distribution of the configuration Xt of the system at time t,
given the configuration Yt of its environment at that time, is determined by
the wave function ψt of the system in the familiar way.

As a mathematical formula, this is completely straightforward: By equiv-
ariance, the joint distribution of Xt and Yt, i.e., the distribution of Qt =
(Xt, Yt), is |Ψt(x, y)|2. To obtain the conditional probability, y must be re-
placed by Yt and the result normalized, yielding |ψt(x)|2 with normalized
conditional wave function ψt.

It is also tempting to read the formula as making genuine probability
statements about real-world events, statements that are relevant to expec-
tations about what should actually happen. To do so, as I shall do here,
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of course goes beyond simple mathematics. At the end of the day, however,
such a usage can be entirely justified [12].

I wish to focus a bit more carefully on what is suggested by the fundamen-
tal conditional probability formula (17). I shall do so in the next subsection,
but before doing so let me rewrite the formula, suppressing the reference to
the time t under consideration to obtain

P (X ∈ dx|Y ) = |ψ(x)|2dx. (18)

It is perhaps worthwhile to compare this with one of the fundamental formu-
las of statistical mechanics, the Dobrushin-Lanford-Ruelle (DLR) equation

P (X ∈ dx|Y ) ∝ e−H(x|Y )/kTdx (19)

for the conditional distribution of the configuration of a classical system given
the configuration of its environment, a heat bath at temperature T . Here
H(x|y), the energy of the system when its configuration is x, includes the
contribution to this energy arising from interaction with the environment.
The existence of such a simple formula, which is in fact sometimes used
to define the notion of classical equilibrium state, is the main reason that
in statistical mechanics, equilibrium is so much easier to deal with than
nonequilibrium.

4.3 Quantum Equilibrium and Absolute Uncertainty

There are many ways that we may come to have information about a sys-
tem. It would be difficult if not impossible to consider all of the possibilities.
However, whatever the means by which the information has been obtained,
it must be reflected in a correlation between the state of the system and suit-
able features of the system’s environment, such as pointer orientations, ink
marks on paper, computer printouts, or the configuration of the brain of the
experimenter. All such features are determined by the much more detailed
description provided by the complete configuration Y of the environment of
the system, which contains much more information than we could hope to
have access to.

Nonetheless, the fundamental conditional probability formula (18) says
that even this most detailed information can convey no more about the sys-
tem than knowledge of its wave function ψ, so that in a Bohmian universe
the most we could come to know about the configuration of a system is that
it has the quantum equilibrium distribution |ψ|2. Thus in a Bohmian uni-
verse we have an absolute uncertainty, in the sense that the limitations on
our possible knowledge of the state of a system expressed by (18) can’t be
overcome by any clever innovation, regardless of whether it employs current
technology or technological breakthroughs of the distant future.
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In other words, the fundamental conditional probability formula (18) is
a sharp expression of the inaccessibility in a Bohmian universe of micro-
reality, of the unattainability of knowledge of the configuration of a system
that transcends the limits set by its wave function ψ. This makes it very
natural to regard or speak of quantum mechanics, or the wave function,
as about information, since the wave function does indeed provide optimal
information about a system. At the same time, it seems to me that our best
understanding of this informational aspect of the wave function emerges from
a theory that is primarily about the very micro-configuration that it shows
to be inaccessible!

4.4 Random Systems

While the fundamental conditional probability formula (18) seems very strong,
the following stronger version, that applies to random systems, is also true
and is often useful, particularly for a careful analysis of the empirical impli-
cations of Bohmian mechanics for the results of a sequence of experiments
performed at different times [12]:

P (Xσ ∈ dx |Yσ, σ) = |ψσ(x)|2dx. (20)

In this formula, σ denotes a random system, i.e., a random subsystem
with configuration Xσ at a random time T ,

σ = (π, T ). (21)

Here π is a projection, defining a random splitting

q = (πq, π⊥q) = (x, y). (22)

For a given initial universal wave function Ψ0, σ is determined (like everything
else in a Bohmian universe) by the initial universal configuration Q,

σ = σ(Q) = (π(Q), T (Q)). (23)

Thus
Xσ = πQT , Yσ = π⊥QT . (24)

More explicitly,

Xσ(Q) = π(Q)QT (Q), Yσ(Q) = π(Q)⊥QT (Q). (25)

ψσ is defined analogously.
The formula (20) holds provided the random system obeys the measura-

bility condition
{σ = σ0} ∈ F(Yσ0), (26)
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which expresses the requirement that the identity of the random system be
determined by its environment. See [12] for details. With this condition, the
notion of a random system becomes roughly analogous to that of a stopping
time in the theory of Markov processes. And the random system fundamental
conditional probability formula (20) then becomes analogous to the strong
Markov property, which plays a crucial role in the rigorous analysis of these
processes.

5 The Classical Limit

The classical limit of Bohmian mechanics is reasonably clear [15]; I don’t
intend to enter into any details here. Rather I wish merely to note that it
would be nice to have some rigorous mathematical results in this direction
and to make two comments:

• Decoherence plays a controversial role in the classical limit of orthodox
quantum theory. It also important for a full appreciation of this limit
for Bohmian mechanics, where in fact it is entirely uncontroversial and
straightforward. And insofar as decoherence is strongly associated with
measurement and observation, Bohmian mechanics provides a natural
explanation of the apparent importance of information for the emer-
gence of classical behavior.

• Considerations related to decoherence suggest the following: In Bohmian
mechanics an observed motion, if it seems deterministic, will appear to
be classical. This conjecture provides an ahistorical explanation of why
in a Bohmian world classical mechanics would be discovered before
Bohmian mechanics: the observed deterministic regularities would be
classical. (Of course the real explanation, not unrelated, is that we live
on the macroscopic level, where objects behave classically.)

6 The Wave Function as Nomological

Perhaps the most significant informational aspect of the wave function is that
it is best regarded as fundamentally nomological, as a component of physical
law rather than of the physical reality described by the law [17, 18], as I shall
now argue.

The wave function in Bohmian mechanics is rather odd in at least two
ways—how it behaves and the kind of thing that it is:

• While the wave function is crucially implicated in the motion of the
particles, via equation (3), the particles can have no effect whatsoever
on the wave function, since Schrödinger’s equation is an autonomous
equation for ψ, that does not involve the configuration Q.
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• For an N -particle system the wave function ψ(q) = ψ(q1 , . . . ,qN
) is,

unlike the electromagnetic field, not a field on physical space but on
configuration space, an abstract space of great dimension.

Though it is possible to perhaps temper these oddities with suitable responses—
for example that the action-reaction principle is normally associated with
conservation of momentum, which in turn is now taken to be an expression
of translation invariance, a feature of Bohmian mechanics—I think we should
take them more seriously, and try to come to grips with what they might be
telling us.

We are familiar with an object that is somewhat similar to the wave
function, namely the Hamiltonian of classical mechanics, a function on a
space, phase space, of even higher dimension than configuration space. In
fact the classical Hamiltonian is surprisingly analogous to the wave function,
or, more precisely, to its logarithm:

logψ(q) ↔ H(q, p) = H(X ) (27)

where X = (q, p) = (q1 , . . . ,qN
,p1 , . . . ,pN

) is the phase space variable.
Corresponding to these objects we have the respective equations of motion

dQ/dt = der(logψ) ↔ dX /dt = derH (28)

with der representing suitable first derivatives.
Note as well that both logψ(q) and H(X ) are defined only up to an

additive constant. For “normalized” choices we further have that

log Prob ∝ log|ψ| ↔ log Prob ∝ −H (29)

(This should not be taken too seriously!)
Of course nobody has a problem with the fact that the Hamiltonian is a

function on the phase space, since it is not a dynamical variable at all but
rather an object that generates the classical Hamiltonian dynamics. As such,
it would not be expected to be affected by anything physical either.

But there are some important differences between ψ and H. Unlike H, ψ
typically changes with time and serves moreover as (the paradigmatic) initial
condition in quantum mechanics:

• ψt is dynamical.

• ψ is controllable.

These quite naturally tend to undercut the suggestion that ψ should be
regarded as nomological, since, unlike dynamical variables, laws are not sup-
posed to be like that. However, it is important in this regard to bear in mind
the distinction:

ψ versus Ψ. (30)
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6.1 The Universal Level

In Bohmian mechanics the wave function Ψ of the universe is fundamental,
while the wave function ψ of a subsystem of the universe is derivative, defined
in terms of Ψ by (7). Thus the crucial question about the nature of the wave
function in Bohmian mechanics must concern Ψ; once this is settled the
nature of ψ will then be determined.

Accordingly, the claim that the wave function in Bohmian mechanics is
nomological should be understood as referring primarily to the wave function
Ψ of the universe, concerning which it is important to note the following:

• Ψ is not controllable: it is what it is.

• If we are seriously considering the universal or cosmological level, then
we should perhaps take the lessons of general relativity into account.
Now the significance of being “dynamical,” of having an explicit time
dependence, is transformed by general relativity, and indeed by special
relativity, since the (3,1) splitting of space and time is thereby trans-
formed to a 3 + 1 = 4 dimensional space-time that admits no special
splitting.

• There may well be no “t” in Ψ. The Wheeler-DeWitt equation, the
most famous equation for the wave function of the universe in quantum
gravity, is of the form

H Ψ = 0 (31)

with H a sort of Laplacian on a space of configurations of suitable
structures on a 3-dimensional space and with Ψ a function on that
configuration space that does not contain a time variable at all. For
orthodox quantum theory this is a problem, the problem of time: of
how change can arise when the wave function does not change. But
for Bohmian mechanics, that the wave function does not change is, far
from being a problem, just what the doctor ordered for a law, one that
governs the changes that really matter in a Bohmian universe: of the
variables Q describing the fundamental objects in the theory, including
the 3-geometry and matter. The evolution equation should be regarded
as more or less of a form

dQ/dt = vΨ(Q) (32)

roughly analogous to (3), one that defines an evolution that is natural
for the PO of the theory under consideration.

6.2 Schrödinger’s Equation as Phenomenological

Of course, accustomed as we are to Schrödinger’s equation, we can hardly re-
sist regarding the wave function as time dependent. And it is hard to imagine
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a simple description of the measurement process in quantum mechanics that
does not invoke a time dependent wave function. In this regard, it is impor-
tant to bear in mind that the fact—if it is a fact—that the wave function Ψ
of the universe does not change in no way precludes the wave function ψ of a
subsystem from changing. On the contrary, since a solution to the Wheeler-
deWitt equation (31) is in fact just a special (time-independent) solution
to Schrödinger’s equation, it follows, as said earlier in Section 4—assuming
that the considerations alluded to earlier for Bohmian mechanics apply to
the relevant generalization of Bohmian mechanics—that the conditional wave
function

ψt(x) = Ψ(x, Yt) (33)

will evolve according to Schrödinger’s equation when the subsystem is suit-
ably decoupled from its environment (and H is of the appropriate form).

In this way what is widely taken to be the fundamental equation of quan-
tum mechanics, the time-dependent Schrödinger equation, might turn out
to be merely phenomenological: an emergent equation for the wave function
of suitable subsystems of a Bohmian universe. Moreover, even the time-
independent Schrödinger equation (31) might best be regarded accidental
rather than fundamental. What happens in a Bohmian universe with uni-
versal wave function Ψ is entirely determined by the equation of motion (32)
for the PO of the theory. This theory is then determined by Ψ and the form
of vΨ. (31) will be fundamental only if it constrains the choice of Ψ, but this
need not be so. It might well be that the choice of Ψ is fundamentally con-
strained by entirely different considerations, such as the desired symmetry
properties of the resulting theory, with the fact that Ψ also obeys (31) thus
being accidental.

6.3 Two Transitions

Suppose what I’ve written here about the fundamental Bohmian mechanics,
Universal Bohmian Mechanics (UBM), is correct. Then our understanding of
the nature of quantum reality is completely transformed, as is the question
about the nature of the wave function in quantum mechanics with which we
began:
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• OQT
Ψ

−→ BM
(Ψ, Q)

−→ UBM
Q

•
?

? ψ ?
?

−→
?

? Ψ ?
?

The first transition is of the basic variables involved as we proceed from
orthodox quantum theory, which seems to many to involve as a basic variable
only the wave function Ψ—and certainly no hidden variables; to the usual
Bohmian mechanics, whose basic variables are Ψ and Q; to UBM, with Q the
only fundamental physical variable, the universal wave function Ψ remaining
only as a mathematical object convenient for expressing the law of motion
(32).

And accordingly, the question about the meaning of the wave function
in quantum mechanics is utterly transformed, from something like, What on
earth does the wave function ψ of a system physically describe? to, Why on
earth should a wave function Ψ play a prominent role in the law of motion
(32) defining quantum theory? What’s so good about such a motion?

Once we recognize that the wave function is nomological we are confronted
with a transformed landscape for understanding why nature should be quan-
tum mechanical. We will fully comprehend this once we understand what
is so special and compelling about a motion governed by a wave function in
Bohmian way.

6.4 Nomological versus Nonnomological

I can well imagine many physicists, when confronted with the question of
whether the wave function should be regarded as nomological or as more
concretely physical, responding with a loud, Who cares! What difference
does it make? But quite aside from the fact that it is conceptually valuable
to understand the nature of the objects we are dealing with in a fundamental
physical theory, the question matters in a practical way. It is relevant to our
expectations for future theoretical developments.

In particular, laws should be simple, so that if Ψ is nomological, it too—
and the law of motion (32) it defines–should somehow be simple as well. The
contention that Ψ is nomological would be severely undermined if this were
not achievable.

Simplicity of course comes in many varieties. Ψ might be straightfor-
wardly simple, i.e., a simple function of its argument, expressible in a com-
pelling way using the structure at hand. It might be simple because it is a
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solution, perhaps the unique solution, to a simple equation. Or it might be
the case that there is a compelling principle, one that is simple and elegant,
that is satisfied, perhaps uniquely, by a law of motion of the form (32) with
a specific Ψ and vΨ. For example, the principle might express a very strong
symmetry condition.

6.5 Covariant Geometrodynamics

Stefan Teufel and I have examined such a possibility for quantum gravity [19],
with the symmetry principle that of 4-diffeomorphism invariance. Within (an
extension of) the framework of the ADM formalism, the dynamical formula-
tion of general relativity of Arnowitt, Deser, and Misner [20], we considered
the possibilities for a first-order covariant geometrodynamics.

In the ADM formalism the dynamics corresponds to the change of struc-
tures, most importantly a 3-geometry, on a space-like hypersurface as that
surface is infinitesimally deformed. In a theory for which there is no spe-
cial foliation of space-time into hypersurfaces (that might define the notion
of simultaneity if it existed), a hypersurface Σ can naturally be deformed
in an infinite dimensional variety of ways. These are given by the function
N = (N, ~N), where N = N(x), x ∈ Σ, is the lapse function describing

deformations normal to the surface, and ~N = ~N(x) is the shift function
describing deformations in the surface, i.e., infinitesimal 3-diffeomorphisms.
Corresponding to the many possible deformations N, one often speaks here
of a multi-fingered time.

The deformations N form an algebra, the Dirac Algebra, which is almost
a Lie algebra and should be regarded as somehow corresponding to the group
of 4-diffeomorphisms of space-time. The Dirac Algebra, with Dirac bracket
[N,M], is defined, using linearity, by

[N,M ] = N ~∇M −M~∇N ; [N, ~M ] = ~M · ~∇N (34)

together with the usual Lie bracket [ ~N, ~M ] for the Lie algebra of the group
of 3-diffeomorphisms.

Within this multi-fingered time framework, a first-order dynamics corre-
sponds, not to a single vector field on the configuration space Q—of deco-
rations of Σ—in which the evolution occurs, but to a choice of vector field
V (N) for each deformation N. (See [21] for the more familiar second-order,
phase space, Poisson bracket approach.) Moreover, it seems, at least heuris-
tically, that the dynamics so defined will be covariant precisely in case V (N)
forms a representation of the Dirac algebra:

[V (N),V (M)] = V ([N,M]), (35)

where the bracket on the left is the Lie bracket of vector fields.
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The claim that such a dynamics is covariant is intended to convey that
it defines a 4-diffeomorphism invariant law for a decoration of space-time; a
crucial ingredient in this is that the dynamics be path-independent: that two
different foliations that connect the same pair Σi and Σf of hypersurfaces,
corresponding to two different paths through the multi-fingered time {N},
yield the same evolution map connecting decorations of Σi to decorations of
Σf .

The requirement that V (N) form a representation of the Dirac Algebra
is a very strong symmetry condition. Our hope was that it was so strong
that it would force the dynamics to be quantum mechanical: V (N) = V Ψ(N)
where V Ψ is a suitable functional of Ψ, with Ψ obeying an equation of the
form (31). It seems, however, for pure quantum gravity, with Q the space of
3-geometries (super-space), that any covariant dynamics is classical, yielding
4-geometries that obey the Einstein equations, with a possible cosmological
constant, and with no genuinely quantum mechanical possibilities arising.

When, in addition to geometry, structures corresponding to matter are
included in Q, it is not at all clear what the possibilities are for the represen-
tations of the Dirac algebra. It seems a long shot that a quantum mechanical
dynamics could be selected in this way as the only possibility, let alone one
that corresponds to a more or less unique Ψ. But since a positive result in
this direction would be so exciting, this program seems well worth pursuing
further—even if only to establish its impossibility.

6.6 The Value of Principle

It is often suggested that what is unsatisfactory about orthodox quantum the-
ory is that it was not formulated as a theory based on a compelling principle,
an information theoretic principle or whatever. Often such a derivation is
then supplied. If, as is usually the case, what we then arrive at is—as presum-
ably intended—plain old orthodox quantum theory, I find myself unsatisfied
by the accomplishment.

The reason is this. The problem with orthodox quantum theory is not
that the principles from which it might be derived are unclear or absent, but
that the theory itself is, in the words of Bell [2, page 173], “unprofessionally
vague and ambiguous.” Thus if derivation from a principle only yields ortho-
dox quantum theory, how has the problem of understanding what quantum
mechanics actually says been at all addressed? Of course, if the derivation
yields, not orthodox quantum theory, but an improved formulation of quan-
tum mechanics, then the problem may well have been alleviated. But this
rarely happens.

It is fine and good to want to understand why a theory should hold. But
before worrying about this we should first get clear about what the theory
in fact says. The crucial distinction is between the question, Why? and
the question, What?: Why should quantum theory hold? versus What does
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quantum theory say? A derivation of quantum theory will address the real
problem with quantum mechanics if it provides answer to What? and not just
an answer to Why? The sorts of derivation from a principle contemplated in
Sections 6.4 and 6.5 are of this form.

7 Quantum Rationality

I conclude with two quotations. The first addresses the question, if Bohmian
mechanics is so simple and elegant, and accounts for quantum phenomena
is such a straightforward way, why is this not recognized by the physics
community?

I know that most men, including those at ease with problems of
the highest complexity, can seldom accept even the simplest and
most obvious truth if it be such as would oblige them to admit the
falsity of conclusions which they have delighted in explaining to
colleagues, which they have proudly taught to others, and which
they have woven, thread by thread, into the fabric of their lives.
(Leo Tolstoy)

I have another reason for quoting Tolstoy here: I would like to know where
he said this. If any reader knows, I would be very grateful if he contacted
me with the information.

The Tolstoy is of course a bit depressing. So I will conclude on a more
optimistic note [22, page 145], from the philosopher of science Imre Lakatos,
who was an early teacher of Jeffrey’s.

In the new, post-1925 quantum theory the ‘anarchist’ position
became dominant and modern quantum physics, in its ‘Copen-
hagen interpretation’, became one of the main standard bearers
of philosophical obscurantism. In the new theory Bohr’s noto-
rious ‘complementarity principle’ enthroned [weak] inconsistency
as a basic ultimate feature of nature, and merged subjectivist
positivism and antilogical dialectic and even ordinary language
philosophy into one unholy alliance. After 1925 Bohr and his as-
sociates introduced a new and unprecedented lowering of critical
standards for scientific theories. This led to a defeat of reason
within modern physics and to an anarchist cult of incomprehen-
sible chaos. (1965)
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[14] D. Dürr, S. Goldstein and N. Zangh̀ı, J. Stat. Phys. 116, 959 (2004) and
quant-ph/0308038.
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