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Abstract. It is known that propositional relevant logics can be conservatively extended by the
addition of a Heyting (intuitionistic) implication connective. We show that this same conservativ-
ity holds for a range of first-order relevant logics with strong identity axioms, using an adapta-
tion of Fine’s stratified model theory. For systems without identity, the question of conservatively
adding Heyting implication is thereby reduced to the question of conservatively adding the ax-
ioms for identity. Some results in this direction are also obtained. The conservative presence of
Heyting implication allows the development of an alternative model theory for quantified relevant
logics.

§1. Introduction and overview. This paper shows that various systems of first-order
logic with relevant implication can be conservatively extended by the addition of a Heyting
implication. By the latter we mean a binary connective ⊃ that relates to the conjunction
connective ∧ by the deduction principle

A ∧ B � C iff A � B ⊃ C (1.1)

of “∧-Residuation”. In this context, a consecution relation A � B asserts that the relevant
implication A → B is a theorem.1

Given some deduction system L, defined by specified axioms and rules in a particular
language without ⊃, we call HL the system having those axioms and rules of L together
with the rule (1.1), all stated for formulas in the expanded language containing ⊃. HL is
called conservative over L if it has no new ⊃-free theorems: every ⊃-free formula that is a
theorem of HL must already be an L-theorem.

We will prove that conservativity of HL over L holds when L is a certain extension
of the Anderson–Belnap system RQ by axioms for an identity predicate ≈, as well for
many subsystems of this one obtained by varying the underlying propositional axioms.
These results are then extended to systems with contrapositive negation, by which we
mean systems that may lack the double-negation elimination postulate ¬¬A → A, and in
which the quantifiers ∀, ∃, and the propositional connectives ∧, ∨, →, ¬, ◦ (fusion), are
all independent. All of this requires new completeness theorems giving semantic charac-
terizations of the logics involved. For the logics without double-negation elimination we
use a binary incompatibility relation ⊥ to interpret negation, a modeling that goes back to
an early paper of the author (Goldblatt, 1974).

For all the systems just mentioned, the question of conservatively adding ⊃ is thereby
reduced to the problem of conservatively adding axioms for identity. In the last part of the
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paper we give some results in this direction for the {∀,∧,∨,→,¬, ◦}-fragment of many
contrapositive-negation systems. The final Section 8 contains a full summary of all the
semantic characterizations and conservativity results proved in the paper.

These results are not just a series of technical curiosities. The conservative presence of
⊃ has a significant impact on the properties of canonical models used in completeness
proofs, and has allowed the development of a new kind of model theory for quantified
relevant logics by adapting ideas from the Kripke–Joyal semantics for intuitionistic logic.
Details of this will be reported elsewhere.

It is already known that⊃ can be conservatively added to the propositional relevant logic
R (and many of its subsystems). This observation is due to Restall (1998), using a strikingly
direct argument based on the completeness of R with respect to the relational models of
Routley and Meyer (1973). If a ⊃-free propositional formula A is not an R-theorem, then
it is falsified by some Routley–Meyer model A. This model has a partial order ≥ that can
be used to interpret ⊃ by Kripke’s clause for satisfaction of intuitionistic implication:

t |� B ⊃ C iff for all u ≥ t, u |� B implies u |� C. (1.2)

A is thereby expanded to a model A′ for the language including ⊃. The interpretation of
A is unchanged, so A′ still falsifies A. It suffices then to show that A′ is an HR-model, in
order to conclude that A is not an HR-theorem. The clause (1.2) ensures that (1.1) is sound
in A′, so the issue comes down to the A′-soundness of the axioms and rules of R in the
extended language. For this we need the general fact that the truth relation is extendable
along the ordering ≥, in the sense that for any formula B,

t |� B and u ≥ t implies u |� B. (1.3)

Now (1.3) is shown by induction on the formation of B, with the inductive cases for the
R-connectives being just as in Routley and Meyer (1973), and the inductive case that B
is B1 ⊃ B2 following directly from (1.2) by transitivity of ≥, as is well known. That
completes the conservativity proof.2

This argument suggests that a similar proof should work for the first-order logic RQ,
by invoking its completeness with respect to the partially ordered stratified models of Fine
(1988). But here there is an obstacle, concerning the proof that the expanded structure A′ is
an RQ-model. Soundness of the quantifier axioms depends, not just on the ≥-extendability
of truth (1.3), but on several other results proven by induction on formula formation. Two
of these, the Truth Across and Truth Down lemmas, are problematic for the inductive case
of ⊃.

It turns out that Truth Down can be handled by introducing an additional property of
stratified models, concerning the down operator t �→ t↓. This property states that

u ≥ t↓ implies ∃u+ ≥ t (u+↓ = u), (1.4)

and makes ↓ into a p-morphism relative to ≥, leading to a verification that t↓ |� B ⊃ C
iff t |� B ⊃ C . Canonical models for RQ and related logics can be shown to satisfy (1.4)

2 This proof could also be given using the R-models of Fine (1974). A more structural version
of the argument observes that the set of propositions (i.e. subsets closed under ≥-extension) of
an R-model is closed under the implication operator corresponding to (1.2), and so “we do not
gain any new propositions on a frame by enriching our expressive powers to include intuitionistic
implication” (Restall, 1998, p. 185).
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with the help of the Conjunctive Existential Distribution postulate

A ∧ ∃x B → ∃x(A ∧ B),

where x is not free in A, and without any use of ⊃ (see Theorem 4.2 below).
Truth Across, however, does not seem amenable to such a strategy. To explain this, note

that a point t in a stratified model can be intuitively thought of as a theory, a collection
of propositions closed under whatever those propositions commit one to, or perhaps as a
collection of sentences closed under entailment. Each theory has a domain of individuals
over which quantified variables range. Given distinct individuals i, j in the domain of t ,
there is a theory i j �t (“t across”), thought of as the minimal extension of t in which i and
j are treated as logically indistinguishable. If t = i j �t , then t is called i j -symmetric. The
Truth Across Lemma asserts that if t is i j-symmetric, then t |� A iff t |� A′, where A′ is
any sentence obtained from A by interchanging some occurrences of the constants i and j .
But for this to hold inductively when A is B ⊃ C , it would seem to be required that i j-
symmetry be preserved by ≥-extension, that is that if u ≥ t = i j �t , then u = i j �u. It is not
evident that this condition can be imposed on general stratified RQ-models.

However, this condition can be imposed for languages that have an identity predicate ≈,
producing sentences i ≈ j in the object language asserting the indistinguishability of i and
j . If we require that models satisfy

t = i j �t iff t |� i ≈ j, (1.5)

then ≥-extendability of truth ensures ≥-extendability of i j-symmetry, allowing the Truth
Across Lemma to be proved for the case of ⊃. We use a semantics for identity adapting
that of Mares (1992), interpreting ≈ as a binary relation ≈t on the domain of individuals
associated with each theory t . The resulting logic is axiomatized as a system RQ≈ that has
HRQ≈ as a conservative extension.

There is a subtle technicality in our analysis that is worth pointing out from the outset,
since it determines the nature of our canonical model constructions and choice of axioms.
The stratified models of Fine (1988) admit empty theories containing no propositions and
making no commitments. In particular, in the canonical models used in completeness
proofs, at each level of the stratification there is a ≥-minimum element satisfying no
sentences. These minima are co-theories of ≥-maximum elements that themselves satisfy
all sentences. Now an empty theory would be i j-symmetric but not satisfy i ≈ j , so would
violate (1.5). Therefore we have to eliminate such elements. At the same time we need to
keep the maximum elements, as these may be produced by the fusion t · u of two theories
t and u, an operation used to model relevant implication. But then we have to remove
the maximum elements from the domain of the co-theory function, this domain being the
set of saturated theories. Thus we do not count maximum theories as saturated, so the
whole canonical model construction of Fine (1988) has to be adapted to work under this
restriction.

This adaptation requires us to include as axioms the schemas A → v ≈ v (corresponding
to reflexivity of all relations ≈t ) and v ≈ v → (v �≈ v → A). The first ensures that all
self-identity statements are provably equivalent: � v ≈ v ↔ w ≈ w. These axioms
appear to violate the principle of relevance of implication. But a liberal relevantism might
concede that an assertion v ≈ v of self-identity is equivalent to the “Verum” T, a weakest
proposition that is true if any proposition is, while its negation v �≈ v is equivalent to the
“Falsum” F, a strongest proposition implying all others. A theory that treats self-identity
literally is committed to the presence of formulas that play the role of T and F. In any case,
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models satisfying (1.5) validate the axioms A → v ≈ v and v ≈ v → (v �≈ v → A), as
we show in Corollary 3.2, and these axioms are in turn needed to axiomatize the logic of
such models.

Here is a brief summary of the paper. Section 2 reviews Fine’s stratified models and
the logics they characterize. Section 3 introduces the identity axioms and their models,
and gives completeness theorems for logics with these axioms by a canonical model con-
struction. Section 4 gives a semantic analysis of the Conjunctive Existential Distribution
postulate, and Section 5 proves the conservativity of Heyting implication over the identity
logics of Section 3. Section 6 reworks the whole theory for logics with weaker negation
under the ⊥ interpretation. Section 7 uses algebraic semantics and the ideal-completion
of an algebraic model to give conservativity results for adding identity, and for adding
Heyting implication, to certain logics with weak negation. Section 8 catalogues all the
semantic characterizations and conservativity results shown in the paper.

§2. Stratified models and their logics. Familiarity is assumed with the papers (Fine,
1974, 1988), which will be followed closely, and will be referred to as MFE and SQL. First
we review the semantics of SQL, which is based on L-structures, where L is some set of
predicates. These structures have the form

A = (T, S, D, l, ·,−,≥,↑,↓,→, ϕ),

fulfilling the following description:

(i) T (theories) is a set, with members denoted by the letters t, u, v , as well as
decorations of these like t+, t ′, t∗, and so forth.

(ii) S (saturated theories) is a subset of T , with members denoted by a, b, c, as well
as a+, a′, and so forth.

(iii) D (relative domain) is a function from T to sets, taking each t ∈ T to its ontology
or domain of individuals Dt . We use D (domains) for {Dt : t ∈ T }, and I for⋃
D. The members of I may be thought of as constants, so the members of D

represent various levels of language differing only in the constants they contain.
We write α, β, γ for members of D, and i, j, k for members of I .
The domain equivalence relation ≡ is defined to be {(t, u) ∈ T × T : Dt = Du}.
Thus members of the equivalence class {u : t ≡ u} all have the same level.3

(iv) l (logics) is a function from D to T , with Dl(α) = α. l(α) is thought of as the
logic appropriate to α. Often this is written just as l, with the α omitted.

(v) · (fusion) is a partial binary operation on T , with t · u defined only when t ≡ u,
and having t · u ≡ t ≡ u. Usually t · u is written tu.

(vi) − (the co-theory operation) is a unary operation on S, having −a ≡ a. We may
write t − a for t · −a.

(vii) ≥ is a binary relation on T , with t ≥ u only if t ≡ u. The converse of ≥ is written
≤.

(viii) ↑ (the up operator) is a partial function from T × D to T , with ↑(t, α) defined
only when Dt ⊆ α and having D↑(t,α) = α. Usually ↑(t, α) is written t↑α , or
just as t↑ if no ambiguity results. It may be thought of as the expansion of theory

3 In SQL ≈ is used in place of ≡, but here we are reserving ≈ as an identity symbol.
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t to α, the consequences in the language of α of the theorems of t . We also write
t↑u for t↑Du .

(ix) ↓ (the down operator) is a partial function from T ×D to T , with ↓(t, α) defined
only when α ⊆ Dt and having D↓(t,α) = α. Usually ↓(t, α) is written t↓α , or just
as t↓ if no ambiguity results. It may be thought of as the contraction of theory t
to α, the theorems of t that belong to the language of α. We also write t↓u for
t↓Du .

(x) → (the across operator) is a partial function from T ×{{i, j} ⊆ I : i �= j} into T .
→(t, {i, j}) is defined for i �= j just in case i, j ∈ Dt , and is ≡-equivalent to t .
It is usually written i j �t , or just �t if no ambiguity results. An element of the form
i j �t is said to be i j -symmetric. Note that i j �t = j i �t .

(xi) ϕ (valuation) is a relation holding between a theory t ∈ T and an (n + 1)-tuple
(R, i1, . . . , in) consisting of an n-ary predicate R ∈ L and individuals i1, . . . , in

from Dt .

Such a structure will be called a stratified model if it satisfies the following conditions
(remember that t, u, v ∈ T while a, b, c ∈ S):

I. Standard

(i) ≥ is a partial ordering.

(ii) t ≥ u implies (tv ≥ uv) and (v t ≥ vu).

(iii) a ≥ tu implies ∃b ≥ t (a ≥ bu) and ∃b ≥ u(a ≥ tb).

(iv) lt = t .

(v) −− a = a.

(vi) a ≥ b implies −b ≥ −a.

(vii) ϕt (R, i1, . . . , in) iff (∀a ≥ t) ϕa(R, i1, . . . , in), for i1, . . . , in ∈ Dt .

II. Levels

(i) ∀α∃β(α ⊂ β).

(ii) ∀α, β ∃γ (α ∪ β ⊆ γ ).

(iii) ∀α, β, γ (α ⊆ β ⊆ γ implies α ∪ (γ − β) ∈ D).

III. Behavior of ↑ and ↓
(i) (a) t ≤ u implies t↑ ≤ u↑.

(b) t ≤ u implies t↓ ≤ u↓.

(ii) (a) t↑↑ = t↑
(b) t↓↓ = t↓.

(iii) (a) t↑↓ = t .

(b) t↓↑ ≤ t .

(c) t↓↑ = t↑↓, as long as Dt ∩ Dt↓↑ = Dt↓.

(iv) ϕt↓(R, i1, . . . , in) iff ϕt (R, i1, . . . , in), for i1, . . . , in ∈ Dt↓.

IV. Interaction of ↑ and ↓
(i) (With S)

(a) a↓ ∈ S.

(b) a ≤ b↓ implies ∃a+ ≤ b (a+↓ = a).
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(c) a ≥ t↓ implies ∃a+ ≥ t (a+↓ ≤ a).

(ii) (With −) (−a)↓ = −(a↓).

(iii) (With ·)
(a) (tu)↑ = t↑u↑.

(b) (tu↑)↓ ≤ t↑u.

(iv) (With l) l↑ = l, that is for α ⊆ β, l(α)↑β = l(β).

V. Behavior of →
(i) t ≤ �t .

(ii) t ≤ u implies �t ≤ �u.

(iii) ��t ≤ �t .
(iv) t = i j �t and t ≤ a implies ∃a′ (a′ = i j �a′ and t ≤ a′ ≤ a).

(v)
−−−→
(−�a ) ≤ −�a.

(vi)
−−→
(tu) ≤ �t �u ≤ �t u.

(vii)
−−→
(t↑) = (�t )↑.

(viii)
−−→
(t↑)↓ ≤ t , where → is i j � , i ∈ Dt↑ − Dt , and j ∈ Dt .

(ix) ϕt (R, i1, . . . , in) implies ϕ�t (R, i ′1, . . . , i ′n), where → is jk � for distinct j,
k ∈ Dt and, for p ≤ n, i ′p = i p if i p /∈ {j, k}, and i ′p ∈ {j, k} if i p ∈ {j, k}.

Explanation and interpretation of these conditions are given in SQL.
We now explain how a model interprets L-formulas, constructed from a given set L of

predicates by the connectives ∧, ¬, and → and the universal quantifier ∀. The disjunction
A ∨ B is defined to be ¬(¬A ∧ ¬B), and ∃x to be ¬∀x¬. A typographical distinction is
made between free and bound (or bindable) individual variables. We assume an infinite
supply of real variables v, w, and an infinite supply of apparent variables x, y. Real
variables are never bound by ∀, so occur only freely. Apparent variables can have both
free and bound occurrences. A real formula is one which has no free occurrence of an
apparent variable, that is all apparent occurrences are bound, and so any free occurrences
are real. We write Var(A) for the set of real variables occurring in A, and if V is a set of
real variables, let Fml(V ) be the set of real formulas A for which Var(A) ⊆ V .

The notation A(ξ/�) will be used for the formula resulting from replacement of every
free occurrence of the variable � in A by ξ . If ξ is an apparent variable, this notation is
used on the understanding that ξ is free for � in A, that is no free occurrence of � in A is
within the scope of ∀ξ .

The individuals I of a stratified model A are added as self-designating names to L to
form LI . For an LI -formula A, let I (A) = {i ∈ I : i occurs in A}, and say that A is defined
at the point t of A if I (A) ⊆ Dt . We call A a sentence if it has no free variables, that
is A may contain members of I as self-naming constants, but has no occurrences of real
variables, and only bound occurrences of apparent variables. Let Sen(t) be the set of all
LI -sentences that are defined at t in A.

DEFINITION 2.1. The truth relation |� is defined to hold between theories t of A and
sentences of Sen(t) by the clauses

• t |� Ri1, . . . , in iff ϕt (R, i1, . . . , in).
• t |� B ∧ C iff t |� B and t |� C.
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• t |� ¬B iff (∀a ≥ t)− a �|� B.
• t |� B → C iff (∀u ≡ t) (u |� B implies tu |� C).
• t |� ∀x B iff (∃t↑) (∃i ∈ Dt↑ − Dt ) t↑ |� B(i/x).

An LI -sentence A is true in A, written A |� A, if l |� A for any l at which A is
defined. A real formula A(v1, . . . , vn) with real variables v1, . . . , vn is true in A if for any
i1, . . . , in ∈ I , and any l at which A(i1/v1, . . . , in/vn) is defined, l |� A(i1/v1, . . . , in/vn).
A real L-formula is valid in a class of stratified models if it is true in every member of the
class. �

Using the definition of ∃x as ¬∀x¬, it is shown in [SQL, Lemma 10] that

t |� ∃x B iff (∀a ≥ t) (∃b) (∃i ∈ Db) (b |� B(i/x) and b↓a ≤ a). (2.1)

Axioms and rules for a system BQ are listed in Figure 1. A logic is defined to be any set
L of real formulas that includes all real instances of these axioms and is closed under the
rules. If A ∈ L, we may write �L A (for “A is an L-theorem”). BQ itself is the smallest
logic. A quasi-logic includes all the axioms but need only be closed under the first five
rules, and not under generalization.

A model A may be said to validate an axiom if all instances of this axiom are true in A.
A rule is valid in A if all instances of the rule preserve truth in A.

We use the term postulate to mean either an axiom or a rule. Figure 2 contains additional
standard postulates and corresponding structure conditions [SQL, p. 58]. If X is any set of
these postulates, let BQX be the smallest logic closed under all members of X. RQ is the
smallest logic containing all postulates, and EQ the smallest containing all but the last
(Assertion) postulate.

It is shown in SQL that BQX is characterized by the class of all stratified models that
satisfy all the conditions corresponding to the postulates in X. In other words, a real
formula is a theorem of BQX iff it is valid in this class of models. The proof involves
constructing a canonical model that satisfies the conditions corresponding to X while
falsifying all non-theorems of BQX. BQ itself is characterized by the class of all models,
while RQ is characterized by the class of all models satisfying all the conditions listed in
Figure 2. Note that the last condition amounts to commutativity of fusion.4

The soundness parts of these characterizations depend on some lemmas, proven by
induction on the length of formulas, that hold in any stratified model. These will be stated
now. For this we call a sentence A′ an i j -variant of A if it is obtained from A by arbitrarily
interchanging some occurrences of i and j . For example, the i j-variants of Ri j are Rii ,
Ri j , R ji , and R j j .

LEMMA 2.2 (TRUTH LEMMAS). For any sentence A:

(1) Truth Extension: If A ∈ Sen(t), then t |� A and t ≤ u implies u |� A.

(2) Truth Across: If A′ is an i j-variant of A, and t is i j -symmetric, then t |� A implies
t |� A′.

(3) Truth Down: If A ∈ Sen(t↓), then t |� A iff t↓ |� A.

(4) Truth Saturation: If A ∈ Sen(t) and (∀a ≥ t) a |� A, then t |� A. �

From these results follow certain facts that are used for proving soundness and validity:

4 The excluded-middle postulate¬A∨A is included in the definition of BQ in SQL, but the analysis
shows that it can be optionally added with its corresponding structure condition.
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Fig. 1. Axioms and rules for BQ.

Fig. 2. Standard postulates and their structure conditions.

COROLLARY 2.3 (SQL, COROLLARY 9).

(1) a |� ¬B iff −a �|� B, where B ∈ Sen(a).

(2) a |� B ∨ C iff a |� B or a |� C, where B, C ∈ Sen(a).

(3) (∀a ≡ t) (a |� B implies ta |� C) implies t |� (B → C), where B, C ∈ Sen(t).

(4) l |� (B → C) iff (∀u ≡ l) (u |� B implies u |� C) iff (∀a ≡ l) (a |� B implies
a |� C), where B, C ∈ Sen(l). �

REMARK 2.4 (THE ROLE OF IV(I)(C)). In SQL the condition IV(i)(c) is stated with the
stronger conclusion ∃a+ ≥ t (a+↓ = a), but the proof given of IV(i)(c) in the canonical
model only shows the weaker condition a+↓ ≤ a. However this weaker conclusion is
all that is needed for the role that IV(i)(c) plays, which is to ensure that the Truth Down
Lemma holds for inductive case of A = ¬B, as can be readily checked [SQL, p. 41].
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On the other hand, given IV(i)(c) as stated here, the stronger version can be derived by
using IV(i)(b). For if a+ ≥ t and a+↓ ≤ a, then −a ≤ (−a+)↓ (by I(vi) and IV(ii)), so
by IV(i)(b) there exists a′ ≤ −a+ with a′↓ = −a. Putting a∗ = −a′, it can then be shown
that a∗ ≥ t and a∗↓ = a.

Now the role of IV(i)(b) is to ensure the soundness of the Disjunctive ∀-Distribution
axiom [SQL, p. 50], while this axiom is used just to show that canonical models satisfy
IV(i)(b) [SQL, pp. 54–55]. In other words, this axiom corresponds exactly to IV(i)(b).

The upshot of this discussion is that by stating IV(i)(c) in the weaker form given here,
the condition IV(i)(b) can be dropped to obtain a complete semantics for logics that do not
include the Disjunctive ∀-Distribution axiom.

Further discussion of IV(i)(c) is given in Section 4.

2.1. Conservatively adding τττ . The presence of the model elements l(α) makes it nat-
ural to enrich the language with a sentential constant τττ having the semantics

t |� τττ iff l ≤ t,

where l here is l(Dt ). The cases A = τττ of the Truth Extension, Across and Down lemmas
are then readily derived (Truth Down uses II(i)(a,b), III(iii)(a), and IV(iv), showing among
other things that l↓ = l ). Truth Saturation follows from the additional structural condition

I(viii): If ∀a ≥ t (a ≥ l), then t ≥ l. (2.2)

For any logic L, the canonical L-model of [SQL] satisfies this condition. The points in
such a model are pairs t = (	, V ) with V a finite set of real variables, and 	 a subset of
Fml(V ) that is an L-theory. Here Dt = V , with (	′, V ′) ≥ (	, V ) iff 	′ ⊇ 	 and V ′ = V ,
while l(V ) = (Fml(V )∩ L, V ). The members of S are those points for which 	 is a prime
L-theory in Fml(V ).

Thus if t � l, there is some formula A ∈ (Fml(V )∩L)−	. Lindenbaum’s Lemma then
provides a prime L-theory 
 in Fml(V ) with 	 ⊆ 
 and A /∈ 
. Then a = (
, V ) has
a ≥ t and a � l, verifying I(viii).

To axiomatize logics with τττ under this semantics requires two new postulates. Let
BQXτττ be the logic defined by the axioms and rules for BQ and the postulates from X,
all stated for formulas of the language with τττ , together with τττ itself as an axiom, and the
inference rule

A

τττ → A
.

Completeness for BQXτττ is then shown by handling the τττ case as in [MFE, p. 359].
The following argument, sketched in the Introduction, exemplifies the way we use strat-

ified models to prove conservativity results.

THEOREM 2.5. For any set X of standard postulates, BQXτττ is a conservative extension
of BQX.

Proof. Let B be a τττ -free formula that is not a BQX-theorem. We have to show that B is
not a BQXτττ -theorem. From the above remarks, there is a model A for the τττ -free language
that satisfies I(viii) and whose truth relation |� has A |�BQX but A �|� B.

Define a new truth relation |�′ on A for the language including τττ , by putting t |�′ τττ
iff l ≤ t , for all t ∈ T , and otherwise defining |�′ by exactly the same conditions as for
|� given in Definition 2.1. Then an inductive proof shows that any τττ -free formula A has
t |� A iff t |�′ A for all t . Hence A �|�′ B.
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It remains then to show that A |�′ BQXτττ to obtain our desired result. It is straight-
forward to check that A |�′ τττ , and A |�′ A only if A |�′ τττ → A. Thus we are left
to check that the axioms and rules of BQX are sound in A under |�′. But this follows
exactly as in [SQL], since the Truth Lemmas 2.2 all hold with |�′ in place of |�. These
lemmas are proven by induction on the length of a formula A. When A is τττ , the lemmas
hold as indicated above. The other cases of A are just as in [SQL], so this completes the
argument. �

§3. Logics with identity. Assume from now on that the language includes τττ , that any
logic considered has the postulates for τττ just described, and that all models satisfy I(viii).
Next we add a new binary predicate ≈. Call a formula A′ a vw-variant of A if it is obtained
from A by arbitrary interchange of some occurrences of the real variables v and w. Then
the axioms for identity that we need are

I1. A → v ≈ v
I2. v ≈ w ∧ A → A′, where A′is any vw-variant of A

I3. v ≈ v → (v ≈ v → v ≈ v)

I4. v ≈ v → (v �≈ v → A).

The last two of these can be derived from the others in some logics, as will be explained
later (see Remarks 3.6 and 6.9).

Note that by Modus Ponens, v ≈ v is derivable from I1 (just let A be any theorem), and
hence that v �≈ v → A is derivable from I4.

The definition of a structure A for this language remains as before, on the understanding
that the valuation relation ϕt (R, i1, . . . , in) now includes the case that R is ≈ and n = 2.
For each t ∈ T we define a binary relation ≈t on Dt by putting i ≈t j iff ϕt (≈, i, j). A
stratified identity model is a structure that satisfies the conditions I–V as before, and also
the following:

VI. Behavior of ≈
(i) i ≈t j iff t = i j �t .
The definition of the truth relation |� remains as in Definition 2.1. In particular, for an

identity sentence i ≈ j we get that

t |� i ≈ j iff ϕt (≈, i, j) iff i ≈t j.

Since the new identity predicate ≈ behaves like other predicates in satisfying I(vii), III(iv),
and V(ix), the proofs of the Truth Lemmas 2.2 hold for this language with identity, just as
in SQL.

LEMMA 3.1.

(1) t ≤ u implies ≈t ⊆ ≈u.

(2) i ≈t i , for all i ∈ Dt .

(3) If t = i j �t and t ≤ u, then u = i j �u.

Proof.

(1) This is really a manifestation of Truth Extension for identities, but we give the
details ab initio. Let t ≤ u. If i ≈t j , then by I(vii), (∀a ≥ t) a |� i ≈a j , hence
(∀a ≥ u) a |� i ≈a j by transitivity, so i ≈u j by I(vii) again.
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(2) Given i ∈ Dt , by II(i) there exists a β ∈ D with Dt ⊂ β, so there is some j ∈
β − Dt , hence j �= i . Let t↑ be t↑β and → be i j � . Put u = −−→

(t↑). Then u = �u
by V(i,iii), so i ≈u j by the new VI(i). But then i ≈u i by V(ix) (remember
i ≈u j means ϕu(≈, i, j)). Now i ∈ Du↓ = Dt , so then i ≈u↓ i by III(iv). But

u↓ = −−→
(t↑)↓ ≤ t by V(viii), so finally i ≈t i by part (1) of this lemma.

(3) Let t = i j �t . Then i ≈t j by VI(i), so if t ≤ u then i ≈u j by (1), hence u = i j �u by
VI(i). �

COROLLARY 3.2. The identity axioms I1–I4 are valid in stratified identity models.

Proof. From Lemma 3.1(2) it follows that t |� i ≈ i for any i ∈ Dt , so a self-identity
sentence can never be falsified at any point in such a model. Consequently, no sentence
of the form A → i ≈ i can be falsified, ensuring that axiom I1 is valid. In particular,
i ≈ i → i ≈ i can never be falsified, ensuring the validity of I3.

For I2, if A′ is an i j-variant of sentence A ∈ Sen(t), and t |� i ≈ j ∧ A, then i ≈t j
and t |� A, so t = i j �t by VI(i), hence t |� A′ by the Truth Across Lemma.

For I4 it suffices to show t |� i �≈ i → A for any A ∈ Sen(t). But if not, there exists
u ≡ t with u |� i �≈ i while tu �|� A. Then by Truth Saturation, there exists a ≥ tu with
a �|� A. Hence by I(iii), there is some b ∈ S with b ≥ u (and a ≥ tb). Since u |� i �≈ i ,
Truth Extension and the semantics of ¬ then imply −b �|� i ≈ i , which contradicts what
we just proved about self-identities being unfalsifiable. This shows that I4 is valid. �

We turn now to completeness theorems for logics with identity. If L is a quasi-logic,
we write 
 �L B, and say that B is L-deducible from the set of formulas 
, if there
exists an L-deduction of B from 
, that is a finite sequence of formulas A0, . . . , An such
that An = B and for all m ≤ n, either Am ∈ 
 or (∃p, q < m)(Am = Ap ∧ Aq)
or (∃p < m)(�L Ap → Am). This is equivalent to requiring that there exist members
B0, . . . , Bk of 
 such that�L B0∧· · ·∧Bk → B. We assume properties of this deducibility
relation shown in [MFE, SQL], including the Deduction Theorem: A �L B iff �L A → B.
Note that if 
 is closed under conjunction, then 
 �L B iff there exists A ∈ 
 with
A �L B.


 is called an L-theory if it is closed under L-deduction, that is 
 �L B implies B ∈ 
;
L-prime if 
 �L A ∨ B implies 
 �L A or 
 �L B; proper if there is some formula not
in 
; and L-saturated if it is an L-prime and proper L-theory. In general, {B : 
 �L B}
is the least L-theory including the set 
, and if 
 is closed under conjunction, then this is
just {B : ∃A ∈ 
(A �L B)}.

Lindenbaum’s Lemma. If 	 is a set of formulas closed under disjunction, and 
 is an
L-theory that does not intersect 	, then 
 has an L-prime extension 
′ that does not
intersect 	. If 	 �= ∅, then 
′ is L-saturated. �
The first sentence of this result is proved as in [MFE, pp. 352–353], and the second follows
immediately, since 	 �= ∅ implies 
′ is proper. As a special case we have:

If 
 is an L-theory and A /∈ 
, then 
 has a proper L-prime extension
not containing A.

Recall that Fml(V ) is the set of formulas A whose set Var(A) of real variables is included
in V . The above notions and results relativize to Fml(V ). Thus if 
 ⊆ Fml(V ), then 
 is
an L-theory in V if B ∈ 
 whenever 
 �L B and B ∈ Fml(V ); and is L-prime in V if
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 �L A ∨ B and A ∨ B ∈ Fml(V ) implies 
 �L A or 
 �L B. 
 is L-saturated in V if
it is an L-theory in V that is L-prime in V and a proper subset of Fml(V ).

Now let L be a logic that includes the identity axioms. For distinct real variables v, w,
let Lvw be the smallest quasi-logic to include L, all formulas of the type A → A′ where
A′ is a vw-variant of A, and all formulas of the type A → v ≈ w. The inclusion of the
latter type of formula is a strengthening of the definition of Lvw from [SQL], so we need
to reprove the following result, which is [SQL, Lemma 15].

LEMMA 3.3. For distinct real variables v, w, and formulas A and B, the following are
equivalent.

(1) A �Lvw B.

(2) �Lvw A → B.

(3) �L A(v/w) → B(v/w).

Proof. (1) implies (2): by the Deduction Theorem. (2) implies (3): an induction on
proofs is used to show that �Lvw C implies �L C(v/w) for any formula C . The one new
case is when C is A → v ≈ w. But then C(v/w) is A(v/w) → v ≈ v, an instance of the
identity axiom I1 and hence an L-theorem.

(3) implies (1): if �L A(v/w) → B(v/w), then the sequence A, A(v/w), B(v/w), B is
an Lvw-deduction of B from A. �

An L-V -theory is defined to be a pair t = (
, V ) with 
 a nonempty L-theory in V . We
write Thm(t) for 
 and Var(t) for V . t is called L-V -saturated if Thm(t) is L-saturated
(i.e. L-prime and proper) in V . For a set U of real variables, let t |U = (	, U ), where
	 = {A: Var(A) ⊆ U and Thm(t) �L A}. Then t |U is an L-U -theory. When V ⊆ U ,
t |U is the expansion of t to U , and is the least L-theory in U that includes Thm(t). When
U ⊆ V , t |U is the contraction of t to U , in which case Thm(t |U ) = {A ∈ Thm(t) :
Var(A) ⊆ U }.

The canonical model AL for the logic L has the following structure [SQL, p. 53]:

(i) T = {t : T is an L-V -theory for a finite nonempty set V }.
(ii) S = {t ∈ T : t is L-V -saturated}.

(iii) D = {(t, V ar(t)): t ∈ T }.
HenceD = {V ar(t)): t ∈ T } = {V : V is a finite nonempty set of real variables}.

(iv) l = {(V, t): t ∈ T, Var(t) = V, and Thm(t) = L ∩ Fml(V )}.
(v) · = {(t, u, v) : t, u, v ∈ T, Var(t) = Var(u) = Var(v), and

Thm(v) = {B : (∃A ∈ Thm(u)) A → B ∈ Thm(t)} }.
(vi) − = {(a, b) ∈ S2 : Var(b) = Var(a) and Thm(b) = {B : ¬B /∈ Thm(a)} }.

(vii) ≥ = {(t, u) ∈ T 2 : Var(u) = Var(t) and Thm(u) ⊆ Thm(t)}.
(viii) ↑ = {(t, α, u) : t, u ∈ T, Var(t) ⊆ α ∈ D, and u is the expansion of t to α}.

(ix) ↓ = {(t, α, u) : t, u ∈ T, ∅ �= α ⊆ Var(t), and u is the contraction of t to α}.
(x) →= {(t, v, w, u) : t, u ∈ T, v, w ∈ Var(t), v �= w, Var(u) = Var(t), and

Thm(u) is the least Lvw-theory including Thm(t)}.
Thus Thm(t) ⊆ Thm(vw�t ) = {B : ∃A ∈ Thm(t) (A �Lvw B)}.

(xi) ϕt (R, v1, . . . , vn) iff Rv1 . . . vn ∈ Thm(t).

LEMMA 3.4. AL is a stratified identity model.
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Proof. The proof thatAL satisfies the conditions of groups I–V is essentially as in [MEF,
SQL], except that those papers did not require, as we do here, that Thm(t) be nonempty,
and that it be a proper subset of Fml(Var(t)) when t is saturated. So we need to check those
points where these requirements need to be verified.

First we need to verify that the operations on AL are well-defined. Note that if t ∈ T ,
then there exists some A ∈ Thm(t), so by axiom I1 we get v ≈ v ∈ Thm(t) for each
v ∈ Var(t). Hence axiom I3 yields (v ≈ v → v ≈ v) ∈ Thm(t). Thus if u ∈ T has
Var(u) = Var(t), then taking any v ∈ Var(t) we have (v ≈ v → v ≈ v) ∈ Thm(t) and
v ≈ v ∈ Thm(u), so v ≈ v ∈ Thm(t · u), ensuring Thm(t · u) �= ∅ as required.

Now let a ∈ S. We need to check that the prime theory Thm(−a) = {B : ¬B /∈
Thm(a)} is nonempty and proper, hence saturated. Now Thm(a) is proper, so there is
some A ∈ Fml(Var(a)) − Thm(a). But the Double-Negation Elimination axiom yields
¬¬A /∈ Thm(a), so¬A ∈ Thm(−a). Also there exists a B ∈ Thm(a), and�L B → ¬¬B,
so ¬¬B ∈ Thm(a), and so ¬B /∈ Thm(−a).

For the up operator, if t ∈ T and Var(t) ⊆ α, then Thm(t) ⊆ Thm(t↑α), so Thm(t↑α)
is nonempty because Thm(t) is. Similarly for the across operator, as Thm(t) ⊆ Thm(�t ).

For the down operator, if v ∈ α ⊆ Var(t), then v ≈ v ∈ Thm(t↓α). Actually, it is not
necessary to use properties of identity to show Thm(t↓α) �= ∅. For if B ∈ Thm(t), and
v1, . . . , vn are all the members of Var(t)−α, then�L B→∃x1 . . . ∃xn B(x1/v1, . . . , xn/vn)
where x1 . . . xn are new variables (cf. Lemma 4.1(1)), so ∃x1 . . . ∃xn B(x1/v1, . . . , xn/vn)
belongs to Thm(t) ∩ Fml(α), hence to Thm(t↓α).

The points from conditions I–V that need checking are as follows.
I(iii): Let a ≥ tu, where a, t, u are L, V -theories. To show ∃b ≥ t (a ≥ bu), let

	 = {A ∈ Fml(V ) : ∃B, C (A �L B → C & B ∈ Thm(u) & C /∈ Thm(a)}.
Then 	 is closed under disjunction [MFE, p. 354], and is disjoint from Thm(t). Hence by
Lindenbaum’s Lemma there exists a 
 extending Thm(t) that is L-prime in V and disjoint
from 	. But Thm(a) is proper and Thm(u) is nonempty, so taking any C ∈ Fml(V ) −
Thm(a) and B ∈ Thm(u) gives B → C ∈ 	. Hence 	 �= ∅, so 
 is proper and nonempty,
and b = (
, V ) is saturated, hence in S, with a ≥ bu.

Also we want that ∃b ≥ u (a ≥ tb). Here we use the identity axiom I4. Let

	 = {A ∈ Fml(V ) : ∃B /∈ Thm(a) (A → B ∈ Thm(t))}.
Again 	 is closed under disjunction and disjoint from Thm(t). Take any B ∈ Fml(V ) −
Thm(a) and v ∈ V . Then v ≈ v ∈ Thm(t), so by I4, (v �= v → B) ∈ Thm(t), giving
v �= v ∈ 	. So 	 �= ∅, and again we obtain a b = (
, V ) ∈ S as desired with 
 a prime
extension of Thm(t) disjoint from 	.

I(vii): If Rv1 . . . vn /∈ Thm(t), then there is a prime extension 
 of Thm(t) with
Rv1 . . . vn /∈ 
. Then 
 is proper, so a = (
, Var(t)) has a ∈ S with a ≥ t but not
ϕa(R, v1, . . . , vn).

IV(i)(a): We want a↓ to be in S whenever a ∈ S. Now Thm(a↓) will be a prime
L-theory in Var(a↓) when Thm(a) is a a prime L-theory in Var(a), and nonempty when
Thm(a) is nonempty as shown above. The new point is that Thm(a↓) is proper. But
there exists A /∈ Thm(a), and if Var(a) − Var(a↓) = {v1, . . . , vn} then taking fresh
variables x1, . . . , xn , the formula ∀x1 . . . ∀xn A(x1/v1, . . . , xn/vn) is not in Thm(a) by the
specification axiom, but is in Fml(Var(a↓)), so is not in Thm(a↓).

IV(i)(b): Let a ≤ b↓. We need an a+ ≤ b with a+↓ = a. This is constructed in [SQL]
in the form A+ = (
+, Var(b)), where 
+ is a prime theory in Var(b) that extends the
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expansion of a to Var(b) and is disjoint from �′, where �′ in turn is the closure under
disjunction of

[Fml(Var(a))− Thm(a)] ∪ [Fml(Var(b))− Thm(b)].

But [Fml(Var(a)) − Thm(a)] is nonempty, since Thm(a) is proper, so �′ is nonempty,
making 
+ proper as required.

IV(i)(c): Let a ≥ t↓. To construct a+ = (
+, Var(t)) with a+ ≥ t and a+↓ ≤ a, let
Thm(a) = Fml(Var(a))−Thm(a). Then Thm(t) is disjoint from Thm(a), which is closed
under disjunction as Thm(a) is prime in Var(a). Hence Thm(t) extends to the desired
L-theory 
+ that is L-prime in Var(t) and disjoint from Thm(a). But Thm(a) �= ∅, as
Thm(a) is proper, hence 
+ is proper, and a+ ∈ S as required.

V(iv): If t is vw-symmetric and t ≤ a ∈ S, then [SQL, p. 56] constructs a vw-symmetric
object a′ such that t ≤ a′ ≤ a and Thm(a′) is an Lvw-prime Lvw-theory in Var(t). But then
Thm(a′) is proper in Var(t), as Thm(a′) ⊆ Thm(a) and Thm(a) is proper, so a′ ∈ S as
required.

That completes the review of properties I–V. For VI(i), suppose that v ≈t w, that is
ϕt (≈, v, w), which means inAL that v ≈ w ∈ Thm(t). We want to show t = �t , where→ is
vw→. The argument is similar to Mares (1992, Lemma 6.2). First, from axiom I2, Thm(t)
is closed under vw-variants, that is if A′ is a vw-variant of A ∈ Thm(t), then v ≈ w∧ A ∈
Thm(t), and so from I2, A′ ∈ Thm(t). Now if B ∈ Thm(�t ), there exists A ∈ Thm(t)
with A �Lvw B. Then by Lemma 3.3, �L A(v/w) → B(v/w). But A(v/w) ∈ Thm(t) by
closure under vw-inviariants, hence B(v/w) ∈ Thm(t) as Thm(t) is an L-theory, and so
finally B ∈ Thm(t) as B is a vw-variant of B(v/w). Hence Thm(�t ) = Thm(t) as required.

Conversely, suppose t = �t . Take A ∈ Thm(�t ). Now A �Lvw v ≈ w, by definition of
Lvw, and Thm(�t ) is an Lvw-theory, so v ≈ w ∈ Thm(�t ) = Thm(t), hence v ≈t w. �

Let BQXτττ≈ be the logic in the language with τττ and ≈ that is defined by the axioms and
rules for BQ, the postulates from X, the postulates for τττ , and the identity axioms I1–I4.

THEOREM 3.5. If X is any set of the standard postulates of Figure 2, then the logic
BQXτττ≈ is characterized by the class of all stratified identity models satisfying the structure
conditions corresponding to the members of X.

Proof. Soundness has already been discussed. For completeness, let L= BQXτττ≈, and
suppose B is a real formula with �L B. The stratified identity model AL satisfies the
structure conditions corresponding to X, hence validates L, so it suffices to show AL �|� B.

Now the real variables can be regarded as self-designating names for the individuals in
AL, and so any real formula A can be subject to the truth relation t |� A in AL when
Var(A) ⊆ Var(t). The Canonical Truth Lemma states that in AL,

t |� A iff A ∈ Thm(t).

This is proven as in [SQL, Lemma 17]. The only new case here is when A is an atomic
identity, but this holds just as for any other atomic formula, and indeed was indicated above:
t |� v ≈ w iff ϕt (≈, v, w) iff v ≈ w ∈ Thm(t). So taking any V ∈ D with Var(B) ⊆ V
we get B /∈ l(V ) = L ∩ Fml(V ), and hence l(V ) �|� B in AL. �

REMARK 3.6 (THE ROLE OF AXIOM I4). I4 has been used only to prove that the
canonical model AL satisfies the second part of condition I(iii), that is that a ≥ tu implies
∃b ≥ u (a ≥ tb). The first part of I(iii), that a ≥ tu implies ∃b ≥ t (a ≥ bu), was
shown without any use of identity axioms. But if the fusion operation is commutative, that
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is tu = ut , then the second part of I(iii) follows from the first. Thus for logics containing
the Assertion axiom A → ((A → B) → B) (see last line of Figure 2), we do not need I4,
and can carry through the completeness proof for identity systems by using only I1–I3.

It must follow that in such systems, I4 is derivable from the other axioms. Indeed, from
Assertion we can derive the Permutation rule

A → (B → C)

B → (A → C)
(3.1)

But the schema v �≈ v → B is derivable from I1 using Double-Negation Elimination. In
particular we can derive v �≈ v → (v ≈ v → A), from which I4 follows by the Permutation
rule.

For logics in which I3 is derivable, and further information about the role of I4, see
Remark 6.9.

§4. The structural role of conjunctive existential distribution. Figure 3 lists postu-
lates involving the existential quantifier that are derivable in BQ. Their derivation depends
on Double-Negation Elimination and the definition of ∃x as¬∀x¬. But in Section 6 we will
consider logics in which Double-Negation Elimination is not present, and ∃ is primitive.
A semantics for ∃ will be given that validates the Existence axiom and the ∃-Elimination
rule. Validity of Conjunctive ∃-Distribution will require the new structural condition

IV(i)(d): u ≥ t↓ implies ∃u+ ≥ t (u+↓ = u).

It is noteworthy that in the presence of IV(i)(d), the condition

IV(i)(c): a ≥ t↓ implies ∃a+ ≥ t (a+↓ ≤ a)

implies the stronger

IV(i)(c)′: a ≥ t↓ implies ∃a+ ≥ t (a+↓ = a)

that was discussed earlier in Remark 2.4. For if a ≥ t↓, then from IV(i)(d) we get some
u ≥ t with u↓ = a, and then as a ≥ u↓, from IV(i)(c) we get some a+ ≥ u with a+↓ ≤ a.
But now a+ ≥ t , and a+↓ ≥ u↓ = a, hence a+↓ = a.

Canonical models for BQ and related logics can be shown to satisfy IV(i)(d). We now
give a proof of this whose only quantifier-related prerequisites are the postulates of
Figure 3. Hence this proof is available for logics having these postulates with ∃ primitive.

LEMMA 4.1. Let L be a logic having the∃-postulates of Figure 3. Suppose that x1, . . . , xn

are distinct and do not occur in A or B, and that v1, . . . , vn are distinct and do not occur
in A. Then

(1) �L B → ∃xn . . . ∃x1 B(x1/v1, . . . , xn/vn).

(2) �L A∧∃xn . . . ∃x1 B(x1/v1, . . . , xn/vn) → ∃xn . . . ∃x1 (A∧B(x1/v1, . . . , xn/vn)).

Proof. We use the principle that if x is not in C , then �L C → ∃xC(x/v), by the
Existence axiom as [C(x/v)](v/x) is just C . The proofs are by induction on n.

Fig. 3. Postulates for ∃.
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(1) Let Bn = ∃xn . . . ∃x1 B(x1/v1, . . . , xn/vn). As xn+1 is not in Bn , �L Bn →
∃xn+1 Bn(xn+1/vn+1) by the above principle, that is �L Bn → Bn+1. Hence if
�L B → Bn , then �L B → Bn+1. But �L B → B1 = ∃x1 B(x1/v1) as x1 is not in
B, so we get �L B → Bn for all n by induction on n.

(2) Let

Ln = A ∧ ∃xn . . . ∃x1 B(x1/v1, . . . , xn/vn)

Rn = ∃xn . . . ∃x1 (A ∧ B(x1/v1, . . . , xn/vn)),

the left and right sides of (2). Then L1 → R1 is a Conjunctive ∃-Distribution axiom.
Assume inductively that �L Ln → Rn . Now xn+1 does not occur in Rn , so �L
Rn → ∃xn+1 Rn(xn+1/vn+1). Since vn+1 is not in A, ∃xn+1 Rn(xn+1/vn+1) is just
Rn+1. It follows that �L Ln → Rn+1. But vn+1 is not in Rn+1, so the ∃-Elimination
rule then gives �L ∃xn+1Ln(xn+1/vn+1) → Rn+1. Now

∃xn+1Ln(xn+1/vn+1) = ∃xn+1
(

A∧∃xn . . . ∃x1 B(x1/v1, . . . , xn/vn, xn+1/vn+1)
)
,

as vn+1 is not in A, so Ln+1→∃xn+1Ln(xn+1/vn+1) is a Conjunctive ∃-Distribution
axiom. It follows that �L Ln+1 → Rn+1. Thus �L Ln → Rn for all n, by induction.

�

THEOREM 4.2. Let L be a logic having the ∃-postulates of Figure 3. Then the canonical
model AL for L satisfies the condition

IV(i)(d): u ≥ t↓ implies ∃u+ ≥ t (u+↓ = u).

Proof. Suppose that in AL we have u ≥ t↓ with t = (	, V+) and u = (
, V ). Hence
V ⊆ V+ and 	 ∩ Fml(V ) ⊆ 
. Let 	+ = {C ∈ Fml(V+) : 
 ∪ 	 �L C}. Then 	+ is an
L-theory in V+ with 
 ∪ 	 ⊆ 	+ and 
 ⊆ 	+ ∩ Fml(V ). We prove the converse of this
last inclusion.

Let C ∈ 	+ ∩ Fml(V ). Then 
 ∪ 	 �L C , so as the theories 
 and 	 are closed under
conjunction, then either there exists A ∈ 
 with �L A → C ; or there exists B ∈ 	 with
�L B → C ; or there exists A ∈ 
 and B ∈ 	 with �L A ∧ B → C . We take the last case
first.

Let V+ − V = {v1, . . . , vn}, and take new x1, . . . , xn not occurring in A, B, C . Since
the vi do not occur in C or in A, from �L A ∧ B → C by n applications of ∃-Elimination
we get

�L ∃xn . . . ∃x1 (A ∧ B(x1/v1, . . . , xn/vn)) → C.

Let B∗ = ∃xn . . . ∃x1 B(x1/v1, . . . , xn/vn) ∈ Fml(V ). Then �L A ∧ B∗ → C by Lemma
4.1(2) and the last result. Now B ∈ 	, and �L B → B∗ by Lemma 4.1(1), so B∗ ∈
	 ∩ Fml(V ) ⊆ 
. We now have A, B∗ ∈ 
, and �L A ∧ B∗ → C , giving C ∈ 
 as
required because C ∈ Fml(V ).

In the case �L A → C with A ∈ 
, then we get C ∈ 
 immediately. If however we
have �L B → C with B ∈ 	, then �L B∗ → C follows directly by ∃-Elimination, and
again C ∈ 
.

This establishes that 	+ ∩ Fml(V ) = 
. Putting u+ = (	+, V+), we then get u+ ≥ t
and u+↓V = u. �

Note that in this proof, since 	 ⊆ 	+, we get Thm(u+) �= ∅ if Thm(t) �= ∅, as required
for the canonical models of the identity systems of Section 3. Thus all the logics BQXτττ≈,
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as well as the BQX’s, are characterized by models satisfying the condition IV(i)(d). We
will assume this condition in the next section.

§5. Conservatively adding ⊃. The language with τττ and ≈ will now be expanded
further to include a new binary connective ⊃. Let A be a stratified identity model with
truth relation |� for the language without ⊃. Assume that A satisfies IV(i)(d). Define a new
truth relation |�′ on A for the language including ⊃, by inductively putting

t |�′ B ⊃ C iff for all u ≥ t, u |�′ B implies u |�′ C, (5.1)

and otherwise defining |�′ by exactly the same conditions as for |� given earlier.

LEMMA 5.1. For any sentence A, the Truth Lemmas 2.2 hold for A under |�′ in A.

Proof. By induction on the length of A. The only new case is A = B ⊃ C .
Truth Extension: Let t |�′ B ⊃ C and t ≤ v . If u ≥ v and u |�′ B, then u ≥ t so by

(5.1) u |�′ C . This shows that v |�′ B ⊃ C , by (5.1) again.
Truth Across: Let A′ be an i j-variant of A = B ⊃ C . Then A′ = B ′ ⊃ C ′, where B ′

and C ′ are i j-variants of B and C . Let t = i j �t and t |�′ B ⊃ C . If t ≤ u and u |�′ B ′,
then by Lemma 3.1(3) u = i j �u, and so u |�′ B by induction hypothesis, as B is an i j-
variant of B ′. Hence by (5.1) u |�′ C , so u |�′ C ′ by induction hypothesis. This shows that
t |�′ B ′ ⊃ C ′ as required.

Truth Down: Let t↓ |�′ B ⊃ C . If t ≤ u and u |�′ B, then t↓ ≤ u↓ (III(i)(b)), and
u↓ |�′ B by induction hypothesis on B, hence u↓ |�′ C by (5.1), and so u |�′ C by
hypothesis on C . This shows that t |�′ B ⊃ C .

Conversely, let t |�′ B ⊃ C . If t↓ ≤ u and u |�′ B, then by IV(i)(d) there exists u+ ≥ t
with u+↓ = u, hence u+ |�′ B by hypothesis on B. Then u+ |�′ C by (5.1), and so
u |�′ C by hypothesis on C . This shows that t↓ |�′ B ⊃ C .

Truth Saturation: If t �|�′ B ⊃ C , then for some u ≥ t , u |�′ B and u �|�′ C .
By induction hypothesis, there exists a ≥ u such that a �|�′ C . Then a |�′ B by Truth
Extension. But then a ≥ t and a �|�′ B ⊃ C . �

Now let HBQXτττ≈ be the logic defined by all the postulates of BQXτττ≈ stated for all
formulas in the new expanded language with ⊃, and the ∧-Residuation rules

A ∧ B → C

A → (B ⊃ C)

A → (B ⊃ C)

A ∧ B → C
(5.2)

THEOREM 5.2. If X is any set of the standard postulates of Figure 2, then the logic
HBQXτττ≈ is a conservative extension of BQXτττ≈.

Proof. By the method used to prove Theorem 2.5.
Let L= BQXτττ≈, and suppose B is a ⊃-free formula such that �L B. By Theorem 3.5,

there is a (canonical) stratified identity model A satisfying the structure conditions for X,
and having A �|� B. We can assume A satisfies IV(i)(d) (Theorem 4.2). Extend |� as above
to a relation |�′ on A for the language including ⊃.

Given that A satisfies the structure conditions for X, and the Truth Lemmas all hold
in (A, |�′) for the expanded language (Lemma 5.1), earlier soundness arguments apply
to show that all postulates of BQXτττ≈ are sound in (A, |�′). In addition, the residuation
rules are sound: it is readily shown, with the help of Corollary 2.3(4) especially, that
A |�′ A ∧ B → C iff A |�′ A → (B ⊃ C). Hence A |�′ HBQXτττ≈. But any ⊃-free
formula A has t |� A iff t |�′ A, and hence A �|�′ B. Therefore HBQXτττ≈ � B as
required. �
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§6. Antitone and contrapositive negation. Points of a model may be thought of as
states containing certain information, with t |� A meaning that t contains the information
that A. There is an informational interpretation of negation that takes t |� ¬A to mean
that only states “incompatible” with t contain the information that A, or equivalently that
no state compatible with t contains this information (Dunn, 1993). Then t |� ¬¬A asserts
that any state compatible with t is compatible with a state containing the information that
A. It is not clear that it should follow that t itself contains the information that A, so this
interpretation apparently does not validate Double-Negation Elimination.

In this section our results will be extended to logics that lack Double-Negation Elimi-
nation. Here it is no longer appropriate to use negation to define ∨ or ∃, so all of τττ , ∧, ∨,
¬, →, ∀, and ∃ will be taken as primitive, and we need new semantics for ∨, ¬, and ∃. In
addition, a primitive binary connective ◦ (fusion) will be added, to be interpreted via the
operation t · u in structures. The co-theory function is dropped in favor of a binary incom-
patibility relation ⊥ which is used to model ¬ in a manner first introduced in Goldblatt
(1974).

A structure now has the form

A = (T, S, D, l, ·,⊥,≥,↑,↓,→, ϕ),

with the function − : S → S replaced by a binary relation ⊥ on T such that t ⊥ u implies
t ≡ u.

The structural conditions on a model are adapted as follows:

I. Standard: (v) and (vi), which refer to −, are replaced by

(v)′ u ≥ t and t ⊥ v implies u ⊥ v .

(vi)′ (∀a ≥ t)(a ⊥ u) implies t ⊥ u.

Also we add

(ix) ∃u(a �⊥ u) [equivalently: ∀u(t ⊥ u) implies t /∈ S].

II. Levels: (iii) is strengthened to

(iii)′ ∀α, β, γ (α ∪ (γ − β) ∈ D).

IV. Interaction of ↑ and ↓ : (ii) is replaced by

(ii)′ (With ⊥)

(a) t↓ ⊥ u↓ implies t ⊥ u.

(b) t ⊥ u↑ implies t↓ ⊥ u.

IV(i)(b) is withdrawn: it can be optionally added for logics that have Disjunctive ∀-Distri-
bution. IV(i)(d) is also withdrawn: it can be optionally added for logics that have Conjunc-
tive ∃-Distribution.

V. Behavior of → : (v) is replaced by

(v)′ t ⊥ �u implies �t ⊥ u,

and (vi) is strengthened to

(vi)′ −−→(tu) = �t �u ≤ �t u.
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Also we add

(x)
−−→
(t↓) ≥ (�t )↓, where → is i j � with i, j ∈ Dt↓.

All other model conditions remain unchanged. We will call a structure satisfying these
modified conditions for groups I–V an MQ-model. Here MQ refers to a logic to be defined
below, and the “M” is for “minimal”.

Note that the new V(x) can be strengthened to an equality: using III(iii)(a), V(vii),

III(iii)(b), and the monotonicity of (�) and ↓, we get
−−→
(t↓) = −−→

(t↓)↑↓ = −−−→
(t↓↑)↓ ≤ (�t )↓.

The truth relation |� on a model of this kind is defined by the previous clauses for atomic
sentences, ∧, →, and ∀, and the new

• t |� ¬B iff (∀u ≡ t) (u |� B implies t ⊥ u).
• t |� B ∨ C iff (∀a ≥ t) (a |� B or a |� C).
• t |� B ◦ C iff (∀a ≥ t) (∃u, v) (a ≥ uv and u |� B and v |� C).
• t |� ∃x B iff (∀a ≥ t) (∀ρ ∈ D) (∃u) (∃i ∈ Du − ρ) (u |� B(i/x) and u↓a ≤ a).

In the clause for ∃ it is implicit that Da ⊆ Du . This complex clause seems to be required
to derive the Truth Lemmas, especially the “up” direction of Truth Down for ∃. But once
these are established, we will show, in Corollary 6.2, that the clause is equivalent to the
simpler and more intuitive (2.1).

LEMMA 6.1. The Truth Lemmas 2.2 hold for any sentence A in the present language
under the truth relation in an MQ-model.

Proof. It is a general fact that if a condition θ(t) is defined by, or equivalent to, one of
the form (∀a ≥ t) ψ(a/t), then it satisfies Extension: θ(t) and t ≤ u implies θ(u/t); and
Saturation: (∀a ≥ t) θ(a/t) implies θ(t). Thus Truth Extension and Truth Saturation hold
when A has any of the forms B ∨ C , B ◦ C , and ∃x B, just by the way truth is defined for
these cases. We consider the remaining new cases in turn.

Truth Extension: Let t |� ¬B and t ≤ u. Then if u |� B, t ⊥ v by the semantics of ¬,
and therefore u ⊥ v by I(v)′. This shows that u |� ¬B.

Truth Across: Let t = i j �t . As usual, A′ denotes an i j-variant of A. If A is of the form
¬B, B ∨ C , B ◦ C , or ∃x B, then A′ is of the form ¬B ′, B ′ ∨ C ′, B ′ ◦ C ′, or ∃x B ′, where
B ′ and C ′ are i j-variants of B and C .

For the negation case, suppose t |� ¬B. If u |� B ′, then �u |� B ′ by Truth Extension
as u ≤ �u; so �u |� B by induction hypothesis as B is an i j-variant of B ′; hence t ⊥ �u as
t |� ¬B; so �t ⊥ u by V(v)′. This shows �t |� ¬B ′. But �t = t .

For disjunction, suppose t |� B ∨ C . Let a ≥ t . Then by V(iv) there exists a′
with t ≤ a′ ≤ a and a′ = �a′. Then as t |� B ∨ C , either a′ |� B or a′ |� C ; hence
a′ |� B ′ or a′ |� C ′ by induction hypothesis as a′ = �a′; so a |� B ′ or a |� C ′ by Truth
Extension. This shows t |� B ′ ∨ C ′.

For fusion, suppose t |� B ◦ C . Let a ≥ t . Take a′ with t ≤ a′ ≤ a and a′ = �a′. Then
there exist u, v with a′ ≥ uv , u |� B, and v |� C . As u ≤ �u, by Truth Extension and
induction hypothesis we then get �u |� B ′. Similarly �v |� C ′. But using the new part of

V(vi)′, �u �v = −−→
(uv) ≤ �a′ = a′ ≤ a. This is enough to ensure t |� B ′ ◦ C ′.

For the case of ∃, let t |� ∃x B. Take any a ≥ t and ρ ∈ D. By V(iv) again take a′
with t ≤ a′ ≤ a and a′ = �a′. From t |� ∃x B, there exists a u and a k ∈ Du − ρ with
u |� B(k/x) and u↓a′ ≤ a′. By Truth Extension and induction hypothesis, �u |� B ′(k/x).
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But using the new V(x),

(�u )↓a = (�u )↓a′ ≤ −−−→
(u↓a′) ≤

−→
a′ = a′ ≤ a.

Since k ∈ D�u−ρ and �u |� B ′(k/x), this established the necessary condition for t |� ∃x B ′.
Truth Down: For the negation case, let t↓ |� ¬B. Then if t ≡ u |� B, by induction

hypothesis u↓ |� B, hence t↓ ⊥ u↓ by the semantics of ¬, and so t ⊥ u by the new
IV(ii)′(a). This shows t |� ¬B. Conversely, let t |� ¬B. Then if t↓ ≡ u |� B, by
induction hypothesis u↑ |� B as u↑↓ = u, hence t ⊥ u↑ as t |� ¬B, so t↓ ⊥ u by
IV(ii)′(b). This shows t↓ |� ¬B.

For disjunction, suppose t↓ |� B ∨ C . Let a ≥ t . Then a↓ ≥ t↓ and a↓ ∈ S, so
a↓ |� B or a↓ |� C , hence a |� B or a |� C by induction hypothesis. This shows
t |� B ∨ C . Conversely, suppose t |� B ∨ C and a ≥ t↓. By IV(i)(c) there exists
a+ ≥ t with a+↓ ≤ a. Then a+ |� B or a+ |� C , so a+↓ |� B or a+↓ |� C by
induction hypothesis, hence a↓ |� B or a↓ |� C by Truth Extension. This shows t↓ |�
B ∨ C .

For fusion, suppose t↓ |� B ◦ C . Let a ≥ t . Then a↓ ≥ t↓, so there exist u, v with
a↓ ≥ uv , u |� B, and v |� C . Then u↑ |� B, and v↑ |� C by induction hypothesis, as
u↑↓ = u and v↑↓ = v . But using IV(iii)(a), u↑v↑ = (uv)↑ ≤ (a↓)↑ ≤ a (III(iii)(b)).
This shows t |� B◦C . Conversely, if t |� B◦C and a ≥ t↓, take an a+ ≥ t with a+↓ ≤ a,
by IV(i)(c). Then there exist u, v with a+ ≥ uv , u |� B, and v |� C . Hence u↓ |� B, and
v↓ |� C by induction hypothesis. Now (uv)↓ ≥ u↓v↓ [SQL, Lemma 1(i)], so we have
a ≥ a+↓ ≥ (uv)↓ ≥ u↓v↓, hence a ≥ u↓v↓. This shows t↓ |� B ◦ C .

For the ∃ case, suppose first that t |� ∃x B. To show t↓ |� ∃x B, take any a ≥ t↓
and ρ ∈ D. By IV(i)(c) there exists a+ ≥ t with a+↓a ≤ a. Hence there exist a u
and an i ∈ Du − ρ such that u |� B(i/x) and u↓a+ ≤ a+. But then using III(ii)(b),
u↓a = u↓a+↓a ≤ a+↓a ≤ a, giving u↓a ≤ a as required.

Conversely, let t↓ |� ∃x B. To show t |� ∃x B, take any a ≥ t and ρ ∈ D. This is the
most demanding case: we have to find a u and an i /∈ ρ with u |� B(i/x) and u↓ ≤ a.
First, let α = Dt↓ and β = Dt = Da . Using II(ii), take a ρ∗ ∈ D with β ∪ ρ ⊆ ρ∗. Then
t↓ ≤ a↓ ∈ S and t↓ |� ∃x B, so there exists a v with α ⊆ Dv and an i ∈ Dv − ρ∗ such
that v |� B(i/x) and v↓α ≤ a↓α .

Now let γ = Dv , and take a δ ∈ D with γ ∪ β ⊆ δ. We have α ⊆ β ∩ γ , and i ∈ γ − β
as β ⊆ ρ∗ and i /∈ ρ∗. Then as ρ ⊆ ρ∗, i /∈ ρ. Put σ = α ∪ (γ − β), which belongs to D
by the new II(iii)′. [It may help to draw a Venn diagram showing the relationships between
α, β, γ, δ, σ , and i .]

Next let s = v↓σ . Then s |� B(i/x) by induction hypothesis, as v |� B(i/x). Hence
s↑δ |� B(i/x) by induction hypothesis, as s↑δ↓σ = s. So putting u = s↑δ it remains only
to show that u↓β ≤ a. Now

Ds ∩ Ds↓α↑β = σ ∩ β = [α ∪ (γ − β)] ∩ β = α = Ds↓α
,

so by III(iii)(c), s↓α↑β = s↑δ↓β . Hence

u↓β = s↑δ↓β = s↓α↑β = v↓σ↓α↑β = v↓α↑β ≤ a↓α↑β ≤ a

as required.
Truth Saturation: The only case left unresolved is A = ¬B. Suppose that (∀a ≥

t) (a |� ¬B). If u ≡ t and u |� B, then (∀a ≥ t) (a ⊥ u) by the semantics of ¬, so t ⊥ u
by the new I(vi)′. This proves t |� ¬B, as required. �
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COROLLARY 6.2. In any MQ-model, the following are equivalent.

(1) t |� ∃x B.

(2) (∀a ≥ t) (∃u) (∃i ∈ Du) (u |� B(i/x) and u↓a ≤ a).

(3) (∀a ≥ t) (∃b) (∃i ∈ Db) (b |� B(i/x) and b↓a ≤ a). [see (2.1)]

Proof. (1) implies (2): Given a ≥ t , just put ρ = Da in the condition for (1) to conclude
there exists a u and an i ∈ Du − Da with u |� B(i/x) and u↓a ≤ a. Hence (2) holds.

(2) implies (3): Let a ≥ t . From (2) we obtain u and i with u |� B(i/x) and u↓a ≤ a.
By IV(i)(c) there exists a+ ≥ u with a+↓a ≤ a. Then a+ |� B(i/x) by Truth Extension,
so b = a+ fulfills (3).

(3) implies (1): Let a ≥ t and ρ ∈ D. From (3) we obtain b and i with b |� B(i/x) and
b↓a ≤ a. Now by II(i,ii), take a β ∈ D with ρ ∪ Db ⊂ β, and pick j ∈ β − (ρ ∪ Db).
Thus j ∈ β − ρ. Then b↑β |� B(i/x) by Truth Down, as b↑β↓b = b. Let → be i j � and

put u = −→
b↑, where ↑ is ↑β . Then u |� B(i/x) by Truth Extension, hence u |� B( j/x)

by Truth Across. Now u↓b = −→
b↑↓b ≤ b by V(viii) as j ∈ Db↑ − Db and i ∈ Db, so

u↓a = u↓b↓a ≤ b↓a ≤ a. Thus we have found a u and j ∈ Du − ρ with u |� B( j/x) and
u↓a ≤ a, as required to show t |� ∃x B, that is (1). �

Using Truth Extension, results (2)–(4) of Corollary 2.3 can be proved for the present
semantics (see also [MFE, p. 350]).

Figure 4 lists axioms and rules for a system MQ. This has the postulates for τττ , and all
the quantifier-free postulates of Figure 1 except the Double-Negation Elimination axiom
and the Contraposition rule. The new Antitonicity rule is the only postulate for negation.
There are new Disjunction Introduction axioms, as ∨ is now primitive and these are inde-
pendent. The Fusion–Residuation rules are also new. Note that Disjunctive ∀-Distribution
(Figure 1) and Conjunctive ∃-Distribution (Figure 3) are not included in MQ. The effect of
adding these two distribution principles to MQ will be considered below (see especially
Remark 6.8 and its preceding two paragraphs, as well as part (2) of the summary in
Section 8).

A logic for the present language is a set L of real formulas closed under the postulates
of Figure 4. A quasi-logic has all of these postulates except the rules of Generalization and
∃-Elimination. MQ is the smallest logic.

LEMMA 6.3.

(1) �L ¬A1 ∨ · · · ∨ ¬An → ¬(A1 ∧ · · · ∧ An), for any quasi-logic L.

(2) The Fusion–Residuation rules together are equivalent, over the postulates for rele-
vant implication, to the combination of the schemas

T1: (A → B) ◦ A → B

T2: A → (B → A ◦ B)

with the Fusion–Monotonicity rule

A → A∗, B → B∗

A ◦ B → A∗ ◦ B∗ .

Proof. (1): By the Conjunction Elimination axioms and the Antitonicity rule,�L ¬Ai →
¬(A1 ∧ A2) for i = 1, 2, so by Disjunction Elimination �L ¬A1 ∨ ¬A2 → ¬(A1 ∧ A2).
The general case of n is left to the reader.
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Fig. 4. Axioms and rules for MQ.

(2): T1 follows from (A → B) → (A → B) by the first Fusion–Residuation rule, and
T2 follows from A◦B → A◦B by the second rule. The derivation of Fusion–Monotonicity
is lengthier but routine, and is left to the reader, as is the converse direction of (2). �

THEOREM 6.4 (SOUNDNESS).

(1) The MQ-theorems are valid in all MQ-models.

(2) Conjunctive ∃-Distribution is valid in any model satisfying

IV(i)(d): u ≥ t↓ implies ∃u+ ≥ t (u+↓ = u).

Proof. Using (2)–(4) of Corollary 2.3, it is straightforward to verify that the Disjunction
axioms are valid under the present semantics. We go through the verification for the other
additional axioms.

Antintonicity axiom: Let A → B be true in a model A. If t |� ¬B, then for u ≡ t , if
u |� A, then u |� B as A |� A → B, hence t ⊥ u by the semantics of ¬. Hence t |� ¬A.
This shows A |� ¬B → ¬A.

Fusion–Residuation rules: For the first rule, let A |� A → (B → C). Suppose t |�
A ◦ B. We want t |� C to conclude that A |� A ◦ B → C . Now for any a ≥ t , there
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exist u, v with uv ≤ a, u |� A and v |� B. Then u |� B → C as A |� A → (B → C),
so uv |� C as u |� A. As uv ≤ a, this gives a |� C by Truth Extension. This shows
(∀a ≥ t) (a |� C), therefore a |� C as required, by Truth Saturation.

For the second rule, let A |� A ◦ B → C . Suppose t |� A. We want t |� (B → C) to
conclude that A |� A → (B → C). So let u ≡ t have u |� B. We want tu |� C . But now
for all a ≥ tu we have t |� A and u |� B, which shows that tu |� A ◦ B by the semantics
of ◦. Hence tu |� C as A |� A ◦ B → C .

Existence axiom: Let real formula B have the form A(v/x) → ∃x A. We have to show
that every sentence obtained by specifying the values of the real variables of B to be
particular constants from I is true in A. We may suppose that all such variables except
v are already specified. So we take any designated point l of A, and show that l |� B(i/v)
if i ∈ Dl . Equivalently, for any t ≡ l, t |� A(v/x)(i/v) implies t |� ∃x A(i/v). But
notice that A(v/x)(i/v) is the same formula A(i/v)(i/x): in both cases we get the formula
resulting from replacing all occurrences of x and v in A by i .

Now if t |� A(i/v)(i/x), then for any a ≥ t , putting u = a we get u |� A(i/v)(i/x) by
Truth Extension, and u↓a ≤ a, which verifies that t |� ∃x A(i/v) by Corollary 6.2(2).
∃-Elimination rule: Let real formula A → B be true in A, with v its only real variable,

and v not in B. Let the sentence ∃x A(x/v) → B be defined at t , and suppose t |�
∃x A(x/v). Then by Corollary 6.2(2), given any a ≥ t there exist u and i ∈ Du with
u |� A(x/v)(i/x) and u↓a ≤ a. Since A has no free x , A(x/v)(i/x) is just A(i/v),
so u |� A(i/v). But A |� A(i/v) → B, so u |� B. Now B ∈ Sen(t) = Sen(a), so
u↓a |� B by Truth Down, hence a |� B by Truth Extension. Altogether this shows that
(∀a ≥ t) (a |� B), hence t |� B by Truth Saturation. In sum, we showed that in general
t |� ∃x A(x/v) implies t |� B, hence ∃x A(x/v) → B is true in A.

That concludes the proof of (1). For (2), suppose A ∧ ∃x B ∈ Sen(t) and t |� A ∧ ∃x B.
Then for any a ≥ t , since t |� ∃x B, there exist u and i ∈ Du such that u |� B(i/x) and
u↓ ≤ a. As t |� A, then a |� A by Truth Extension. As a ≥ u↓, if IV(i)(d) holds then
there is some v ≥ u with v↓ = a. Hence v |� A by Truth Down. Also v |� B(i/x) by
Truth Extension. Now we have v |� A ∧ B(i/x). But A ∧ B(i/x) = (A ∧ B)(i/x) as x is
not free in A. So we have shown that (∀a ≥ t) (∃u, i) (u |� (A ∧ B)(i/x) and u↓ ≤ a).
This ensures t |� ∃x(A∧ B). Thus IV(i)(d) guarantees that A∧∃x B → ∃x(A∧ B) is true
in A when x is not free in A. �

To prove completeness, we associate with each logic L a canonical model AL by the
constructions of Section 3. The one change we need to make is to replace the co-theory
function by a binary relation t ⊥ u. This is to hold only when Var(t) = Var(u), and for
such t, u is defined by

t ⊥ u iff ∃A ∈ Thm(u) (¬A ∈ Thm(t)).

LEMMA 6.5. AL is an MQ-model.

Proof. We verify that AL satisfies all the new MQ-model conditions.
I(v)′: if u ≥ t and t ⊥ v , there is some A ∈ Thm(v) with ¬A ∈ Thm(t). But Thm(t) ⊆

Thm(u), so ¬A ∈ Thm(u), showing u ⊥ v .
I(vi)′: Suppose (∀a ≥ t) (a ⊥ u). We want t ⊥ u. Let 	 be the closure under disjunction

of the set {¬A : A ∈ Thm(u)}. It suffices to show that Thm(t) ∩ 	 �= ∅. For if ¬A1 ∨
· · ·∨¬An ∈ Thm(t) with A1, . . . , An ∈ Thm(u), then using Lemma 6.3(1) we get ¬(A1∧
· · · ∧ An) ∈ Thm(t), so as A1 ∧ · · · ∧ An ∈ Thm(u) we get t ⊥ u as desired. But if we
had Thm(t) ∩ 	 = ∅, then as 	 is closed under disjunction we could use Lindenbaum’s
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Lemma to extend Thm(t) to a prime theory 
 in Var(t) that is disjoint from 	. Moreover,
if theories are required to be nonempty, then 	 �= ∅ and so 
 is proper. Thus putting
a = (
, Var(t)) would give a ∈ S and a ≥ t ; and if A ∈ Thm(u) then ¬A ∈ 	 and so
¬A /∈ Thm(a), which implies that a �⊥ u. But this contradicts our original supposition.
Hence indeed Thm(t) ∩ 	 �= ∅.

II(iii)′: α ∪ (β − γ ) is a (nonempty) finite set of real variables if α, β, γ are.
IV(ii)′(a): Let t↓ ⊥ u↓. Then there is an A ∈ Thm(u↓) with ¬A ∈ Thm(t↓). Now

A ∈ Thm(u) and ¬A ∈ Thm(t), as Thm(v↓) ⊆ Thm(v) in general, so t ⊥ u.
IV(ii)′(b): Let t ⊥ u↑, with some B ∈ Thm(u↑) having ¬B ∈ Thm(t). By definition

of u↑, there exists A ∈ Thm(u) with A �L B. Hence ¬B �L ¬A by Antitonicity, so
¬A ∈ Thm(t). But ¬A is a formula in Var(u) = Var(t↓), so ¬A ∈ Thm(t↓), implying
t↓ ⊥ u.

V(v)′: Let → be vw � . Suppose t ⊥ �u, with some B ∈ Thm(�u) having ¬B ∈ Thm(t).
Then there exists A ∈ Thm(u) with A �Lvw B. Hence ¬B �Lvw ¬A by Antitonicity. This
ensures ¬A ∈ Thm(�t ), and hence �t ⊥ u.

V(vi)′: The new part is that �t �u ≤ −→
tu . This uses the Fusion–Residuation rules, in the

form of their consequences in Lemma 6.3(2). Let B ∈ Thm(�t �u ). Then there exists A →
B ∈ Thm(�t) with A ∈ Thm(�u). Hence there exists C ∈ Thm(t) with C �Lvw A → B, and
D ∈ Thm(u) with D �Lvw A. Then by Fusion–Monotonicity, C ◦ D �Lvw (A → B) ◦ A.
Using T1 of Lemma 6.3(2), this leads to C◦D �Lvw B. But by T2 and C ∈ Thm(t) we have
D → C ◦ D ∈ Thm(t), hence as D ∈ Thm(u), C ◦ D ∈ Thm(tu). From C ◦ D �Lvw B,
this gives B ∈ Thm(

−→
tu ) as required.

V(x): Let → be vw � for v, w ∈ Var(t↓). To show
−−→
(t↓) ≥ (�t )↓, let B ∈ Thm((�t )↓).

Then Thm(�t ) �L B, so for some A ∈ Thm(t), A �Lvw B. Hence by Lemma 3.3, �L
A(v/w) → B(v/w).

Let Var(A)−Var(t↓) = {v1, . . . , vn}, and take new x1, . . . , xn not occurring in A or B.
Since the vi do not occur in B(v/w), by ∃-Elimination we get

�L ∃xn . . . ∃x1 A(x1/v1, . . . , xn/vn)(v/w) → B(v/w).

Let A∗ = ∃xn . . . ∃x1 A(x1/v1, . . . , xn/vn). We have shown that �L A∗(v/w) → B(v/w).
Hence by Lemma 3.3, A∗ �Lvw B. But �L A → A∗ by Lemma 4.1(1), and A ∈ Thm(t),
so A∗ ∈ Thm(t). Since A∗ ∈ Fml(Var(t↓)), then A∗ ∈ Thm(t↓). Since A∗ �Lvw B, this
finally gives B ∈ Thm(

−−→
(t↓)) as required. �

LEMMA 6.6 (CANONICAL TRUTH). In AL, t |� A iff A ∈ Thm(t).

Proof. We work through the new inductive cases for A. Suppose t = (
, V ).
Negation: Let t |� ¬B. Put 	 = {C ∈ Fml(V ) : B �L C}, and u = (	, V ). Then u ∈ T

and u ≡ t . But B ∈ Thm(u) by the Identity axiom, so u |� B by induction hypothesis,
hence t ⊥ u by the semantics of ¬. Thus there is some C ∈ 	 with ¬C ∈ Thm(t). By
Antitonicity, ¬C �L ¬B, hence ¬B ∈ Thm(t) as required.

Conversely, if ¬B ∈ Thm(t), then for any u ≡ t with u |� B we have B ∈ Thm(u) by
induction hypothesis, which is enough to show t ⊥ u. Hence t |� ¬B.

Disjunction: Let t |� B ∨C . Now if B ∨C /∈ 
, then there exists a 	 extending 
 that
is saturated in V and has B ∨ C /∈ 	. Put a = (	, V ) ∈ S. Then a ≥ t , so either a |� B
or a |� C , so by induction hypothesis B ∈ 	 or C ∈ 	. But in either case the Disjunction
Introduction axioms lead to the contradiction B∨C ∈ 	. Hence B∨C ∈ Thm(t) after all.



334 ROBERT GOLDBLATT

Conversely, if B∨C ∈ Thm(t), then for any a ≥ t , B∨C ∈ Thm(a), hence B ∈ Thm(a)
or C ∈ Thm(a) as Thm(a) is prime, so a |� B or a |� C by induction hypothesis. This
shows t |� B ∨ C .

Fusion: Let t |� B ◦ C . Now if B ∨ C /∈ 
, there exists a V -saturated 	 extending 

with B ◦ C /∈ 	. Put a = (	, V ) ∈ S. Then a ≥ t , so the semantics of fusion gives some
u, v with a ≥ uv , u |� B, and v |� C . Hence by induction hypothesis B ∈ Thm(u) and
C ∈ Thm(v). By T2 of Lemma 6.3(2), B ∈ Thm(u) implies (C → B ◦ C) ∈ Thm(u).
Hence C ∈ Thm(v) implies B ◦ C ∈ Thm(uv) ⊆ Thm(a) = 	, a contradiction. Hence
B ◦ C ∈ Thm(t) after all.

Conversely, let B ◦ C ∈ Thm(t) and take any a ≥ t . Then B ◦ C ∈ Thm(a). Put
	B = {D ∈ Fml(V ) : B �L D}, 	C = {D ∈ Fml(V ) : C �L D}, u = (	B, V ),
and v = (	C , V ). Then B ∈ Thm(u) and C ∈ Thm(v), so u |� B and v |� C by
induction hypothesis. It remains to show that a ≥ uv to conclude from this that t |� B ◦C .
But if E ∈ Thm(uv), then there is some D ∈ Thm(v) with D → E ∈ Thm(u). Thus
B �L D → E and C �L D, so by Fusion–Monotonicity, B ◦ C �L (D → E) ◦ D.
This leads by T1 of Lemma 6.3(2) to B ◦ C �L E . As B ◦ C ∈ Thm(a), E ∈ Thm(a) as
required.

Existential quantifier: Let t |� ∃x B. If ∃x B /∈ 
, there exists a V -saturated 	
extending 
 with ∃x B /∈ 	. Put a = (	, V ) ∈ S. Then a ≥ t , so by the semantics
for ∃ of Corollary 6.2(2), there exist u and v ∈ Du with u |� B(v/x) and u↓V ≤ a. By
induction hypothesis B(v/x) ∈ Thm(u). Hence by the Existence axiom, ∃x B ∈ Thm(u).
But ∃x B ∈ Fml(V ), so then ∃x B ∈ Thm(u↓V ) ⊆ Thm(a) = 
, a contradiction. Hence
∃x B ∈ Thm(t) after all.

Conversely, let ∃x B ∈ Thm(t). Take any a ≥ t . Choose v /∈ V and put V+ = V ∪ {v}.
Let 	 = {C ∈ Fml(V+) : B(v/x) �L C}, and u = (	, V+). Then B(v/x) ∈ Thm(u),
so u |� B(v/x) by induction hypothesis. It remains to show u↓V ≤ a to conclude, via
Corollary 6.2(2), that t |� ∃x B. But if C ∈ Thm(u↓V ), then B(v/x) �L C and C ∈
Fml(V ), so v is not in C . Also v is not in B, so B(v/x)(x/v) = B. Hence �L ∃x B → C by
∃-Elimination. From ∃x B ∈ Thm(t) we then get C ∈ Thm(t) ⊆ Thm(a), so C ∈ Thm(a)
as required. �

In a canonical model, the semantics of fusion can be simplified:

COROLLARY 6.7. In AL, t |� B ◦ C iff ∃u, v (t ≥ uv and u |� B and v |� C).

Proof. Let t |� B ◦ C in AL, hence B ◦ C ∈ Thm(t) by the Canonical Truth Lemma
just proved. But in the Fusion case of this lemma we defined points u = (	B, V ) and
v = (	C , V ) of the model with B ∈ Thm(u) and C ∈ Thm(v), and showed that if E ∈
Thm(uv), then B ◦C �L E . Since B ◦C ∈ Thm(t), this implies that Thm(uv) ⊆ Thm(t),
and hence t ≥ uv . Also u |� B and v |� C by the lemma.

Conversely, if t ≥ uv and u |� B and v |� C , then transitivity of ≥ ensures that (∀a ≥
t) (a ≥ uv and u |� B and v |� C), hence t |� B ◦ C . �

We have now completed all the work needed for completeness theorems that axiomatize
the logics determined by MQ-models. Theorem 6.4 and Lemmas 6.5 and 6.6, together with
the work of the earlier sections allow us to conclude that MQ is characterized by the class
of all MQ-models. This completeness result extends to MQX, where X is any subset of a
list comprising the postulates of Figure 2 and the axioms of Double-Negation Introduction
A → ¬¬A, and Contraposition (A → ¬B) → (B → ¬A). Three of the postulates
from Figure 2 involve ¬ and require new corresponding structure-conditions on ⊥. The
negation-related postulates we can handle are listed in Figure 5. It is left to the interested
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Fig. 5. Negation-Related Postulates and Their ⊥-Conditions.

reader to show that each of these postulates is valid in models satisfying the corresponding
condition, and that, conversely, a canonical model AL satisfies this condition if L has the
postulate.

For all of these logics, completeness also holds for the extension obtained by adding
Conjunctive ∃-Distribution and restricting to models satisfying IV(i)(d) (see Theorems 4.2
and 6.4(2)). Likewise for the addition of Disjunctive ∀-Distribution and IV(i)(b).

As is well known, the Double-Negation Introduction axiom is equivalent to the Con-
traposition rule over MQ. Indeed, only the Prefixing and Modus Ponens rules are needed
to show the Contraposition rule is equivalent to the combination of the Antitonicity rule
and the Double-Negation Introduction axiom. The formula analogues of these rules are
equivalent over MQ in the presence of Double-Negation Introduction, as indicated by the
conditions corresponding to the first three postulates above.

6.1. Identity again. For validity of I4 in general we need a new model condition, since
the validity proof we gave for it in Section 3 used the co-theory function −a, which has
now been replaced by ⊥. The new condition is

I. Standard:

(ix) ∃u ≡ a (a �⊥ u) [equivalently: (∀u ≡ t (t ⊥ u)) implies t /∈ S].

For languages with a distinguished identity predicate ≈, we define an MQ-model with
identity to be an MQ-model that satisfies VI(i) and also this I(ix). In such a model, we get
t |� i �≈ i → A for any A ∈ Sen(t). For if not, there exists u ≡ t with u |� i �≈ i
while tu �|� A. Then by Truth Saturation, there exists a ≥ tu with a �|� A. Hence by
I(iii), there is some b ∈ S with b ≥ u (and a ≥ tb). Then by the new I(ix), there is some
v ≡ b with b �⊥ v . Since b |� i �≈ i by Truth Extension, the semantics of ¬ then implies
v �|� i ≈ i , which contradicts the fact that self-identities are unfalsifiable. This is enough to
ensure that I4 is valid in the present semantics. Note that the argument used the second part
of model condition I(iii), the part whose proof in a canonical model depends on I4 itself
(Remark 3.6).

For a logic L with the identity axioms, the canonical modelAL satisfies I(ix). To see this,
take any a ∈ S in such a model, with Var(a) = V . Take any v ∈ V , let 	 = {A ∈ Fml(V ) :
v ≈ v �L A} and put u = (	, V ) ∈ T . Then a �⊥ u as desired, since otherwise there would
be some A with v ≈ v �L A and ¬A ∈ Thm(a). But ¬A �L v �≈ v by Antitonicity, hence
v �≈ v ∈ Thm(a). Since I1 and I4 yield �L v �≈ v → B, this puts every V -formula into
Thm(a), contradicting the fact that Thm(a) is proper.

These facts allow us to establish that

• MQ≈, the smallest logic in the language with ≈ that has the identity axioms, is
characterized by the class of all MQ-models with identity.

Again, these results extend to the systems MQX≈, and to their extensions by Conjunctive
∃-Distribution and Disjunctive ∀-Distribution, with their corresponding model conditions.
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Now the proof of conservativity of adding ⊃ in Theorem 5.2 depended on the presence
of the model condition IV(i)(d), corresponding to the Conjunctive ∃-Distribution axiom
(see Theorem 4.2). We write L∃ for the extension of a logic L by this axiom. Let X be
any subset of the list comprising the negation-free postulates of Figure 2 and the negation-
related postulates of Figure 5. Then by the method of Section 5 we get

• H(MQX∃)≈ is a conservative extension of (MQX∃)≈.

REMARK 6.8 (∧-∃-DISTRIBUTION IS ESSENTIAL). The Conjunctive ∃-Distribution
postulate is essential to this result, since it is derivable in HL for any logic L, so HL is not
conservative over L if L does not contain the postulate. To see this, for given formulas A, B
with x not free in A, take any real v that does not occur in A or B. Then (A ∧ B)(v/x)) =
A ∧ (B(v/x)), so by the Existence axiom,

�HL A ∧ (B(v/x)) → ∃x(A ∧ B).

Hence by ∧-Residuation (and commutativity of ∧),

�HL B(v/x) → (A → ∃x(A ∧ B)).

Since v does not occur in A → ∃x(A ∧ B), the ∃-Elimination rule then gives

�HL ∃x B → (A → ∃x(A ∧ B)),

which leads by ∧-Residuation again to

�HL A ∧ ∃x B → ∃x(A ∧ B).

REMARK 6.9 (THE PLACE OF I3 AND I4). The identity axiom I3: v ≈ v → (v ≈ v →
v ≈ v) is redundant over MQ, since (v ≈ v ◦ v ≈ v) → v ≈ v is an instance of I1, and
I3 follows from this by the second Fusion–Residuation rule. That works also in RQ, where
the fusion connective is definable.

Remark 3.6 pointed out that I4 is not needed in logics containing the Assertion axiom
A → ((A → B) → B), which corresponds to the commutative model condition tu = ut .
The logic characterized by the class of all commutative MQ-models with identity is ax-
iomatizable by adding just I1 and I2 to MQ+Assertion. But whereas I4 was seen to be
derivable from I1 over BQ+Assertion, this derivation used Double-Negation Elimination
and does not carry through over MQ+Assertion. For logics with the weaker Antitone or
Contrapositive Negation, inclusion of I4 requires the additional model condition I(ix).
Inclusion of I4 is necessary for logics that lack Assertion.

§7. Conservatively adding ≈. This section describes a proof that a predicate satisfy-
ing the main identity axioms I1 and I2 can be conservatively added to MQ−∃, the ∃-free
fragment of MQ. The proof will also directly show the conservativity of adding ⊃ to this
fragment, and to some of its extensions, including MQ−∃+Assertion.

We assume now that our language has the primitives τττ , ∧, ∨, ¬, →, ◦, ∀; but not ∃. A
logic L for this language has all the postulates of MQ except for those involving ∃. MQ−∃
is the smallest such logic.

The idea of the conservativity proof is to construct a characteristic algebraic modelML
for L by the standard Lindenbaum method, and then embed this Lindenbaum algebra into
its ideal completionM+

L . This embedding preserves the interpretation of sentences, and
gives an order-complete algebraic model falsifying the nontheorems of L. Self-identities
are interpreted as the top element of the completion, and other identities as the bottom
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element. The order-completeness is used to interpret ∀x A, intuitively as the infinite con-
junction of all its specifications A(i/x). This defines a model satisfying I1 and I2, and any
further axioms whose truth is preserved by ideal completion. In additionM+

L , as the ideal
completion of a distributive lattice, is in fact a Heyting algebra, so it can be used to show
the conservativity of adding ⊃. We spell out some details:

DEFINITION 7.1. A basic algebra Q = (Q,≤, ,!,⇒, •,−, 1) comprises:

• A partial order ≤ on the set Q, making it into a distributive lattice with meet  and
join ! operations that will be used to interpret the connectives ∧ and ∨.

• Binary operations ⇒ and • on Q interpreting the connectives → and ◦. These
satisfy:

a ≤ a′ and b ≤ b′ implies a • b ≤ a′ • b′;
a • b ≤ c iff a ≤ b ⇒ c;
a • (b ! c) ≤ (a • b) ! (a • c).

• A unary operation − : Q → Q, interpreting ¬, that is antitone: a ≤ b implies
−b ≤ −a.

• A distinguished element 1, to interpret τττ . This satisfies 1 • a = a, and a ≤ b iff
1 ≤ a ⇒ b.

Given a set I (of individuals), as previously we add the members of I to our language as
self-designating constants. A sentence is a formula that may contain these constants but
has no free variables.

An algebraic modelM = (Q, I, θ) consists of a basic algebra Q, a nonempty set I of
individuals, and a valuation θ , which is a function assigning to each sentence A an element
θ A of Q, such that

• θ(A ∧ B) = θ A  θ B, θ(A ∨ B) = θ A ! θ B, θ(A → B) = θ A ⇒ θ B,
θ(A ◦ B) = θ A • θ B

• θ(¬A) = −θ A, θτττ = 1
• θ(∀x A) = �

i∈I θ(A(i/x)),

where
�

denotes meet (greatest lower bound). Note that we do not require that every
subset of Q has a meet, but only that for θ to qualify as a valuation, every set of the form
{θ(A(i/x)) : i ∈ I } must have a meet, and it must be equal to θ(∀x A).

A sentence A is true inM, writtenM |� A, if 1 ≤ θ(A). For relevant implications, this
means thatM |� A → B iff θ A ≤ θ B. A real formula A(v1, . . . , vn) is true inM if for
any i1, . . . , in ∈ I ,M |� A(i1/v1, . . . , in/vn). Standard algebraic reasoning shows that
all real axioms of MQ−∃ are true inM, and that the rules of MQ−∃ preserve this truth.

For the Lindenbaum construction, let QL be the set of all equivalence classes |A| of real
formulas A, where |A| is the set of all real B such that �L (A → B) ∧ (B → A). QL
is a distributive lattice under the partial order defined by |A| ≤ |B| iff �L A → B, with
|A| |B| = |A∧B| and |A|!|B| = |A∨B|. It becomes a basic algebraQL by putting |A| ⇒
|B| = |A → B|, |A| • |B| = |A ◦ B|, and 1 = |τττ |. IfR is the set of real variables, then the
canonical algebraic model for L isML = (QL,R, θL), where θL(A) = |A| for each real
formula A, viewed as a sentence in which each v fromR is a self-designating name.

The proof that this θL is a valuation is standard, but we review the condition for ∀.
First, the Specification axiom ensures that |∀x A| ≤ |A(v/x)| for all v ∈ R. But if |B| ≤
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|(A(v/x)| for all v, then in general �L B → A(v/x). In particular, this holds for v not in
B or in A itself, from which �L ∀x(B → A) follows by the Generalization rule. Hence
�L B → ∀x A by the Relevant ∀-Distribution axiom, leading to |B| ≤ |∀x A|. This shows
that |∀x A| = �

v∈R |A(v/x)|, that is that θL(∀x A) = �
v∈R θL(A(v/x)).

The ideal completion of QL is the structure

Q+L = (Q+
L ,⊆,∩,!,⇒, •,−, 1+),

defined as follows. Its members are the ideals of QL, which will be denoted A,B. Recall
that an ideal is a subset of QL that is closed under binary joins a ! b and closed downward
under the partial order ≤. Q+

L contains the principal ideal ↓a = {b : b ≤ a} generated by
each a ∈ Q. It is a complete lattice under the inclusion ordering ⊆, with the meet

�
j∈J A j

of a set of ideals being its intersection
⋂

J A j , and the join given by
⊔

j∈J
A j = ⋃{↓(a1 ! · · · ! an) : a1, . . . , an ∈ ⋃

J
A j }.

The other operations of Q+L are given by

A⇒ B = {c : ∀a ∈ A ∃b ∈ B(c ≤ a ⇒ b)}
A • B = ⋃{↓(a • b) : a ∈ A and b ∈ B}
−A = ⋂

a∈A
↓(−a)

1+ = ↓1.

Q+L is a basic algebra, and the map a �→ ↓a is an injection ofQL intoQ+L that preserves all
the basic algebra operations and preserves and reflects the partial orders, that is a ≤ b iff
↓a ⊆ ↓b (there is a discussion in Restall, 2000, Section 9.2, that gives a good deal of the
detail of these claims). Importantly, this map also preserves any meets

�
J a j that happen

to exist in QL. For, by definition, b ≤ �
J a j iff b ≤ a j for all j ∈ J , which means that

↓�
J a j = ⋂

J ↓a j .
A model M+

L = (Q+L ,R, θ+) for the language including the identity predicate is
obtained by defining the value θ+(A) inductively on the length of sentence A, as follows:

• θ+(v ≈ v) = QL, the largest ideal of QL.
• For v �= w, θ+(v ≈ w) = ∅, the smallest ideal.
• For A an atomic sentence other than an identity, θ+(A) = ↓|A|.
• For the inductive cases, θ+(A) is defined by the conditions specifying that it is a

valuation, that is θ+(A ∧ B) = θ+A ∩ θ+B, θ+(¬A) = −θ+A, and so forth. In
particular θ+(∀x A) = ⋂

v∈R θ+(A(v/x)).

Thus θ+ is the unique valuation determined by the given values on atomic sentences.

LEMMA 7.2. If A is any ≈-free sentence, θ+(A) = ↓θL(A). Hence ML |� A iff
M+

L |� A.

Proof. For the first statement, if A is atomic, the result holds by definition of θ+ and
θL. The inductive cases follow because a �→ ↓a preserves the basic algebra operations and
any existing meets. For example

↓θL(∀x A) = ↓
�

v∈R
θL(A(v/x)) = ⋂

v∈R
↓θL(A(v/x)) = ⋂

v∈R
θ+(A(v/x)) = θ+(∀x A).

For the second statement, 1 ≤ θL(A) iff ↓1 ⊆ ↓θL(A) iff 1+ ⊆ θ+(A). �
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THEOREM 7.3. The identity axioms I1 and I2 can be conservatively added to MQ−∃.

Proof. Let L = MQ−∃, and take ML andM+
L as above. If B is any ≈-free formula such

that �L B, thenML �|� B, because �L τττ → B and so 1 � θL(B) inML. Hence by the
above lemma,M+

L �|� B.
Since Q+L is a basic algebra, M+

L is a model of MQ−∃ in the language with ≈. To
complete the theorem then, it suffices to show it is also a model of the two identity axioms.

For any sentence A, θ+(A) ⊆ Q+
L = θ+(v ≈ v), soM+

L |� A → v ≈ v, that isM+
L is

a model of I1. For any instance v ≈ w∧A → A′ of I2, note first that if v = w, then A′ = A
and this is just an instance of the valid Conjunction Elimination axiom. But if v �= w, then
θ+(v ≈ w ∧ A) = ∅ ⊆ θ+(A′), soM+

L is a model of I2. �
In this conservativity result, MQ−∃ can be replaced by a number of its extensions got by

adding various postulates. All that is required for the proof is that validity of the postulate
be preserved in passing from ML to M+

L . In this way it can be shown that I1 and I2
can be conservatively added to MQ−∃ + X , where X is any subset of a list comprising
the negation-free postulates of Figure 2 and the negation-related postulates of Figure 5.
Verification of this is left to the reader.

Now it is well known that the ideal completion of a distributive lattice is a Heyting
algebra (a result of M. H. Stone, see Birkhoff, 1967, p. 129). Indeed in Q+L we can define
a binary operation � on ideals by

B � C = {a : (∀b ∈ B) a  b ∈ C},
and show that A ∩ B ⊆ C iff A ⊆ B � C. So putting θ+(B ⊃ C) = θ+(B) � θ+(C)
produces a model validating the ∧-Residuation rules (5.2) for ⊃. This leads to a direct
proof that

Heyting implication is conservative over all logics MQ−∃ + X of the
previous paragraph.

This application of ideal completions to conservativity results is rather limited. Apparently
validity of Double Negation Elimination is not preserved from ML to M+

L . Even if QL
has − − a = a, then in Q+L we can only show that − − A = ⋂{↓a : A ⊆ ↓a},
and this might be a proper superset of A. Also, it seems that M+

L need not validate
Disjunction ∀-Distribution, and that the map a �→ ↓a need not preserve existing joins,
so the method cannot be applied to postulates for ∃ at all. There is another construction,
the MacNeille completion of a lattice, that does preserve any existing joins and meets,
but it does not preserve ∧∨-Distribution, so is unsuitable for the kind of logics we are
discussing.

§8. Summary. The semantic characterizations and conservativity results that have
been proved in this paper can be catalogued as follows.

(1) In the language with primitives τττ , ∧, ¬, →, ∀, and with ∨ and ∃ defined, let L be
any of the logics BQXτττ , defined by the postulates for BQ listed in Figure 1, the
τττ -postulates (see Figure 4), and any subset X of the postulates listed in Figure 2.
Let L≈ be the expansion of L by an identity predicate having axioms I1–I4.

(a) L≈ is characterized by the class of all stratified models that satisfy all the
conditions corresponding to the postulates in X, the condition I(viii) for τττ (see
(2.2)), and the identity condition VI(i): i ≈t j iff t = i j �t . [Theorem 3.5]
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(b) L≈ is also characterized by the class of all models as in (a) that satisfy IV(i)(d):
u ≥ t↓ implies ∃u+ ≥ t (u+↓ = u). [Theorem 4.2]

(c) Heyting implication can be conservatively added to L≈, that is HL≈ is a con-
servative extension of L≈. [Theorem 5.2]

(2) In the language with primitives τττ , ∧, ∨, ¬, →, ◦, ∀, ∃, let L be any of the logics
MQX, where MQ is defined in Figure 4 (which includes the τττ -postulates), and X
is any subset of the list comprising the negation-free postulates of Figure 2 and the
negation-related postulates of Figure 5. Let L∃ be L plus Disjunctive ∃-Distribution,
and L∀ be L plus Conjunctive ∀-Distribution.
Recall the notion of MQ-model and MQ-model with identity from Section 6.

(a) L is characterized by the class of all MQ-models that satisfy all the conditions
corresponding to the postulates in X.

(b) L∃ is characterized by the class of all models as in (a) that satisfy IV(i)(d).

(c) L∀ is characterized by the class of all models as in (a) that satisfy condition
IV(i)(b) from Section 2.

(d) Heyting implication is conservative over (L∃)≈, and over (L∀∃)≈.

(3) In the language with τττ , ∧, ∨, ¬, →, ◦, ∀, but without ∃, let L be any of the logics
MQ−∃ + X , where MQ−∃ is defined by all the postulates of MQ except those
involving ∃, and X is any subset of a list comprising the negation-free postulates of
Figure 2 and the negation-related postulates of Figure 5.

(a) Heyting implication is conservative over L.

(b) The identity axioms I1 and I2 are conservative over L.

The most significant unanswered question concerns the conservativity of Heyting implica-
tion over the nonidentity logics BQXτττ, especially RQτττ . Having shown that HBQXτττ≈ is a
conservative extension of BQXτττ≈, the question is reduced to the conservativity of adding
identity: is BQXτττ≈ a conservative extension of BQXτττ ? The solution may require new
techniques, possibly a proof-theoretic analysis.
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