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Abstract
Many defend the thesis that when someone knows p, they couldn’t easily have
been wrong about p. But the notion of easy possibility in play is relatively under-
theorized. One structural idea in the literature, the principle of Counterfactual
Closure (CC), connects easy possibility with counterfactuals: if it easily could
have happened that p, and if p were the case, then g would be the case, it
follows that it easily could have happened that q. We first argue that while CC is
false, there is a true restriction of it to cases involving counterfactual dependence
on a coin flip. The failure of CC falsifies a model where the easy possibilities are
counterfactually similar to actuality. Next, we show that extant normality models,
where the easy possibilities are the sufficiently normal ones, are incompatible
with the restricted CC thesis involving coin flips. Next, we develop a new kind of
normality theory that can accommodate the restricted version of CC. This new
theory introduces a principle of Counterfactual Contamination, which says
roughly that any world is fairly abnormal if at that world very abnormal events
counterfactually depend on a coin flip. Finally, we explain why coin flips and other
related events have a special status. A central take home lesson is that the
correct principle in the vicinity of Safety is importantly normality-theoretic rather
than (as it is usually conceived) similarity-theoretic.

1. Introduction

Many defend the thesis that knowledge requires safety from error. If S knows p, then S couldn’t
easily have believed p falsely.? Or, in other terms:

' This is a preprint of an article whose final and definitive form will be published in the
Australasian Journal of Philosophy 2021. The Australasian Journal of Philosophy is available
online at: http://www.tandf.co.uk/journals/.

2For defenses of Safety, see among others [Sosa 1999; Williamson 2000; Pritchard 2005;
Manley 2007; Williamson 2009; Pritchard 2012; Goldstein and Waxman 2020]. Safety principles
are standardly relativized to methods. An agent knows p using method m only if they couldn’t
easily have falsely believed p using method m. We’ll mostly suppress method-relativity in what
follows, because our arguments could easily be adapted to this setting. Finally, in ordinary
language the expression ‘could easily’ sometimes suggests a requirement of sufficiently high
probability. We ignore this effect throughout, following the literature in interpreting ‘could easily’
as helping to specify a range of possible worlds throughout which an agent must believe
reliably.




Safety S knows p only if there is no easy possibility where S believes p falsely.’

Goodman [2015] relates easy possibility to counterfactuals, endorsing the following bridge
principle:

Counterfactual Closure If there is an easy possibility where p, and if p had been the case, then
g would have been the case, then there is an easy possibility where q.*

Goodman shows that Safety and Counterfactual Closure make trouble for Lewisian theories of
counterfactuals. According to Lewis [1979], there are widespread ‘counterfactual miracles’, so
that even if the world had been just slightly different, the laws of nature would have been
different, because there would have been a small miracle that made the world different. Given
Safety and Counterfactual Closure, counterfactual miracles leads to skepticism about the laws
of nature.

Here’s the problem. First, it is possible for scientific inquiry to arrive at knowledge of the laws of
nature in a deterministic world. Imagine we lived in a world where some deterministic physical
theory was correct, say Newtonian mechanics. Then scientists could have already learned
Newtonian mechanics was correct. Scientists would have run the same experiments testing

*Throughout, the notion of easy possibility is agent and time relative. Our question is which
possibilities are easy for the agent at the time of their knowing. Other work uses the term
‘nearby possibility’ for these worlds. We use the term ‘easy possibility’ for continuity with
[Goodman 2015], and because to our ears ‘nearby possibilities’ suggests a similarity based
theory of easy possibility, which we’ll criticize later.

“The reader might be tempted to accept analogous principles stated in terms of ignorance rather
than easy possibility. We caution against such temptation. Here are a few tries we have
encountered. First, if you’re ignorant whether p and if p were the case, q would be the case,
then you’re ignorant whether q. This founders on the fact that every p counterfactually implies
every tautology. Second: if you’re in no position to know whether p and you believe g and if p
were the case, you would falsely believe q (by the same method), then you don’t know q. This
fails given the vacuous truth of counterfactuals with metaphysical impossible antecedents.
Suppose Goldbach’s Conjecture is true, and hence necessarily true. Now take any claim q
Charlie apparently knows. Charlie isn’t in a position to know whether Goldbach’s Conjecture is
false. But if it were false, Charlie would have falsely believed q (by the same method). So this
principle absurdly implies Charlie doesn’t know q after all. Here’s a third principle: if you don’t
know whether p and p is metaphysically possible and you believe q and if p were the case, you
would falsely believe q (by the same method), then you don’t know q. This principle is quite
skeptical. Charlie doesn’t know whether she recently inhaled polonium, because he knows little
about chemistry. Charlie believes that he’ll be alive tomorrow. As a matter of fact, polonium is
deadly. If Charlie had inhaled polonium, he would die today. This principle implies skeptically
that Charlie doesn’t know he’ll be alive tomorrow. Counterfactual Closure has no such
consequence, because there may be no easy possibility in which Charlie recently inhaled
polonium. On this proposal, Safety is necessary but not sufficient for knowledge, and so Charlie
can be ignorant of whether he inhaled polonium even though there is no easy possibility where
he falsely believes this.



quantum mechanics and relativity. But the experiments would have gone differently, confirming
Newtonian mechanics.

Lewis’s theory of counterfactuals makes heavy use of counterfactual miracles in deterministic
worlds. If the recent past had been slightly different, the initial conditions would have been the
same. But there would have been a small violation of the laws of nature soon before the time at
which the past diverged from actuality. Now imagine a small event such as my not blinking at t,
which occurred the day after scientists confirmed Newtonian mechanics. Lewis introduces a
counterfactual miracle:

(1) If I had blinked at t, Newtonian mechanics would have been false.

The scientists’ method of confirming Newtonian mechanics have nothing to do with my blinking
at t. So whether or not | blinked at t is independent of whether or not the scientists would believe
in Newtonian mechanics. That is:

(2) If I had blinked at t, the scientists would have falsely believed in Newtonian mechanics.

But (2), Counterfactual Closure, and Safety lead to skepticism about the laws. There is an easy
possibility where | blink at t. After all, the scientists have no idea whether | blinked. So
Counterfactual Closure implies there is an easy possibility where the scientists believed
Newtonian mechanics falsely. So Safety implies that the scientists do not know that Newtonian
mechanics is correct. Generalizing, counterfactual miracles lead to skepticism about the laws.

Bennett [1984] and Dorr [2016] develop approaches to counterfactuals that do without such
miracles. On these theories, small changes in the past counterfactually imply small changes to
the initial conditions of the universe. If | had blinked at t, the initial conditions would have been
just different enough to allow my blinking at t. The laws would have remained the same, and the
macroscopic features of the world would have been roughly the same throughout time, modulo
my blinking. On the basis of the argument above, Goodman [2015] suggests this alternative
approach to counterfactuals is superior to a miracle based analysis.

Counterfactual Closure is validated by a model of knowledge that understands knowledge in
terms of counterfactual similarity (see for example [Bacon 2014]). In this model, a world is easily
possible just in case it is sufficiently similar to actuality. The counterfactual p > q is true justin
case the most similar p worlds are q worlds.® This model validates Counterfactual Closure.
Suppose there is an easy possibility where p. Then there is a sufficiently similar world where p.
Suppose p > q. Since there is a sufficiently similar world where p, the most similar p worlds are
themselves sufficiently similar. Since p > q is true, it follows that the most similar p worlds are q

*We follow Stalnaker [1968] in making the limit assumption, but follow Lewis [1973] in allowing
ties for similarity. We could make the same points without the limit assumption, so long as the
similarity ordering used to judge counterfactual closeness is the same as that used to judge
easy possibility.



worlds. So these worlds are themselves sufficiently similar. So there must be an easy possibility
where q.

Below, we first argue that CC fails. This falsifies the model above, where the easy possibilities
are those counterfactually similar to actuality. We next show that normality models of knowledge
correctly predict that Counterfactual Closure fails. In these models, the easy possibilities are the
sufficiently normal worlds. We then offer a true restriction of Counterfactual Closure. This
principle says p is an easy possibility when p counterfactually depends on a coin flip. We show
that restricted Counterfactual Closure is invalidated by extant normality theories. Next, we
develop a new kind of normality theory that can accommodate the restricted version of CC. This
new theory introduces a principle of Counterfactual Contamination, which says roughly that any
world is fairly abnormal if at that world very abnormal events counterfactually depend on a coin
flip. Finally, we explain why coin flips and other related events have a special status. A central
take home lesson is that the correct principle in the vicinity of Safety is importantly normality-
theoretic rather than (as it is usually conceived) similarity-theoretic.

2. Against Counterfactual Closure
Counterfactual Closure is false.

At noon, a fair coin is flipped and Betty bets a hundred dollars that it will land heads. Betty won't
learn the result until 1 o'clock. So at noon, Betty doesn't know whether she will be sad when she
sees the result. This means that there's an easy possibility in which Betty is sad when she sees
the result. As a matter of fact, the coin landed heads. So if Betty were sad when she saw the
result, she'd be sad about winning the bet. But at noon, Betty knows that she won't be sad about
winning the bet. So there is no easy possibility where she is sad about winning the bet.®

There is a room connected to a cage by a passage. A tiger prowls back and forth between the
room and the cage. There is a trap door above the room. If Alex opens the trap door, the

6 Strictly speaking, this last inference does not follow without further background assumptions.
Safety implies that if Betty knows she won’t be sad about winning the bet, then there is no easy
possibility where both (i) Betty is sad about winning the bet; and (ii) Betty believes that she won't
be sad about winning the bet. But this allows that there could be an easy possibility where Betty
is sad about losing the bet, as long as she doesn't believe he won'’t be sad about losing the bet
in that scenario. First, in this case it is plausible that Betty could not easily have failed to believe
that she won’t be sad about winning the bet. After all, Betty knows that she likes to win bets, and
this knowledge is modally robust. Since Betty believes she won’t be sad about winning the bet
throughout the easy possibilities, an easy possibility in which she is sad about winning the bet is
an easy possibility in which she falsely believes she won’t be sad about winning the bet.
Second, in this case the following counterfactual is also true: if Betty were going to be sad about
winning the bet, she would have falsely believed that wasn’t going to be sad about winning the
bet. Another application of Counterfactual Closure thus implies that if there is an easy possibility
where Betty is sad about winning the bet, then there is also an easy possibility where Alex
falsely believes he won't be sad about winning the bet. Similar remarks apply to the next
example.



passage seals, locking the tiger in its current location. Alex plans to peek into the room and then
spend the night just in case the tiger isn’t there. In fact, the trap door is slightly ajar and so the
passage is closed. The tiger is trapped in the room. Right before Alex peeks, there is a
paradigmatically easy possibility that the tiger is in its cage. Alex knows he’ll spend the night just
in case the tiger is in its cage. So there’s an easy possibility that he’ll spend the night in the
room. But since there is actually a tiger in the room, Alex would have been eaten by the tiger if
he spent the night. But Alex knows he won'’t be eaten by a tiger. So there is no easy possibility
where he’s eaten by a tiger.

We rely on the counterfactual that if Betty were sad when she saw the result, she'd be sad
about winning the bet. We also rely on the counterfactual that if Alex were to spend the night in
the room, he would be eaten by the tiger. These counterfactuals are common ground between
various standard approaches to counterfactuals. These counterfactuals don’t decide whether
counterfactual interventions require miracles versus tweaked initial conditions. They reflect our
inclination to hold the outcome of a past coin toss when considering changes to later facts
regarding someone's emotions. Likewise, the second counterfactual reflects our inclination to
hold fixed where the tiger is when considering changes to where Alex is.’

The model of easy possibility in terms of similarity cannot explain these cases. This model must
rank the relative similarity of worlds where Betty is sad about losing and worlds where Betty is
sad about winning. To match our judgments about easy possibility, worlds where Betty is sad
about losing must be significantly more similar than worlds where she is sad about winning. But
then it is false that if she had been sad when she saw the result, she would have been sad
about winning.?®

3. Few Easy Possibilities

One response to our counterexamples denies various easy possibilities. Perhaps there is no
easy possibility where Alex stays in the room. After all, there will be a tiger in the room. Perhaps

”You might think the common thread here is a no-backtracking constraint on counterfactual
evaluation. While that captures Lewis’s theory of counterfactuals, it doesn’t capture Dorr’s
approach, where we do allow certain fine details about the past to counterfactually depend on
the future. But even Dorr’s approach is crafted to preclude the outcome of past coin-tosses
depending on future emotion, and to preclude the room in which the tiger resides depending on
Alex’ future behavior. Dorr rightly takes it as a datum, for example, that if we were to act
strangely tomorrow, the macroscopic lay of the land today would have been the same.
8Although we reject Counterfactual Closure, we have not refuted a weakening of Counterfactual
Closure. According to this weakening, Counterfactual Closure applies when the relevant agent
knows the counterfactual if p were the case, then q would be the case. Our counterexamples to
Counterfactual Closure are not counterexamples to this weakened principle. In each case, the
agent is ignorant of the relevant counterfactual.

°Dorr [2016] offers other arguments against counterfactual miracles, which appeal to the
connection between counterfactuals and emotions. Our counterexamples to Counterfactual
Closure do not falsify those arguments.



there is no easy possibility where Betty is sad when she sees the result. After all, she won the
bet.

This response is consistent if Safety is merely a necessary condition for knowing. In that case,
an agent can be ignorant of p even though she couldn’t easily have believed p falsely. This
response agrees that Alex doesn’t know whether he will enter the room. The response agrees
that Betty doesn’t know whether she will be sad about the result of her bet. But the response
claims there is no easy possibility where Alex doesn’t enter the room, and no easy possibility
where Betty is sad about the result.

Here is a plausible sufficient condition for easy possibility. If an agent knows a fair coin is about
to be flipped, and p depends on the outcome of the flip, then there is an easy possibility for that
agent where p. Say a fair coin flip is ‘active’ when the relevant agent knows it is about to take
place. Then the outcomes of active coin flips are easy possibilities; and other events that
depend on them are easy possibilities also.

We can adapt our counterexamples so that the relevant outcome depends on an active coin flip.
Imagine the tiger’s location is controlled not by a locking passage, but by a coin flip. Imagine
Alex knows this. At noon, Alex doesn’t know whether he’ll spend the night in the room. A coin
flip at 12:30 will determine whether the tiger is in the room: the tiger will be in the room iff the
coin lands heads. So there is an easy possibility where Alex stays in the room. As a matter of
fact, that coin will land heads. So as a matter of fact, Alex won’t spend the night in the room,
and he would have been eaten by the tiger if he had. Nonetheless, Alex knows at noon that he
won’t be eaten by a tiger. After all, if there is a tiger in the room he will notice when he peeks,
and he will choose not to stay in the room.™

An epistemic heretic might deny that active coin flips make for easy possibilities. But there is a
more general point here. The denial of too many easy possibilities trivializes Safety. Safety says
that knowledge requires believing truly across the easy possibilities. If there are very few easy
possibilities, then Safety explains very few cases of ignorance. Imagine there’s a .99 biased
heads coin flip that just occurred, and landed heads. You can’t see the coin. Plausibly, you don’t
know that the coin landed heads. But you have a justified high credence that the coin landed
heads. To explain your ignorance, it is natural to appeal to Safety. You easily could have
believed falsely that the coin landed heads, because the coin easily could have landed tails.

10 A sophisticated opponent might deny that in each case, the relevant counterfactual is true at
noon. On this proposal, the possibility of the coin landing tails blocks the truth at noon of the
counterfactual that if Alex had entered the room, he would have been eaten by the tiger. A
natural way to develop this idea is to say that the counterfactual changes truth value over time,
so that it is true only after the coin lands. To handle this opponent, we can strengthen our
sufficient condition so that if a fair coin was flipped a moment ago and the outcome hasn’t been
viewed, there is an easy possibility now that the coin landed heads and an easy possibility that it
landed tails. Then we can imagine that Alex and Billy’s conditions were determined by a coin
that just flipped, but where they can’t see the outcome of the flip yet.



This case is best explained by easy possibility, and just this kind of easy possibility falsifies
Counterfactual Closure.

4. Normality

Our counterexamples rule out the similarity model of easy possibility, which implies
Counterfactual Closure. We’'ll now see that models of easy possibility in terms of normality
predict the failure of Counterfactual Closure.

A variety of recent work models knowledge via normality.”’ Here is Beddor and Pavese [2019:
12-13]: ‘what determines which worlds count as relevantly close? Here is one suggestion. When
we assess a task such as shooting hoops, we implicitly associate the task with a set of
conditions that we take to be normal for its performance and assessment’. To model knowledge,
the task is to form a true belief (about a certain question) using a given method. Then Safety
says that an agent knows p via method m at w only if p is true at all sufficiently normal worlds
where the agent believes p via m.

Here’s an example that normality models explain. There’s a trillion-sided die. You can’t know
whether it will land 1017 before looking. But if it comes up 1017, you can know it did by looking.
Yet the risk of hallucinating is greater than one trillion. Before looking, any roll of the die is
equally normal; but after looking, 1017 is more normal than other outcomes, because
hallucination is abnormal.'?

There are various conceptions of normality in the literature. On one conception, an agent knows
p only if her state carries the information that p. A state carries the information that p only if
normally p is true when an agent is in that state (in other words, p is true in all normal worlds
where the agent is in that state).”® Here, the normality of a state has something to do with
whether it is functioning optimally. Other conceptions of normality, such as that in Carter [2019],
appeal more directly to ordinary judgments about the normality of various situations. At any rate,
our arguments appeal only to structural properties of various normality models, staying neutral
on how exactly that notion is interpreted.

The easy possibilities are those that are sufficiently normal. But what is sufficient normality?
Beddor and Pavese [2019] say the easy possibilities are those that are at least as normal as the
actual world. In a good case where the actual world is very normal, the agent knows a lot,
because few possibilities are as normal. In a bad case where the actual world is very abnormal,
the agent knows little, because many possibilities are as normal.

""See for example [Dretske 1981; Greco 2014; Stalnaker 2015; Goodman and Salow 2018;
Carter 2019; Beddor and Pavese 2019; Carter and Goldstein Forthcoming].

'2See [Nelkin 2000; Smith 2010; Carter 2019] for a similar example involving a computer
screen.

3See for example [Stampe 1977; Dretske 1981; Millikan 1984;Stalnaker 1999].



A second model more in the spirit of Williamson [2013] appeals to significant differences in
normality. One world is significantly less normal than another when its degree of normality is
quite a bit lower than the other. Then the easy possibilities at a world are those that are not
significantly less normal than that world.

Goodman and Salow [2018] synthesize these two models. Assume there is always at least one
most normal world. Then the easy possibilities are those that are neither significantly less
normal than the most normal world(s) nor any less normal than the actual world.™

All three analyses are offered as models of knowledge, not just easy possibility.’> An agent
knows p just in case p is true in in any sufficiently normal world where the agent believes p.'
These models differ in their structural properties. The first and third models predict knowledge is
luminous, so that whenever an agent knows p, she also knows that she knows p (see
[Williamson 2000] for criticism). When an agent knows p at w, p is true throughout the worlds v
that are at least as normal as w. At any of those worlds v, p is still true throughout the worlds u
that are at least as normal as v. So at any such world v, the agent knows p. So at w, the agent
knows that she knows p. By contrast, the second model invalidates luminosity. Suppose p is
true throughout the worlds a little less normal than w, but false at much less normal worlds.
Then the agent can know p at w without knowing p at v, a world a little less normal than w. So
she can know p without knowing that she knows p.

Our main observation here is that the analogue of Counterfactual Closure for normality is a non-
starter:

Normic Closure If there is a sufficiently normal world where p, and if p were the case, then q
would be the case, then there is a sufficiently normal world where q.

No matter how we understand sufficient normality, Normic Closure is false. Alex opens the trap
door, and sees a tiger. Before Alex opens the door, it is equally normal for the tiger to be in the
room or not. So there is an equally normal world where Alex opens the door and sees no tiger.
In the world where there’s no tiger, Alex spends the night in the room. So there is a no less
normal world where Alex spends the night in the room. Actually, if Alex spent the night in the
room, Alex would have been eaten by a tiger. But the world where Alex is eaten by a tiger is
significantly less normal than actuality, and so is not sufficiently normal.

“Goodman and Salow also include a dimension of evidence sensitivity we suppress, since it
does not affect our arguments. Instead of the most normal world, Goodman and Salow rely on
the most normal world consistent with the agent’s evidence. Similarly, for us what matters is not
the most normal worlds in all of modal space, but the most normal worlds where an agent
believes p by method m. Finally, a fourth proposal, discussed by Stalnaker [2015] and Carter
[2019], is that the easy possibilities are those that aren’t significantly less similar than any world
that isn’t significantly less normal

*These models all involve certain idealizations, notably the assumption that one always knows
p when one is in a position to know p.

'® As usual, our discussion could be adapted to the setting of method relativity.



If a normality model of knowledge is correct, then the failure of Normic Closure implies the
failure of Counterfactual Closure. This gives a simple explanation for what has gone wrong.
Counterfactuals with normal antecedents can have abnormal consequents, because
counterfactuals are sensitive to similarity rather than normality.

5. Restricted Counterfactual Closure

Normality models of knowledge correctly predict that Counterfactual Closure is false. But these
models undergenerate. They invalidate an important weakening of Counterfactual Closure. This
weakened principle concedes that not every easy possibility that counterfactually implies q
thereby makes q an easy possibility. But the restricted principle identifies an important class of
easy possibilities that have this property.

Recall our earlier sufficient condition for easy possibility. Suppose | am about to flip a fair coin,
and | know this. Paradigmatically, there is an easy possibility where the coin lands heads, and
one where the coin lands tails. Exactly such easy possibilities explain why | am ignorant of the
outcome. Now suppose some other claim q counterfactually depends on the outcome of the
coin flip. Suppose for example that I've bet some money on the outcome, and | would win only if
the coin were to land tails. In that case, my ignorance of the flip’s outcome explains my
ignorance of the bet’s outcome.

We suggest the following restricted version of Counterfactual Closure, where the relevant
agents knows that c is a fair coin that is about to be flipped:

Restricted Counterfactual Closure Suppose that if ¢ were to land tails, then p would be the
case. Then there is an easy possibility where p.

Again say a coin is ‘active’ if the relevant agents know it is fair and about to be flipped. RCC
suggests that you don’t know p when p would have been false if an active coin would land tails.
If you are an active flip away from being wrong about p, then you don’t know p."’

The argument against counterfactual miracles in [Goodman 2015] doesn't strictly require
Counterfactual Closure. It can use Restricted Counterfactual Closure (in fact, [Goodman 2015]
uses conditionals about coins in its presentation). Suppose we're in a deterministic, Newtonian
world and Newtonian mechanics along with the initial conditions imply that the fair coin | am

""Most will agree that when a coin is about to be flipped, there is an easy possibility where it
lands tails. Those who accept this principle will likely accept a version of Restricted
Counterfactual Closure which says that p is easily possible whenever p would be the case if ¢
were to land tails, regardless of whether the relevant agents know that c is about to be flipped.
However, we’ll see soon that Goodman and Salow 2018 deny this principle. They claim that
sometimes an agent can know a fair coin won'’t land tails, even though it is about to be flipped.
In their model, this happens only when the agent doesn’t know whether the coin will be flipped.
For their sake, we limit Restricted Counterfactual Closure to active coins.



about to flip will land heads. Then the defender of counterfactual miracles will accept that if the
coin had landed tails, Newtonian mechanics would have failed.®

RCC puts pressure on normality models of knowledge. Only certain kinds of normality models
can validate RCC, and only if they accept an interesting new principle of ‘Counterfactual
Contamination’ connecting counterfactuals and normality. To see the point, we explore in
greater detail the epistemic predicaments generated by chance events like a coin toss.

[Dorr, Goodman, and Hawthorne 2014] imagine a fair coin is flipped between 1 and 1000 times.
The moment the coin lands heads, the coin stops being flipped. Possible outcomes include H,
TH, TTH, ..., until a series consisting of 1000 tails. Represent worlds by the number of flips they
contain: world 1 is H, world 2 is TH, and so on. Imagine we are in world 1, where the coin is
flipped once and lands heads. Plausibly, in this world the agent knows before observing any
flips that the coin will not be flipped a thousand times." At world 1, world 1000 is ruled out.

'® One natural generalization of Restricted Counterfactual Closure is false. Consider a general
principle connecting sufficient objective chance to easy possibility. Say there is a sufficient
chance of p when the objective chance of p is greater than some threshold, say .5. Then:

Chance Counterfactual Closure If there is a sufficient chance of p and if p were the case, then
g would be the case, then there is an easy possibility where q.

Some of our counterexamples to Counterfactual Closure also falsify Chance Counterfactual
Closure. Imagine again that the relevant triggering event is controlled by a fair coin. For
example, imagine the tiger’s location is dependent on a coin flip. Then the chance of the tiger
being in the room is .5, and so the chance that the agent stays in the room is .5. Nonetheless,
the agent can know he won’t be eaten by a tiger, even though he would be eaten by a tiger if
were to stay in the room. These counterexamples similarly falsify a restriction of Chance
Counterfactual Closure to cases where p is known to have a sufficient chance.

On the other hand, our counterexamples do not affect Restricted Counterfactual
Closure. Even though the tiger’s location is counterfactually dependent on the outcome of the
coin flip, it is not true that the agent would have been eaten by a tiger if the coin landed tails.
Rather, if the coin had landed tails, the agent wouldn’t have stayed in the room.

Another problem for Chance Counterfactual Closure comes from the fact that we can
know claims about the future which have a less than certain chance. Take a massive disjunction
of the negation of all such claims about the future which the relevant agent could not easily have
failed to believe. This disjunction plausibly has high chance and moreover counterfactually
implies itself. So Chance Counterfactual Closure implies that there is an easy possibility where
this disjunction is true. But if the disjunction is true at an easy possibility, then at least one of its
disjuncts is too. But in that case the agent would fail to know that the disjunct is false, contrary
to our supposition. To summarize, Chance Counterfactual Closure threatens skepticism about
knowledge of the future.
¥See [Dorr, Goodman, and Hawthorne 2014] for an argument that this claim’s denial leads to
widespread skepticism. To bolster their case, here is an argument from [Bacon 2014]. Consider
an agent who initially doesn’t know whether they are holding a fair coin or a double tailed coin.
Plausibly they can know they are holding a double tailed coin if they observe a thousand tails in



Given the right counterfactual setup, this assumption surprisingly conflicts with Restricted
Counterfactual Closure.

Imagine we are at world H, where the coin is flipped once and lands heads. But now imagine
the world is very special. By fluke accident, the following counterfactual is true: if the coin had
landed tails at least once, it would have landed tails a thousand times. Restricted Counterfactual
Closure implies the agent does not know the coin won'’t land tails a thousand times. At the initial
time, the agent knows the coin is about to be flipped. If it had landed tails at least once, it would
have landed tails a thousand times. So there is an easy possibility where the coin lands tails a
thousand times. So the agent doesn’t know after all that the coin won'’t land tails a thousand
times.?°

An opponent might deny that the counterfactual if the coin landed tails at least once, then it
would have landed tails a thousand times is ever true, at least in a world with a fair coin which
landed heads the first time. The opponent might appeal to ties in similarity. They might say that
each world 2-1000 is equally similar, and so if the coin landed tails at least once, it would have
been flipped exactly twice, or exactly three times, etc...but for each particular number it’s false it
would have flipped exactly that many times.

This response relies on a failure of the rule of Conditional Excluded Middle, that either if p then
g or if p then not g. So this response is unavailable to Stalnaker [1968] and other defenders of
CEM (including [Hawthorne and Dorr forthcoming]).?! This response is also insufficiently
general. Below we identify a general problem concerning counterfactuals of the form: if the coin
had landed tails, then p would have occurred, where p is abnormal. It's not clear how ties in
similarity could falsify every counterfactual of this form.

Our interest is how RCC affects the normality theory. Which conceptions of sufficient normality
allow Restricted Counterfactual Closure? To apply the notion of sufficient normality, we need an

a row. But if the agent doesn’t know that a fair coin will not come up tails a thousand times, how
could the agent use this data to eliminate the fair coin hypothesis?

20At this world, there need not be a significantly high chance that the coin will land tails a
thousand times. More generally, the following principle is false: if there is a significant chance of
p, and if p were the case then q would be the case, then there is a significant chance of q. This
principle is refuted by Alex and the tiger. Prior to the coin flip, there is a significant chance that
Alex will stay in the room. But there is not a significant chance that he will be eaten by a tiger,
which is counterfactually implied by his staying in the room.

2 A defender of CEM might respond that the uniquely most similar world where a coin is flipped
at least twice is a world where it is only flipped twice. But this view implausibly requires that at
every world where the coin lands heads, it is true that if a coin had been flipped twice, it would
have come out TH. This is quite a radical solution to the problem. It seems to imply that before
the game begins, the defender of CEM should be 75% confident that if the coin were flipped
twice, it would come out TH. He is 50% confident the first flip will come out heads, and 50%
confident it will come out tails. In the first case, the defender claims that it is guaranteed that if
the coin were flipped twice, it would come out TH. In the second case, strong centering implies
that 50% of the worlds are those where if the coin were flipped twice, it would come out TH; and
50% of the worlds are those where if the coin were flipped twice, it would come out TT.



ordering of worlds with respect to normality, and a notion of significantly less normal. Goodman
and Salow 2018 model normality in this example via objective chance. Each world is denoted by
its number of coin flips. World m is more normal than world n (n < m) just in case the chance of
m is greater than the chance of n. For example, world 2 (TH) is more normal than world 4
(TTTH) because the chance of (TH) is .5%, while the chance of TTTH is .5*. World m is
significantly more normal than world n (n << m) just in case in world m, the chance of having at
least n coin flips is never greater than some threshold (we let this threshold be .25). For
example, world 2 (TH) is significantly more normal than world 5 (TTTTH) because at world 2 the
chance of the coin flipping at least 5 times is never more than .5*. (After the first flip in world 2,
this is the chance of flipping at least 5 times.) Generalizing, any world m is significantly more
normal than another n just in case the number of flips m + 2 is less than n.

In the ordering above, normality supervenes on the chances of coin outcomes, as determined
by the number of coin flips in the outcome. We have enriched worlds with further counterfactual
structure, imagining a case where in world H the following counterfactual is true: if the coin had
landed tails at least once, it would have landed tails a thousand times. This is a counterfactual
abnormality: if the coin had landed tails, the world would have been abnormal. We now explore
how counterfactual abnormality relates to actual abnormality.

We begin by assuming that counterfactual abnormality has no bearing on actual abnormality.
For the moment, we assume that even in worlds with such counterfactuals, normality is
controlled merely by the chances. We’'ll see that this leads to failures of RCC on all three
models of normality. So suppose again we are at H, but that if the coin had landed tails at least
once, then it would have landed tails a thousand times. Restricted Counterfactual Closure
implies that world 1000 is sufficiently normal. Holding fixed the normality ordering from
[Goodman and Salow 2018], all three models reject this conclusion.

First, consider the model from Beddor and Pavese [2019], where a world is sufficiently normal
when it is as normal as actuality. In that case, at a world with exactly m flips, the easy
possibilities are those where the coin flips at most m times. At TTTH the easy possibilities are H,
TH, TTH, and TTTH. At H, the easy possibilities are merely H. So world 1000 is not sufficiently
normal at world H, regardless of the counterfactual abnormalities H may contain.??

Now consider the model inspired by Williamson [2013], where a world is sufficiently normal
when it is not significantly less normal than actuality. Now at a world with exactly m flips, the
easy possibilities are those where it flips at most m + 2 times. So at TTTH the easy possibilities
are H, TH, TTH, TTTH, TTTTH, and TTTTTH. When the coin flips 4 times, the agent knows that
it will flip at most 6 times. At H, the easy possibilities are H, TH, and TTH. Again, world 1000 is
abnormal at H.

#[Beddor and Pavese 2019] do not apply their theory to the coin paradigm, and so might well
reject the underlying normality ordering in play. Our goal here is merely to illustrate the
structural features of their account.



Finally, consider the model in Goodman and Salow [2018], where a world is sufficiently normal
when it is not significantly less normal than the most normal world and it is at least as normal as
actuality. Then at a world with exactly m flips, with m less than 3, the easy possibilities are those
where it flips at most 2 times. At any other world, the easy possibilities are those where it flips at
most m times. So at TTTH, the easy possibilities are H, TH, TTH, and TTTH. At H the easy
possibilities are H, TH, and TTH. Again, at H world 1000 is excluded.?

6. Counterfactual Contamination

Similarity models of knowledge validate Counterfactual Closure, and so they are too strong.
Extant normality models of knowledge invalidate Restricted Counterfactual Closure, and so they
are too weak. To resolve this impasse, we now offer a new conception of normality.

To validate Restricted Counterfactual Closure, we can modify the normality ordering so that it is
sensitive to counterfactual abnormality. On this proposal, the abnormality of a world depends on
how abnormal things would be given various counterfactual assumptions. Counterfactual
abnormality makes for some degree of actual abnormality.

We consider two principles of ‘Counterfactual Contamination’. Each says that counterfactual
abnormality at a world contaminates that world with some degree of actual abnormality. Again
let ¢ be a fair coin that the relevant agent knows is about to be flipped.?

Strong Counterfactual Contamination Suppose that if ¢ were to land tails, then things would
be abnormal to at least degree n. Then things are already abnormal to degree n.

Weak Counterfactual Contamination Suppose that if ¢ were to land tails, then things would be
abnormal to at least degree n. Then things are already not significantly more normal than n.

The Contamination principles say that if you’re an active flip away from significant abnormality,
then you are already abnormal. Consider a world w where if ¢ were to land tails, then worlds v
or u would obtain. Suppose v is more normal than u. Weak Counterfactual Contamination
implies that w is not significantly more normal than v. Strong Counterfactual Contamination
implies that w is not any more normal than v.

Z\We pause to observe one strange feature of this model. In TTTH, Goodman and Salow [2018]
predict that if the agent receives no evidence about the coin flips, then at the moment before the
final flip the agent knows the coin will not land tails, although they don’t know that the coin will
be flipped. The key is that any world with more coin tosses than TTTH is both significantly less
normal than H and also less normal than TTTH. So the agent in TTTH knows that there are at
most 4 tosses. For this reason, Goodman and Salow admit cases where a coin is about to
flipped and yet there is no easy possibility that it lands tails.Such cases exist (at higher numbers
of flips) even if we suppose that the coin is biased .99 in favor of tails.

20f course, generalizing these contamination principles to domains beyond coins is a delicate
matter. Our remarks in the conclusion may offer some initial guidance here.



To illustrate Contamination, consider how we judge the normality of people. Imagine Jeremy
lives a perfectly normal life, never losing his temper very much. Imagine one day Jeremy bets
‘heads’ on a coin he knows is about to be flipped. Actually, the coin will land heads and Jeremy
will be slightly pleased. But counterfactually, if the coin had landed tails then Jeremy would have
had a complete meltdown. He would have behaved completely erratically. Weak Counterfactual
Contamination says that even though Jeremy doesn’t behave abnormally, he is still somewhat
abnormal for satisfying this counterfactual. Strong Counterfactual Contamination says that
actual Jeremy is just as strange as he would have been had he had his meltdown.

We can imagine different versions of this case, depending on the basis for the abnormal
counterfactual. In the most poignant version, we can imagine the categorical basis for the
counterfactual is a statistical mechanical accident. Some slightly freak micro-realization of a
fairly mundane macrostate generates a counterfactual propensity to strange behavior on this
one occasion; but not in a way that is correlated with Jeremy’s usual response to stimuli. For
most bets, Jeremy wouldn’t have had a meltdown had he lost. Only this one bet, we can
imagine, would trigger a counterfactual meltdown.

Now consider how Contamination improves each model of normality. Start with the model from
Beddor and Pavese, where the easy possibilities are those at least as normal as actuality.
When supplemented with Strong Counterfactual Contamination, this model validates Restricted
Counterfactual Closure. The normality of a world with exactly one coin flip depends on what
counterfactuals are true there. A world with exactly one coin flip where extra coin flips would
have counterfactually implied a thousand coin flips is just as abnormal as a world that already
has the thousand coin flips. So an agent in the former world cannot rule out being in the latter
world. Interestingly, this model does not validate RCC when supplemented with Weak
Counterfactual Contamination. Now a world with exactly one coin flip where any more coin flips
would counterfactually imply a thousand coin flips can be less abnormal than a world that
already has the thousand coin flips, and so the latter will not be easily accessible from the
former in Beddor and Pavese’s model.

Now consider the model of normality inspired by Williamson [2013], where a world is sufficiently
normal when it is not significantly less normal than actuality. Here, Weak Contamination is
sufficient to ensure Restricted Counterfactual Closure. Consider again the world with exactly
one flip, where more flips counterfactually imply a thousand. Weak Contamination implies that
the world with a thousand flips is not significantly less normal than the base world. So there is
an easy possibility with a thousand flips.

Finally, consider the model from Goodman and Salow, where the easy possibilities are those
not significantly less normal than the most normal world, and those at least as normal as the
actual world. Strong Contamination validates Restricted Counterfactual Closure within this
framework, for the same reason as in Beddor and Pavese.

As with Beddor and Pavese’s model, this theory does not validate RCC given only Weak
Contamination. Consider three worlds. At Ordinary Heads, the coin lands heads and no strange



counterfactuals are true. At Strange Heads, the coin lands heads, but if the coin had landed
tails, it would have landed tails a thousand times. At One Thousand, the coin lands tails a
thousand times. We can show there is a violation of RCC at Strange Heads. First, we've
assumed that One Thousand is significantly less normal than Ordinary Heads, which is among
the most normal worlds. Second, if we reject Strong Contamination, it could be that One
Thousand is less normal than Strange Heads. So suppose this is the case. Now One Thousand
is significantly less normal than the most normal worlds, and less normal than Strange Heads. It
follows that One Thousand is epistemically inaccessible from Strange Heads. This contradicts
RCC. At Strange Heads, the agent knows that the coin is about to be flipped. If the coin were to
land tails, then One Thousand would be actual. Yet the agent can rule out One Thousand, and
so One Thousand is not an easy possibility.

Which Contamination principle should we accept, weak or strong? We think Strong
Contamination is too strong. Counterfactual abnormality is relevant to actual normality; but it
isn’t that relevant. Recall Jeremy’s counterfactual meltdowns. Strong Contamination implies that
Jeremy, who never has a real meltdown and only would have by statistical mechanical fluke, is
weirder than someone who actually has a slightly less intense meltdown. Similarly, consider
coins. In the one world, the coin is only flipped once, but would have flipped a thousand times if
it had flipped even twice. In the second world, the coin actually flips exactly 999 times. Strong
Contamination implies the first world is less normal than the second.

Here is an even more forceful argument against Strong Contamination.?® Imagine a case where
1000 independent fair coins are about to be tossed simultaneously, and Danny knows this.
Label the coins 1 through 1000. As a matter of fact, Danny is in world 471, where coins 1-529
will land heads and coins 530-1000 will land tails (so that 471 total coins land tails). For similar
reasons to the above, Danny can know the coins will not all land tails. But considerations of
causal independence familiar from Morgenbesser’s coin suggest that if any given coin had
landed differently, the other coins would have landed the same.? So in world 471, the following
counterfactual is true: if coin 529 had landed tails, then coins 529-1000 would have landed tails.
Strong Contamination implies that world 471 is equally normal as world 472, where coins 529-
1000 land tails. Similarly, in world 472, the following counterfactual is true: if coin 528 had
landed tails, then coins 528-1000 would have landed tails. Strong Contamination implies that
world 472 is equally normal as world 473, where coins 528-1000 land tails. Repeating this
process, we reach the result that world 471 is equally normal as world 1000, where coins 1-
1000 all land tails. For this reason, Strong Contamination implies that the agent in world 471
doesn’t know whether all 1000 coins will land tails. In this way, Strong Contamination leads to
skepticism.

®Thanks to Cian Dorr.

%For example, imagine Danny places separate bets for ‘heads’ on each coin. It is plausible that
if coin 529 had landed tails, Danny would have lost his bet on coin 529, but would still have won
his bet on coins 1-528, and would have still lost his bet on coins 530-1000. For discussion see
among others [Slote 1978; Schaffer 2004].



There is reason to care which contamination principle is correct. Theories of normality which
require Strong Counterfactual Contamination characteristically lead to the luminosity of
knowledge. By contrast, theories which make do with only Weak Counterfactual Contamination
lead to anti-luminosity. We can generalize this point beyond the normality models we’'ve
considered so far. We now show that Safety and RCC lead to a failure of luminosity in any
theory which accepts a generalization of Weak Contamination without Strong Contamination.

If Weak Contamination is true and Strong Contamination is false, then worlds with
counterfactual abnormality are less abnormal than worlds with actual abnormality. Think of the
degree of normality as determining the distance from a given world. Worlds with actual
abnormality are further away from worlds that simply would have had that abnormality had an
active coin landed tails. If we depart from normality models, we can replace this notion of
abnormality with the more general notion of epistemic accessibility. If world w is closer than
world v in epistemic distance, then there could be an agent who could rule out w without being
able to rule out v.

To express this idea more precisely, we move from the coin game to a second paradigm where
we have crisp judgments about relative ease of knowability. Return to our case of Jeremy and
his counterfactual meltdown. Order meltdowns in strength from 0 to 1000, with 1000 the highest
level of meltdown. As before, we imagine a series of cases where Jeremy bets on an active coin
and if the coin had landed tails, he would have lost and had an n meltdown, for some strength n.
If we accept Weak Contamination without Strong Contamination, we will think that it is easier to
rule out Jeremy having an n meltdown than it is to rule out a case where Jeremy would have
had an n meltdown if the coin had landed tails. That is:

Counterfactual Ignorance For any n, if the strongest proposition known is that Jeremy won’t
have an n meltdown, then for all that is known, if the active coin were to land tails, Jeremy would
have had an n meltdown.

We now show that the combination of RCC and Counterfactual Ignorance leads to failures of
luminosity.

First, we suppose that there is a strongest proposition known about Jeremy’s meltdowns. For
example, imagine that the agent knows that Jeremy won’t have an 800 meltdown; but for all the
agent knows, Jeremy will have a 799 meltdown. Now consider three worlds. In 0-0, Jeremy has
a degree 0 meltdown (this is no meltdown at all), and Jeremy would have had a degree 0
meltdown if the coin had landed tails. In 0-800, Jeremy has a degree 0 meltdown, but Jeremy
would have had a degree 800 meltdown if the coin had landed tails. Finally, in 800-800, the coin
lands tails and Jeremy does have the degree 800 meltdown.

By construction, the agent in 0-0 knows they aren’t in 800-800, since they can rule out Jeremy
actually having the 800 meltdown. By Counterfactual Ignorance, the agent in 0-0 doesn’t know
whether they are in 0-800. Since 800 is the lowest degree actual meltdown they can rule out,
they can’t rule out a counterfactual meltdown of 800. Finally, RCC implies that in 0-800 the



agent can’t rule out being in 800-800. After all, in 0-800 the agent knows the coin is about to be
flipped. And in 0-800, if the coin were to land tails, then 800-800 would be actual. So RCC
implies that 800-800 is an easy possibility at 0-800, and so Safety implies that 800-800 is
epistemically possible at 0-800. (Throughout this argument we suppose that the agent’s beliefs
are insensitive to the meltdown, so that the agent at 800-800 would still have believed that
Jeremy will not have an 800 meltdown. After all, we suppose Jeremy’s meltdown will come
about by statistical mechanical fluke, unforeseeable by daily observation of his character.)

In summary, we’ve shown that Safety and Restricted Counterfactual Closure lead to failures of
luminosity when paired with a conception of counterfactual knowledge implicit in any normality
model that accepts Weak Contamination without Strong Contamination. In this way, our points
generalize beyond the setting of normality models.?’

7. Counterfactual Triggers

We’ve shown Restricted Counterfactual Closure has significant consequences for models of
normality. But our discussion so far has a noticeable gap. We’ve focused on counterfactual
antecedents about the outcomes of fair coin flips. But what is it about coin flips that make them
so relevant to knowledge? One natural thought appeals to normality. Either outcome of a coin
flip is normal. Whenever p is normal and p counterfactually implies q, there is an easy possibility
where q. Yet this natural thought is untenable. It is tantamount to the Normic Closure principle
rejected above. Recall that it is normal for the tiger to be in the room, and the tiger's presence
counterfactually implies Alex's death; and yet there is no easy possibility in which Alex dies.

Call a ‘counterfactual trigger’ any proposition p where q is an easy possibility whenever it is
counterfactually implied by p and p is an easy possibility. We’ve argued that counterfactual
triggers lead to counterfactual contamination. Non-actual abnormal events that counterfactually
depend on non-actual counterfactual triggers make for actual abnormality. So far, we’ve claimed

2’ referee notices that certain ideas about chance produce potential complications. Suppose
for example that the chance of a coin toss depends on the frequencies of heads and tails
among coins in the world. A certain coin is fair and comes up tails, but if it had come up heads,
the frequencies would have determined that the chance of heads was very low. The referee
suggested that the world in which the coin comes up heads is way more abnormal than the
world where the coin comes up tails fairly. If knowledge is understood in terms of normality, one
could then know that the heads world will not obtain. One response here is to reject the
possibility of undermining chances. Many have tried to fix the best system account of chance
(as in [Lewis 1980]) to avoid undermining chances. But it is also worth noting that even granting
this surprising picture of chance, it is not clear that there is a counterexample to RCC here. The
principle of Counterfactual Contamination rules out just such a counterexample. If we were
really a coin flip away from being in such an abnormal scenario, then by Counterfactual
Contamination the actual world is already abnormal enough to make the bizarre abnormal an
easy possibility.



that coin flips are counterfactual triggers. In this conclusion, we suggest that counterfactual
triggers can be understood in terms of macroscopic regularity.

The world is rife with macroscopic causal regularities. Tigers eat people. People avoid being
eaten. People don't like to eat nails. People die when they eat nails. Normality is related to
macroscopic regularity.

Counterfactual possibilities often but not always violate macroscopic regularities. Again suppose
there is a tiger in the room. If Alex had entered the room, he would have been eaten by the
tiger. When we counterfactually suppose that Alex entered the room, we consider a world in
which there is a tiger in the room, and Alex enters the room anyways. This violates the
macroscopic regularity that people who fear danger avoid danger. But the counterfactual
imagination tolerates this violation.

Many have observed that counterfactuals are often evaluated relative to causal structure. In the
tiger example, we have a chain of events: the tiger being trapped in the room; Alex refraining
from entering the room; Alex surviving the day. Each event in the chain causes the next one.
Counterfactuals characteristically intervene in causal chains.?® The above counterfactual holds
fixed that the tiger is trapped in the room, and severs the macroscopic regularity linking the
tiger's presence to Alex’s absence. This introduces abnormality into the world.

Coin flips are special because they don’t require causal intervention on the macroscopic laws.
Granted, in a deterministic world, my coin’s landing heads is causally necessitated by the initial
conditions of the universe. But at the macroscopic level, there are no facts about the time before
the coin flip that imply the coin will land heads. Coin flips are microscopically deterministic, but
macroscopically indeterministic.

We imagined that if the coin had been flipped twice, it would have been flipped a thousand
times. A thousand flips is quite an abnormal outcome. But it is a different kind of abnormality. In
this world, no causal intervention on the macroscopic laws is required. No macroscopic
regularity need be violated.

We suggest that counterfactual triggers are easy possibilities that could obtain without
macroscopic intervention. The absence of macroscopic intervention is a counterfactual trigger
because macroscopic causal interventions are dramatically abnormal. There are many kinds of
abnormality, but this one is especially repugnant.?

2For discussion of how to integrate this idea into the theory of counterfactuals, see among
others: [Hiddleston 2005; Briggs 2012; Santorio 2019].

2 Thanks to Sam Carter, Cian Dorr, Jeremy Goodman, Zach Goodsell, Dan Waxman, and the
audience at the Lingnan University Department of Philosophy Seminar Series for feedback on
this paper.
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