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Abstract

In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zangh̀ı
[2, 3, 4], we considered an isolated, macroscopic quantum system. Let
H be a micro-canonical “energy shell,” i.e., a subspace of the system’s
Hilbert space spanned by the (finitely) many energy eigenstates with
energies between E and E + δE. The thermal equilibrium macro-
state at energy E corresponds to a subspace Heq of H such that
dim Heq/dim H is close to 1. We say that a system with state vector
ψ ∈ H is in thermal equilibrium if ψ is “close” to Heq. We argue
that for “typical” Hamiltonians, all initial state vectors ψ0 evolve in
such a way that ψt is in thermal equilibrium for most times t. This is
closely related to von Neumann’s quantum ergodic theorem of 1929.

1 Informal Statement of Result

The result we wish to describe concerns a macroscopic quantum system,
described by a wave function ψ evolving according to a Schrödinger dynamics
(~ = 1):

i
∂ψt

∂t
= Hψt . (1)

Here is the statement:
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For every initial state ψ0 of a typical macroscopic quantum system
(e.g., a gas in a box), the system will spend most of its time in
thermal equilibrium.

We will need to explain what we mean by “typical” and “most,” though you
can probably guess. But first we must explain what we mean by “thermal
equilibrium.”

2 What is Thermal Equilibrium?

There are, in fact, two basic views about what is meant by thermal equi-
librium, corresponding to two different attitudes towards the foundations of
statistical mechanics: the individualist view and the ensemblist view. Ac-
cording to the individualist a system is in thermal equilibrium if it is in an
appropriate pure state (given by a wave function or point in phase space).
According to the ensemblist a system is in thermal equilibrium if it is in an
appropriate statistical state (given by a density matrix or probability measure
on phase space). And depending upon what is intended by “appropriate”
one obtains different individualist and ensemblist possibilities.

2.1 Individualist Equilibrium

In more detail, let’s consider the meaning of equilibrium for an individualist
for a classical macroscopic system. The state of the system is given by a point
X = (q1, . . . , qN ,p1, . . . ,pN) in its phase space, a point corresponding to the
positions and velocities of its particles. The relevant part of the phase space
is the energy surface Γ = {X : H(X) = E}, consisting of all phase points
for which the energy H is the same value E. Then, depending on a choice of
macro-variables, one may partition Γ into macro-states Γν corresponding to
different (small ranges of) values of the macro-variables, Γ =

⋃
ν Γν .

Here are two sketches of the partition into macro-states:
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A crucial point is that the sketch on the left gives a completely distorted
impression of the relative sizes of the macro-states. In particular, there will
normally be one dominant macro-state, the equilibrium macro-state Γeq, that
occupies almost the entire energy surface:

|Γeq|
|Γ |

≈ 1

(using | · | for volume or area on the energy surface). With this is mind, we
say that a system is in equilibrium if its phase point is in the equilibrium
macro-state, X ∈ Γeq.

For a macroscopic quantum system the state of the system is given by its
(normalized) wave function ψ = ψ(q1, . . . , qN) (‖ψ‖ = 1). We shall assume
that this belongs to the energy shell H = span

{
φα : Eα ∈ [E,E + δE]

}
,

spanned by the energy eigenstates φα whose eigenvalues Eα belong to the
indicated range, i.e., ψ =

∑
α cαφα , Hφα = Eαφα. Then, instead of a

partition into macro-states, we have an orthogonal decomposition into macro-
spaces Hν , corresponding more or less to different (small ranges of) values
of the macro-variables (suitably “rounded” so that they commute),

H =
⊕

ν

Hν . (2)

We assume that there is one dominant macro-space Heq:

dim Heq

dim H
≈ 1 .

We say that the system is in equilibrium if its wave function ψ is near Heq,
meaning that the projection Peqψ of ψ into Heq is almost all of ψ, i.e., that

〈ψ|Peq|ψ〉 ≈ 1 . (3)

2.2 Ensemblist Equilibrium

For an ensemblist a system is in equilibrium if its state X is random, or its
quantum state is a mixture, with distribution or density matrix

ρ = ρmc or ρ = ρcan = e−βH/Z ,

where ρmc describes the microcanonical ensemble. This formulation has the
defect that an individual system can’t be in equilibrium and the virtue of
being precise. It also has the virtue that it admits of a clean simple notion
of approach to equilibrium.
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2.3 Approach to Thermal Equilibrium

For an ensemblist a system approaches equilibrium of its time-evolving sta-
tistical state ρt has the obvious long-time limit:

ρt −→ ρmc (or ρcan) as t→∞

in a suitable sense. This sort of mixing behavior, though rare and hard to
prove for realistic deterministic dynamical systems, is a genuine mathemati-
cal possibility.

As a natural first attempt at an individualist formulation of approach to
equilibrium, consider the condition that Xt ∈ Γeq (or near Γeq) as t → ∞,
i.e., that 〈ψt|Peq|ψt〉 ≈ 1 for t→∞. This is typically impossible, because of
the phenomenon of Poincaré recurrence. It will typically not be the case that
the system is in, or near, equilibrium for all sufficiently large times. Rather
what is meant by approach to equilibrium for an individualist, and what we
mean by it here, is that Xt ∈ Γeq or, in the quantum case, with which we are
concerned here,

〈ψt|Peq|ψt〉 ≈ 1

for most (sufficiently large) t (even when the system is initially not in equi-
librium).

2.4 Equilibrium is Typical

It is important to recognize that with this (equation (3)) understanding of
equilibrium, for most ψ ∈ H the system is indeed in equilibrium—just as in
the classical case. Here the sense of “most” is given by the microcanonical
distribution µmc = µ on H , i.e., the uniform distribution over the unit sphere
in H :

〈ψ|Peq|ψ〉 ≈ 1 for µ-most ψs .

This is easily seen by computing the microcanonical average∫
µ(dψ)〈ψ|Peq|ψ〉 = Tr

[(∫
µ(dψ)|ψ〉〈ψ|

)
Peq

]
= Tr [ρmcPeq] =

dim Heq

dim H
≈ 1 ,
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where ρmc = I/ dim H (and TrPeq = dim Heq). Since 〈ψ|Peq|ψ〉 can be no
greater than 1, it follows that it must be near 1 for µ-most ψs.

That equilibrium is in this sense typical is crucial to the individualist
understanding of the notion. However, it does have the consequence that
the initial wave functions ψ0 with which we are concerned for the issue of
approach to equilibrium are atypical. We would like it to be the case that
even for “most” non-equilibrium initial wave functions we have approach to
equilibrium. The best that we could hope for in this regard is that we have
approach to equilibrium for all such wave functions.

3 Absolute Thermalization and

Eigenstate Thermalization

When a system is such that we have approach to equilibrium for all initial
wave functions ψ0, we say that we have absolute thermalization (AT). Clearly,
a necessary condition for AT is that

〈φα|Peq|φα〉 ≈ 1 for all α, (4)

since the energy eigenstates φα, possible initial states, are stationary states.
Equation (4) is a version of what Srednicki [8] has called eigenstate thermal-
ization (ET).

It is also sufficient, as is easily seen by computing the time-average of
〈ψt|Peq|ψt〉. Writing f(t) for the time average of f ,

f(t) = lim
T→∞

1

T

∫ T

0

dt f(t) ,

we have that
〈ψt|Peq|ψt〉 = Tr

[
|ψt〉〈ψt|Peq

]
. (5)

With

ψ0 =
D∑

α=1

cα|φα〉 (D = dim H )

and hence

ψt =
D∑

α=1

e−iEαtcα|φα〉
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we thus have that

|ψt〉〈ψt| =
∑
α,β

e−i(Eα−Eβ)t︸ ︷︷ ︸
δαβ

cαc
∗
β|φα〉〈φβ| =

∑
α

|cα|2|φα〉〈φα| .

Inserting this into (5), we find that

〈ψt|Peq|ψt〉 =
∑

α

|cα|2〈φα|Peq|φα〉 . (6)

Since 〈ψt|Peq|ψt〉 can’t be greater that 1, it follows from (6) and (4) that it
must be near 1 for most times. Hence ET is indeed a sufficient condition for
AT,

ET ⇒ AT .

3.1 Eigenstate Thermalization

Even though equilibrium is typical, since ET requires that all energy eigen-
states in the microcanonical subspace H , of which there are a great many,
be in equilibrium, you might imagine that ET is a rather stringent condition.
It can be shown [2], however, that ET in facts holds for a typical Hamiltonian
H.

The meaning here of “typical” is in the sense of most Hs as provided
by the uniform distribution on orthonormal bases of H : Fix the energies
E1, . . . , ED (assumed nondegenerate). Let

H =
∑

α

Eα|φα〉〈φα|

with the orthonormal basis φα, α = 1, . . . D, uniformly distributed. Equiva-
lently, let

H = UH0U
∗, H0 =

∑
α

Eα|χα〉〈χα|

with χα any orthonormal basis of H and U a uniformly (Haar) distributed
unitary on H . By a typical Hamiltonian we refer to the distribution of such
a random Hamiltonian H.

To appreciate why ET might be expected to hold for a typical Hamilto-
nian H, choose the basis {χα} in such a way that the first deq = dim H basis
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vectors lie in Heq. Then

〈φα|Peq|φα〉 =

deq∑
β=1

|Uβα|2 (7)

with

φα =
D∑

β=1

Uβαχβ

where Uβα is uniformly distributed unitary D ×D matrix. The distribution
of (7) is independent of α, and the crucial estimate is that of the probability

p that
∑deq

β=1 |Uβα|2 fails to be near 1.
For fixed α the Uβαs are approximately independent complex Gaussian

random variables with mean 0 and variance 1/D. Suitably using large devia-
tions estimates for independent Gaussians, p can be shown to be sufficiently
small.

4 Precise Statement of Result

For the record, here is a precise statement of the main result:
For all η, δ, δ′ ∈ (0, 1), all integers D > D0(ηδ

′, δ) and all integers deq >
(1 − ηδ′/2)D the following is true: Let H be a Hilbert space of dimension
D; let Heq be a subspace of dimension deq; let Peq denote the projection to
Heq; let E1, . . . , ED be pairwise distinct but otherwise arbitrary; choose a
Hamiltonian at random with eigenvalues Eα and an eigenbasis φα that is
uniformly distributed. Then, with probability at least 1 − δ, every initial
quantum state will spend (1− δ′)-most of the time in thermal equilibrium in
the sense that

lim inf
T→∞

1

T

∣∣∣{0 < t < T : 〈ψt|Peq|ψt〉 > 1− η
}∣∣∣ ≥ 1− δ′ , (8)

where |M | denotes the size (Lebesgue measure) of the set M .
We don’t want to go into many details here. But we do want to note that

δ (≈ 0) makes precise what we have meant by most Hs, δ′ (≈ 0) most times,
and η (≈ 0) how near 〈ψt|Peq|ψt〉 must be to 1.
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5 Von Neumann’s Quantum Ergodic Theo-

rem (1929) [10]

Here is an informal statement of von Neumann’s quantum ergodic theorem:

For every initial state ψ0 of a typical macroscopic quantum sys-
tem, the system will spend most of its time in thermal equilibrium.

This should seem rather similar to the earlier informal statement of the result
I’ve been discussing up to this point. And, as a matter of fact, “every”
and “most” mean here exactly what they meant there, and “typical” means
almost the same thing. But the meaning here of “thermal equilibrium” is
rather different.

In the orthogonal decomposition (2) of H into macro-spaces Hν , let
dν = dim Hν and let Pν be the corresponding projections. For von Neumann
a system with wave function ψ is in thermal equilibrium if, instead of (3),
we have that

〈ψ|Pν |ψ〉 ≈ dν/D (9)

for all ν. And as a sufficient condition for absolute thermalization AT+ for
this more stringent notion of equilibrium, von Neumann provides a strength-
ening ET++ of ET. ET++ is in fact a strengthening of a condition ET+,
namely that for all ν

〈φα|Pν |φα〉 ≈ dν/D (10)

for all α, itself a strengthening of ET naturally suggested by comparing (3)
and (9).

To better appreciate the significance of (9), observe that∫
µ(dψ)〈ψ|Pν |ψ〉 = Tr [ρmcPν ] = dν/D .

In particular, (9) is the same thing as

〈ψ|Pν |ψ〉 ≈ Tr [ρmcPν ] ,

i.e., the requirement that the quantum averages of the macro-projections Pν

agree with their micro-canonical averages.
ET++ involves a certain non-resonance condition [10] (requiring non-

degenerate energy gaps) together with the following:

max
α 6=β

∣∣〈φα|Pν |φβ〉
∣∣2 + max

α

(
〈φα|Pν |φα〉 −

dν

D

)2

� 1 . (11)
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The second term on the left hand side of (11) corresponds to ET+, which
implies that

〈ψt|Pν |ψt〉 ≈
dν

D

in the same way that ET implies AT. But ET+ does not imply AT+, because
〈ψt|Pν |ψt〉 could have significant fluctuations above and below its mean. The
first term is needed to control these fluctuations, via bounds on(

〈ψt|Pν |ψt〉 −
dν

D

)2

.

Von Neumann showed that ET++ indeed implies AT+. He also showed that
ET++ is satisfied for a typical Hamiltonian. To do the latter is considerably
more difficult than showing this for ET. (Because of certain assumptions
on the dimensions of macro-spaces needed by von Neumann, the result in
Section (4) is not a consequence of the quantum ergodic theorem.)

5.1 A Remark on Varieties of Individualism (Quantum
Case)

Von Neumann’s quantum ergodic theorem has both individualist and ensem-
blist aspects. It is individualist in that the relevant notion of equilibrium is
for an individual pure state; it is ensemblist in that what it demands of that
pure state is that it resemble the microcanonical ensemble. We’re inclined to
say that the quantum ergodic theorem is quasi-individualist—individualist by
accident or necessity—and not pure individualist. This is true also for many
of the related results—in which the individualism permits the extraction of
thermal statistics without having to make any detailed a priori probablistic
assumptions—upon which we shall now touch.

6 Related Results

Versions of eigenstate thermalization have been discussed by Schnirelman,
see [1], and by M. Srednicki [8]. Results on equilibration and thermalization
have been obtained by N. Linden, S. Popescu, A.J. Short, and A. Winter [5],
by P. Reimann [6], by H. Tasaki [9], and by M. Rigol, V. Dunjko, and M.
Olshanii [7].
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Most of the equilibration and thermalization results say something in the
vicinity of the following: For physical initial states ψ0 of suitable macroscopic
quantum systems, the system will spend most of its time in thermal equi-
librium. Different results may involve different notions of “physical” and of
“suitable.” Here we wish only to mention that the various “thermal equilib-
rium” conditions involved are of the form

〈ψ|A|ψ〉 ≈ Tr [ρmcA]

for all A ∈ A , with the different choices of a class A of observables corre-
sponding to different notions of thermal equilibrium. For example, for von
Neumann A consists of macroscopic observables, and for Linden et al. of
observables for a small subsystem of a larger system.

7 Remark on Typicality

We quote here from [3]:

When employing the method of appeal to typicality, one usu-
ally uses the language of probability theory. But that does not
imply that any of the objects considered is random in reality.
Rather, it means that certain sets (of wave functions, of orthonor-
mal bases, etc.) have certain sizes (e.g., close to 1) in terms of
certain natural (normalized) measures of size. That is, one de-
scribes the behavior that is typical of wave functions, orthonormal
bases, etc.. However, since the mathematics is equivalent to that
of probability theory, it is convenient to adopt that language. For
this reason, using a normalized measure µ does not mean making
an “assumption of equal probability,” even if one uses the word
“probability.” Rather, it means that, if a condition is true of
most . . . , or most H, this fact may suggest that the condition is
also true of a concrete given system, unless we have reasons to
expect otherwise.

Of course, a theorem saying that a condition is true of the
vast majority of systems does not prove anything about a con-
crete given system; if we want to know for sure whether a given
system is normal for every initial wave function, we need to check
the relevant condition . . . . Nevertheless, a typicality theorem is,
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as we have suggested, illuminating; at the very least, it is cer-
tainly useful to know which behaviour is typical and which is
exceptional. . . .

The method of appeal to typicality belongs to a long tradition
in physics, which includes also Wigner’s work on random matrices
of the 1950s. In the words of Wigner . . . :

One [. . . ] deals with a specific system, with its proper
(though in many cases unknown) Hamiltonian, yet pre-
tends that one deals with a multitude of systems, all
with their own Hamiltonians, and averages over the
properties of these systems. Evidently, such a proce-
dure can be meaningful only if it turns out that the
properties in which one is interested are the same for
the vast majority of the admissible Hamiltonians.

This method was used by Wigner to obtain specific new and sur-
prising predictions about detailed properties of complex quantum
systems in nuclear physics.
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