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Abstract

Graham Priest has formulated the minimally inconsistent logic of
paradox (MiLP), which is paraconsistent like Priest’s logic of para-
dox (LP), while staying closer to classical logic. We present logics
that stand to (the propositional fragments of) strong Kleene logic (K3)
and the logic of first-degree entailment (FDE) as MiLP stands to LP.
That is, our logics share the paracomplete and the paraconsistent-
cum-paracomplete nature of K3 and FDE, respectively, while keeping
these features to a minimum in order to stay closer to classical logic.
We give semantic and sequent-calculus formulations of these logics,
and we highlight some reasons why these logics may be interesting
in their own right.

Keywords: bilateralism, logic of paradox, paraconsistent logics; para-
complete logics; non-monotonic logics

1 Introduction

Priest (1991; 2006) has suggested a way to bring his logic of paradox (LP)
closer to classical logic by a tweak that results in what Priest calls the “min-
imally inconsistent logic of paradox” (MiLP). In this paper, we will of-
fer parallel tweaks for (the propositional fragments of) the paracomplete
strong Kleene logic (K3) and the logic of first-degree entailment (FDE). The
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results are what we call minimally nonstandard K3 and FDE, i.e., MiK3
and MiFDE. These logics enjoy similar advantages over K3 and FDE, re-
spectively, as MiLP enjoys over LP. In particular, these logics stay closer to
classical logic than K3 and FDE, in a way that is analogous to how MiLP
stays closer to classical logic than LP.

One motivation for this project is that MiLP is, as Rosenblatt (2021, fn
25) puts it, “Priest’s preferred way of carrying out classical recapture.”
Now, K3 is the dual logic of LP and it is often seen as the logic that is for
the paracomplete approach to the semantic paradoxes what LP is for the
paraconsistent approach (Cobreros et al., 2020a,b). Hence, the question
arises whether advocates of K3 can adopt Priest’s preferred approach to
classical recapture. And since FDE combines the paraconsistency of LP
and the paracompleteness of K3 and is also advocated as a response to the
paradoxes (Leitgeb, 1999; Beall, 2017),1 the same question arises for FDE.
Our aim in this paper is to show how advocates of K3 and FDE can adopt
the approach to classical recapture exemplified by MiLP.

Advocates of K3 and FDE have presented various ways of carrying out
kinds of recapture, such as Beall’s (2018) use of ‘shrieked’ and ‘shrugged’
predicates. We will not compare our approach to these existing approaches.
Rather, we will focus on how the MiLP approach can be carried over to
K3 and FDE. Putting the technical details of this on the table will prove
to be interesting enough in its own right. In particular, we will present
sequent calculi for MiK3 and MiFDE that include some important inno-
vations, which are inspired by a recently developed sequent calculus for
MiLP by one of us (Golan, 2022), and also draws on Da Ré and Pailos
(2022).

It is important to note at the outset, however, that one can mean differ-
ent things by “classical recapture.” The sense in which MiLP recaptures
classical logic is that if there is a classical valuation that makes all the
premises, Γ, true, then something follows from Γ in MiLP iff it follows from
Γ in classical logic. The corresponding kind of recapture that we will offer
for K3 is that if there is a classical valuation that makes all of the conclu-
sions, ∆, false, then ∆ follows from something in MiK3 iff it ∆ follows from
it in classical logic. And if there is a classical valuation that makes the

1One might allow gluts and gaps, e.g., because one wants to stay agnostic on whether
paradoxical sentences are gluts or gaps (Restall, 2017) or to say that the Liar is a glut but
the Truth-Teller is a gap (Beall, 2019).
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premises true and a classical valuation that makes the conclusions false,
then the inference is valid in MiFDE iff it is classically valid. Note that just
like K3 so MiK3 has no logical truths, i.e., no sentence φ such that ∅ |= φ.
Hence, the way in which MiK3 is closer to classical logic than K3 is not
in its logical truths but merely in its valid inferences. This is the dual of
what holds in MiLP, which, like LP, has no unsatisfiable sentences, i.e., no
sentence φ such that φ |= ∅. Thus, MiLP is closer to classical logic than LP
only in its valid inferences and not what is logically true or unsatisfiable.

We will work in a SET-SET framework, and our philosophical interpre-
tation of that framework will follow the bilateralist conception of conse-
quence suggested by Restall (2005). In general, bilateralism is the view
that the two sides of concept-pairs like truth and falsity, assertion and
denial, or proof and refutation should each be considered on a par and
neither side as more basic or fundamental. There are several versions of
this general idea (see Rumfitt, 2000; Wansing, 2017). According to the ver-
sion of bilateralism advocated by Restall (2005) and Ripley (2013; 2015),
Γ |= ∆ should be understood as saying that it is out-of-bounds to assert all
the sentences in Γ and also deny all the sentences in ∆, i.e., this combina-
tion of assertions and denials is ruled out by coherence norms governing
assertions and denials. This version of bilateralism, which we will sim-
ply call “bilateralism” below for brevity, offers an intuitive interpretation
of multiple-conclusion consequence relations. Moreover, as will become
clear below, bilateralism also allows us to interpret Priest’s MiLP as looking
at only assertions (i.e. premises) to determine which models are minimal
in the relevant sense. In contrast, we will also look at denials (i.e. conclu-
sions).

Our project is related to existing generalizations of MiLP to four-valued
settings and adaptive logics (Geibinger and Tompits, 2020; Skurt, 2017;
Crabbé, 2011; Batens, 2001; Arieli and Avron, 1998). As will become clear
in due course, however, our approach differs markedly from all such ex-
tant approaches because, for assessing validity, we don’t just look at min-
imal models of the premises of an argument but also at minimal counter-
models of the conclusions.2 This is motivated by our bilateralist under-

2To the best of our knowledge, this is in sharp contrast with all extant versions of
“minimally nonstandard”-style semantics. As a result, we will pursue our project at some
distance from extant “minimally nonstandard”-style approaches. We don’t think there is
anything wrong with these approaches, given their aims. But we want to explore another
way forward.
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standing of the SET-SET framework and by the goal of allowing the duality
between K3 and LP to carry over to the minimal setting.

The paper is organized thus: In the next section, we set the stage by
introducing MiLP. In Section 3, we present MiK3 and MiFDE model the-
oretically. We present sequent calculi for both logics in Section 4. And
Section 5 concludes.

2 Background: Minimally Inconsistent LP

Our aim with MiK3 and MiFDE is to do for K3 and FDE what MiLP does for
LP. In this section, we set the stage by explaining how one can tweak LP
to get MiLP. To define LP and MiLP, let L be a language that results from
adding ¬, ∨, and ∧ to a countable stock of atomic sentences in the usual
way.3 Let a valuation, v, be a function that assigns to each sentence of L a
subset of {0, 1} such that (Priest, 2006, 75)4:

(1a) 1 ∈ v(¬φ) iff 0 ∈ v(φ)

(1b) 0 ∈ v(¬φ) iff 1 ∈ v(φ)

(2a) 1 ∈ v(φ ∧ ψ) iff 1 ∈ v(φ) and 1 ∈ v(ψ)

(2b) 0 ∈ v(φ ∧ ψ) iff 0 ∈ v(φ) or 0 ∈ v(ψ)

(3a) 1 ∈ v(φ ∨ ψ) iff 1 ∈ v(φ) or 1 ∈ v(ψ)

(3b) 0 ∈ v(φ ∨ ψ) iff 0 ∈ v(φ) and 0 ∈ v(ψ)

For LP and MiLP, we require that for all sentences φ, v(φ) 6= ∅. Hence,
v(φ) is either {0} or {1} or {0, 1}. Valid inferences preserve truth in the
sense of containing 1: Γ |=LP ∆ iff for every valuation, v, if ∀γ ∈ Γ (1 ∈
v(γ)), then ∃δ ∈ ∆ (1 ∈ v(δ)). We say that a valuation v is a “classical
model” iff there is no sentence A such that v(A) = {0, 1}. It is easy to

3We restrict ourselves to propositional logic throughout.
4As Priest (2006, 75) notes, while we can think of evaluations as relations between sen-

tences and truth-values, “it is technically simpler to think of an evaluation, equivalently,
as a function which maps a formula to the set of truth values to which the formula is re-
lated.” We follow Priest in this. Throughout, we assume classical set-theory and classical
logic in our meta-theory.
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see that this happens just in case no atomic sentence is assigned the value
{0, 1}.

Now, LP has the same logical truths as classical logic but deems some
classically valid inferences invalid, most prominently ex contradictione quodli-
bet, also known as “explosion”: φ,¬φ |= ψ. This rejection of explosion has
wide-reaching effects that are not always welcome. LP invalidates, e.g.,
the rule of disjunctive syllogism, namely ¬φ, φ ∨ ψ |= ψ. As Priest (2006,
pp. 221-222) acknowledges, uses of disjunctive syllogism are unproblem-
atic when reasoning in consistent domains, and we can often (defeasibly)
assume that we are reasoning in such a domain. The goal of MiLP is to
capture this idea.

As a first step toward defining MiLP, let us consider the following strict
partial ordering of valuations (of the same language).

Definition 1. Consistency ordering: v1 <c v2 iff {p | v1(p) = {0, 1}} $ {p |
v2(p) = {0, 1}} (where p ranges over atomic sentences).

Using this ordering, we can define minimal models of sets of premises,
which in turn allows us to define consequence in MiLP.

Definition 2. Minimal models (c-minimal models): A valuation v is a minimal
LP-model of the set of sentences Γ iff (i) v is an LP-model of Γ, i.e., ∀γ ∈
Γ (1 ∈ v(γ)), and (ii) for all v′ <c v, v′ is not a LP-model of Γ, i.e., there is
some γ ∈ Γ such that 1 6∈ v′(γ).

Definition 3. MiLP-Validity: Γ |=MiLP ∆ iff for every minimal LP-model, v,
of Γ there is some δ ∈ ∆ such that 1 ∈ v(δ).

Since every MiLP model is an LP model, every LP-valid inference is
MiLP-valid. In particular, it follows that all logical truths of classical logic
are logical truths of MiLP. However, MiLP is “more classical” than LP in
its consequence relation (Priest, 2006, 224). In particular, in consistent sit-
uations, the consequence relation of MiLP coincides with classical conse-
quence. For example, the minimal models of {p,¬p ∨ q} (where p and
q are atoms) are those where p and q are assigned 1. Thus, in contrast
to LP, the corresponding instance of disjunctive syllogism is MiLP-valid:
p,¬p ∨ q |=MiLP q.

As Priest (2006, 224-25) points out, MiLP is a non-monotonic logic. For
example, r ∨ (p ∧ ¬p) |=MiLP r, where p and r are atoms. However, p ∧
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¬p, r ∨ (p ∧ ¬p) 6|=MiLP r. After all, if 1 ∈ v(p ∧ ¬p), then v(p) = {0, 1}.
So, if we let v(r) = {0}, we have a counter-example.

Interpreted in a bilateralist way, MiLP says that it is out-of-bounds to
assert everything in Γ and deny everything in ∆ iff the most consistent
cases in which everything in Γ has values that include 1 are also cases in
which something in ∆ has a value that includes 1. In other words, MiLP
interprets our assertions (premises) in such a way that they commit us to
a minimum of inconsistencies among atomic sentences. This makes sense
because it is ceteris paribus problematic to assert something that commits
one to instances of φ ∧ ¬φ. Thus, MiLP attributes such problematic com-
mitments (for the purpose of assessing validity) only if this is required to
make all the assertions have values that include 1. On the other hand,
there is nothing problematic about denying instances of φ ∧ ¬φ. So we
don’t need to minimize commitments to denials of instances of φ ∧ ¬φ
that come with our denials (conclusions). Thus, only minimal models of
the premises matter, when it comes to assessing whether an inference is
MiLP-valid. This bilateralist way of looking at MiLP will prove illuminat-
ing in comparisons with our logics below.

3 Minimally Nonstandard K3 and FDE

We will now transfer Priest’s construction of MiLP to K3 and FDE. This
will yield logics that we call “minimally nonstandard” K3 and FDE, re-
spectively labeled MiK3 and MiFDE. What it means to be “minimally non-
standard” is different for the two logics. For K3, it means that we minimize
indeterminacy in a particular respect. Hence, we also call the resulting
logic “minimally indeterminate K3.” In this section, we characterize MiK3
and MiFDE model theoretically; we present proof systems in the next sec-
tion. We start with MiK3 and then turn to MiFDE.

Before we dive into the technical details, however, let’s start with a
philosophical way into our proposal for minimally indeterminate K3. An
advocate of a paracomplete logic like K3 holds that paradoxical sentences
like the liar sentence are neither true nor false but indeterminate, and this
leads her to hold that some denials of sentences of the form φ ∨ ¬φ or,
equivalently, joint denials of φ and ¬φ are not out-of-bounds, as the clas-
sical logician claims they are. Now, what stands to K3 as disjunctive syllo-
gism stands to LP is the inference schema ψ |= ¬φ, φ ∧ ψ. On a bilateralist
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reading this says that it is out-of-bounds to assert ψ and also deny ¬φ and
deny φ∧ψ. This fails according to the advocate of K3 because the sentence
that takes the place of φ might be indeterminate (neither true nor false)
while ψ’s place might be taken by a true sentence. However, an advocate
of the paracomplete approach who wants to stay closer to classical logic
might hold that we should not consider the possibility of sentences being
indeterminate unless there is no other way to render the denials in a posi-
tion under consideration accurate. If we can, e.g., render the denials of ¬A
and A ∧ B accurate without assuming that any sentence is indeterminate,
then we should ignore, by default, the possibilities in which any sentence
is indeterminate. Hence, in such cases, we will say that B |= ¬A, A ∧ B
is valid. If, however, we must assume that some sentences are indeter-
minate in order to render the denials of of ¬A and A ∧ B accurate, then
we will assume that there are only as few such indeterminate sentences as
needed and no more and then assess the validity of our inference against
this assumption. This is the line of thought that we will pursue in our
formulation of minimally indeterminate K3.

Formulated in bilateralist terms, MiLP ignores the possibility of incon-
sistencies that are not needed in order to make assertions accurate. And
MiK3 ignores the possibility of indeterminacies that are not needed in or-
der to make denials accurate. And, by ignoring these possibilities, each
such logic comes closer to classical logic than LP or K3, respectively, in the
inferences it deems valid. We will show how both of these strategies can
be combined in MiFDE. In MiFDE, assertions whose accuracy requires that
some sentences are both truth and false may be considered accurate, and
denials whose accuracy requires that some sentences are neither true nor
false can be considered accurate. But we assume that this doesn’t happen
unless we are considering collections of assertions and denials that cannot
be rendered accurate in any other way.

3.1 Minimally Indeterminate K3

Let us start our exposition of minimally indeterminate K3 with a look at
ordinary K3, which has been advocated as a response to the semantic para-
doxes, e.g., by Kripke (1975). We use the same general setup as for LP.
The difference is that we now allow that there are sentences, φ, such that
v(φ) = ∅, but we require that there is no sentence such that v(φ) = {0, 1}.
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Thus, we allow for sentences that have neither truth-value but we forbid
sentences that have both values. We say that Γ |=K3 ∆ iff for all such val-
uations, v, if ∀γ ∈ Γ (1 ∈ v(γ)), then ∃δ ∈ ∆ (1 ∈ v(δ)). K3 invalidates
the law of excluded middle: 6|=K3 φ ∨ ¬φ. The model such that v(p) = ∅
is a counter-example because in that model 1 6∈ v(p ∨ ¬p) = ∅. Notice
that, just as LP validates all classical logical truths, so K3 agrees with clas-
sical logic on what is unsatisfiable, i.e., Γ |=K3 ∅ iff Γ |=CL ∅ (where |=CL
denotes classical consequence).

A natural first idea for transferring the classical recapture approach
from MiLP to K3 is to look only at minimal K3-models of the premises,
using an ordering over models similar to the one above. Unfortunately,
this won’t work, as can be seen from the following fact.

Fact 4. If a K3-valuation assigns {1} to every member of Γ, then there is a K3-
valuation that assigns {1} to every member of Γ and doesn’t assign ∅ to any
sentence, i.e., there is a classical model of Γ.

Proof. We take the valuation, v, that assigns {1} to every member of Γ and
change it to v′ thus: if p is atomic, then v′(p) = {1} iff v(p) = {1}, and
v′(p) = {0} otherwise. A simple induction on sentence complexity shows
that if v(A) = {1}, then v′(A) = {1}, for any sentence A. �

It follows that if there is a minimal K3-model of the premises, then
there is a classical model of the premises. So, every minimal K3-model of
the premises would be a classical model, according to this idea. Which
is to say, looking only at such models yields classical logic rather than a
strengthened version of K3.

We can overcome this obstacle if we reflect on the fact that K3 is the
dual logic of LP, i.e., Γ |=LP ∆ iff ¬∆ |=K3 ¬Γ, where ¬X = {¬A : A ∈ X}
(see e.g. Cobreros et al., 2020a). This suggests that in order to preserve the
duality for the minimally nonstandard variants of these logics, we should
not look at K3-models of the premises but at K3-counter-models of the
conclusions, i.e., models that give all of the conclusions values other than
{1}. Indeed we should look at the least indeterminate models of this kind.
For that, we must first define a determinacy ordering over the K3-models.

Definition 5. Determinacy ordering: v1 <d v2 iff {p | v1(p) = ∅} $ {p |
v2(p) = ∅} (where p ranges over atomic sentences).
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We can now define minimal counter-models in terms of this determi-
nacy ordering.

Definition 6. Minimal counter-models (d-minimal counter-models): A valua-
tion v is a minimal K3-counter-model of the set of sentences ∆ iff (i) v is a
K3-counter-model of ∆, i.e., ∀δ ∈ ∆ (1 6∈ v(δ)), and (ii) for all v′ <d v, v′ is
not a K3-counter-model of ∆, i.e., ∃δ ∈ ∆(1 ∈ v′(δ)).

In order to define validity in MiK3, we think of valid arguments as
those arguments such that, any counter-model of all the conclusions is
a counter-model of at least one premise. This is equivalent to the usual
definition of validity as absence of counter-models, but it allows us to look
only at the least indeterminate counter-models of the conclusions. More
precisely, we can define MiK3 thus:

Definition 7. MiK3-Validity: Γ |=MiK3 ∆ iff for every v that is a minimal
K3-counter-model of ∆ there is some γ ∈ Γ such that 1 6∈ v(γ).

The idea behind MiK3 is that all the “least gappy” situations in which
all the conclusions have values other than {1} are ones in which at least
one of the premises has value {1}. Put differently, if all the premises hold
(i.e. have values of {1}), then the conclusions cannot all fail in the least
indeterminate way possible, i.e. we cannot be in a case of a minimal K3-
counter-model to the conclusions.

The bilateralist reading of consequence is illuminating here. On a bi-
lateralist interpretation of MiK3, it is out-of-bounds to assert everything in
Γ and deny everything in ∆ iff the least indeterminate way to make the
denied sentences false also make some assertion false. This makes sense
because it is ceteris paribus problematic to engage in denials (conclusions)
that commit one to truth-value gaps: after all, denying claims of the form
“p or not-p” is problematic. On the other hand, there is nothing problem-
atic about asserting instances of “p or not-p,” and so MiK3 doesn’t care
about minimizing such instances on the left-hand side (premises). Thus,
whereas MiLP interprets our assertions (premises) in such a way that they
commit us to as few instances of φ ∧ ¬φ, for atomic φ, as possible, MiK3
interprets our denials (conclusions) in such a way that they commit us to
as few rejections of φ ∨ ¬φ, for atomic φ, as possible. Put differently, MiLP
sees our assertions as involving only minimal commitments to gluts, while
MiK3 sees our denials as involving only minimal commitments to gaps.
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We now turn to an investigation of some of the properties of MiK3.
Let’s start with its relation to classical logic. As noted above, K3 shares its
unsatisfiabilities with classical logic. That remains true for MiK3.

Proposition 8. Γ |=CL ∅ iff Γ |=MiK3 ∅.

Proof. Since every model is a K3-counter-model of ∅, the minimal such
models are those in which no sentence gets value ∅, i.e., classical models.
So, both sides of our biconditional hold just in case there is no classical
model of Γ. �

We saw above that MiLP agrees with classical logic as long as there is
a classical model of the premises. The dual is true of MiK3: it agrees with
classical logic as long as there is a classical counter-model of the conclu-
sions. This is the sense in which MiK3 recaptures classical logic; it is dual
to the sense in which MiLP recaptures classical logic.

Proposition 9. If there is a classical counter-model of ∆, then Γ |=CL ∆ iff
Γ |=MiK3 ∆.

Proof. Suppose that there is a classical counter-model of ∆. Then every
minimal K3-counter-model of ∆ is a classical model. Now, for the left-to-
right direction, suppose that Γ |=CL ∆. Since there is a classical counter-
model of ∆, it follows that any such model is also a K3-counter-model of
Γ. Hence, Γ |=MiK3 ∆.

For the right-to-left direction, suppose that Γ |=MiK3 ∆. So, all the
minimal K3-counter-models of ∆ are K3-counter-models of Γ. The clas-
sical models that aren’t counter-models of ∆ cannot (by that very fact) be
counter-models of Γ |=CL ∆. And all the classical counter-models of ∆ are
minimal K3-counter-models of ∆. Hence, they are all counter-models of Γ
and, therefore, not counter-examples for Γ |=CL ∆. Therefore, there are no
such counter-examples. So Γ |=CL ∆. �

This means that MiK3 allows us to reason classically as long as our
conclusions can fail (jointly) without any truth-value gaps. For instance,
if {A ∧ B,¬B} has a classical counter-model, then A |=MiK3 A ∧ B,¬B,
which fails in K3 because models in which v(B) = ∅ provide counter-
examples. Note that in MiK3 this inference can be defeated by the ad-
dition of conclusions. This happens, e.g., if we add B ∨ ¬B as a conclu-
sion: A 6|=MiK3 A ∧ B,¬B, B ∨ ¬B. After all, a minimal counter-model of
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{A ∧ B,¬B, B ∨ ¬B} assigns the value ∅ to B, which allows the model to
be such that 1 6∈ v(A ∧ B) even when 1 ∈ v(A). Hence, MiK3 is non-
monotonic on the right side.

When considering the non-monotonicity of MiK3, it is helpful to note
that MiLP belongs to a class of non-monotonic logics that are build on pref-
erential models, in the so-called KLM-tradition (Kraus et al., 1990). This
means that MiLP has the so-called KLM properties (Strasser and Antonelli,
2019), including Cautious Monotony: if φ |= ψ and φ |= τ, then φ, ψ |= τ.
As we will see momentarily, MiK3 is the dual logic of MiLP, and it, hence,
enjoys the properties that are dual to the KLM properties. The dual of
Cautious Monotony is this: if ψ |= φ and τ |= φ, then τ |= φ, ψ. Another
KLM property is cumulative transitivity, i.e. the additive version of cut: if
φ, ψ |= τ and φ |= ψ, then φ |= τ. The dual of this property is: if τ |= φ, ψ
and ψ |= φ, then τ |= φ. This and the analogous duals of the other KLM
properties hold for MiK3. And as will become clear in Section 4.1 when we
show that cut can be eliminated in MiK3, cumulative transitivity and its
dual hold in MiK3 and MiLP.

These facts aren’t too surprising: after all, if the duality of K3 and LP
holds for their minimally nonstandard variants, then the non-monotonicity
of MiLP on the left can be expected to have its dual in the non-monotonicity
of MiK3 on the right. This, however, raises the question of whether MiK3
and MiLP are dual logics. To show that they are, the following lemma will
prove useful.

Lemma 10. There is a one-to-one mapping ∗ between LP-models and K3-counter-
models, such that v is an LP-counter-model of ∆ iff v∗ is a K3-model of ¬∆, and
v is a minimal LP-model of Γ iff v∗ is a minimal K3-counter-model of ¬Γ.5

Proof. We map LP-models and K3-counter-models to each other by leaving
the values {0} and {1} unchanged but mapping {0, 1} in LP-models to ∅
in K3-counter-models and vice versa. As a quick induction on sentence
complexity shows, we can do this for all sentences by mapping the values
of atomic sentences in this way. Note that, under this mapping, our two
orderings map into each other, i.e., v′ <c v iff v′∗ <d v∗. Now, for the first
conjunct, if there is no δ ∈ ∆ such that 1 ∈ v(δ), then all ¬δ ∈ ¬∆ are such
that v ∗ (¬δ) = {1}. After all, if 1 6∈ v(δ) in an LP-model, then v(δ) = {0}.
And the same reasoning works in reverse. For the second conjunct, the

5As above, negation of sets are defined thus: ¬X = {¬A : A ∈ X}.
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left-to-right direction is shown thus: Suppose that v is a minimal LP-model
of Γ. So ∀γ ∈ Γ (v(γ) = {1} or v(γ) = {0, 1}). If v(γ) = {1}, then
v ∗ (γ) = {0}. If v(γ) = {0, 1}, then v ∗ (γ) = ∅. So, ∀¬γ ∈ ¬Γ (1 6∈
v ∗ (¬γ)). Hence, v is a K3-counter-model of ¬Γ. Moreover, for all v′ <c
v, there is a γ ∈ Γ such that v′(γ) = {0} and, hence, ∃¬γ ∈ ¬Γ(1 ∈
v′ ∗ (¬γ)), i.e., v′∗ is not a K3-counter-model of ¬Γ. So v∗ is a minimal
K3-counter-model of ¬Γ. Right-to-left: Suppose that v∗ is a minimal K3-
counter-model of ¬Γ. So ∀¬γ ∈ ¬Γ (v ∗ (¬γ) = {0} or v ∗ (¬γ) = ∅). If
v ∗ (¬γ) = {0}, then v(γ) = {1}. If v ∗ (¬γ) = ∅, then v(γ) = {0, 1}. So
(i) v is a LP-model of Γ, i.e., ∀γ ∈ Γ (1 ∈ v(γ)), and (ii) for all v′ <c v, v′ is
not an LP-model of Γ, i.e., there is some γ ∈ Γ such that v′(γ) = {0}. So, v
is a minimal LP-model of Γ. �

Proposition 11. MiLP and MiK3 are dual logics, i.e., Γ |=MiLP ∆ iff ¬∆ |=MiK3
¬Γ.

Proof. Suppose that Γ |=MiLP ∆. So there is no minimal LP-model of Γ
that is an LP-counter-model of ∆. By Lemma 10, it follows that there is
no minimal K3-counter-model of ¬Γ that is a K3-model of ¬∆. The same
reasoning works in the other direction as well. �

Thus, the duality between LP and K3 carries over to MiLP and MiK3.
The strategy of MiLP to allow classical reasoning by default hence has a
dual, MiK3, that is available to the K3 advocate. While the MiLP advo-
cate looks at the least nonstandard models of the premises, however, the
MiK3 advocate looks at the least nonstandard counter-models of the con-
clusions. Thus, the MiK3 advocate should endorse the default assumption
that if the conclusions of an inference fail, they do so in the “least gappy
way” possible. This is the dual of the MiLP assumption that the premises
hold in the “least glutty way” possible.

We would like to conclude the model-theoretic discussion of MiK3 with
a few words on what Priest calls “reassurance.” In general, there is a con-
cern that classical recapture may come with a cost, which one may not
be willing to pay. In the MiLP case, the fear is that looking only at min-
imal models would make this logic unnecessarily collapse into triviality.
In other words, the concern is that there will be some sets Σ whose clo-
sure under classical logic and MiLP is trivial—namely, Σ “explodes” in the
eyes of these logics—whereas the closure of Σ under LP isn’t trivial. If that
were the case, MiLP’s theoretical legitimacy would have to be restricted,
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just as that of classical logic is. Fortunately, Priest (2006, p. 226) proves his
“reassurance” result, according to which the concern is uunsubstantiated:
for any Σ, if Σ isn’t LP-explosive, it is not MiLP-explosive.6

How about an analogous concern in the MiK3 case? That is, a concern
arises that there are some sets Σ such that both ⇒CL Σ and ⇒MiK3 Σ,
whereas Σ cannot be proved in K3 as the latter logic has no theorems.
In particular, such Σ might consist of instances of the excluded middle,
in which case MiK3 would commit us to accepting those instances, that
may be rejected in K3. This would be problematic for proponents of the
paracomplete approach, who do not want to commit themselves to any
such instance.

However, it is an immediate consequence of Proposition 11 that when-
ever MiK3 proves an instance of the excluded middle of the form ` A ∨
¬A, MiLP proves that A ∧ ¬A “explodes.”7 According to Priest’s reassur-
ance result, that happens iff LP already proves that A ∧ ¬A explodes. The
duality of LP and K3 guarantees, in turn, that the latter is the case iff K3
proves A ∨ ¬A. Wrapping things up, we get that MiK3 proves an instance
of the excluded middle iff K3 already proves that instance, and so we get a
reassurance result for MiK3: it doesn’t prove any instance of the excluded
middle as a theorem, since K3 has no theorems.

3.2 Minimally Nonstandard FDE

Given that the strategy underlying MiLP can be applied to K3, it is natu-
ral to ask whether it can be generalized to FDE. To do so, we must first
introduce FDE. Let the language L be as before, and let a valuation, v,
be a function that assigns to each sentence of L a subset of {0, 1} in ac-
cordance with the clauses (1a)-(3b) above. This time, however, we forbid
neither that sentences get the value ∅ nor that they get the value {0, 1}.
Thus, sentences can be neither true nor false, and they can be both true
and false. Consequently, v(φ) can take all four values: ∅, {0}, {1}, {0, 1}.
We say that Γ |=FDE ∆ iff for every valuation, v, if ∀γ ∈ Γ (1 ∈ v(γ)), then
∃δ ∈ ∆ (1 ∈ v(δ)).

6Given the scope of the present paper, we confine the discussion to reassurance for
propositional MiLP. There are analogous results for the first-order case, but we will not
touch upon them here.

7The proof rests on the fact that the De Morgan laws hold in these logics. The details
are left to the reader as an exercise.
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In order to apply the strategy of MiLP again, we must define minimal
models. However, since FDE has two nonstandard truth-values—namely
∅ and {0, 1}, representing gaps and gluts—we have choices regarding
which values we want to treat as ruled out by our default assumption:
we could define minimality in terms of just {0, 1}, just ∅, or both. Arieli
and Avron (1998) have explored four-valued logics in this spirit (see also
Geibinger and Tompits, 2020).8 Or we could combine the consistency or-
dering and the determinacy ordering into a single ordering.9 However, to
the best of our knowledge, all such extant logics are defined in terms of
minimal models of premises, not minimal counter-models of conclusions.
Given the duality of MiLP and MiK3, and given that FDE can be seen as
combining LP and K3 by allowing gluts and gaps, the above approaches
strike us as lopsided. Our aim in this subsection is to apply the strategy of
minimality to FDE in a more balanced way.

At this point, the bilateralist approach proves useful. Recall that in our
bilateralist setting, we have to minimize assertions of gluts and denials of
gaps, whereas on the other hand, there is nothing wrong with denying
contradictions and asserting instances of excluded middle. This rationale,
we argue, carries over to MiFDE. That is, when we assess collections of
assertions and denials for out-of-boundness, MiFDE looks only at the least
glutty way of understanding our assertions and the least gappy ways of
understanding our denials.

Recalling that we have two orderings <c and <d, it is clear that to make
our assertions as glut-free as possible and our denials as gap-free as pos-

8These logics often include vocabulary that makes minimal K3-models different from
classical models, contrary to what we have seen above. While we acknowledge that this
is interesting and important, we think that having such vocabulary around makes it easy
to miss what is required for maintaining the duality of the minimal versions of LP and
K3.

9Such an approach would probably be broadly similar to the combination of circum-
scription and MiLP due to Lin (1996). Lin combines the ordering of circumscription,
which minimizes the extensions of predicates, and the consistency ordering of MiLP into
a single ordering of valuations.

One could also define the joint ordering thus: v1 <j v2 iff {p | v1(p) ∈ {∅, {0, 1}}} $
{p | v2(p) ∈ {∅, {0, 1}}}. Looking at models of premises that are minimal with respect
to that order results in (the fragment over our language of) what Arieli and Avron (1998,
116) call |=4

I2
. Given our goal to formulate a more balanced combination of MiLP and

MiK3, and given the above bilateralist motivation according to which there is nothing
wrong with denying contradictions and asserting instances of excluded middle, we don’t
pursue Arieli and Avron’s line of thought here.
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sible, we have to impose two minimality conditions: one for gluts apply-
ing to premises and one for gaps applying to conclusions. Thus, we will
be looking, respectively, at c-minimal models of premises and d-minimal
counter-models of conclusions.

Definition 12. MiFDE consequence: Γ |=MiFDE ∆ iff (i) every c-minimal
model of Γ is a model of ∆ and (ii) every d-minimal counter-model of ∆ is
a counter-model of Γ.

It is common to think of FDE as combining LP and K3. Analogously, we
want MiFDE to combine MiLP and MiK3. It is thus natural to use both or-
derings simultaneously in order to define MiFDE. As we saw above, Fact 4
implies that d-minimal models of premises are in effect classical models.
Similarly, c-minimal counter-models of conclusions are in effect classical
counter-models. Hence, if we want our two orderings to do some work,
we must do what the above bilateralist interpretation suggests: use <c on
the left as in MiLP and use <d on the right as in MiK3.

Let us look at some properties of MiFDE. As is well-known, explosion
and excluded middle both fail in FDE, and FDE is not the intersection of LP
and K3, i.e., the FDE-valid arguments are not those that are (in the same
language) LP-valid and also K3-valid. For φ ∧ ¬φ |= ψ ∨ ¬ψ is an LP-
valid and also K3-valid schema (i.e., in the intersection of LP and K3) but
not FDE-valid. The following two propositions imply that the situation is
similar for MiFDE.

Proposition 13. Explosion and the law of excluded middle both fail in MiFDE.

Proof. For explosion, note that p ∧ ¬p 6|=MiFDE q. For, there is a c-minimal
model of p ∧ ¬p that isn’t a model of q. Indeed, any model v in which
v(p) = {0, 1} and v(q) = {0} and all other atoms have classical truth-
values is such a model.

For the law of excluded middle, note that q 6|=MiFDE p ∨ ¬p because
there is an d-minimal counter-model of p ∨ ¬p that isn’t a counter-model
of q. Indeed, any model in which v(p) = ∅ and v(q) = {1} and all other
atoms have classical truth-values is such a model. �

Proposition 14. MiFDE is not the intersection of MiLP and MiK3, i.e., the
MiFDE-valid arguments aren’t those that are MiLP-valid and also MiK3-valid.
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Proof. The counterexample for the parallel claim about FDE carries over.
For example, p ∧ ¬p |= q ∨ ¬q is valid in MiLP and also in MiK3, but p ∧
¬p 6|=MiFDE q∨¬q. This is because any model such that v(p) = {0, 1} and
v(q) = ∅ is a c-minimal model of p ∧ ¬p and is not a model of q ∨ ¬q. �

So MiFDE combines the paraconsistency of MiLP and the paracomplete-
ness of MiK3 without being their intersection. And the reasoning that
shows this is the reasoning familiar from the relation between FDE, LP,
and K3. We take this to be a virtue of MiFDE. It occupies the place that
it should intuitively occupy, namely as related to FDE as MiLP is related
to LP, and MiK3 is to K3, and hence related to MiLP and MiK3 as FDE is
related to LP and K3.10

Given that MiFDE is weaker than the intersection of MiLP and MiK3,
one might wonder whether MiFDE still enjoys the crucial advantage of
MiLP over LP, namely that it allows us to reason classically by default.
And indeed, MiFDE agrees with classical logic for all inferences whose
premises are classically satisfiable and whose conclusions are classically
falsifiable.

Proposition 15. If there is a classical model of Γ and a classical counter-model of
∆, then Γ |=MiFDE ∆ iff Γ |=CL ∆.

Proof. Suppose there is a classical model of Γ and a classical counter-model
of ∆. Note that these models will be a c-minimal model of Γ and a d-
minimal counter-model of ∆, respectively. Left-to-right: Suppose that
Γ |=MiFDE ∆. Since all classical models of Γ are c-minimal, this implies
that they are all models of ∆. And we know that there are such classical
models. Similarly, since all classical counter-models of ∆ are d-minimal,
we know that they are all counter-models of Γ. So, Γ |=CL ∆.

Right-to-left: Suppose that Γ |=CL ∆. Since there is a classical model of
Γ and a classical counter-model of ∆, the minimal models and counter-
models of Γ and ∆, respectively, must all be classical. Thus, (i) every
c-minimal model of Γ is a model of ∆ and (ii) every d-minimal counter-
model of ∆ is a counter-model of Γ. So, Γ |=MiFDE ∆. �

10This is not true of the logics presented by Arieli and Avron (1998), which we do not
mean as a criticism, since this was not their aim. But this fact is noteworthy for placing
our results in the extant literature.
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Proposition 16. MiFDE validates disjunctive syllogism and its dual in “stan-
dard” situations; i.e., if there is a classical model of the premises and a classical
counter-model of the conclusions, then A,¬A ∧ B |=MiFDE B and B |=MiFDE
A,¬A ∧ B hold.

Proof. Immediate from the previous proposition. �

These results illustrate that we can think of MiFDE as codifying the
default assumption that if the premises are true, they are only true and
not true and also false; and if the conclusions are not true, they are false
and not neither true nor false. That is, we assess validity by looking only
at models that come as close as possible to this assumption, namely c-
minimal models of the premises and d-minimal counter-models of the con-
clusions. To put it in bilateralist terms: According to MiFDE, it is out-of-
bounds to assert everything in Γ and deny everything in ∆ iff the “least
glutty” ways for the assertions to be all correct are ways for at least one
denial to be incorrect and the “least gappy” ways for the denials to be all
correct are ways for at least one assertion to be incorrect.

This concludes our model-theoretic presentation and discussion of MiK3
and MiFDE. In the next section, we present proof systems for both logics.

4 Sequent Calculi

In this section, we offer sequent systems for MiK3 and MiFDE. Our ap-
proach is based on recent work of one of us: Golan’s (2022) sequent system
for MiLP. In effect, what we are going to do is simply adjust to MiK3 and
MiFDE the techniques and proofs Golan (2022) uses for MiLP. The basic
idea here is, roughly, that we allow classical reasoning for sequents that
are “less standard” than our target sequent. To implement this idea, we
introduce the following notation for the subset of a given set that includes
all the literals—i.e., atoms and their negations—for which both the atom
and its negation are in the original set.

Definition 17. For any given set ∆, we write ∆∩At! for {p | p,¬p ∈ ∆} ∪
{¬p | p,¬p ∈ ∆}.

The idea will be that if, e.g., our target sequent includes ∆ on the right
side, then any sequent that properly includes ∆∩At! on the right side is
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“less standard” than our target sequent. And we will allow such sequents
to behave classically. For example, we can derive instances of excluded
middle that properly include ∆∩At! on the right side.

The feature of the sequent calculi below that allows us to capture the
idea that we reason classically by default is that the calculi allow us to as-
sume and discharge sequents. In the calculus for MiK3 below, for example,
given that we begin our derivation with some axiom, we can assume and
discharge any sequent that (i) would be guaranteed to hold in classical
logic by excluded middle and (ii) whose conclusions are such that their
joint failure requires a more nonstandard situation than the one required
for the joint failure of the axiom’s conclusions. We take our two logics in
turn.

4.1 Sequent Calculus for MiK3

The proof system presented below results from making certain changes to
the K3 sequent calculus as presented in Da Ré and Pailos (2022).11 First,
the axioms are restricted to sequents that involve only literals.12 Second,
we drop Weakening on the right, since it fails in MiK3, as explained above.
Crucially, however, we also add a (natural deduction-style) rule for as-
suming and discharging sequents, which we call “CD” for “conjunction
discharge.” Here is the sequent system for MiK3:

Axioms:
With all the sentences that occur as premises or conclusions be-
ing literals:

ID: Γ, p⇒ p, ∆
LNC: Γ, p,¬p⇒ ∆

Structural Rules:
Left Weakening:

Γ⇒ ∆ K
Σ, Γ⇒ ∆

11The K3 sequent calculus presented by Da Ré and Pailos includes rules for truth con-
stants, which we omit here.

12This doesn’t change which sequents are provable, as can easily be proven by induc-
tion on proof height.
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Cut:

Γ⇒ ∆, A A, Γ⇒ ∆
Cut

Γ⇒ ∆

Operational Rules:
Operational Rules:

Γ, A, B⇒ ∆
L&

Γ, A ∧ B⇒ ∆
Γ⇒ ∆, A Γ⇒ ∆, B

R&
Γ⇒ ∆, A ∧ B

Γ, A⇒ ∆ Γ, B⇒ ∆
Lv

Γ, A ∨ B⇒ ∆
Γ⇒ ∆, A, B

Rv
Γ⇒ ∆, A ∨ B

DeMorgan Rules:

Γ,¬A ∨ ¬B⇒ ∆
Ln&

Γ,¬(A ∧ B)⇒ ∆
Γ⇒ ∆,¬A ∨ ¬B

Rn&
Γ⇒ ∆,¬(A ∧ B)

Γ,¬A ∧ ¬B⇒ ∆
Lnv

Γ,¬(A ∨ B)⇒ ∆
Γ⇒ ∆,¬A ∧ ¬B

Rnv
Γ⇒ ∆,¬(A ∨ B)

Double Negation:

Γ, A⇒ ∆
Ldn

Γ,¬¬A⇒ ∆
Γ⇒ ∆, A

Rdn
Γ⇒ ∆,¬¬A

Conjunction Discharge (where Σ, Π, Θ, Λ contain only literals,
and p is an atom such that p /∈ Π∩At!):

Σ⇒ Π
...

Γ⇒ A, ∆

1:[Θ⇒ Λ, p,¬p, Π∩At!]
...

Γ⇒ B, ∆
CD [1]

Γ⇒ A ∧ B, ∆
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Notice that, in CD, the assumption is presented inside square brackets,
and the superscript “1” is not part of the syntax, but rather meant to keep
track of the assumptions that need to be discharged. We do not allow vacu-
ous discharges. But we allow multiple discharges of the same assumption,
as well as a discharge of several assumptions at once.

A sequent Γ ⇒ ∆ is derivable in MiK3 iff it can be derived via a proof-
tree where (i) each step is licensed by one of the above rules and (ii) the
proof tree is “closed,” i.e., each assumption is discharged at some point in
the tree.

Before moving on to soundness and completeness, let us explain the ra-
tionale for CD in a model-theoretic way.13 Suppose that we begin a deriva-
tion with an axiom of the form Γ⇒ ∆. On the MiK3 “reading” of sequents,
this means that every “minimally gappy” counter-model of ∆ is a counter-
model of at least one γ ∈ Γ. That is, when we begin a derivation with such
a sequent, we don’t really care about situations that are “more gappy” than
∆∩At!. In other words, any model v such that ∆∩At! $ {q | v(q) = ∅} can-
not provide a counterexample to whatever we would like to derive. Thus,
we may safely assume—incorporate into our derivation—any sequent of
the form Σ ⇒ ∆∩At!, p,¬p, Θ where p /∈ ∆∩At! (and Σ, Θ are arbitrary).
Such an assumption Σ⇒ ∆∩At!, p,¬p, Θ will be discharged when a sequent
whose subderivation makes use of it serves as a premise along a sequent
whose subderivation makes use of the axiom that licenses the assumption,
namely Γ⇒ ∆.

With this intuitive motivation for the calculus in place, we move on to
the soundness and completeness proofs. Since the CD rule is special, we’ll
start with soundness for the other rules and establish the soundness of CD
separately.

Lemma 18. All the rules except for CD are sound. Moreover, a model v is a
minimal counter-model of the conclusion-sequent of any such rule only if v is a
minimal counter-model of at least one premise-sequent of that rule.

Proof. By induction on proof height. For height 1, notice that the axioms
are satisfied by all K3-models, and so they must be satisfied by all the
minimal counter-models of their succedents.

For the left-rules, notice that the succedent of the conclusion-sequent is
also the succedent of all premise-sequents. Hence, a model v is a minimal

13For a proof-theoretic motivation along these lines, see Golan (2022).
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counter-model of the succedent of the conclusion-sequent of a left-rule iff
v is a minimal counter-model of the succedents of all premise-sequents.
Suppose that there is such a minimal counter-model of the succedent of
the conclusion-sequent in which all premises have value {1}, i.e., a couter-
model of the conclusion-sequent. By the clauses for the connectives, for
some premise-sequent of the rule, all sentences on the left have value {1},
i.e., the model is a counter-model of at least one premise-sequent.

For Cut, assume to the contrary that Γ, A |=MiK3 ∆ and Γ |=MiK3 A, ∆,
but Γ 2MiK3 ∆. Hence, there is some v that is a minimal counter-model of
∆: 1 6∈ v(δ) for all δ ∈ ∆, but 1 ∈ v(γ) for all γ ∈ Γ. Since Γ, A |=MiK3 ∆, it
follows that 1 6∈ v(A). It follows that v must be a minimal counter-model
of ∆ ∪ {A}. For, it is a minimal counter-model of ∆, which means that for
every v′ < v there is some δ ∈ ∆ s.t. 1 ∈ v′(δ), and so, in particular, any
such v′ cannot be a counter-model of ∆∪ {A}. Since Γ |=MiK3 A, ∆, we get
that there is some γ ∈ Γ: 1 6∈ v(γ), contradicting our assumption.

For the right-rules, let’s first show that all one-premise right rules are
sound. By the semantic clauses, the set of counter-models of the conclusion-
sequent of each such rule is exactly the set of counter-models of the premise-
sequent. Hence, the minimal counter-models are also identical. For exam-
ple, consider Rdn. Let’s assume that the premise-sequent holds, i.e., that
in every minimal counter-model of ∆ ∪ {A} there is some γ ∈ Γ that is as-
signed either {0} or ∅. But v is a minimal counter-model of ∆ ∪ {A} iff it
is a minimal counter-model of ∆ ∪ {¬¬A}, and so the conclusion-sequent
holds as well. Similar considerations show that Rv, Rn&, and Rnv are all
sound.

It remains to deal with R&. Assume that Γ 2MiK3 A ∧ B, ∆. So, there is
a minimal counter-model of ∆ ∪ {A ∧ B} s.t. 1 ∈ v(γ) for all γ ∈ Γ. Since
1 6∈ v(A ∧ B), either 1 6∈ v(A) or 1 6∈ v(B). It follows that v is a minimal
counter-model either of ∆ ∪ {A} or of ∆ ∪ {B}: Otherwise, there is some
v′ <d v that is a minimal counter-model of, say, ∆,∪{A}, which must also
be a minimal counter-model of ∆ ∪ {A ∧ B}, and we get a contradiction.
Thus, either Γ 2MiK3 A, ∆ or Γ 2MiK3 B, ∆, as required. �

In order to show that CD is also sound, the following notation will
prove useful:

Definition 19. Minimal Counterexamples (MC): MC(Γ ⇒ ∆) is the set of
all MiK3-counterexample to Γ |=MiK3 ∆, i.e., MC(Γ ⇒ ∆) = {v | v is a
minimal K3-counter-model of ∆ but 1 ∈ v(γ) for all γ ∈ Γ}.
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With this notation, we can introduce the following corollary:

Corollary 20. Assume that Γ⇒ ∆ can be derived from Σ1 ⇒ Π1, ..., Σn ⇒ Πn,
where the latter sequents are not necessarily axioms. Then MC(Γ ⇒ ∆) ⊆⋃n

i=1 MC(Σi ⇒ Πi).

Proof. This follows from Lemma 18. By soundness of the non-CD-rules, for
these rules, every minimal counterexample of Γ ⇒ ∆ is a minimal coun-
terexample of at least one premise-sequent in the last step of the deriva-
tion, which is also a minimal counterexample of at least one premise-
sequent in the previous step, and so on. This result holds also in cases
where the derivation makes use of CD. This is because CD is just R& along
with the possibility of inserting an invalid sequent as one of the premises,
and that is exactly what it means to say that Σ1 ⇒ Π1, ..., Σn ⇒ Πn need
not necessarily be axioms. �

Lemma 21. Assume that we derive Γ ⇒ ∆, A ∧ B by CD, where (i) Γ ⇒ ∆, A
is the discharging sequent, (ii) Γ ⇒ ∆, B is the discharged sequent, and (iii)
CD is applicable since the subderivation of Γ ⇒ ∆, A makes use of the ax-
iom Σ ⇒ Π and the subderivation of Γ ⇒ ∆, B makes use of the assumption
Λ ⇒ Π∩At!, p,¬p, Θ licensed by Σ ⇒ Π. Then MC(Γ ⇒ ∆, A ∧ B) ⊆
(MC(Γ⇒ ∆, A) ∪ CM(Γ⇒ ∆, B)) \MC(Λ⇒ Π∩At!, p,¬p, Θ).

Remark. This lemma guarantees that we need not care about counter-models
of underivable assumptions, provided that such assumptions are discharged
at some point. As explained above, when we begin an MiK3 derivation
with Γ⇒ ∆, A, we actually assume that any situation that is “more gappy”
than (∆∪ {A})∩At!—in particular, any counter-model of ∆∪ {B}—is a sit-
uation that in principle cannot provide counterexamples to whatever we
would like to derive on the basis of Γ⇒ ∆, A.

Proof. By Corollary 20, MC(Γ ⇒ ∆, A ∧ B) ⊆ MC(Γ ⇒ ∆, A) ∪MC(Γ ⇒
∆, B). So it remains to show that if v ∈ MC(Λ ⇒ Π∩At!, p,¬p, Θ), then
v /∈ MC(Γ ⇒ ∆, A ∧ B). Assume that v ∈ MC(Λ ⇒ Π∩At!, p,¬p, Θ). By
definition, for every atom q, if q ∈ Π∩At! ∪ {p} then v(q) = ∅. Now, con-
sider any v′ that is a minimal counter-model of Π. By definition, v′(q) = ∅
iff q ∈ Π∩At!. Therefore, v′ < v. Moreover, v′ is clearly a K3-counter-model
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of ∆∪ {A∧ B}.14 Thus, v cannot be a a minimal counter-model of ∆, A∧ B
because v′ < v. So, v /∈ MC(Γ⇒ ∆, A ∧ B), as required. �

Theorem 22. Soundness: If Γ⇒ ∆ is derivable then Γ |=MiK3 ∆.

Proof. If the proof doesn’t make any use of CD, then Γ |=MiK3 ∆ by Lem-
ma 18. It remains to deal with proof trees that do make use of CD, dis-
charging underivable assumptions. The idea behind the proof is that, by
Lemma 21, each time we discharge an assumption, the counterexamples
to the assumed sequent are not counterexamples to the conclusion. Since
Γ ⇒ ∆ is derivable, the proof-tree is closed, i.e., any assumption in the
proof tree is discharged at some point. Hence, the counterexamples of
Γ ⇒ ∆ are a subset of the counterexample of the axioms of the proof-tree.
But there are no such counterexamples, and so Γ |=MiK3 ∆.

To see how this reasoning plays out in more detail, assume then that
the proof of Γ ⇒ ∆ makes use of the assumptions Σ1 ⇒ Π1, ..., Σn ⇒ Πn.
Without loss of generality, we can assume that any assumption is made
and discharged only once in the tree, and that Πi

∩At! * Πj
∩At! for all i 6= j

(1 ≤ i, j ≤ n). (Otherwise, we need only care about assumptions that are
“minimal” because non-minimal assumptions don’t count, and for each
such assumption find the “lowest” point in the tree where it is discharged,
at which point we get rid of the assumption’s counterexample models.)

Now, let Λi ⇒ Θi be the conclusion-sequent of the application of CD
that discharges Σi ⇒ Πi (for some 1 ≤ i ≤ n). By Lemma 21, for every v ∈
MC(Σi ⇒ Πi),we have v /∈ MC(Λi ⇒ Θi). Moreover, Γ ⇒ ∆ can clearly
be derived from Λi ⇒ Θi together with Σ1 ⇒ Π1, ..., Σi−1 ⇒ Πi−1, Σi+1 ⇒
Πi+1, ..., Σn ⇒ Πn (along with some axioms). So by Lemma 21, v /∈ MC(Γ⇒
∆).15 To sum up, for all 1 ≤ i ≤ n, if v ∈ MC(Σi ⇒ Πi) then v /∈
MC(Γ ⇒ ∆). Since the axioms of our sequent calculus have no counter-

14This fact is established by the completeness proofs for K3 given in Da Ré and Pailos
(2022): a counter-model of some premise-sequent is a model of any conclusion-sequent
derived from it. (That is the “soundness in reverse” aspect in which such a proof consists.)

15At this point, we draw on the assumption that all of Σ1 ⇒m Π1, ..., Σn ⇒m Πn are
“minimal,” and that each such assumption is made and discharged only once in the
tree: it is for this reason that v isn’t a counterexample to any of Σ1 ⇒ Π1, ..., Σi−1 ⇒
Πi−1, Σi+1 ⇒ Πi+1, ..., Σn ⇒ Πn. But as we implied, this assumption can be dispensed
with, since we need only care about assumptions that are “minimal,” and for each such
assumption find the “lowest” point in the tree where it is discharged (below which point
its counterexample models stop counterexemplifying the sequents in the tree).
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models, Lemma 21 gives us MC(Γ ⇒ ∆) ⊆ ⋃n
i=1 MC(Σi ⇒ Πi), and so

MC(Γ⇒ ∆) = ∅, as required. �

For simplicity, we shall now drop Left Weakening and Cut, and prove
completeness without them. That will also allow us to obtain admissibility
results for these rules.

Theorem 23. Completeness: If Γ |=MiK3 ∆ then Γ⇒ ∆ is derivable in MiK3.

Proof. We use a slight variation of the standard method for constructing a
counter-model from an unsuccessful proof search. Given an underivable
sequent Γ⇒ ∆, we first decompose it by applying the rules of MiK3 “in re-
verse.” For all the rules except Lv, R&, and CD, such an application results
in a single sequent with one less-complex formula. For Lv, R&, and CD,
on the other hand, we have to bifurcate the proof tree into two branches,
one for each premise-sequent. Since Γ∪∆ is finite, the decomposition pro-
cess must come to an end after finitely many steps. At that point, we have
a tree whose leaves are all sequents that contain only literals.16

As a second step, we consider the leaves in the resultant tree, looking
for instances of the axioms of MiK3. Call a branch “closed” if it ends with
a leaf that is an axiom, and “unclosed” otherwise.

As a third step, we consider the unclosed leaves, looking for assump-
tions that may be discharged by any axiom pinpointed in the previous
step. Recall that, given such an axiom Γ⇒ ∆, the assumptions it may dis-
charge are of the form Σ ⇒ ∆∩At!, p,¬p, Π, where p /∈ ∆∩At! and Σ, Π are
arbitrary. Call a branch that ends with such an assumption “semi-closed.”

Now, if all the branches in our tree are either closed or semi-closed, we
have a proof of Γ⇒ ∆. But we’ve just assumed that this sequent is under-
ivable, and so there must be at least one branch in the tree that is neither
closed nor semi-closed. Therefore, there must be some branch that ends
with a sequent Γ0 ⇒ ∆0 such that, for any other branch Σ ⇒ Π that ends
with an axiom, we have: Π∩At! * ∆0

∩At!, or otherwise Γ0 ⇒ ∆0 would
have been declared an assumption that Σ⇒ Π may discharge in the third
step. For the same reason, Π∩At! * ∆0

∩At! for any assumption Σ ⇒ Π
pinpointed in the third step, because any such assumption is licensed by
some axiom, say, Λ⇒ Θ, where Θ∩At! $ Π∩At!. But we already know that

16Observe that this procedure is not independent of the order in which we apply the
rules, yet the leaves with which we end up are going to be the same, regardless of the
order.
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Θ∩At! * ∆0
∩At!, and so it must be the case that Π∩At! * ∆0

∩At!. We may
thus assume (and safely so!) that Γ0 ⇒ ∆0 is minimal with respect to <:
there is no other leaf Σ⇒ Π such that Π∩At! * ∆0

∩At!.
As explained above, all the members of Γ0 ∪ ∆0 are literals, and since

Γ0 ⇒ ∆0 is not an axiom, Γ0 ∩ ∆0 = ∅, and there is no p such that p,¬p ∈
Γ0. Thus, the model v defined by

v(p) =


{0} p ∈ ∆,¬p /∈ ∆
∅ p,¬p ∈ ∆
{1} otherwise

is a minimal counter-model for ∆ that is also a counterexample to Γ0 ⇒ ∆0,
i.e., v ∈ MC(Γ0 ⇒ ∆0).

Next, we have to show that v ∈ MC(Γ ⇒ ∆). We do that by proving
that v is a minimal counter-model of each sequent in the branch that ends
with Γ0 ⇒ ∆0. The proof is done by backward induction on the length of
the branch of Γ0 ⇒ ∆0. In the base case, namely, where the branch is of
length 1, Γ ⇒ ∆ is simply Γ0 ⇒ ∆0, and we’re done. If Γ ⇒ ∆ is derived
by Ldn, then Γ is of the form Γ′,¬¬A and the sequent above Γ′,¬¬A⇒ ∆
in the tree is Γ′, A⇒ ∆. By the inductive hypothesis, v ∈ MC(Γ′, A⇒ ∆);
that is, v is a minimal counter-model of ∆ such that 1 ∈ v(γ) for all γ ∈
Γ′ ∪ {A}. In particular, v(A) = {1} and so v(¬¬A) = {1}. Consequently,
v ∈ MC(Γ′,¬¬A ⇒ ∆), as required. The proofs for Ln&, Lnv, and L& are
analogous.

If Γ ⇒ ∆ is derived by Lv then Γ = Γ′, A ∨ B, and Γ ⇒ ∆ is derived
from Γ′, A ⇒ ∆ and Γ′, B ⇒ ∆. Without loss of generality, assume that
Γ′, A ⇒ ∆ is in the branch of Γ0 ⇒ ∆0. By the inductive hypothesis,
v ∈ MC(Γ′, A ⇒ ∆) and so for all δ ∈ ∆ we have 1 6∈ v(δ), but for all
γ ∈ Γ′ ∪ {A}: 1 ∈ v(γ). In particular, 1 ∈ v(A) and so 1 ∈ v(A ∨ B).
Consequently, v ∈ MC(Γ, A ∨ B⇒ ∆), as required.

If Γ⇒ ∆ is derived by Rdn, then ∆ is of the form ∆′,¬¬A and Γ⇒ ∆ is
derived from Γ⇒ ∆′, A. By the inductive hypothesis, v ∈ MC(Γ⇒ ∆′, A).
In that case, clearly v ∈ MC(Γ ⇒ ∆′,¬¬A), as required. The proofs for
the cases of Rnv, Rn&, and Rv are analogous.

It remains to prove the case where Γ⇒ ∆ is derived by R& or by CD. In
that case, ∆ is of the form ∆′, A ∧ B, and Γ⇒ ∆ is derived from Γ⇒ ∆′, A
and Γ ⇒ ∆′, B. Without loss of generality, assume that Γ ⇒ ∆′, A is in the
branch of Γ0 ⇒ ∆0. By the inductive hypothesis, v ∈ MC(Γ ⇒ ∆′, A);
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that is, v is a minimal counter-model of ∆′ ∪ {A} such that for all γ ∈ Γ:
1 ∈ v(γ).

Now, it is quite clear that v is a K3 counter-model of ∆′ ∪ {A∧ B}, but it
is less clear that v is a minimal such model. Indeed, it could be the case that
v is only a minimal counter-model of ∆′ ∪ {A}, but not a minimal counter-
model of ∆′ ∪ {B}, in which case v wouldn’t be a minimal counter-model
of ∆′ ∪ {A ∧ B}.

However, it is rather easy to verify that for any v′ that is a minimal
counter-model of ∆′ ∪ {B} there is a leaf in the tree Σ ⇒ Π (among the
leaves that take part in the subderivation of Γ⇒ ∆′, B) such that for every
atom p: v′(p) = ∅ iff p ∈ Π∩At!.17 In addition, we already saw that for
any such Π: Π∩At! * Γ0

∩At!, since Γ0 ⇒ ∆0 is minimal with respect to <d
regarding all the leaves in the tree. To sum up, (i) v′(p) = ∅ iff p ∈ Π∩At!,
and (ii) Π∩At! * Γ0

∩At!. Now, (i) together with (ii) imply that v′ ≮d v. In
other words, there is no v′ such that v′ <d v, and v′ is a minimal counter-
model of ∆′ ∪ {B}. Consequently, v is a minimal counter-model not only
of ∆′ ∪ {A}, but also of ∆′ ∪ {A∧ B}. But as we saw, 1 ∈ v(γ) for all γ ∈ Γ,
and so v ∈ MC(Γ⇒ ∆′, A ∧ B), as required. �

Corollary 24. Left Weakening and Cut are admissible.

Proof. As explained above, the completeness proof doesn’t make use of
these rules. But these rules are sound. So they are admissible. �

The proof-system for MiK3 that we have presented in this subsection is
not only sound and complete, it also brings out the core idea behind MiK3,
namely that we can assume that the law of excluded middle holds every-
where except where a failure of it is required to make our conclusions fail
at all. This comes out in the sequent calculus in the rule CD, which allows
us to appeal freely to sequents that hold because of excluded middle (for
atoms), as long as they require more truth-value gaps than the conclusions
in which we are ultimately interested do. Hence, it seems to us that our
sequent calculus captures MiK3 in an illuminating way.

17The proof is similar to that of Corollary 20: decompose only the formulas in the succe-
dents of each sequent, while taking into account that our sequent rules are of such a na-
ture that for each such rule, the set of minimal counter-models of the conclusion-sequent
is a subset of, or equal to, the set that is the union of the sets of minimal counter-models
of the premise-sequents.
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4.2 Sequent Calculus for MiFDE

Recall that MiFDE-validity is defined by imposing two minimality condi-
tions: one on models of the premises, and one on counter-models of the
conclusions. Accordingly, to get a sequent calculus for MiFDE we will need
two discharge rules: one for premises and one for conclusions. Moreover,
MiFDE is non-monotonic for premises and conclusions alike, and so we
will have to abandon weakening altogether. As for axioms, we have only
instances of identity, since neither explosion nor excluded middle hold in
MiFDE.

So the sequent calculus for MiFDE results from deleting the LNC ax-
iom and the Left Weakening rule from the sequent calculus for MiK3 and
adding the following Disjunction Discharge rule, called “DD”:

(DD) Where Σ, Π, Θ, Λ contain only literals, and p is an atom
such that p /∈ Π∩At!:

Σ⇒ Π
...

Γ, A⇒ ∆

1:[Σ∩At!, p,¬p, Θ⇒ Λ]
...

Γ, B⇒ ∆
DD [1]

Γ, A ∨ B⇒ ∆

Soundness and completeness are proven for MiFDE in a similar way to
the MiK3 case, with due adjustments. The main idea behind the sound-
ness proof is that, as in the MiK3 case, each time we discharge an assump-
tion, the counterexamples to the assumed sequent are not counterexam-
ples to the conclusion. As opposed to MiK3, we have two discharge rules
in MiFDE, and so we simply have to repeat the proof twice. This is straight-
forward, and we hence leave this as an exercise to the reader.

Regarding completeness, we sketch the proof below, focusing on the
aspects in which it deviates from the completeness proof for MiK3. As
before, we prove completeness for the system without Cut, whereby we
also get an admissibility result for Cut.

Theorem 25. Completeness: If Γ |=MiFDE ∆ then Γ⇒ ∆ is derivable in MiFDE.

Proof. As in the MiK3 case, given an underivable sequent Γ ⇒ ∆, we first
decompose it by applying the rules of MiFDE “in reverse.” As a result, we
get a tree whose leaves are all sequents that contain only literals.
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As a second step, we consider the leaves in the resultant tree, looking
for instances of the axioms of MiFDE. Call a branch “closed” if it ends with
a leaf with an axiom and “unclosed” otherwise.

As a third step, we consider the unclosed leaves, looking for assump-
tions that may be discharged by any axiom pinpointed in the previous
step. Given such an axiom Γ ⇒ ∆, the assumptions it may discharge (in
the MiFDE case) are either of the form Γ∩At!, p,¬p, Σ⇒ Π where p /∈ Γ∩At!,
or of the form Σ ⇒ ∆∩At!, p,¬p, Π where p /∈ ∆∩At!, where in both cases
Σ, Π are arbitrary. Call a branch that ends with such an assumption “semi-
closed.”

Now, if all the branches in our tree are either closed or semi-closed,
we have a proof of Γ ⇒ ∆. But we’ve just assumed that this sequent is
underivable, and so there must be at least one branch in the tree that is
neither closed nor semi-closed. Suppose that Γ0 ⇒ ∆0 is the sequent at
the end of this branch. Notice that for any axiom Σ ⇒ Π pinpointed in
the previous step, Σ∩At! * Γ0

∩At! and Π∩At! * ∆0
∩At!, otherwise Γ0 ⇒

∆0 would have been declared an assumption that Σ ⇒ Π may discharge
in the third step. Therefore, there must also be minimal such sequents
with respect to the orderings <c,<d. In particular, we may safely assume
without loss of generality that Γ0 ⇒ ∆0 is minimal with respect to <c. That
is, we may safely assume that for any sequent Σ ⇒ Π at the end of any
branch in our tree, Σ∩At! * Γ0

∩At!.
Now, Γ0 ⇒ ∆0 is not derivable, and so it cannot be an axiom, that is,

Γ0 ∩ ∆0 = ∅. Thus, the model v defined by

v(p) =


{1} p ∈ Γ,¬p /∈ Γ
{0, 1} p,¬p ∈ Γ
∅ p,¬p ∈ ∆0

{0} otherwise

is clearly a c-minimal model of Γ that poses a counterexample to Γ0 ⇒ ∆0.
Next, we have to show that v is a c-minimal model of Γ that poses a

counterexample to Γ ⇒ ∆: if so, then v is a counterexample model of
the latter sequent, as required. The proof is analogous to the MiK3 case,
namely, we show by backward induction on the length of the branch of
Γ0 ⇒ ∆0 that (i) v is a c-minimal model of any antecedent of a sequent in
that branch, and (ii) v poses a counterexample to that sequent. We shall
discuss here only only the less-obvious cases, i.e., Lv, DD, R&, and CD.
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Assume Γ⇒ ∆ is derived either by R& or by CD. Thus, ∆ is of the form
∆′, A ∧ B and Γ ⇒ ∆ is derived from Γ ⇒ ∆′, A and Γ ⇒ ∆′, B. Without
loss of generality, assume that Γ ⇒ ∆′, A is in the branch of Γ0 ⇒ ∆0. By
the inductive hypothesis, v is a c-minimal model of Γ and 1 6∈ v(δ) ∈ for
all δ ∈ ∆ ∪ {A}. So in particular 1 6∈ v(A), and so 1 6∈ v(A ∧ B). We thus
get that v is a c-minimal model of Γ that poses a counterexample to Γ⇒ ∆,
as required.

It remains to prove the case where Γ⇒ ∆ is derived by Lv or by CD. In
that case, Γ is of the form Γ′, A ∨ B and Γ ⇒ ∆ is derived from Γ′, A ⇒ ∆
and Γ′, B⇒ ∆. Assume, without loss of generality, that Γ′, A⇒ ∆ is in the
branch of Γ0 ⇒ ∆0. By the inductive hypothesis, v is a c-minimal model of
Γ′ ∪ {A} s.t. 1 6∈ v(δ) for all δ ∈ ∆. Moreover, it is rather easy to verify that
for any v′ that is a c-minimal model of Γ′ ∪ {B}, there is a leaf in the tree
Σ⇒ Π (among the leaves that take part in the subderivation of Γ′, B⇒ ∆)
such that for every atom p, v′(p) = {0, 1} iff p ∈ Σ∩At!. But we already
saw that for any such Σ, Σ∩At! * Γ0

∩At!, as Γ0 ⇒ ∆0 is c-minimal regarding
all the other leaves in the tree. Therefore, for any such v′, it is not the case
that v′ <c v. Consequently, we get that v is not only a c-minimal model
of Γ′ ∪ {A}, but also a c-minimal model of Γ′ ∪ {A ∨ B}, i.e., a c-minimal
model of Γ s.t. 1 6∈ v(δ) for all δ ∈ ∆, as required. �

Corollary 26. Cut is admissible.

Proof. As explained above, the completeness proof doesn’t make use of
Cut. Since the rule is sound, it is admissible. �

Given that FDE was first formulated and studied in the context of rel-
evance logics, it is natural to ask whether MiFDE is a relevance logic as
well. One condition that relevance logics are typically required to meet is
the variable sharing property, i.e., that for every valid argument at least
one atomic sentence must occur (embedded or otherwise) in at least one
premise and at least one conclusion. MiFDE is a relevance logic as mea-
sured by this criterion.

Proposition 27. MiFDE has the variable sharing property: for any derivable
sequent Γ ⇒ ∆, there is at least one propositional variable that is shared by at
least one formula in Γ and one formula in ∆.

Proof. By induction on derivation height. The axioms clearly have that
property, and it is also clearly preserved by any sequent rule except for

Australasian Journal of Logic (19:5) 2022, Article no. 3



211

Cut. Yet, we just saw that Cut is eliminable, and so we can safely assume
that it does not figure in the proof at hand. �

To sum up, MiFDE is paraconsistent, paracomplete, has the variable
sharing property, and agrees with classical logic on all inferences whose
premises have a classical model and whose conclusions have a classical
counter-model. Similarly to the calculus for MiK3, our sequent calculus for
MiFDE captures the idea that we can assume that explosion and excluded
middle hold for sequents that are more nonstandard than those we are
ultimately interested in. Hence, the sequent calculus for MiFDE strikes us
as an illuminating perspective on the strategy of MiFDE, i.e., of the idea
that we should assume as a defeasible default assumption that we can
reason classically.

5 Conclusion

Our goal in this paper was to show how advocates of K3 and FDE can
adopt the strategy familiar from Priest’s MiLP to sanction classical reason-
ing by a defeasible default assumption. We have seen that this adoption
is not only possible but yields two logics, MiK3 and MiFDE respectively,
that strike us as independently worthy of investigation. MiK3 is the dual
logic to MiLP, and this has the interesting consequence that it looks only at
minimal counter-models of conclusions, thus giving up weakening on the
right side. And MiFDE is a deductively strong relevance logic that stands
to MiK3 and MiLP as FDE stands to K3 and LP, respectively.

Given all the connections just mentioned and the recent interest in the
version of non-transitive logic ST based on the strong Kleene truth-tables
(Cobreros et al., 2012; Barrio et al., 2019, 2015; Dicher and Paoli, 2019),
it is natural to ask whether there is a logic that stands to MiLP, MiK3,
and MiFDE as the strong Kleene version of ST stands to LP, K3, and FDE,
which we could call MiST. If so, MiLP would, e.g., capture the valid meta-
inferences of MiST. We must leave such tantalizing ideas for another occa-
sion.
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