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Abstract

The renewed interest in the foundations of quantum statistical mechanics in
recent years has led us to study John von Neumann’s 1929 article on the quantum
ergodic theorem. We have found this almost forgotten article, which until now
has been available only in German, to be a treasure chest, and to be much mis-
understood. In it, von Neumann studied the long-time behavior of macroscopic
quantum systems. While one of the two theorems announced in his title, the
one he calls the “quantum H-theorem,” is actually a much weaker statement than
Boltzmann’s classical H-theorem, the other theorem, which he calls the “quantum
ergodic theorem,” is a beautiful and very non-trivial result. It expresses a fact we
call “normal typicality” and can be summarized as follows: For a “typical” finite
family of commuting macroscopic observables, every initial wave function ψ0 from
a micro-canonical energy shell so evolves that for most times t in the long run,
the joint probability distribution of these observables obtained from ψt is close to
their micro-canonical distribution.
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1 Introduction

In recent years, there has been renewed interest in the foundations of quantum statistical
mechanics, see, e.g., [14, 45, 48, 50, 36]. Our own research in this direction has led us to
questions which we later discovered had already been addressed, and some in fact solved,
by John von Neumann in his 1929 article on the quantum ergodic theorem (QET) [64].
This article concerns the long-time behavior of macroscopic quantum systems, and in
particular the approach to thermal equilibrium. We have found the article very useful,
and think that it will also be of interest to a wider audience interested in the foundations
of quantum statistical mechanics. Here we present an English translation of the 1929
QET article by R. Tumulka, together with some commentary. In this commentary, we
describe von Neumann’s results in a non-technical (at least, less technical) way, elaborate
on the aspects that we think need elucidation, and put the result into perspective by
comparing it to current work on this topic. N.B. All results to date are still far from
solving the mathematical problems concerning the quantitative approach to thermal
equilibrium of realistic classical or quantum systems. Even less is known rigorously
about properties of non-equilibrium systems, e.g., we are not able to derive the heat
equation from either classical or quantum mechanics.

Von Neumann’s book on the “Mathematical Foundations of Quantum Mechanics”
[66], published in German in 1932 and in English in 1955, also contains some thermody-
namic considerations in Chapter V. This chapter, however, has only little overlap with
the QET article, whose content is mentioned only in two brief sentences. “The reader
who is interested in this problem,” von Neumann writes on page 416 of his book, “can
refer to the treatments in the references” [i.e., to the QET article]. We actually found
the QET article more illuminating than Chapter V of his book.

The QET article is topical also in the following way. There is no consensus about
the definition of thermal equilibrium for a quantum (or even a classical) system in
microscopic terms; the main divide in the literature lies between a view that can be
called the ensemblist view, according to which a system is in thermal equilibrium if it is
in a mixed state (represented by an ensemble) that is close to the canonical (or micro-
canonical) mixed state, and a view that can be called the individualist view, according
to which a system in a pure state (or a point in phase space) can very well be in thermal
equilibrium, depending on the state. The ensemblist view has traditionally prevailed,
but the individualist view has gained ground recently (see, e.g., [7, 57, 58, 19, 45, 48, 50,
36, 18]). While von Neumann’s ideas contain elements of both views, the QET is based
mainly on the individualist view; indeed, he considered an isolated quantum system
described by a pure state that evolves unitarily. We will elaborate on these two views
in Section 5 below.

The QET article contains two theorems, mentioned already in its title: one von
Neumann called the quantum ergodic theorem, the other the quantum H-theorem (in
analogy to Boltzmann’s H-theorem in classical mechanics [6]). These two theorems are
so closely related to each other in substance that one and the same proof establishes
both of them. For this reason, and because the “quantum H-theorem” actually asserts
much less than Boltzmann’s H-theorem, we will discuss it only in Section 7 below and
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focus otherwise on the QET.
We will convey the content of the QET in Section 2. It expresses a precise version

of a phenomenon we call “normal typicality” [17]: under conditions that are “typically”
satisfied, every wave function ψ from a micro-canonical energy shell displays the same
“normal” long-time behavior, viz., for most times t the “macroscopic appearance” of ψt
is the same as that of the micro-canonical ensemble. Here, the macroscopic appearance
is expressed in terms of von Neumann’s concept of macroscopic observables, which was
developed for the first time (as far as we are aware) in the QET article and which we
will outline in Section 2.2.

The QET provides a condition under which “normal” long-time behavior occurs,
and it also says that this condition is satisfied for most finite families of commuting
macroscopic observables (or, in fact, for most Hamiltonians [17]). It is thus perhaps
the first typicality theorem in quantum mechanics. Typicality theorems, i.e., statements
about most wave functions or most observables or most Hamiltonians, are now widely
used. They were crucial to Wigner’s work on random Hamiltonians in nuclear physics in
the 1950s [67] and are currently used in a great variety of “random” systems. Typicality
has also been used in recent years in the context of canonical typicality (i.e., the fact
that, for most wave functions from a narrow energy shell of a large system, the reduced
density matrix of a small subsystem is approximately canonical) [14, 19, 45, 47]. For
other uses of typicality see, e.g., [20, 21, 49, 55, 2, 13].

When the QET article was published in 1929, Schrödinger wrote an enthusiastic
letter to von Neumann [53]. Among other things, he wrote:

Your statistical paper has been of extraordinary interest to me, I am very
happy about it, and I’m particularly happy about the gorgeous clarity and
sharpness of the concepts and about the careful bookkeeping of what has
been achieved at every point.1

Schrödinger had previously published work [54] on thermodynamic properties of macro-
scopic quantum systems that one would nowadays regard as a precursor of canonical
typicality. A few years later, Pauli and Fierz [43] published an alternative proof of the
QET which, however, yields weaker error bounds than von Neumann’s proof. During
the 1930s, the QET was also mentioned in expositions of the foundations of quantum
statistical mechanics by Kemble [25] and Tolman [59, p. 472] (who misattributed it,
though, to Pauli and Fierz).

In the 1950s, two articles appeared expressing sharp criticisms of the QET, one by
Farquhar and Landsberg [10] and one by Bocchieri and Loinger [4]. They claimed to have
“mathematically proved the inadequacy of von Neumann’s approach” [4] and that “the
von Neumann approach is unsatisfactory” [10]. The authors repeated their criticisms in
later publications [5, 9, 28], calling the QET “essentially wrong” [28], “seriously flawed”
[28], and “devoid of dynamical content” [9, p. 166]. However, in these works the QET
was mixed up with other statements that indeed are devoid of dynamical content, and
the criticisms do not apply to the original QET. Unfortunately, this misunderstanding

1Translated from the German by R. Tumulka.
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was not pointed out until recently [17]; in the 1950s and 1960s, the negative assessment
of Farquhar, Landsberg, Bocchieri, and Loinger was widely cited and trusted (e.g.,
[37, 38, 39, 62, 12, 46, 24, 44]). In 1962 Ludwig expressed the widespread view in this
way [39]:

A short time after the development of quantum mechanics, J. von Neu-
mann has given a proof of some kind of ergodic theorem. [...] After there
was shown by papers of Landsberg and Farquhar and then definitively by
a very clear paper of Bocchieri and Loinger that this proof is a physically
meaningless one, it is superfluous to go deeper into this proof.

As a consequence, the QET was undeservingly forgotten. We elaborate on the nature
of the misunderstanding in [17] and in Section 4 below.

The remainder of this paper is organized as follows. In Section 2, we give a qualitative
summary of the QET. In Section 3, we compare the QET with the situation in classical
mechanics and the concept of ergodicity. In Section 4, we describe the nature of the
widespread misunderstanding of the QET from the 1950s onwards. In Section 5 we
review different definitions of thermal equilibrium and compare the QET to recent works
on the approach to thermal equilibrium. In Section 6, we discuss the general relevance
of typicality theorems. In Section 7, we discuss the contents and significance of von
Neumann’s “quantum H-theorem.” Because the statement of the QET in the QET
article is distributed over several places, we formulate it in Appendix A as a concise and
precise mathematical theorem. In Appendix B, we provide a table with von Neumann’s
notation and elucidate some of his terminology.

2 Qualitative Summary of the Quantum Ergodic The-

orem

2.1 Setting

Von Neumann considered a macroscopic quantum system, confined to a finite volume
of space. For the sake of concreteness, we suggest that readers think of a system of N
interacting particles, where N is very large (usually larger than 1020), in a box Λ ⊂ R3.
The wave function ψt = ψ(q1, . . . , qN , t) evolves according to the Schrödinger equation

i~
∂ψ

∂t
= Hψt (1)

with H the Hamiltonian of the system. (Von Neumann used the opposite sign in the
Schrödinger equation, writing −i instead of i. The form (1) is nowadays standard.) As
usual, ψ0 (and thus ψt) should be normalized,

‖ψ0‖2 =

∫
Λ

· · ·
∫

Λ

|ψ0|2 d3q1 · · · d3qN = 1 . (2)
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It follows from the confinement to a finite volume thatH has discrete energy levels, which
we denote Eα (see Appendix B for a list of von Neumann’s notation). Let {φα} be an
orthonormal basis of the system’s total Hilbert space Htotal consisting of eigenfunctions
of H,

Hφα = Eαφα . (3)

Considering only Hamiltonians that are bounded from below, there will be only finitely
many eigenvalues (with multiplicity) below any given value, so we can order them so
that E0 ≤ E1 ≤ E2 ≤ . . ..

Von Neumann considered further (what amounts to) a partition of the energy axis,
or rather of the relevant half-axis [E0,∞), into disjoint intervals Ia = [Ea,Ea+1) (with
E0 = E0 and Ea < Ea+1) that are large on the microscopic scale (so that each contains
many eigenvalues Eα), but small on the macroscopic scale (so that different energies
in one interval are not macroscopically different).2 Such an interval is called a micro-
canonical energy shell, an expression that is also often used to refer to the subspace
HIa ⊆ Htotal spanned by the φα with Eα ∈ Ia.

2.2 Macroscopic Observables

We now turn to the mathematical structure that encodes the concept of “macroscopic”
in von Neumann’s article. Suppose that the operatorsM1, . . . ,M` correspond to “macro-
scopic observables.” Von Neumann argued in his Section 0.2 that an analysis of how a
quantum measurement of such macro-observables is carried out in practice leads to the
conclusion that the Mi commute with each other, have pure point spectrum, and have
huge degrees of degeneracy. They are usually coarse-grained and “rounded” approxima-
tions of suitable “microscopic” observables. As an example, von Neumann points out
that when we simultaneously measure the position and momentum of a macroscopic
body, the experiment corresponds not to the exact center-of-mass position and total
momentum observables but to two commuting observables approximating these.34 Cor-
respondingly, the distance between neighboring eigenvalues of Mi represents the inaccu-
racy of the measurement. As further examples of macro-observables, we may consider
similar approximations to the number of particles in the left half of the box Λ divided
by the total number of particles, or to the z-component of the magnetization (i.e., the
total magnetic z-moment

∑N
i=1 σz,i, where σz,i is the third Pauli matrix acting on the

i-th particle).

2In von Neumann’s words (Section 1.2): “With a certain (reduced) accuracy, [it is] possible [to
measure energy with macroscopic means], so that the energy eigenvalues [...] can be collected in groups
[...] in such a way that all [eigenvalues in the same group] are close to each other and only those [in
different groups] can be macroscopically distinguished.”

3In von Neumann’s words (Section 0.2): “In a macroscopic measurement of coordinate and momen-
tum (or two other quantities that cannot be measured simultaneously according to quantum mechanics),
really two physical quantities are measured simultaneously and exactly, which however are not exactly
coordinate and momentum.”

4The question of how well two operators with small but non-zero commutator can be approximated
by a pair of commuting operators is mathematically non-trivial and has been settled only recently
[35, 22].
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One of the macro-observables, say M1, is the “macroscopic energy,” which can be
thought of as obtained from H by coarse-graining in agreement with the partition of
the energy axis into the micro-canonical intervals Ia,

M1 =
∑
α

f1(Eα) |φα〉〈φα| (4)

with f1 the appropriate step function given by

f1(E) =
Ea + Ea+1

2
for E ∈ Ia = [Ea,Ea+1) . (5)

Since the Mi commute with one another, every Mi commutes with the coarse-grained
energy M1, but generally not with H, so it is generally not a conserved quantity.5

Given theM1, . . . ,M`, a macro-state can then be characterized by a list ν = (m1, . . . ,m`)
of eigenvalues mi of the Mi, and corresponds to the subspace Hν ⊆ Htotal, which we call
a “macro-space,” containing the simultaneous eigenvectors of the Mi with eigenvalues
mi; that is, Hν is the intersection of the respective eigenspaces of the Mi.

For the sake of simplicity, we focus on only one micro-canonical interval Ia =
[Ea,Ea+1) and simply write H instead of HIa . Let D = dim H , i.e., the number
of energy levels, including multiplicities, between Ea and Ea+1. This number is finite but
huge—usually greater than 101020

when the number N of particles is greater than 1020.
The micro-canonical density matrix ρmc is the projection to H times a normalization
factor 1/D,

ρmc =
1

D

∑
α:φα∈H

|φα〉〈φα| , (6)

and the micro-canonical average of an observable A on H is given by

tr(ρmcA) =
trA

D
. (7)

This value can also be obtained as the average of the values 〈φα|A|φα〉, with equal
weights 1/D, over those α with Eα ∈ [Ea,Ea+1). Alternatively, it can also be obtained
as the average of the values 〈ϕ|A|ϕ〉 with ϕ uniformly distributed over the unit sphere

S(H ) = {ϕ ∈ H : ‖ϕ‖ = 1} . (8)

For this uniform distribution, the probability that ϕ ∈ B ⊆ S(H ) is the (2D − 1)-
dimensional surface area of B times a normalization factor.

Since all Mi commute, every Mi maps H to itself. We thus have that each of the
macro-spaces Hν either lies in H or is orthogonal to H . We will from now on regard
the Mi as operators on H and consider only those Hν in H ; they form an orthogonal
decomposition of H ,

H =
⊕
ν

Hν . (9)

5In von Neumann’s words (Section 1.2): “In general, [...] H is not a linear combination of the
[projections to the joint eigenspaces of all Mi], since the energy is not a macroscopic quantity, as it
cannot be measured with absolute precision with macroscopic means” [as the Mi can].
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We write D for this family {Hν} of subspaces, called a “macro-observer” in von Neu-
mann’s paper, and Pν for the projection to Hν . If any of the Hν has dimension 0, i.e.,
if a particular combination of eigenvalues of the Mi does not occur, then we delete it
from the family D . We use the notation

dν = dim Hν . (10)

In words, dν is the degree of simultaneous degeneracy of the eigenvalues m1, . . . ,m`. In
practice, the size of dν is also of the rough order 101020

, though often very much smaller
than D. (Note that, e.g., 100.9999×1020

is smaller than 101020
by a factor of 101016

).

2.3 Statement of the Quantum Ergodic Theorem

We now have the ingredients—H, H , and D—to formulate the QET. Despite the name,
the property described in the QET is not precisely analogous to the standard notion
of ergodicity as used in classical mechanics and the mathematical theory of dynamical
systems. That is why we prefer to call quantum systems with the relevant property
“normal” rather than “ergodic.”6 Let us proceed towards a description of this property.

Any wave function ψ ∈ H with ‖ψ‖ = 1 defines a probability distribution over all
macro-states ν; namely, the probability associated with ν is

‖Pνψ‖2 = 〈ψ|Pν |ψ〉 . (11)

(Recall that Pν is the projection to Hν .) This is the probability of obtaining, in a
joint measurement of the macro-observables M1, . . . ,M` on a system in state ψ, the
outcomes (m1, . . . ,m`) corresponding to ν. Similarly, the micro-canonical density matrix
ρmc defines a probability distribution over all macro-states ν; namely, the probability
associated with ν is

tr(ρmcPν) =
dν
D
. (12)

Claim 1. For most wave functions ψ from the unit sphere in the micro-canonical sub-
space H , the distribution (11) associated with ψ is close to the micro-canonical distri-
bution (12).

The reference to “most” is intended to convey that the subset of the unit sphere in
H containing those ψ for which (11) is close (in some precise sense) to (12) has measure
arbitrarily close to 1, provided each of the dν is sufficiently large. Here, the “measure”
corresponds to the uniform distribution over the unit sphere. Claim 1 follows from the
fact, proven by von Neumann in his appendices A.1–A.3, that if Hν is any fixed subspace

6This terminology is inspired by the concept of a normal real number, which is “a real number whose
digits in every base show a uniform distribution, with all digits being equally likely, all pairs of digits
equally likely, all triplets of digits equally likely, etc.. While a general proof can be given that almost
all numbers are normal, this proof is not constructive [...]. It is for instance widely believed that the
numbers

√
2, π, and e are normal, but a proof remains elusive.” [41]
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of H of dimension dν and ϕ is a random vector with uniform distribution on the unit
sphere in H then

E‖Pνϕ‖2 =
dν
D
, Var‖Pνϕ‖2 = E

(
‖Pνϕ‖2 − dν

D

)2

<
1

dν

(dν
D

)2

. (13)

Here, E denotes the expected value and Var the variance of a random variable. Thus, the
first equation in (13) says that the value (11) associated with ψ, when averaged over the
unit sphere, yields the micro-canonical value (12), and the second equation says that
the standard deviation of the random variable ‖Pνϕ‖2 is small, in fact much smaller
than its average, provided dν � 1. It then follows from Chebyshev’s inequality that the
probability that ‖Pνϕ‖2 deviates much from its expectation value dν/D is small. That
is, in the language of measure theory, the set of ψs for which ‖Pνψ‖2 deviates much
from the micro-canonical value is small, which was what was claimed.

As a consequence of Claim 1, most wave functions ψ are such that for each of the
macroscopic observables M1, . . . ,M`—and, in fact, for every function f(M1, . . . ,M`),
i.e., for every element of the algebra generated by M1, . . . ,M`—the probability distri-
bution that ψ defines on the spectrum of the observable is close to the one defined by
the micro-canonical density matrix. Put loosely, most pure states in H , when looked
at macroscopically, look like the micro-canonical mixed state. It is clear that Claim
1 cannot be true for all (rather than most) wave functions, as one can easily provide
examples of wave functions whose distribution is not close to the micro-canonical one:
say, ψ ∈ Hν for one particular ν.

Let us consider now the time evolution of some initial ψ and ask whether

‖Pνψt‖2 ≈ dν
D

for all ν (14)

will hold for most times t.7 This may seem like a plausible behavior in view of Claim
1. In fact, from Claim 1 it follows rather easily that (14) holds for most initial wave
functions ψ0 and most times t. The QET goes further. It asserts that, for certain
systems, (14) holds for all initial wave functions ψ0 for most times t. This is important
because one may expect most wave functions to represent microscopic states of thermal
equilibrium, while states of non-equilibrium should form a very small minority. Thus,
if we are interested in the evolution towards equilibrium, we are specifically interested
in the question whether non-equilibrium states will evolve towards equilibrium, and
hence we cannot be satisfied with statements about most wave functions because such
statements need not apply to the non-equilibrium wave functions.

Let us put this differently. We call a system, defined by H, H , D , and ψ0 ∈ H ,
normal if and only if (14) holds for most t. The QET provides conditions under which a
system is normal for every initial state vector ψ0. Furthermore, the QET asserts normal
typicality, i.e., that typical macroscopic systems are normal for every ψ0; more precisely,
that for most choices of D , macroscopic systems are normal for every ψ0. The result is,

7When saying “most t,” we have in mind most t > 0, but the QET and our other statements are
equally true for most t < 0, as long as the system was and remains isolated.
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in fact, equivalent to the statement that for most Hamiltonians, macroscopic systems
are normal for every ψ0 [17].8 It thus provides reasons to believe (but no proof) that
macroscopic systems in practice are normal.

Before we give an informal statement of the QET, we formulate two conditions
involved in it. First, following von Neumann, we say that a Hamiltonian H with eigen-
values E1, . . . , ED has no resonances if and only if

Eα − Eβ 6= Eα′ − Eβ′ unless

{
either α = α′ and β = β′

or α = β and α′ = β′ .
(15)

In words, this means that the energy differences are non-degenerate. It implies in par-
ticular that the energy levels themselves are non-degenerate, but is a stronger condition.
The other condition is a technical one and can be stated as follows. For a given H and
D = {Hν}, let

Fν(H,D) = max
α 6=β

∣∣〈φα|Pν |φβ〉∣∣2 + max
α

(
〈φα|Pν |φα〉 −

dν
D

)2

. (16)

The condition, to which we will simply refer as “condition (17),” is that

Fν(H,D) is sufficiently small for every ν . (17)

Informal statement of the QET. (For a fully precise statement see Appendix A be-
low.) Let H be any Hilbert space of finite dimension D, let D = {Hν} be an orthogonal
decomposition of H with dim Hν = dν, and let the Hamiltonian H be a self-adjoint
operator on H without resonances. If H and D satisfy condition (17) then, for every
wave function ψ0 ∈ H with ‖ψ‖ = 1, the system is normal, i.e., (14) holds most of the
time. Moreover, for sufficiently large dνs with

∑
ν dν = D, most families D = {Hν}

of mutually orthogonal subspaces Hν with dim Hν = dν are such that condition (17) is
satisfied (and thus the system is normal for every ψ0).

Here is another way of expressing the QET. Let us denote the long-time average of
a function f(t) by an overbar,

f(t) = lim
T→∞

1

T

∫ T

0

dt f(t) . (18)

(All statements remain valid if we include negative times and set

f(t) = lim
T→∞

1

2T

∫ T

−T
dt f(t) .) (19)

8The concept of “most D” refers to the uniform distribution over all orthogonal decompositions (9)
such that dim Hν = dν . When talking about “most Hamiltonians” we refer to the uniform distribution
over all Hamiltonians with given eigenvalues. Both distributions are marginals of images of the Haar
measure over the group of unitary D×D matrices; for their full definitions see [17] or the QET article.
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Then a system is normal if, for every ν, the time average ‖Pνψt‖2 is close to dν/D and
the time variance of ‖Pνψt‖2 is small; equivalently, a system is normal if, for every ν,
the expression (

‖Pνψt‖2 − dν/D
)2

(20)

has small time average. The QET asserts that the time average of (20) is no greater
than (16) (independently of ψ0), and, moreover, that the average of (16) over all D with
dim Hν = dν is small when dν is sufficiently large.

More detailed discussions of the QET have been provided by Pauli and Fierz in 1937
[43] and by Jancel in 1963 [24]; see also [17].

3 Comparison With Classical Mechanics

For a classical Hamiltonian system, we denote a point in phase space by

X = (q1, . . . , qN ,p1, . . . ,pN) . (21)

The time evolution of the micro-state X is given by the solution of the Hamiltonian
equations of motion, which sends X (at time 0) to Xt (at time t), t ∈ R. This dynamics
preserves the Liouville phase-space volume.

Instead of the orthogonal decomposition of H into subspaces Hν we consider a
partition of an energy shell Γ in phase space R6N ,

Γ = {X : Ea ≤ H(X) < Ea+1} , (22)

into regions Γν corresponding to different macro-states ν,

Γ =
⋃
ν

Γν , (23)

i.e., if the micro-state X of the system is in Γν then the macro-state of the system is
ν. Let µmc denote the micro-canonical distribution, i.e., the uniform distribution (=
normalized Liouville phase space volume) on Γ. Then with each macro-state ν there is
associated the micro-canonical probability µmc(Γν).

A crucial difference between a quantum and a classical system is that ψ can be a
superposition of contributions from several Hνs whereas X always lies in one and only
one of the Γν . As a consequence, a single phase point X does not provide a nontrivial
probability distribution over the νs, and there is no statement analogous to (14) in
classical mechanics. One can only ask about the fraction of time that Xt spends in
various Γνs, and to this question we turn in the following subsection.

3.1 Ergodicity

As we mentioned already, normality—the property relevant to the QET—is not really
analogous to ergodicity. Nevertheless, to formulate a quantum analog of ergodicity was
von Neumann’s motivation for the QET.
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Let us recall the concept of ergodicity (called “quasi-ergodicity” in the 1920s) in
statistical mechanics. Let ΓE denote the energy surface,

ΓE = {X ∈ R6N : H(X) = E } , (24)

and µE the (micro-canonical) invariant measure on ΓE defined to be the limit of the
normalized phase space volume measure µmc as both Ea → E and Ea+1 → E ; in fact,
µE is the surface area measure re-weighted with the inverse norm of the gradient of the
Hamiltonian function and normalized. The dynamics generated by H on ΓE is ergodic
if it has no non-trivial constants of the motion. As a consequence of Birkhoff’s ergodic
theorem [3], this is equivalent to the following: the fraction of time that the phase point
Xt spends in a region B ⊆ ΓE is in the long run proportional to the size of the region,
µE (B), for almost every X0 ∈ ΓE . (“Almost every” means that the set of exceptions has
measure zero; this is different from “most,” which conveys that the set of exceptions has
small measure—but usually not zero.) Equivalently, time averages coincide with phase-
space averages (over the energy surface). Let δXt denote the delta measure concentrated
at the phase point Xt. Then ergodicity is equivalent to

δXt = µE (25)

(with the time average understood in the sense of weak convergence) for almost every
X0 ∈ ΓE .

In quantum mechanics, if we regard a pure state |ψt〉〈ψt| as analogous to the pure
state δXt and ρmc as analogous to µE , the statement analogous to (25) reads

|ψt〉〈ψt| = ρmc . (26)

As pointed out by von Neumann in his QET article, the left hand side always exists9 and
can be computed as follows. If ψ0 has coefficients cα = 〈φα|ψ0〉 in the energy eigenbasis
{φα},

ψ0 =
D∑
α=1

cα|φα〉 , (27)

then

ψt =
D∑
α=1

e−iEαt/~cα|φα〉 , (28)

and thus
|ψt〉〈ψt| =

∑
α,β

e−i(Eα−Eβ)t/~cαc
∗
β|φα〉〈φβ| . (29)

Suppose that H is non-degenerate; then Eα − Eβ vanishes only for α = β, so the time
averaged exponential is δαβ, and we have that

|ψt〉〈ψt| =
∑
α

|cα|2|φα〉〈φα| . (30)

9This existence statement also follows, at least for almost every ψ0, from the (classical) ergodic
theorems of Birkhoff [3] and von Neumann [65]; however, the QET article appeared two years earlier.
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Thus, the case (26) occurs only for those special wave functions that have |cα|2 = 1/D
for all α. That is, the property of a quantum system that is the most obvious analog of
ergodicity is almost never satisfied.

One can draw other analogies, though, by focusing just on the macroscopic ap-
pearance, understood in terms of the macroscopic observables M1, . . . ,M` mentioned in
Section 2.1 above and the orthogonal decomposition D = {Hν} they define. We say
that two density matrices ρ and ρ′ are macroscopically equivalent, in symbols

ρ
D∼ ρ′ , (31)

if and only if
tr(ρPν) ≈ tr(ρ′Pν) (32)

for all ν. For example, |ψ〉〈ψ| D∼ ρmc if and only if

‖Pνψ‖2 ≈ dν
D

(33)

for all ν. This is exactly the condition considered in Claim 1 in Section 2.3, so this
is true of most ψ (provided dν � 1). Returning to the time average, we obtain that

|ψt〉〈ψt|
D∼ ρmc if and only if ∑

α

|cα|2〈φα|Pν |φα〉 ≈
dν
D

(34)

for all ν. Condition (34) is satisfied for every ψ0 ∈ S(H ) if and only if

〈φα|Pν |φα〉 ≈
dν
D

(35)

for every α and ν, a condition on H and D that follows from (17) and thus is, according

to the QET, typically obeyed. The analogy between |ψt〉〈ψt|
D∼ ρmc and ergodicity lies in

the fact that the time average of a pure state in a sense agrees with the micro-canonical
ensemble (with two differences: that the agreement is only an approximate agreement
on the macroscopic level, and that it typically holds for every, rather than almost every,
pure state).

However, even more is true for many quantum systems: Not just the time average but
even |ψt〉〈ψt| itself is macroscopically equivalent to ρmc for most times t, as expressed in
(14). Thus, normality is in part stronger than ergodicity (it involves no time averaging)
and in part weaker (it involves only macroscopic equivalence); in short, it is a different
notion. In von Neumann’s words (first paragraph of his Section 0.5):

[T]he agreement between time and microscopic average should only be
required for macroscopic quantities. This weakening comes together with an
essential strengthening that is made possible only by using the macroscopic
perspective. Namely, we will show that for every state of the system the
value of each (macroscopically measurable) quantity not only has time mean
equal to the micro-canonical mean, but furthermore has small spread, i.e.,
the times at which the value deviates considerably from the mean are very
infrequent.

12



3.2 Ergodic Components of the Schrödinger Evolution

Every dynamical system whose dynamics leaves invariant a probability distribution µ
can be partitioned into its ergodic components [56]. That is, its phase space Γ can be
partitioned in a (more or less) unique way into disjoint subsets, Γ = ∪sTs and Ts∩Ts′ = ∅
for s 6= s′, so that each Ts is invariant under the dynamics, and the dynamics is ergodic
on Ts (equipped with a probability measure µs that it inherits from µ).

In Section 0.4 of the QET article, von Neumann identifies the ergodic components
of the Schrödinger dynamics, regarded as a dynamical system on the unit sphere of the
Hilbert space Htotal, at least when Htotal is finite dimensional and the eigenvalues of H
are linearly independent over the rational numbers (which is the generic case). Here,
the invariant distribution is the uniform distribution over the unit sphere, the parameter
s is a sequence (rα) of radii, one for each energy level, and Ts = Tr1,r2,... is the torus
defined by these radii,

Tr1,r2,... =
{∑

α

rα e
iθα |φα〉 : 0 ≤ θα < 2π

}
. (36)

4 Misunderstanding in the 1950s

As noted before, the QET was widely dismissed after undeserved criticisms in [10, 4]
arising from a wrong idea of what the QET asserts. In this section we point out the
nature of the misunderstanding. Let p(D , ψ0) be the statement that the system with
initial wave function ψ0 is normal with respect to D (i.e., that (14) holds most of the
time). The misunderstanding of Bocchieri and Loinger [4] consists of replacing the
statement

for most D : for all ψ0 : p(D , ψ0) , (37)

which is part of the QET, with the inequivalent (in fact, weaker) statement

for all ψ0 : for most D : p(D , ψ0) . (38)

To see that these two statements are indeed inequivalent, let us illustrate the difference
between “for most x: for all y: p(x, y)” and “for all y: for most x: p(x, y)” by two
statements about a company:

Most employees are never ill. (39)

On each day, most employees are not ill. (40)

When x ranges over employees, y over days, and p(x, y) is the statement “Employee x is
not ill on day y” then “for most x: for all y: p(x, y)” is (39) and “for all y: for most x:
p(x, y)” is (40). It is easy to understand that (39) implies (40), and (40) does not imply
(39), as there is the (very plausible) possibility that most employees are sometimes ill,
but not on the same day. Von Neumann was clearly aware of the difference between
(37) and (38), as his footnote 37 in Section 3.1 shows:
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Note: what we have shown is not that for every given ψ or A the ergodic
theorem and the H-theorem hold for most ωλ,ν,a but that for most ωλ,ν,a
they are universally valid, i.e., for all ψ and A. The latter is, of course, much
more than the former.

Also Schrödinger, by the way, was aware that von Neumann had proven (37), as his
1929 letter to von Neumann [53] shows:

You can show: if this rotation [i.e., the unitary operator mapping an
eigenbasis of H to a joint eigenbasis of M1, . . . ,M`] is large enough then
the theorem holds with arbitrary accuracy. You can show further: the over-
whelming majority of the conceivable rotations is indeed large enough—
where the “overwhelming majority” is defined in an appropriate, rotation-
invariant way. Given such a rotation, then the theorem holds for every psi.10

To see how (37) and (38) are connected to the calculations in the QET article, as well
as those of Bocchieri and Loinger [4], we note that, as mentioned earlier, the normality
of ψ0 with respect to D (i.e., the statement p(D , ψ0)) is equivalent to the statement
that, for every ν, (

‖Pνψt‖2 − dν/D
)2

(41)

is small. As a straightforward calculation shows (see [17] or the QET article), the
quantity (41) is, for all ψ0, less than or equal to the non-negative quantity Fν(H,D)
defined in (16), which is independent of ψ0. This calculation is von Neumann’s argument
showing that smallness of Fν = Fν(H,D) implies normality for every ψ0. The main work
involved in proving the QET, though, is to show that Fν is small for most D , and that
is done by showing that the average of Fν over all D is small. Bocchieri and Loinger [4]
considered, instead of the two propositions that

(41) ≤ Fν (42)

and that
the D-average of Fν is small, (43)

the one proposition that

the D-average of (41) is small. (44)

It can be proven easily that (44) is true for all ψ0, provided the dν are sufficiently large,
by changing the order of the two operations of taking the time average and taking the
D-average [4, 17]. However, this statement implies only (38), and not the stronger
statement (37) needed for the QET. Indeed, (assuming the dν are sufficiently large) it
follows that for all ψ0 it is true of most D and most t that ‖Pνψt‖2 ≈ dν/D; this is (38).
In contrast, the two propositions (42) and (43) yield that for most D it is true of all ψ0

that, for most t, ‖Pνψt‖2 ≈ dν/D; this is (37).

10Translated from the German by R. Tumulka.
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The weaker statement (38) is indeed, as Bocchieri and Loinger criticized, dynamically
vacuous, as it follows straightforwardly from a statement (true for large dν) that does
not involve the time evolution, viz., the statement that for every ψ,

the D-average of
(
‖Pνψ‖2 − dν/D

)2
is small. (45)

See [17] for a more detailed discussion.
Farquhar and Landsberg [10] also mistook the QET for a different statement, in fact

for one inequivalent to that considered by Bocchieri and Loinger. Their version differs
from von Neumann’s not just in the ordering of the quantifiers as in (37) and (38), but
also in that it concerns only the time average of ‖Pνψt‖2, whereas von Neumann’s QET
makes a statement about the value of ‖Pνψt‖2 for most times.

5 Approach to Thermal Equilibrium

Von Neumann’s QET, or the phenomenon of normal typicality, is closely connected
with the approach to thermal equilibrium. As mentioned already, there is no consensus
about what it means for a macroscopic system to be in “thermal equilibrium.” Before
comparing the QET to more recent results in Section 5.3, we outline in Section 5.1
several different concepts of thermal equilibrium and in Section 5.2 several different
concepts of approach to thermal equilibrium.

5.1 Definitions of Thermal Equilibrium

We begin with the concept of thermal equilibrium that seems to us to be the most
fundamental. It can be shown in many cases, and is expected to be true generally,
that for a physically reasonable choice of the macro-observables there will be among
the macro-spaces Hν a particular macro-space Heq, the one corresponding to thermal
equilibrium, such that

deq

D
≈ 1 . (46)

In fact, the difference 1− deq/D is exponentially small in the number of particles. This
implies, in particular, that each of the macro-observables Mi is “nearly constant” on the
energy shell H in the sense that one of its eigenvalues has multiplicity at least deq ≈ D.

We say that a system in the quantum state ψ ∈ S(H ) is in thermal equilibrium if
and only if ψ is very close (in the Hilbert space norm) to Heq, or, equivalently, if and
only if

〈ψ|Peq|ψ〉 ≈ 1 , (47)

where Peq is the projection operator to Heq.
The condition (47) implies that a quantum measurement of the macroscopic observ-

able Mi on a system with wave function ψ will yield, with probability close to 1, the
“equilibrium” value of Mi. Likewise, a joint measurement of M1, . . . ,M` will yield, with
probability close to 1, their equilibrium values. It follows from (46) that most ψ on the
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unit sphere in H are in thermal equilibrium. Indeed, with µ(dψ) the uniform measure
on the unit sphere, ∫

〈ψ|Peq|ψ〉µ(dψ) =
deq

D
≈ 1 . (48)

Since the quantity 〈ψ|Peq|ψ〉 is bounded from above by 1, most ψ must satisfy (47).
If a system is normal then it is in thermal equilibrium (as defined above) most of the

time. (After all, being normal implies that ‖Peqψt‖2 ≈ deq/D most of the time, which is
close to 1. Of course, if the system is not in equilibrium initially, the waiting time until
it first reaches equilibrium is not specified, and may be longer than the present age of
the universe.) That is why we regard the case that one of the Hν has the overwhelming
majority of dimensions as important. Von Neumann, though, did not consider this
case, and his QET actually has technical assumptions that are violated in this case.
We have proved a theorem about normal typicality that applies to this case, and thus
complements von Neumann’s QET, in [18]; it asserts that for most Hamiltonians with
given non-degenerate eigenvalues (or, alternatively, for most D), all initial state vectors
ψ0 evolve in such a way that ψt is in thermal equilibrium (according to the definition
(47) above) for most times t.

The above definition of thermal equilibrium in quantum mechanics is an example of
what we called the “individualist” view; it is analogous to the following one in classical
mechanics. Let Γ be the energy shell as in (22) and {Γν} a partition into regions
corresponding to macro-states as described in Section 3. It has been shown [29] for
realistic systems with large N that one of the regions Γν , corresponding to the macro-
state of thermal equilibrium and denoted Γeq, is such that

µmc(Γeq) =
vol(Γeq)

vol(Γ)
≈ 1 . (49)

We say that a classical system with phase point X is in thermal equilibrium if X ∈ Γeq.
The analogy with the quantum mechanical definition (47) arises from regarding both ψ
and X as instances of individual pure states.

We now turn to (what we called) the “ensemblist” view (for comparisons between the
individualist and the ensemblist views see also [15, 33]). The ensemblist defines thermal
equilibrium in classical mechanics by saying that a system is in thermal equilibrium if
and only if it is described by a probability distribution ρ over phase space that is close
to the appropriate distribution of thermal equilibrium (e.g., [59, 25, 26, 27, 40, 52]), viz.,
either

ρ ≈ µE , (50)

where µE is the uniform distribution on the energy surface ΓE = {X ∈ R6N : H(X) =
E }, or

ρ ≈ µcan , (51)

where µcan is the canonical distribution, which has density (relative to the phase space
volume measure) proportional to

e−βH(X) , (52)
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with β the inverse temperature. Correspondingly, for a quantum system the ensemblist
would say that it is in thermal equilibrium if and only if it is described by a density
matrix ρ that is close to the appropriate density matrix of thermal equilibrium (e.g.,
[59, 25, 27]), viz., either

ρ ≈ ρmc (53)

or
ρ ≈ ρcan , (54)

where ρcan is the canonical density matrix

ρcan =
1

Z
e−βH , Z = tr e−βH , (55)

and H is the system’s Hamiltonian.
When considering a single classical system, the individualist insists that it has a

phase point X, well-defined though usually unknown, but no distribution ρ (except
the delta distribution δX) because it is a single system; the ensemblist thinks that our
knowledge of X, which is always incomplete, should be represented by a probability
distribution ρ. Thus, the individualist regards thermal equilibrium as an objective
event, the ensemblist as a subjective one—his notion of thermal equilibrium has an
information-theoretic nature.

Other definitions of thermal equilibrium are inspired by both the ensemblist and
the individualist views. Von Neumann would have said, we think, that a system with
wave function ψ ∈ S(H ) is in thermal equilibrium if and only if ‖Pνψ‖2 ≈ dν/D for all
ν, i.e., if the probability distribution over the νs defined by ψ coincides approximately

with the micro-canonical distribution, or |ψ〉〈ψ| D∼ ρmc. This definition has in common
with the individualist definition (47) (and differs from the ensemblist definition (53)
or (54) in) that it can be satisfied for a system in a pure state. The ensemblist spirit
comes into play when considering whether the probability distribution of ν is close to
micro-canonical; while in classical mechanics, an individual phase point X defines only a
delta distribution, which is far from micro-canonical, in quantum mechanics ψ defines a
distribution over ν that is indeed approximately micro-canonical, even for an individual
system.

That von Neumann defined thermal equilibrium in this way explains why he did not
consider the case that one of the dνs is close to D. Note also that, in terms of this
definition, being normal immediately means being in thermal equilibrium most of the
time, so that the QET is a statement about thermal equilibrium (although von Neumann
never explicitly mentioned thermal equilibrium in his QET article).

Here is another definition inspired by both views. Consider a bi-partite system
consisting of subsystem 1 and subsystem 2, with Hilbert space H1∪2 = H1 ⊗H2, and
suppose it is in a pure state ψ ∈ H1∪2. One might say that subsystem 1 is in thermal
equilibrium if and only if

ρ1 ≈ ρcan , (56)

where ρ1 = tr2 |ψ〉〈ψ| is the reduced density matrix of subsystem 1, and ρcan is given
by (55) with some β and the Hamiltonian of subsystem 1 in the place of H. (Also, one
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might say that a system is in thermal equilibrium if every small subsystem has reduced
density matrix that is approximately canonical.) While the ensemblist spirit is visible
in the similarity between (54) and (56), this definition is more on the individualist side
because the whole system is assumed to be in a pure state.

5.2 Definitions of Approach to Thermal Equilibrium

Corresponding to the different notions of what it means for a quantum system to be in
thermal equilibrium, there are different notions of what it means to approach thermal
equilibrium. Individualists (like us) consider an isolated system of finitely many particles
in a pure state ψ whose time evolution is unitary and say that the system approaches
thermal equilibrium if and only if ψt, for some t > 0, belongs to the set of ψs in thermal
equilibrium (and remains in that set for a very long time). The ensemblist, one might
imagine, would say that a system approaches thermal equilibrium if and only if its
density matrix ρt, for some t > 0, is close to the appropriate density matrix of thermal
equilibrium (ρmc or ρcan). However, inspired by the situation in classical mechanics (see
below), ensemblists tend to demand more and to say that a system approaches thermal
equilibrium if and only if its density matrix ρt converges, as t→∞, to ρmc or ρcan.

This ensemblist notion of approach to thermal equilibrium is certainly mathemati-
cally appealing. However, it is very hard for it to hold: Consider an isolated system of
finitely many particles with unitary time evolution. Then neither a (non-equilibrium)
mixed state ρt of that system nor the reduced density matrix ρ1,t = tr2 ρt of a subsystem
will converge, as t→∞, to ρmc or ρcan. This is because of the recurrence properties of
the unitary evolution: If the Hilbert space is finite-dimensional (which is the case if we
consider only a finite energy interval such as [Ea,Ea+1) for finitely many particles in a
finite volume) then there are arbitrarily large t > 0 such that the unitary time evolution
operator

Ut = exp(−iHt/~) (57)

is arbitrarily close to the identity operator. This fact is a consequence of the quasi-
periodicity of the unitary evolution. Thus, the density matrix

ρt = Ut ρ0 U
∗
t (58)

keeps on returning to near its initial state, and so does ρ1,t = tr2 ρt.
11

It also follows from recurrence that for an individualist, a system starting with a
non-equilibrium state ψ0 cannot remain forever in thermal equilibrium after reaching
it. A valid statement can assert at best that the system will spend most of the time
in thermal equilibrium; that is, it will again and again undergo excursions away from

11If H is infinite-dimensional and H has discrete spectrum (as it would if the system is confined to
a finite volume), then Ut may not be close to the identity for any t > 0, but still every density matrix
ρ0 keeps on returning to near its initial state. Indeed, ρ0 can be approximated by an operator ρ′0 of
finite rank (i.e., a mixture of only finitely many pure states), which in turn can be approximated by
an operator ρ′′0 on a subspace spanned by finitely many energy eigenstates, and the quasi-periodicity
implies that there are arbitrarily large t > 0 with ρ′′t ≈ ρ′′0 ; at such times, also ρt ≈ ρ0.
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thermal equilibrium, but in between spend overwhelmingly long periods in thermal
equilibrium. In fact, our theorem in [18] asserts that when D is large enough and one
dν = deq has the vast majority of dimensions as in (46) then, for most non-degenerate
Hamiltonians, all initial pure states ψ0 will spend most of the time in thermal equilibrium
in the sense of the definition (47).

To avoid recurrence in quantum physics, the ensemblist considers infinite systems
(which cannot be described by means of Hilbert spaces but by C∗ or W ∗ algebras), for
example a finite system of interest coupled to an infinitely large heat bath that is initially
in thermal equilibrium (see, e.g., [61, 34]). In fact, for such situations, the convergence
ρ1,t → ρcan has been proved rigorously [51, 23, 1]; see also [60] and references therein.
Thus, for the ensemblist the approach to thermal equilibrium is an idealization and
never occurs in the real world.

Curiously, the ensemblist’s invocation of infinite systems is unnecessary in classical
mechanics because the time evolution of a classical system is usually not quasi-periodic,
and the recurrence of mixed states described above need not arise. The ensemblist’s
approach to thermal equilibrium is then connected to the property of being mixing [26],
a property related to (but stronger than) ergodicity: For any probability distribution ρ0

of X0, let ρt denote the distribution of Xt. The dynamics on ΓE is mixing if, for every
absolutely continuous probability distribution ρ0 (i.e., one that has a density relative
to µE ), ρt → µE as t → ∞ (in the sense of convergence on bounded functions). In
contrast, the individualist expects that for realistic classical systems with a sufficiently
large number N of constituents and for every macro-state ν, most initial phase points
X ∈ Γν will be such that Xt spends most of the time in the set Γeq. This statement
follows if the time evolution in phase space is ergodic, but in fact is much weaker than
ergodicity.

5.3 Current Research on the Approach to Thermal Equilib-
rium

Various results about the approach to equilibrium in the individualist framework have
been obtained in recent years [7, 57, 58, 48, 50, 36, 18]. Many of these results can be
described in a unified way as follows. Let us say that a system with initial wave function
ψ(0) equilibrates relative to a class A of observables if for most times τ ,

〈ψτ |A|ψτ 〉 ≈ tr
(
|ψt〉〈ψt|A

)
for all A ∈ A . (59)

We then say that the system thermalizes relative to A if it equilibrates and, moreover,

tr
(
|ψt〉〈ψt|A

)
≈ tr

(
ρmcA

)
for all A ∈ A . (60)

That is, the system thermalizes relative to A if, for most times t,

〈ψt|A|ψt〉 ≈ tr
(
ρmcA

)
for all A ∈ A . (61)
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With these definitions, the results of [58, 48, 36, 18], as well as von Neumann’s QET,
can be formulated by saying that, under suitable hypotheses on H and ψ(0) and for
large enough D, a system will equilibrate, or even thermalize, relative to a suitable class
A . (It should in fact be true for a large class of observables A on H that, for most ψ
on the unit sphere in H , 〈ψ|A|ψ〉 ≈ tr(ρmcA); if this is true of every member of A then
it is not hard to see that most initial wave functions will thermalize relative to A .)

Von Neumann established in his QET, under assumptions we described in Section 2.3,
thermalization for a family A of commuting observables; A is the algebra generated by
{M1, . . . ,M`}. Rigol, Dunjko, and Olshanii [50] numerically simulated a model system
and concluded that it thermalizes relative to a certain class A consisting of commuting
observables. Our result in [18] takes A to contain just one operator, namely Peq.
We established thermalization for arbitrary ψ(0) assuming H is non-degenerate and
satisfies 〈φα|Peq|φα〉 ≈ 1 for all α, which (we showed) is typically true. Tasaki [58]
as well as Linden, Popescu, Short, and Winter [36] considered a system coupled to a
heat bath, Htotal = Hsys ⊗ Hbath, and took A to contain all operators of the form
Asys ⊗ 1bath. Tasaki considered a rather special class of Hamiltonians and established
thermalization assuming that many eigenstates of H contribute to ψ0. Under a similar
assumption on ψ0, Linden et al. established equilibration for H without resonances.
They also established a result in the direction of thermalization under the additional
hypothesis that the dimension of the energy shell of the bath is much greater than
dim Hsys. Reimann’s mathematical result [48] can be described in the above scheme as
follows. Let A be the set of all observables A with (possibly degenerate) eigenvalues
between 0 and 1 such that the absolute difference between any two eigenvalues is at
least (say) 10−1000. He established equilibration for H without resonances, assuming
that many eigenstates of H contribute to ψ0.

6 The Method of Appeal to Typicality

We would like to clarify the status of statements about “most” or “typical” D (or, for
that matter, most H or most ψ0), and in so doing elaborate on von Neumann’s method
of appeal to typicality. In 1955, Fierz criticized this method as follows [11, p. 711]:

The physical justification of the hypothesis [that all Ds are equally prob-
able] is of course questionable, as the assumption of equal probability for all
observers is entirely without reason. Not every macroscopic observable in
the sense of von Neumann will really be measurable. Moreover, the observer
will try to measure exactly those quantities which appear characteristic of a
given system.

In the same vein, Pauli wrote in a private letter to Fierz in 1956 [42]:

As far as assumption B [that all Ds are equally probable] is concerned
[. . . ] I consider it now not only as lacking in plausibility, but nonsense.
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Concerning these objections, we first note that it is surely informative that normality
holds for some Ds, let alone that it holds in fact for most Ds, with “most” understood
in a mathematically natural way. But we believe that more should be said.

When employing the method of appeal to typicality, one usually uses the language of
probability theory. But that does not imply that any of the objects considered is random
in reality. Rather, it means that certain sets (of wave functions, of orthonormal bases,
etc.) have certain sizes (e.g., close to 1) in terms of certain natural (normalized) measures
of size. That is, one describes the behavior that is typical of wave functions, orthonormal
bases, etc.. However, since the mathematics is equivalent to that of probability theory,
it is convenient to adopt that language. For this reason, using a normalized measure µ
does not mean making an “assumption of equal probability,” even if one uses the word
“probability.” Rather, it means that, if a condition is true of most D , or most H, this
fact may suggest that the condition is also true of a concrete given system, unless we
have reasons to expect otherwise.

Of course, a theorem saying that a condition is true of the vast majority of systems
does not prove anything about a concrete given system; if we want to know for sure
whether a given system is normal for every initial wave function, we need to check the
relevant condition, which is (17) above. Nevertheless, a typicality theorem is, as we have
suggested, illuminating; at the very least, it is certainly useful to know which behaviour
is typical and which is exceptional. Note also that the terminology of calling a system
“typical” or “atypical” might easily lead us to wrongly conclude that an atypical system
will not be normal. A given system may have some properties that are atypical and
nevertheless satisfy the condition (17) implying that the system is normal for every
initial wave function.

The method of appeal to typicality belongs to a long tradition in physics, which
includes also Wigner’s work on random matrices of the 1950s. In the words of Wigner
[67]:

One [. . . ] deals with a specific system, with its proper (though in many
cases unknown) Hamiltonian, yet pretends that one deals with a multitude
of systems, all with their own Hamiltonians, and averages over the properties
of these systems. Evidently, such a procedure can be meaningful only if it
turns out that the properties in which one is interested are the same for the
vast majority of the admissible Hamiltonians.

This method was used by Wigner to obtain specific new and surprising predictions about
detailed properties of complex quantum systems in nuclear physics.

If we know of a given system that its Hamiltonian H belongs to a particular small
subset S0 of the set S of all self-adjoint operators on the appropriate Hilbert space, then
two kinds of typicality theorems are of interest: one saying that the relevant behavior
occurs for most H ∈ S0, the other saying that it occurs for most H ∈ S. Note that the
former does not follow from the latter when S0 is very small compared to S, as it would
then be consistent with the latter for S0 to consist exclusively of exceptional Hs. Nor
does the latter follow from the former, so the two statements are logically independent.
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In fact, both are of interest because each statement has its merits: The typicality theo-
rem about S0 gives us more certainty that the given system, whose Hamiltonian belongs
to S0, will behave in the relevant way. The typicality theorem about S gives us a deeper
understanding of why the relevant behavior occurs, as it indicates that the behavior
has not much to do with S0 but is widespread all over S. That is, there is a reciprocal
relation: The greater the degree of certainty that a typicality theorem confers, the less
its explanatory power.

7 Von Neumann’s Quantum H-Theorem

In his proof of the QET, von Neumann describes parallel considerations that prove a
second theorem that he calls the “quantum H-theorem.” This concerns the long-time
behavior of the quantity S that von Neumann defines in his equation (34) to be the
entropy of a system with wave function ψ:

S(ψ) = −k
∑
ν

‖Pνψ‖2 log
‖Pνψ‖2

dν
, (62)

where k is the Boltzmann constant and log denotes the natural logarithm. (This formula
looks a bit simpler than von Neumann’s (34) because we consider only ψs that lie in a
particular micro-canonical Hilbert space H .) Note that this definition is different from
the one usually known as the von Neumann entropy,

SvN(ρ) = −k tr(ρ log ρ) (63)

for a system with density matrix ρ, which had been introduced by von Neumann two
years earlier [63].

In Section 7.1 we discuss the definition (62). As with thermal equilibrium, there is
no consensus about the definition of entropy in quantum mechanics. In Section 7.2 we
discuss the contents of von Neumann’s “quantum H-theorem.”

7.1 Von Neumann’s Definition of Entropy

We begin by giving a brief overview of several approaches. We first recall Boltzmann’s
entropy definition [6] for a macroscopic classical system. Consider an energy shell Γ as
defined in (22), partitioned into subsets Γν corresponding to different macro-states ν.
A system with phase point X ∈ Γ has Boltzmann entropy

SB(X) = k log vol(Γν) if and only if X ∈ Γν , (64)

where vol(Γν) is the phase space volume of Γν ; see also [15, 31, 32]. As a quantum me-
chanical analog, consider a macroscopic quantum system, an energy shell H as defined
in Section 2.1, and an orthogonal decomposition into subspaces Hν ⊆ H correspond-
ing to different macro-states ν; define the quantum Boltzmann entropy of a system with
wave function ψ ∈ Hν by

SqB(ψ) = k log dν . (65)
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We also denote this quantity by SqB(ν). (See also [32] for a discussion of this formula.
A version of it, with dν the “number of elementary states,” was used already by Einstein
in 1914 [8, Eq. (4a)].)

While the Boltzmann entropy is based on the individualist view, there is a coun-
terpart in the ensemblist view, known as the Gibbs entropy in classical mechanics; it is
defined for a system described by the probability density ρ on phase space R6N to be

SG(ρ) = −k
∫

R6N

dX ρ(X) log ρ(X) . (66)

Its quantum mechanical analog is the von Neumann entropy, defined for a system de-
scribed by the density matrix ρ on Htotal by (63). In his QET article, von Neumann
writes in Section 1.3: “The [expression (63)] for entropy [... is] not applicable here in
the way [it was] intended, as [it was] computed from the perspective of an observer
who can carry out all measurements that are possible in principle—i.e., regardless of
whether they are macroscopic.” We agree that (63) is not applicable to the macroscopic
quantum system von Neumann considers in his QET article, but for a different reason.
Von Neumann’s reason is of an ensemblist, information-theoretic nature, supposing that
the value of the entropy quantifies the (possible) knowledge of an observer. In an in-
dividualist framework, where the system is regarded as being in a pure state, the von
Neumann entropy (63) is clearly inadequate because it always yields the value zero;
more fundamentally, an individualist regards entropy not as measuring the spread of a
probability distribution, but as measuring the size of a macro-state. However, note that
for ρ = d−1

ν Pν and ψ ∈ Hν ,
SqB(ψ) = SvN(ρ) . (67)

Let us turn to a comparison between (62) and (65). Since, for a macroscopic system,
the contribution k

∑
ν ‖Pνψ‖2 log ‖Pνψ‖2 is sufficiently small [11], we have that

S(ψ) ≈ k
∑
ν

‖Pνψ‖2 log dν . (68)

This quantity is just the weighted average of the SqB(ν), with the weight of ν given by
the quantum-mechanical probability of ν associated with ψ.

We conclude from this relation that S(ψ) should better be regarded as a sort of
mean entropy of the system, than as its entropy. For comparison, for a classical system
whose macro-state is unknown and has probability pν to be ν, we would not say that
the quantity ∑

ν

pν k log vol(Γν) , (69)

is the entropy of the system, but we would say instead that the system’s entropy S is
random, that it equals k log vol(Γν) with probability pν , and that (69) is its expected
value ES. Now, the quantum situation is not completely analogous because a quantum
superposition of contributions from different Hν is not the same as a statistical mixture
of wave functions from different Hν , but the analogy is good enough to make us doubt
the adequacy of von Neumann’s definition (62).
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Moreover, there are situations in which S(ψ) decreases, contrary to the second law
of thermodynamics. If ψ is a non-trivial superposition

ψ =
∑
ν

cνψν (70)

of macroscopically different quantum states ψν ∈ Hν with ‖ψν‖ = 1 (such as, e.g.,
a Schrödinger cat state) then a measurement of all macro-observables will yield, with
probability |cν |2, the macro-state ν and the wave function ψν with S(ψν) = SqB(ψν).
Since S(ψ), in the approximation (68), is just the average of the random value S(ψν),
the S(ψν) can (and usually will) have significant probability (possibly 50% or even more)
to lie below S(ψ).

7.2 Von Neumann’s Quantum H-Theorem

In the previous subsection, we have expressed reservations about the adequacy of von
Neumann’s definition S(ψ) of the entropy of a macroscopic quantum system. Be that
as it may, here is what von Neumann’s quantum H-theorem asserts (roughly): For any
H without resonances on H , most orthogonal decompositions D of H are such that for
every wave function ψ0, S(ψt) will be close to its upper bound k logD for most times
t. (The detailed statement in the QET article specifies a bound on how close, see von
Neumann’s Equations (70) and (79)–(84).)

We would like to emphasize that this statement is really just a corollary of the QET.
If there is a subspace Heq with deq/D ≈ 1 then for any wave function ψ in thermal
equilibrium as defined in (47), (68) entails that

S(ψ) ≈ k logD . (71)

Thus, the qualitative content of the above statement follows already if the system is
in thermal equilibrium for most of the time, and thus follows from normal typicality.
More generally, even if there is no equilibrium macro-state obeying deq/D ≈ 1, the
statement follows from (68) and the QET, together with the condition that the number
n of macro-states ν be not too large. (Indeed, for most t, according to the QET, then

S(ψt) ≈ k
∑
ν

dν
D

log dν . (72)

For those ν with (say) dν ≥ D/103n, we have that log dν ≥ logD − log(103n) ≈ logD
if n is not too large; furthermore, the sum of these dνs is at least 0.999D because the
sum of the remaining dνs is a sum of less than n terms, each of which is less than
D/103n, and thus is less than D/103. Thus, the right hand side of (72) is at least
0.999 k(logD − log(103n)), which is approximately k logD.)

More importantly, there are striking differences between von Neumann’s quantumH-
theorem and Boltzmann’s classical H-theorem [6] (see also [30, 15, 31, 16]). Boltzmann’s
H-theorem was originally formulated only for systems whose behavior is well described
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by the Boltzmann equation (i.e., dilute, weakly interacting gases) but can be understood
in a more general sense as the assertion that for most initial phase points X0 ∈ Γν 6=
Γeq, the Boltzmann entropy SB(Xt) increases, up to exceptions, monotonically in both
time directions with |t| until it reaches the maximal (equilibrium) value; the exceptions
(entropy valleys) are either very short-lived and shallow, or infrequent. This statement
is not a mathematical theorem but very plausible.12

In contrast, what von Neumann’s quantum H-theorem implies about the increase
of S(ψt) (for a system without resonances in the Hamiltonian and a typical decompo-
sition D) is much less: If, initially, S(ψ0) is far below k logD then it will in both time
directions sooner or later reach the maximal (equilibrium) value k logD, i.e., there are
t+ > 0 and t− < 0 such that S(ψt+) ≈ k logD ≈ S(ψt−); moreover, S(ψt) will assume
its maximal value for most t in the long run (in both time directions). However, no
statement is implied about a largely monotone increase; for example, insofar as von
Neumann’s quantum H-theorem is concerned, S(ψt) may first go down considerably
before increasing to k logD. Likewise, no statement is made about the features of the
entropy valleys between 0 and t±; they could, perhaps even for most wave functions, be
long-lived, deep, and frequent.

A Precise Statement of von Neumann’s Quantum

Ergodic Theorem

In von Neumann’s article, the statement of the quantum ergodic theorem is distributed
over many pages. It may therefore be helpful for the reader if we provide the exact
statement of the QET. Readers interested in the exact statement may also wish to look
at the two modified versions of the statement that we have described in [17]; although
they are in some ways stronger, they also follow from von Neumann’s proof.

Definition 1. The system corresponding to a choice of H , ψ0 ∈ S(H ), H, and D is
ε-δ′-normal if and only if, for (1− δ′)-most t,∣∣〈ψt|A|ψt〉 − tr(ρmcA)

∣∣ < ε
√

tr(ρmcA2) (73)

for every real-linear combination A =
∑

ν ανPν (i.e., for every self-adjoint operator A
from the algebra generated by the macro-observables M1, . . . ,M`).

12Von Neumann apparently did not think of this statement when thinking of the classical H-theorem.
He wrote in Section 0.6: “As in classical mechanics, also here there is no way that entropy could always
increase, or even have a predominantly positive sign of its [time] derivative (or difference quotient): the
time reversal objection as well as the recurrence objection are valid in quantum mechanics as well as
in classical mechanics.” In fact, the above statement of the H-theorem conveys something that could
be called a “predominantly positive sign” of the time difference quotient of S = SB(Xt) but is not
refuted by either time reversal or recurrence. Put very succinctly, this is because, according to the
statement, S increases in both time directions and may well decrease after reaching its maximum; see,
e.g., [15, 31, 16] for further discussion.

25



The condition (73) is more or less equivalent, when the number n of macro-spaces
Hν in H is much smaller than each of the D/dν , to the condition that∣∣∣‖Pνψt‖2 − dν

D

∣∣∣ < ε

√
dν
nD

for all ν , (74)

which is a precise version of (14). See Section 4 of [17] for more details about the relation
between (73) and (74).

Theorem 1. (von Neumann’s 1929 QET) Let ε > 0, δ > 0, and δ′ > 0. For arbitrary
H of finite dimension, any orthogonal decomposition D = {Hν} of H , and any H
without resonances, if

max
α 6=β

∣∣〈φα|Pν |φβ〉∣∣2 + max
α

(
〈φα|Pν |φα〉 −

dν
D

)2

< ε2 dν
nD

δ′

n
for all ν (75)

with dν = dim Hν, D = dim H , and n = #D , then for every ψ0 ∈ S(H ) the system is
ε-δ′-normal. Moreover, suppose we are given natural numbers D, n, and d1, . . . , dn such
that d1 + . . .+ dn = D and, for all ν,

max
(
C1,

10n2

ε2δ′δ

)
logD < dν < D/C1 , (76)

where C1 is a universal constant. Then (1 − δ)-most orthogonal decompositions D =
{Hν} of H with dim Hν = dν are such that (75) is satisfied (and thus the system is
ε-δ′-normal for every ψ0 ∈ S(H )).

One of the stronger versions of the QET described in [17] asserts that, under some-
what stronger assumptions on the dνs, (73) and (74) can be replaced with the stronger
(and more natural) error bound∣∣∣‖Pνψt‖2 − dν

D

∣∣∣ < ε
dν
D

for all ν . (77)

B Von Neumann’s Notation and Terminology

The following table lists some of von Neumann’s notation, and the (different) notation
we use here.
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vN here meaning
A,B, . . . A,B, . . . operators on Hilbert space
(φ, ψ) 〈ψ|φ〉 inner product in Hilbert space

H H Hamiltonian operator
ϕρ,a,Wρ,a φα, Eα eigenfunction, eigenvalue of H

Pψ |ψ〉〈ψ| projection to 1-d subspace spanned by ψ
U ρ density operator

Ia = [Ea,Ea+1) a-th energy interval
HIa = H a-th energy shell

∆a projection to the a-th energy shell
Sa D dimension of the a-th energy shell
Na n number of macro-spaces in the a-th energy shell

Hν ν-th macro-space (in the a-th energy shell)
Eν,a Pν projection to Hν

sν,a dν dimension of Hν

ωλ,ν,a an orthonormal basis of Hν

Mt{f(t)} f(t) time average of f(t)
M E ensemble average

Since for us, but not for von Neumann, the index a is fixed throughout, it is usually
omitted in our notation.

When von Neumann spoke of an orthogonal system in Hilbert space in the QET
article, he meant an orthonormal system; this becomes clear from his Equation (20) in
Footnote 25, where he uses Pϕf = (f, ϕ)ϕ, which is true only when ‖ϕ‖ = 1, for an
element ϕ of an “orthogonal system.”

Von Neumann used the expression macroscopic observer in the QET article when
referring to the family D = {Hν} of macro-spaces, or, equivalently, to the family
{M1, . . . ,M`} of commuting observables. This is perhaps not a fitting terminology, as it
may suggest that different people would have different sets like {M1, . . . ,M`} associated
with them, which is not the case. It is perhaps even an unfortunate terminology, as it
may further suggest that the (uniform) distribution over all Ds that the QET represents
the distribution of different people’s D in some population of observers. Instead, this
distribution should be regarded as just the mathematical means for expressing what is
true of most orthogonal decompositions D .

Von Neumann used the expression energy surface in quantum mechanics in different
sections of his article with different meanings. The main meaning, used in his Section
1, is what we call an energy shell: The subspace H corresponding to a narrow interval
[Ea,Ea+1) of energies. (Sometimes, he used “energy surface” when referring to the corre-
sponding micro-canonical density matrix ρmc, which is 1/D times the projection to H ,
or, in von Neumann’s notation, (1/Sa)∆a.) In Section 0.4, he used “energy surface” for
the torus (36) with fixed radii rα ≥ 0.

The expression micro-canonical ensemble undergoes a similar change in meaning:
While in Section 0.4, it refers to the uniform distribution over the torus (36), its main
meaning, used in Section 1, is what we call the micro-canonical density matrix ρmc. How-
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ever, besides that, von Neumann also used that expression for another density matrix
Uψ, associated with a given wave function ψ ∈ Htotal with contributions from several dif-
ferent energy shells: it is a mixture of the projections to the different energy shells HIa

with weights provided by ψ. In his words (after his Equation (32) in Section 1.3): “Now
we are ready to define the micro-canonical ensemble pertaining to the state ψ. [... W]e
define it to be the mixture of the 1

S1
∆1,

1
S2

∆2, . . . with weights (∆1ψ, ψ), (∆2ψ, ψ), . . ..”
This further complication vanishes when one focuses, as one can without damage, on
wave functions from one particular energy shell.
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