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Abstract

Coalgebras of polynomial functors constructed from sets of observable elements have
been found useful in modelling various kinds of data types and state-transition systems.
This paper continues the study of equational logic and model theory for polynomial
coalgebras begun in [10], where it was shown that Boolean combinations of equations
between terms of observable type form a natural language of observable formulas for
specifying properties of polynomial coalgebras, and for giving a Hennessy-Milner style
logical characterisation of observational indistinguishability (bisimilarity) of states.

Here we give a structural characterisation of classes of coalgebras definable by ob-
servable formulas. This is an analogue for polynomial coalgebras of Birkhoft’s cel-
ebrated characterisation of equationally definable classes of abstract algebras as be-
ing those closed under homomorphic images, subalgebras, and direct products. The
coalgebraic characterisation involves new notions of observational ultraproduct and ul-
trapower of coalgebras, obtained from the classical construction of ultraproducts by
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deleting states that assign “nonstandard” values to terms of observable type. A class
of polynomial coalgebras is shown to be the class of all models of a set of observable
formulas if, and only if, it is closed under images of bisimulation relations, disjoint
unions and observational ultrapowers.

Observational ultraproducts are also used to discuss compactness—which holds only
under limited conditions; to characterize finitely axiomatizable classes of polynomial
coalgebras; and to show that there are axiomatizable classes that are not finitely ax-
iomatizable.

1 Introduction and Overview

Let T : Set — Set be a functor on the category of sets. A T-coalgebra is a pair (A, )
with A being a set and « a function of the form A — T'A. This notion has proven useful
in modelling data structures such as lists, streams and trees; transition systems such as
automata; and classes in object-oriented programming languages [32, 23]. Generically A is
viewed as a set of states, and « as a transition structure. The usefulness of the notion has
fueled the development of a theory of “universal coalgebra” [34, 36, 13], by analogy with,
and categorically dual to, the study of abstract algebras.

The present paper is a continuation of a study begun in [10] of equational logic and
model theory for certain polynomial coalgebras. These are ones for which T is a polynomial
functor, i.e. is constructed from constant-valued functors and the identity functor by forming
products, exponential functors with constant exponent (which we will call power functors),
and coproducts. Many of the examples of data structures cited in the previous paragraph
arise from polynomial functors. Such functors are typically constructed from some fixed sets
given in advance, with the members of these sets being thought of as “observable” elements.
Computationally, the states of a coalgebra are regarded as not being directly accessible, but
can only be investigated by performing certain “experiments” in the form of coalgebraic
operations that yield observable values. Two states are bisimilar if no such experiment can
distinguish them. This notion of bisimilarity, as meaning observational indistinguishability,
is one of the key foundational concepts of process algebra. It derives from a notion of
bisimulation introduced in [30] as a relation of mutual simulation between states of finite
automata. Bisimilarity is the largest bisimulation relation between the state-sets of two
coalgebras, and can be characterised in several ways, including set-theoretically using state-
transitions and categorically using morphisms between coalgebras (see [10, Section 1] for
references).

A formal language for expressing properties of polynomial coalgebras was introduced in
[10] and its semantics defined. The core of the language is a calculus of terms for operations
on coalgebras, based on a simple type theory that reflects the formation of polynomial
functors. A distinctive feature of the terms is that they may have a single state-valued
parameter, in addition to state-valued variables. The state variables can be bound by certain
operations on terms (lambda-abstraction, case-formation), but the state parameter is not
subject to binding. The symbol s is used for this parameter, which may be viewed as
denoting the “current” state. A special role is played by terms that take observable values,
since an “experiment” amounts to the evaluation of such a term. Theorem 7.2 of [10]
established that two coalgebraic states are bisimilar precisely when they assign the same
values to all ground (i.e. closed) terms of observable type. Moreover it was shown that
Boolean combinations of equations between observable terms form a natural language of
observable formulas for specifying coalgebraic properties. Two states are bisimilar precisely
when they satisfy the same “rigid” observable formulas (rigidity essentially means that all
state variables are bound).

The idea of characterising observationally equivalent states as being those satisfying the
same formulas of some logical language was introduced by Hennessy and Milner [17]. They
provided a simple propositional modal language that achieved this for certain labelled transi-
tion systems. Our results in [10] show that observable formulas provide the correspondingly
appropriate language for polynomial coalgebras, and motivate further study of the metathe-
ory of these formulas. In particular we consider the extent to which their role is analogous
to the role played by equations in the general theory of universal algebras.



Now a cornerstone of classical equational logic is the “variety theorem” of Birkhoff [7],
stating that a class of algebras is the class of all models of some set of equations iff it is
closed under homomorphic images, subalgebras, and direct products. This paper aims to
prove an analogous result for polynomial coalgebras, giving a structural characterisation of
classes of coalgebras definable by observable formulas. For this purpose a new construction
of observational ultrapowers is introduced. An ultrafilter U on a set I associates with each
set B the standard ultrapower BY | which is a quotient of the I-th power B of B, and which
may be thought of as an “enlargement” obtained by adding new “nonstandard” elements
to B. Any function # : B — C has a lifting to a function Y : BV — CV. In particular a
T-coalgebra a : A — T A lifts to a¥ : AU — (TA)V. But oV is not a T-coalgebra on AV,
since the latter would be a function of the form AV — T(AY). To overcome this problem
we reduce AV to a subset At for which a suitable function at : A* — T(AT) can be built
using « and U.

The definition of AT can be understood by considering a ground (closed) term M whose
type is a set D of observable values. The denotation of M in « is a function [M ], : A — D
giving M a value in each state of A. This lifts to a function [ M ]V : AV — DY which may
assign some members z of AV a nonstandard value in DY — D. If however [ M ]|Y(z) € D,
and this property holds for every term M of observable type, then we call x an observable
state of AU. AT is the set of such observable states.

The construction of a™ is intricate and involves a detailed analysis of the formation of T
as a polynomial functor (see Theorem 4.1). at validates the same observable formulas as a
(Corollary 5.3). To prove this we have to establish a result (Theorem 5.2) about satisfaction
of formulas by elements of ot which is the analogue in this setting of Lo§’s Theorem in the
standard theory of ultrapowers.

Our analogue of Birkhoff’s theorem (Theorem 7.1) states that

a class of polynomial coalgebras is the class Mod ® of all models of a set ® of
rigid observable formulas if, and only if, it is closed under images of bisimulation
relations, disjoint unions and observational ultrapowers.

The proof makes use of a certain saturation property of a® that holds for suitably chosen
ultrafilters U. Saturation is used to show that if every ground observable formula valid in
o is valid also in coalgebra 3, then ot has enough states to guarantee that each state of
B is bisimilar to a state of aT, and so the bisimilarity relation from at to 3 is surjective
(Theorem 6.1). From this it follows (see Theorem 6.2) that

two coalgebras a and B are logically indistinguishable, in the sense that they vali-
date the same ground observable formulas, if, and only if, they have observational
ultrapowers o and Bt that are totally bisimilar and hence are observationally
indistinguishable.

The definition of ot is a special case of the more general construction of an observational
ultraproduct l'IUoz;Ir of a family («; : ¢ € I) of coalgebras. This construction and the associ-
ated version of Los’s Theorem is developed in full, and is used for a number of applications.
These include:

(i) exhibiting partial failures of Lo§’s Theorem (after Theorem 5.2);
(ii) showing that limited versions of the Compactness Theorem hold (Theorem 5.4);

(iii) giving conditions under which a class of coalgebras is equal to Mod ¢ for a single
formula ¢ (Theorem 7.2); and

(iv) giving an example of a class of the form Mod ® for some infinite @ that is not finitely
axiomatizable, hence not equal to Mod ¢ for any formula ¢ (end of Section 7).

Section 8 discusses the sense in which our main result is an analogue of the classical Variety
Theorem, and also surveys and compares a number of contributions to the literature that
deal with category-theoretic formulations and dualizations of Birkhoff’s concepts.



size(s) = case children(s) of
nu = ol
1ov > case size(mv) of
LU = L1*
tom — case size(mav) of
LU = L%
tok — ta(n +k+1)
endcase
endcase
endcase

Figure 1: case terms

case Terms

The syntax of terms we use has the standard constructions from type theory, including
pairing and projection terms for products of types, and A-abstractions and application terms
for power types (function spaces). Possibly less familiar is the “case” operation used to
introduce terms associated with coproducts, and so we provide some motivation for it now.

The coproduct A; + Az of sets A; and A, is their disjoint union, and comes equipped
with injective insertion functions ¢; : A; - A; + Ay for j = 1 and 2. Each element of
Ay + A, is equal to ¢j(a) for a unique j and a unique a € A;. Our syntax generates terms
of the form

case N of [L11}1 — M, | LUy > Mg],

where N is a term taking values in A; + Ao, My and M, take values in some other set B,
and the v;’s are variables that take values in A; and are bound in the overall case term. We
will sometimes use the abbreviated form case(N, M, Ms) for this term. It is evaluated by
first obtaining the value d of N in A; + A and then, if d is equal to ¢;(a), evaluating M;
with v; assigned value a, giving an element of B as the desired value.

Here is an illustration from [10], adapted from [25, Section 4], of the use of case-formation
in coalgebraic specification. Let A be a set of (possibly infinite) binary trees. Each tree z
either is a single node with no children, or has exactly two children obtained by deleting the
top node of . This gives an operation

children : A — 1+ (A x A),

where 1 = {x}; children(z) = 11* when z has no children, and children(z) = t2(z1, 22) when
z1 and zo are the left and right children of z. There is a size (number of nodes) operation

size: A — 1+N,

where N is the set of positive integers and size(x) = t1*x when z is infinite. The two
operations can be “paired” into a single function

A 1+ AxA)x(1+N)

which is a coalgebra for the functor T(X) = (14 (X x X)) x (1+N). The operations can be
recovered from « as children = m; o & and size = 7y 0 &, where m; and 72 are the left and
right projections.

Now the size of a tree is 1 if it has no children, is infinite if at least one child is infinite,
and otherwise is the sum of the sizes of the children plus 1. Thus our example validates the
equation of Figure 1, in which the right-hand term is obtained by iteration of case-formation.
(The word “endcase” used to mark the end of a term will not appear in our formal syntax.)
Validity means that the equation is satisfied no matter what member of A is denoted by the
state parameter s.



2 Review of Fundamentals

To make the paper reasonably self-contained, in this section we review the syntax and
semantics of types, terms and formulas for polynomial coalgebras, as set out in [10], and
describe the resulting logical characterisation of bisimulation.

2.1 Polynomial Functors and Coalgebras

Conventional notation for products, powers and coproducts of sets will be used. For j =1
and 2, m; : Ay x Ay = A; is the projection function from the product set Ay x A onto A4, i.e.
mj(a1,a2) = aj. The pairing of two functions of the form f; : A — B; and f> : A — By is the
function (f1, f2) : A = By X By given by f(a) = (f1(a), f2(a)). The product of two functions
of the form f; : Ay = By and fy : A> = Bs is the function f; x fo : A; X Ay = By X Bs
that maps (a1,az) to (fi(a1), f2(a2)). Thus m;((f1 x f2)(2)) = f;(m;(z)).

As already mentioned, the coproduct A; + As of sets A1, As is their disjoint union, with
injective insertion functions ¢; : Aj — Ay + Ay for j = 1 and 2. Each element of A; + A
is equal to ¢;(a) for a unique j and a unique a € A;. The coproduct of two functions of the
form f; : Ay — By and fs : A — By is the function f; + f2 : Ay + Ay — B; + B that maps
1j(a) 10 1;(f;(a)).

The D-th power of set A is the set AP of all functions from set D to A. The D-th
power of a function f : A — B is the function fP : AP — BP having fP(g) = f o g for all
g: D — A. The evaluation function eval : AP” x D — A has eval(f,d) = f(d). For each
d € D there is the evaluation-at-d function evq : AP — A having evq(f) = eval(f,d) = f(d).

The symbol o— will be used for partial functions. Thus f : A o—» B means that f
is a function with codomain B and domain Dom f C A. We sometimes write f(z)] to mean
that f(z) is defined, i.e. z € Dom f. Associated with each insertion ¢; : A; — A; + A, is its
partial inverse, the eztraction function ¢; : Ay + Ay o— A; having ¢;(y) = z iff 1;(z) = y.
Thus Dome; = 1jA4;, i.e. y € Dome; iff y = ;(x) for some x € A;. These extraction
functions play a vital role in the analysis of coalgebras built out of coproducts. Observe
that the coproduct fi + f» of two functions has (f1 + f2)(z) = ¢;(f;(¢;(x))) for some j.

The identity function on a set A is denoted id4 : A — A. If A is a subset of B, then
A — B is the inclusion function from A to B.

Polynomial functors are formed from the following constructions of endofunctors T :
Set — Set.

e For a fixed set D # 0, the constant functor D has D(A) = D on sets A and D(f) = idp
on functions f.

o The identity functor Id has IdA = A and Idf = f.

e The product T} x T5 of two functors has T1 x T>(A) = T4 A x Tx A, and, for a function
f:A— B, has Ty x T(f) being the product function

Tl(f) X Tz(f) : TlA X T2.A. — TlB X TzB

e The coproduct T} +T5 of two functors has T1 +T»(A) = Ty A+T>A, and for f : A — B,
has Ty + T>(f) being the coproduct function

Ti(f) +To(f) : TiA+ ToA — Ty B + T»B.

e The D-th power functor TP of a functor T has TP A = (TA)?, and for f : A — B,
has TP (f) being the function (T'(f))P : (TA)P — (TB)P that acts by g = T(f) o g.

Thus T(f)(9)(d) = T(f)(g(d)).

A functor T is polynomial if it is constructed from constant functors and Id by finitely
many applications of products, coproducts and powers. Any functor formed as part of the
construction of T is a component of T. A polynomial functor that does not have Id as a
component must be constant.



A T-coalgebra is a pair (A,a) comprising a set A and a function A = TA. A is the
set of states and « is the transition structure of the coalgebra. Note that A is determined
as the domain Dom « of a, so we can identify the coalgebra with its transition structure,
i.e. a T-coalgebra is any function of the form a : Doma — T (Doma). A morphism from
T-coalgebra « to T-coalgebra § is a function f : Dom a — Dom 3 between their state sets
which commutes with their transition structures in the sense that 8o f = Tf o a, i.e. the
following diagram commutes:

Dom « Dom g

a B

T(Dom «) ﬂ» T (Dom ()

If Dom a C Dom 3, then « is a subcoalgebra of 3 iff the inclusion function Dom a < Dom 3
is a morphism from a to .

Every set {o; : i € I} of T-coalgebras has a disjoint union ) ; a;, which is a T-coalgebra
whose domain is the disjoint union of the Dom «¢;’s and whose transition structure acts
as a; on the summand (;Doma; of Dom ) ; a;. More precisely, this transition is given
by ¢j(a) — T(t;)(a;(a)), with the insertion ¢; : Doma; — Dom ) ; @; being an injective
morphism making a; isomorphic to a subcoalgebra of the disjoint union (see [36, Section
4)).

In classical algebra and model theory it is conventional to assume that an algebra or
model is based on a non-empty set. By contrast, here we always have the empty T -coalgebra
() — T0 with the empty transition structure. This forms an initial object in the category
of T-coalgebras: there is a unique (empty) morphism from the empty coalgebra to any
T-coalgebra.

2.2 Paths and Bisimulations

If (A, o) and (B, 8) are T-coalgebras, then a relation R C A x B is a T-bisimulation from «
to [ if there exists a transition structure p : R — TR on R such that the projections from
R to A and B are coalgebraic morphisms from p to a and (3, i.e. the following diagram
commutes:

A+ p_ ™ . p
a p B
TA < TR - TB

T7i'1 T7T2

We may say that coalgebra g is the image of the bisimulation, or is the image of « under
the bisimulation, if R is a surjective relation, i.e. every member of B is in the image of R,
or equivalently 75 is a surjective function. Dually, « is the domain of the bisimulation if R
is a total relation, i.e. Dom R = A, or equivalently 7y is surjective.

A function f : A — B is a morphism from «a to 8 iff its graph {(a, f(a)) : a € A}
is a bisimulation from « to B [36, Theorem 2.5]: a morphism is essentially a functional
bisimulation. When Dom a C Dom 3, « is a subcoalgebra of 3 iff the identity relation on
Dom « is a bisimulation from « to 3.

The above categorical definition of bisimulation appeared in [1]. It has a characterisation
[18, 19] in terms of “liftings” of relations R C A x B to relations RT C TA x TB. This in
turn was transformed in [10] to another characterisation of bisimulations that uses the idea
of “paths” between functors, an idea introduced in [24, Section 6].

A path is a finite list of symbols of the kinds 7, €5, evq. Write p.q for the concatenation

P
of lists p and ¢q. The notation T'—~S means that p is a path from functor T to functor S,
and is defined by the following conditions



O
e T—~T, where () is the empty path.
w.p
o T x Ty—~S whenever Tj—{)MS, for j =1,2.
€j-p P
o T + T5—~S whenever T;—»S, for j = 1,2.

o TP 278 for all d € D whenever T—nS.

It is evident that for any path T'—~S, S is one of the components of T. Paths can be
p q p-q
composed by concatenating lists: if 77 —~T5 and To—~T3, then T} —~T5.

A path T—f»»S induces a partial function py : TA o——> SA for each set A, defined by
induction on the length of p as follows.

e (Ja:TA o— TA is the identity function idr 4, so is totally defined.

o (mj.p)a = pa o7, the composition of TiA x T A R T;A P4, SA.
Thus 2 € Dom (7;.p) 4 iff 7;(x) € Dompa.

e
e (¢j.-p)a = pa o¢;, the composition of Ty A+ ThA o> T;A A A
Thus 2 € Dom (g;.p) 4 iff z € Dome; and €;(x) € Dompga.

o (evg.p)a = pa o evgq, the composition of (T A)P v TA oPA, SA.
Thus f € Dom (evg.p) 4 iff f(d) € Dompa.

Concatenation of paths corresponds to composition of functions, in the sense that (p.g)a =
qaopa. B

A path T—~S is a state path if S = Id, an observation path if S = D for some set D,
and a basic path if it is either. A straightforward induction on the formation of functors
shows that if T' is a polynomial functor, A a set, and x € T'A, then there exists a basic path

TS with z € Dom py.

A T-bisimulation can be characterised as a relation that is “preserved” by the partial
functions induced by state and observation paths from 7. To explain this we adopt the
convention that whenever we write “f(z) @ g(y)” for some relation  and some partial
functions f and g we mean that f(x) is defined iff g(y) is defined, and (f(z), g(y)) € @ when
they are both defined.

4

Theorem 2.1 [10, Theorem 5.7]

If A 2, TA and B —ﬁ> TB are coalgebras for a polynomial functor T, then a relation
R C A x B is a T-bisimulation if, and only if, xRy implies

(1) for all state paths T—I:ﬂld, pa(a(z)) R pe(B(y)); and

(2) for all observation paths T-~D, pa(a(z)) = pe(B(y)). O

The inverse of a bisimulation is a bisimulation, and the union of any collection of bisimu-
lations from a to 3 is a bisimulation [36, Section 5]. Hence there is a largest bisimulation
from a to 3, which is called bisimilarity. We denote this by ~. States z and y are bisimilar,
xz ~ gy, when z Ry for some bisimulation R between « and 3. This is intended to capture the
notion that x and y are observationally indistinguishable.



2.3 Types, Terms, and Formulas

Fix a set @ of symbols called observable types, and a collection {[o] : o € O} of non-
empty sets indexed by Q. [o] is the denotation of o, and its members are called observable
elements, or constants of type o. The set of types over Q, or O-types, is the smallest set T
such that O C T, St € T and

(1) if 01,02 € T then o1 X 02, 01 + 02 € T}
(2) if c € Tand 0 € O, then 0 = o € T.

A subtype of an Q-type 7 is any type that occurs in the formation of 7. St is a type symbol
that will denote the state set of a given coalgebra. The symbol “0” will always be reserved
for members of O. o = o is a power type: such types will always have an observable
exponent. A type is rigid if it does not have St as a subtype. The set of rigid types is thus
the smallest set that includes @ and satisfies (1) and (2).

Each Q-type o determines a polynomial functor |o| : Set — Set. For o € Q, |o| is the
constant functor D where D = [o]; |St| is the identity functor Id; and inductively

lo1 X 02| = |o1| X |o2], |o1+ 02| =|o1| + o2, Jo=0o|= |0|[[0]I-

For denotations of types, we write [o]4 for the set |o|A. Thus we have [o]a = [o],
|[St]],4 =A,

|[U1 X Uz]]A = [[01 ]]A X [02]],4
[o1+02]a=[01]a+[02]a
|[0=>U]]A = [[U]]A[[O]I.

If o is a rigid type then |o| is a constant functor, so [o]a is a fixed set whose definition
does not depend on A and may be written [ ]. A 7-coalgebra is a coalgebra (A, a) for the
functor |7|, i.e. @ is a function of the form A — [7]4.

To define terms we fix a denumerable set Var of variables and define a context to be a
finite (possible empty) list
P=(v1:01,...,05:0p)

of assignments of Q-types o; to variables v;, with the proviso that vy, ... ,v, are all distinct.
T is a rigid context if all of the o;’s are rigid types. Concatenation of lists I" and I with
disjoint sets of variables is written I',I"". A term-in-contezt is an expression of the form

' M :o,

which signifies that M is a “raw” term of type o in context I'. This may be abbreviated to
' > M if the type of the term is understood. If o € O, then the term is observable.

In the semantics to follow in Section 2.4, a term I' > M : ¢ is assigned a value at each
state of a coalgebra, relative to an assigment to values to the variables appearing in I'. The
value of the term is an element of [o ] 4.

Figure 2 gives axioms that legislate certain base terms into existence, and rules for
generating new terms from given ones. Axiom (Con) states that an observable element is a
constant term of its type, while the raw term s in axiom (St) is a special parameter which will
be interpreted as the “current” state in a coalgebra. The rules for products, coproducts and
powers are the standard ones for introduction and transformation of terms of those types.
The raw term in the consequent of rule (Case) is sometimes abbreviated to case(N, My, M>).

Bindings of variables in raw terms occur in lambda-abstractions and case terms: the v
in the consequent of rule (Abs) and the v;’s in the consequent of (Case) are bound in those
terms. It is readily shown that in any term I' > M, all free variables of M appear in the
list I'. A ground term is one of the form () > M : o, which may be abbreviated to M : o,
or just to the raw term M. Thus a ground term has no free variables. Note that a ground
term may contain the state parameter s, which behaves nonetheless as a variable in that it



Axioms

v € Var ¢ € [o]
V _— C St
(Var) viebuv:o (Con) 0r>c:o (5¢) Or>s:St
Weakening
r,Ie> M:
(Weak) - P 7 where v does not occur in T" or I".

Tv:o, I"'>M:0o

Product Types
I'>M:o01 X0y
I'mM: oy

' M:o01 X 09

Pro;
(Proji) ' mM : oo

(PI‘OjQ)

F|>M1:0'1 F|>M22(72
F[><M1,M2>:O’1 X 09

(Pair)

Coproduct Types

(Iny) '>M:o (Ins) I'>M:os
! 'ouM:o01+ 02 2 > M :01 + 09
(Case) I'>bN:oir+oy TLDw:on>M:o Tiu:oabM:o

I'> case N of [L1U1 — M, | LoVo > MQ] o

Power Types
I'>bM:0=0 I'>N:o FviobM:o

(App) '>M-N:o (Abs) 's(MWM):0=>0

Figure 2: Axioms and Rules for Generating Terms




Equations
' M, :0o '>My:o

E
( q) I'> My~ M,
Weakening
r,r
(Weak) LI S where v does not occur in T or I'.
Nv:a, ">y
Connectives
re> > 's>
(Neg) ' (Con) 41 ©2
I'e—p ' o1 Apa

Figure 3: Formation Rules for Formulas

can denote any member of Dom «, as will be seen in the semantics presented in Section 2.4.
There exist ground terms of every type, as may be seen by induction on type formation.

A term is defined to be rigid if its context is rigid. This entails that any free variable of
the term is assigned a rigid type by T, so its type is formed without use of St. Of course all
ground terms are rigid.

7-Terms

For a given Q-type 7, a 7-term is any term that can be generated by the axioms and rules
of Figure 2 together with the additional rule

'>M:St
(r-Tr) C>tr(M):7°

Note that from this rule and the axiom (St) we can derive the ground 7-term

0> tr(s) : 7.

The symbol tr will denote the transition structure of a 7-coalgebra A Q. [7]a. U Misa
ground term of type St, then the value of the term tr(M) at a state z is obtained by applying
a to the value of M at x. Since the parameter s is to be interpreted as the “current state”,
its value at state z is just x, so the value of tr(s) at z is a(z). Hence the term tr(s) denotes
the transition function « itself.

7-Formulas

An equation-in-context has the form I't> My &~ My where I't> My and I't> M, are terms of the
same type. A formula-in-context has the form I'> ¢, with the expression ¢ being constructed
from equations M; ~ Ma> by propositional connectives. Formation rules for formulas are
given in Figure 3, using the connectives — and A. The other standard connectives V, —,
and < can be introduced as definitional abbreviations in the usual way. We may also write
(M % Ms) for =(M; = M>), and will use the symbol L to stand for any formula of the
form I' > ¢ A —p.

A formula @ > ¢ with empty context is ground, and may be abbreviated to ¢. A rigid
formula is one whose context is rigid. A 7-formula is one that is generated by using only
T-terms as premisses in the rule (Eq). An observable formula is one that uses only terms of
observable type in forming its component equations.

2.4 Semantics of Terms and Formulas

A T-coalgebra a : A — |7|A interprets types o and contexts I' = (v; : 01,... ,v, : 0p) by
putting [0 ]o = |o|(Doma) = [0 ] 4, and

[[F]]az [Ul]]a X X [[Un]]a
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(so [@]a is the empty product 1). The denotation of each 7-term ' 1> M : o, relative to the
coalgebra a, is a function

[IT>M:0]a:AX[T]a —[0]a,
defined by induction on the formation of terms. For empty contexts,
Ax[0]la=Ax1=A,

so we replace A x [@#]n by A itself and interpret a ground term § > M : o as a function
A — [0 ]a- The definition of denotations is as follows.

Var:
[viepv:o]a:AX[o]a = [0]a is the right projection function.

Con:

[0>c:0]n:A—[o] is the constant function with value c.

St:

[D>s:St]a: A — [St]q is the identity function A — A.
7-Tr:

[T>tr(M):7]a: AX[T]a = [7]a is the composition of the functions

I'> M:St],
Ax[r]. ] lo, 4% 1.

Weak:

[T,v:0",T"> M : 0], is the composition of [T',I' > M : o ], with the projection

Ax[Tlax[0']a x[T"]a — AX[T]a x[T']a-

Proj;:

[T>7;M :0j]q is the composition of

'>M:01 xo0o T
AX[T]a [ ! 2la, [o1]a x [02]a — [0 ]a-

Pair:

[T > (M, Ms) : 01 X 03], is the pairing function

I'> M : AT > M,
AX[F]]Q <|[ 1 Ul]]a |[ 2 02]](1)‘ |[0—1]]ax|[02]]a-

Inj;:

[T > ;M : 01+ 02 ] is the composition of

[T>M:oj]a Lj
Ax[T]a — [o)]a — [o1]a +[o2]a-

Case:

This is easier to describe at the function-value level. For z € A and v € [T ], let
[T>N:o1+o02]a(z,7) =j(a) € [01]a + [02]a;
which holds for a unique j and a € [0 ]o- Then the element
[T > case N of [iv1 = M| ave = Ms] : 0 ]a(z,7)
of [0 ]a is defined to be
[T,vj:0;> M;:0]alz,v,a).
In other words: if [T > N J4(z,v) € Domej, then
[T > case(N, M1, Ms) Ja(x,v) = [T, vj : 05 > MjJa(z,v,6;[T > N Jalz,7)).
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App:
[T>M-N:o]a(z,v) is the element of [0 ], obtained by evaluating the function

[T>M:0=0]a(z,y):[0] = [0]a
at [T > N :o]a(z,7) € [o]-
Abs:
[T > (Aw.M):o0= o]a(z,7) is the function [o] — [0 ]« given by

a— [T,v:o> M :o]u(z,y,a).
This completes the inductive definition of [T'> M : ¢ ],.

Substitution of Terms

In working with this system it becomes essential to have available the operation N[M/v] of
substituting the raw term M for free occurrences of the variable v in N. The following rule

is derivable:
'>M:o Fw:o>N:o

' N[M/v]: o'
The semantics of terms obeys the basic principle that substitution is interpreted as compo-

sition of denotations [31, 2.2]. Because of the special role of the state set A, this takes the
form

(Subst)

[T>NM/v]a=[T,v:0>N]go{m,m, [ >M]a),

so that the following diagram commutes:

<7T1,7T2, HM]]04>

Ax[I]q Ax[T]ax[o]a

N |qo
[N [¥]

[UI]]a

Substitution for the State Parameter

It is also possible to make substitutions N[M/s] for the state parameter s according to the

derivable rule
I'> M:St I'>N:o

> N[M/s]: o'

(s-Subst)

with the semantics [T'> N[M/s]Ja =[T> N]ao ([T > M Jq,m2) :

<|[M]]0H772>

AX[[F]]a AXl[F]]a
[N[M/s)]a [¥ ]
[U']]a

For ground terms (T' = @), this takes the simple form

[N[M/s]]a = [N]ao[M]a
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Semantics of Formulas

A 1-equation I'> My = M, is said to be valid in coalgebra « if the a-denotations [T'> M; ]
and [T'> Mj ] of the terms I't> M are identical. More generally we introduce a satisfaction
relation

a) :L., ’Y |: F D (p7

for 7-formulas in 7-coalgebras, which expresses that I' > ¢ is satisfied, or true, in a at state
under the value-assigment v € [T'], to the variables of context I'. This is defined inductively
by

a,z,yETD> My~ M iff [T M ]a(z,y) =[T > M ]a(z,y),

a, 2,y =T D> - if not a,z,y =Ty,

a,z,y =T D> @1 Aps iff a,z,yETD>y and a,z,7y ET > ps.

I'> ¢ is true at z, written o,z E T >, if o, 2,y ET > ¢ for all v € [T']4. « is a model
of T 1> o, written a =T > ¢, if a,z, = T'I> ¢ for all states z € Dom «. In that case we also
say that I' > ¢ is valid in the coalgebra a.

These definitions imply that if « is the empty 7-coalgebra, then « is a model of every
T-formula, since there is no state in « at which a formula can be false. In particular, a = L
when « is empty.

The following result is proven in [10, Section 5].

Theorem 2.2 The class {a : a =T > ¢} of all models of an observable formula is closed
under domains and images of bisimulations, including domains and images of morphisms
as well as subcoalgebras. If T > ¢ is rigid and observable, then its class of models is also
closed under disjoint unions. ]

The notation Mod @ will used for the class of all models of a set ® of formulas, and Mod ¢
in the case that ® consists of a single formula .

An Example: Streams of Characters

There are many examples of coalgebraic presentations of data structures to be found in the
literature, in such sources as [32, 23, 22, 36, 26, 25]. We now develop an example of this
kind, motivated by ideas from [23, 26], to illustrate features of the syntax and semantics
just defined.

Imagine a simple game machine with a display screen and two buttons labeled play and
next. The game starts with a blank screen. Pushing play causes a character from some
character set C' to be printed on the screen. Then pushing next causes the machine to move
to a new state, from which another play action can be performed. Repeating these actions
results in a string of characters being printed on the screen. But there are some states in
which pushing play causes a “game over” message to be printed. In that case, pushing next
causes the screen to be cleared for another game.

If A is the set of possible states of the machine, then its behaviour can be represented
by functions

play : A — C + {over}, next : A — A, blank : A — {true, false}.

play assigns to each state the character or over message resulting from pushing play. next
gives the new state produced by pushing next, and blank assigns a truth value to a state
according to whether or not the screen is clear in that state. These functions combine into
a coalgebra

A9 (C + {over}) x (A x {true, false}),

with play = m o a, next = m o (m2 0 @), and blank = 5 o (72 0 @).

Let O = {data, 1,bool}, with [data] = C, [1] = {over} and [bool] = {true, false}.
Define the type 7 to be (data + 1) x (St x bool). Then (4, a) above is a 7-coalgebra.

Now for any ground 7-term M of type St, let play(M) be the term mitr(M) of type
data + 1. The denotation [play(M)], is the function z — play([ M Jo(x)). In particular,
[ play(s) ]« is just the function play. Similarly we define next(M) to be the term mymatr(M)
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of type St, and blank(M) to be the term mamatr(M) of type bool, so that next(s) denotes the
function next and blank(s) denotes blank.

Since next(M) also has type St, we can iterate its formation to obtain terms next™(M)
denoting the iterations of the function nezt, by putting next! (M) = next(M) and inductively
next"*1 (M) = next(next™(M)).

We will write M-blank for the ground observable equation (blank(M) = true), which is
satisfied at state z iff blank([ M Jo(z)) = true.

Notice that play(M) is not an observable term, since its type is data+ 1, rather than one
of the observable types data and 1. But we can describe which component of the disjoint
union C + {over} a value play(x) belongs to, by making use of case terms. Let test(M) be
the term

case play(M) of [t1v1 — true | iavs — false],

which is of type bool. Then [test(M) ], (z) is equal to true if play([ M ]o(z)) = t1c for some
¢ € C, and equal to false if play([ M Jo(z)) = taover. Thus we define M-live to be the
formula (test(M) = true) and M-over to be (test(M) = false). These are ground observable
equations. M-over asserts that the game will be over at the state denoted by M, while
M-live asserts the opposite.

These formulas can be used to express constraints we might want a 7-coalgebra to satisfy
in order to accurately model our game machine, such as

M-over — next(M)-blank
M-live — — next(M)-blank
M-blank — M-live.

Operating the machine produces a stream of characters which will terminate if a state is
reached that satisfies the formula s-over. If such a state is not reached, then an infinite
stream will be generated. To express that this happens, let ¢, be the ground observable
formula

s-blank — next™(s)-live,

which asserts that the game does not end after n plays. Let ®, = {¢, : n > 1}. Then a is
a model of ®,, iff all plays of the game are endless.

It is relatively straightforward to show that the class Mod &, of all models of the infinite
set @, is not equal to Mod ® where ® is any finite subset of ®,,. Fix an element d € C, and
for each n > 1 define a 7-coalgebra (A, a,) that has A, = {0,...,n}, with a, given by the
functions nezt,, blanky, play, defined as follows:

(1) nextn(z) =z + 1 for x < n, with next,(n) = 0;
(2) blank,(x) = true iff z = 0.
(3) play,,(z) = udif x < n, while play,,(n) = 2 0ver.

s-blank is true only at 0, while s-live is true at all states except n. So ¢, is false at 0 in
Qan, but ¢ is valid in «,, for all k¥ < n. Thus given any finite number of positive integers
n1,...,Nk, choosing any n larger than all of them gives

an € Mod {pn,,-..,¢n, } — Mod ®,,.

At the end of Section 7 we will apply an ultraproduct construction to these a,’s to show
that there is no 7-formula ¢ whatsoever with Mod ¢ = Mod ®,,.

The kind of use made of case terms in this example plays a vital role in [10] in showing
that path functions p4 and extraction functions ¢; are term-definable, and ultimately in
showing that bisimilarity of states is characterized by their assigning the same values to
observable terms (see Theorem 3.2 below). As the example demonstrates, these results
depend on the presence of at least one observable type o (like bool) for which [o] has at
least two elements. The next section explains this further.
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3 Defining Path Action and Bisimilarity
The action of a path function is definable by a (ground) term, in the following sense.

Lemma 3.1 (Path Lemma) [10, Theorem 6.1]

For any path |T|—1:'~>|0'| and variable v there exists a tr-free T-term of the form
V:TD>D:O
such that for any T-coalgebra (A, o) and any x € A, if a(x) € Dompy then

pa(a(z)) = [pltr(s)/v] Ja(2). O

Note that by the substitution rule (Subst), p[tr(s)/v] is a ground term of type o, since tr(s) is
a ground term of type 7 . The term function [ p[tr(s)/v] ] has domain A, and so may not be
identical to pa o« if p4 is partial. This is only an issue when the path p includes an extraction
symbol €; (for otherwise p4 is total), but use of case allows the construction of observable
terms that “discriminate” between the two summands of a coproduct [71]a + [72]a and
determine whether p4(a(z)) is defined [10, Section 6]. For this to work it is necessary to
assume that there is available at least one observable type o that is non-trivial in the sense
that o] has at least two distinct members. This is a plausible assumption in dealing with
notions that are to be discriminated by observable behaviour. Define a relation =, between
the state sets of two 7-coalgebras by putting

x =45y iff every ground observable term M has [ M ]q(z) = [ M ]s(y).

If 7 has at least one non-trivial observable subtype, and  =,p y, then for any path |T|—I:~|o|,
a(z) € Dompy iff B(y) € Dompp [10, Corollary 6.3]. This observation, together with
Theorem 2.1 and further use of the Path Lemma leads to a proof that =, is a bisimulation
from a to 8 [10, Lemma 7.1]. Moreover it proves to be the largest bisimulation, giving a
logical definition of bisimilarity. The precise situation is as follows.

Theorem 3.2 [10, Theorem 7.2]
Let (A, a) and (B, 8) be T-coalgebras, where T has at least one non-trivial observable subtype.
Then for any x € A and y € B, the following are equivalent:

(1) = and y are bisimilar: x ~ y.

(2) o,z =T > o iff B,y =T > for all rigid observable formulas T 1> ¢.

(3) a,z |= M ~ N implies 8,y = M ~ N for all ground observable terms M and N.
(4) [M]a(z) =[M]p(y) for all ground observable terms M, i.e. T =qpy.

4 Ultraproducts and Ultrapowers

The theory of ultraproducts and ultrapowers plays a fundamental role in classical model
theory [6, 9]. We are going to make a typical use of ultrapowers, and to motivate it we first
review the nature of these classical constructions.

Let {A; : i € I} be a set of models for some first-order language £, and U an ultrafilter
on I. The ultraproduct Iy A; of the A;’s over U is a quotient of the ordinary direct product
IT; A; that is obtained by identifying any two functions f, g € II;.4; whose agreement set

{iel: fi)=g()}

is a member of U. If fU is the set of g’s that are identified with f in this way, then Iy A;
is based on the set {fU : f € TI1 A;}.

The ultrafilter U may be informally viewed as a collection of “large” subsets of I: each
member of U contains “almost all” members of I. Thus Iy .A; identifies any two members
of II; A; that agree “almost everywhere”.
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The importance of this construction derives from the fact that the first-order definable
properties possessed by Iy A; are just those that are possessed by almost all of the A;’s:
Iy A; is a model of any given L-sentence ¢ iff almost all of the A;’s are models of ¢, in the
sense that the set

{i € I: A; is a model of ¢}

belongs to U. This fact is a consequence of a stronger result, known as £o$’s Theorem [6,
Section 5.2], about satisfaction of £-formulas. If such a formula ¢ has free variables amongst
V1,500, and f, ..., f¥ is a sequence of elements of the ultraproduct that interpret these
variables, then ¢ is satisfied in IIy.4; by this interpretation iff it is satisfied in almost all of
the A;’s by the interpretation fy(i),..., fn(¢). Symbolically, Lo§’s Theorem can be written
as the statement that

HUAz'afan---afr[LJ ': 14 if; and Only if; {Z € IAzafl(z)a ;fn(l) IZ 90} el.

Informally we can think of Il A; as the “average” of all the structures 4;, just as the
mythical “average person” is someone whose characteristics are those possessed by most
people.

In the case that the A;’s are all equal to a single model A, the ultraproduct is called the
ultrapower of A over U. It is sometimes written as Iy A or A/U, but we find it convenient
to use the notation AY for it. Each element a of A determines the element aV of AV, where
a € A! is the constant function on I with value a. Then Lo§’s Theorem implies that

AV.aY, ... aY = ¢ if, and only if, A, a1,...,a, E .

If @ and @V are identified, AV becomes an extension of the model A, and indeed an elemen-
tary extension according to the last observation.

One important role played by ultrapowers, and the one to be played here, is to provide
saturated extensions of given models. Here “saturation” refers to the idea that a model is
“full of elements”. There are various forms of this notion, and typically they assert that
a model must contain an element meeting a certain description whenever that description
is logically consistent with the description of the model itself. An ultrapower that has the
particular form of saturation we need will be referred to as enlarging (see Section 6). This
is based on the notion that a subset C' of A can be enlarged to a subset of AY by adding
to it any member fY of AU for which almost all f-values are members of C, i.e. for which
{i€eI:f(i)eC}eU. Such an fV can be thought of as a “nonstandard member” of C.
When C' is defined in A by some property of elements that is specifiable by a first-order
formula, then by Lo$’s Theorem fU will be a nonstandard member of C precisely when it
itself has this same property in AY.

Now a collection S of subsets of A may be viewed as a collection of properties that is
“logically consistent with the description of .A” when it has the finite intersection property,
i.e. when any finite collection of sets from S has non-empty intersection. That means that
any finite number of these properties are simultaneously satisfied by some element of A.
The ultrapower AU is enlarging if the following holds:

for any collection S of subsets of A with the finite intersection property there is
an element of AU that is a nonstandard member of every set in S.

Turning now to the case of coalgebras, we immediately strike an obstacle which can be
illustrated with the case of an ultrapower. If (A, ) is a T-coalgebra, the classical ultrapower
construction lifts a to a function a¥ on the ultrapower AV of the state set A. But this oV
is not in general a T-coalgebra, as it has the form AY — (|7|A)V rather than AV — |7|(AY)
(the reason why is explained below). To resolve this problem, certain points will be removed
from AY to reduce it to a subset A* on which a suitable 7-transition a® : At — |7]|AT
can be constructed. Members of A" are are defined by a property involving denotations of
observable terms, and a7 is called the observational ultrapower of a. The construction of
o™ is the subject of this section, and in Section 5 we establish a version of Loé’s Theorem
for a™ that allows us to conclude that a and o™ validate the same observable formulas.

Now when at is enlarging, it is sufficiently full of elements (saturated) that the following
holds (Theorem 6.1):
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if B is a 7-coalgebra validating every ground observable formula that is valid in
o, then for each state y of 3 there exists a state of ot that is bisimilar to y, so
the bisimilarity relation from o™t to 3 is surjective.

Indeed, to show that this holds it is enough, by Theorem 3.2, to show that o has a state
satisfying every ground observable equation that is satisfied by y. But by the enlarging
property, this reduces to showing that the set of all such equations is logically consistent
with «, in the sense that each finite set of such equations can be satisfied at some state of
a.

The upshot is that a logically specified relationship between « and 3 implies the structural
relationship that (3 is the image of ™ under bisimilarity. This result leads to our structural
characterization of classes of coalgebras definable by observable formulas (Theorem 7.1). It
also allows us to show (in Theorem 6.2), that if @ and § are logically indistinguishable by any
ground observable formula then they have ultrapowers ot and 81 that are observationally
indistinguishable in the sense that each state of one is bisimilar to a state of the other, so
any behaviour of either is represented in the other.

With this motivating account of our programme in mind, we turn to the formal devel-
opment. Let U be an ultrafilter on a set I. Thus § ¢ U and U is closed under supersets and
finite intersections and contains exactly one of J and I —J for each J C I. U is non-principal
if its intersection is empty. A non-principal ultrafilter does not contain any finite subset of
1.

Extensive use will be made of “tuple” notation. A collection of sets A; indexed by the
members of T will be presented as the I-tuple (A4; : i € I). A function f with domain I may
be written as the I-tuple (f (i) : ¢ € I), or even more briefly as (f(¢)). The latter notation
is particularly convenient when f is defined by some complex expression for f ().

There is an equivalence relation =y on the direct product Iy 4;, defined by

f=vgiff{iel: f(i)=g@)}el.
Each f € II;A; has the equivalence class fU = {g € II;A; : f =v g}. The quotient set
Oy A; ={f": f € M1A;}

is called the ultraproduct of (A; : i € I) over U. fU may be written as (f(i) : i € I)Y, or
even as (f(i))Y.

In the case that the A;’s are all equal to a single set A, then the ultraproduct Iy A; is
called the wultrapower of A over U, and is written as AUV. A notation that will be useful for
ultrapowers is to write f €y C, for C C A, when {i € I : f(i) € C} € U. We may also
safely write fU €y C in this case, since in general f €y C iff g €y C whenever f =y g.

There is a natural injection e4 : A — AU given by e4s(a) = @V, where the function
a € A! has a(i) = a for all i € I. The distinction between a and aU is sometimes elided,
allowing A to be identified with the subset e4(A) of AY.

An I-tuple (0; : i € I) of n-ary functions of the form

Hi:Ah' X"'XAni—>Bi
has a U-lifting to the function
0U : HUA“ X ---X HUAm - HUBZ',

given by

0V (fUs-- - 1) = (0:(f1(3), .. , ful@)) si € D)V,
In the case n = 1, a family of maps 6; : A; — B; lifts to 8V : IIyA; — IIyB; where
0Y(fY) = (8;(f(4)) : i € I)U. This works also for partial 8; : A; o—» B;, providing a partial
U-lifting 8V : Iy A; o—— Iy B; in the same way, with the proviso that fU € Dom Y
precisely when {i € I : f(i) € Dom#6;} € U. Moreover, U-lifting commutes with functional
composition: given also n; : B; o— C; we have (1;00;)V = (n;)V 0 (0;)V : TIy A; o— T C;.
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In the ultrapower case, # : A o—» B lifts to 8V : AV o—» BY where 8V (fY) = (§o )Y,
with fU € Dom @Y precisely when f € Dom 6.

Projections are preserved by U-liftings, but this can be interpreted in two ways. Given
two collections (Ay; : i € I) and (Ay; : ¢ € I), with associated projections mj; : Ay; X
Ay = Aj; (for j = 1,2), let mj = (mj; 4 € I). Then 7rJU proves to be the projection
My Ay x Hy Ay — Iy Ay, Lee. ng(xl,:cz) = ;. But there is an equally important function
of the form Iy (Ay; x Ag;) — Iy Aj;, which we will denote {m;}V. Here {r;}V(fY) =
(mji(£(i)) =i € I)V for each f € TI;(Ay; X Ap;). The relationship between 7§ and {m;}V is
clarified in Lemma 4.2(1) below.

The relationship between I-tuples of extractions €j; : A1; + Ag; o— Aj; and insertions
i @ Aji = A1y + Ay is preserved by U-liftings: if # € IIy(Aq; + Ag;) and y € Iy Aj;, then
z =15 (y) iff z € DomeY and e¥(z) = y.

The U-lifting of an I-tuple of evaluations ewval; : AZ.D x D — A; is the function evalV :
HU(AZD) x DU — HUAz having

eval” (fY,9") = (evali(f(2), 9(0)))"” = (f(D)(9(0)))” (4.)

for all f € II;(AP) and g € Iy D = D'. From this it is deducible that for z € II;;(4P), and
de D,

evY (z) = evalV (z,dY), (4.ii)

where evY : Il (AP) — Ty A; is the U-lifting of the I-tuple of the functions evq; : AP — A;
that evaluate at d.

Now fix an I-tuple {A; i, |7|A; : i € I) of T-coalgebras, and let & = (; : i € I). The
transition structures a; lift to a function oV : Ty A; — My (|7]4;), and the term denotations
[T M :o0]a, lift to a function

[[F > M : U]]U : HUA,' X HU|0'1|A,' X X HU|0'”|A,' — HU|0'|A,' (4111)
where o01,... ,0y, is the list of types of T.
aV is not a T-coalgebra on AY since its codomain is Iy (|7|4;) rather than |7|(ITy A4;).

We wish to define a coalgebraic structure on Iy A; that interprets terms in a manner related
to the functions [T'> M : o ]Y. To achieve this it is necessary to remove some points from
Iy A;. The key to understanding which ones are to be retained is provided by considering
the U-lifting of the a;-denotations [ M ], : 4; — [o] of a ground observable term M : o.
This is the function

[M]Y =([M]a, :i € )V : Iy A; — [o]".

To act as a denotation for M it should assign values in [o], viewed as a subset of [0]Y. In
other words we should have

[M]Y(z) €e[o] ={E" :ce[o]} C[o]".

We are thus led to define an element x of Iy A4; to be observable if [M ]V (z) € e[o] for
every ground observable 7-term M : o. If z = fU, this means that for each such M there
exists an observable element cy; € [o] such that [ M ]Y(z) = é)Y and so

{i € T+ [M]a, (1)) = cn} € U. (4:iv)
Put Iy A} = {z € Ty A; : z is observable}. The members of Iy A} will be the states of
our modified coalgebraic ultraproduct.

In the ultrapower case of Iy A; = AU, given a single 7-coalgebra (4,a), we will write
A+ for the set {x € AV : x is observable}. For each a € A and any ground M : o,

[M]V(ea(a)) = [M]V(@") = ([M]a0a) = ([MT@) € elol,
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so e4(a) is observable. Thus e4 embeds A into AT, allowing us to view AT as an extension
of A. This also shows that At is non-empty whenever A is non-empty. But it is possible that
AT is just the e4-image of A, so there are no “new” observable elements of AV, even when
A is infinite. (If A is infinite, AY is a proper extension of e4(A4)). More generally, in the
ultraproduct case it is possible that I'IUAzr is empty, even when all the A;’s are non-empty.

These last claims can be demonstrated by considering coalgebras for the constant functor
@, where w = {0,1,2,...}. For each n € w, let (A,,a,) be the &-coalgebra having A, =
{n,n+1,n+2,...} and a, : A, = w the inclusion function, i.e. a,(z) = z. Thus if M is
the ground observable term tr(s), then [ M ], () = z. Let U be a non-principal ultrafilter
on w. Then for any f € 11, A,,, and any observable element ¢ € w, the set

{fnew:[M]a,(f(n)) =c}={new:f(n)=c}

is finite, since in general f(n) € A, so f(n) > n. Hence this set cannot be a member of
the non-principal U. This shows that fU is not an observable element of II;;A,,, and hence
that Iy A} is empty, even though each A4,, is non-empty. Adapting this argument to the
single coalgebra (Ag, ap), for which Ag = w and «ay is the identity function w — w, we see
that if fU is an observable element of the ultrapower AY, then there is some ¢ € w such
that {n €w: f(n) =c} € U and so fU = ¢V. So in this case A¢ is identifiable with w and
contains no other members of w¥.

The construction just given can be adapted to build other examples in which Iy A} is
non-empty, but has fewer elements than any of the A,,’s. We will use this idea again after the
proof of Theorem 5.2 to produce a counter example to a certain version of Lo§’s Theorem.

At the other extreme, there are types 7 for which every ultraproduct of 7-coalgebras is
observational, i.e. Iy A = Iy A; always. This happens, for instance, when the denotation
[o] of any observable subtype of 7 is finite. For if [o] = {c1,-...,¢n}, then for any element
fY of Iy A; and any ground term M : o, it follows that the finite union

{iel:[M]a;(f(i) =c1}U---U{i € I:[M]a,(f(i) = cn},

is equal to I, so one of these sets {i € I : [ M Jq, (f(i) = cx} belongs to U. This shows that
fU is observable.

Now we return to the general ultraproduct construction and take up the problem of
lifting an I-tuple @ = {(a; : i € I) of T-coalgebras to a transition structure of the form

at: HUA?_ — |T|(HUA;’_).

The nature of this transition will depend on the formation of the type 7. Since types are
built inductively from their subtypes, the construction of at will involve an induction on
type-formation. The notion of a path plays a crucial role, since paths analyse the relationship
between a functor and its components. Inevitably we are lead to the following result about
the lifting of path actions.

Theorem 4.1 For any path |7'|—I«)»»|a| beginning at || there exist partial functions
(pa; o a))t Ty A o— |o|Tly A and 6, : Ty |o|A; o— |o|TIy AT,

HUA;F Iy A;
o [e]

<pAi o ai>+ (pAi o ai)U

|0'|HUA;+_ «LO HU|0'|A1
such that 8, is surjective (onto |o|dy A5 ), with
(1) Dom {p4; o a;)* = My Af NDom (pa; o a;)V;

(2) = € Dom {py, o a;)" implies {pa, o ;) (x) € Dom8b,;
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and the above diagram commutes wherever defined.
Moreover, in the case of an ultrapower of a single T-coalgebra (A, o), we have a diagram

A~ €A » AT » AU
paoa (paoca)t (paca)V
glea o
[l ~24 o] P2 [o14
that commutes whenever defined, such that
(3) a € Dom (pa o a) implies ea(a) € Dom (pg o a)™; and
(4) b€ [o]a implies bU € Dom8,. O

Note that commuting of the right square of the second diagram of Theorem 4.1 is just the
ultrapower case of the commuting of the first diagram, in which (pa, o a;)V is the U-lifting
of the I-tuple {(p4, o a; : i € I).

The details of the proof of the Theorem have been deferred to the final Section 9, along
with the proofs of some other technical results to follow. In the present section we focus on
explaining the definitions of the partial maps (pa, o a;)T and 6,, the latter of which plays
an important part in the proof of Lo§’s Theorem in Section 5 (see Theorems 5.1 and 5.2).

But first we immediately note that when ¢ = 7 and p is the empty path, so that
pa; = ida,, the Theorem gives a function a* : Iy A o—— |o|lly A whose domain is
Iy A7 NDomaV =TIy Af, hence at is total, such that the following diagram commutes.

HUA;F > Iy A;
o o

at oV

|T|HUAj_ <<LO HU|T|A1

This gives the definition of a® as a 7-coalgebra, which will be called the observational
ultraproduct of a with respect to U.
Moreover, in the ultrapower case we get the commuting diagram

€A

A » At < - AV

a at Q

[r1a 174 [ <Ero 1Y

defining o™ as the observational ultrapower of the coalgebra o with respect to U. The left
square of this last diagram shows that the injection e4 is a coalgebraic morphism making «
isomorphic to a subcoalgebra of at.

In proving 4.1 we will need the following results about the extent to which ultraprod-
ucts commute with set-theoretic constructions. Parts (1) and (2) of this lemma state that
ultraproducts commute with products and coproducts up to bijection, while part (3) gives
a weaker statement for powers, involving only a surjection.

Lemma 4.2
(1) There is a bijection xpr : Iy (A1; X Ag;) = My Ay x Hy Ay defined by
Xpl‘(x) = ({Wl}U(x)7 {WZ}U(m))a

with 7r]U o Xpr = {m;}V.
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(2) There is a bijection Xxc¢o : Hy(Ay; + As;) — My Ay + My As; such that for each z €

Dom x¢o there is exactly one j with x € Dom s? and Xeo(T) = ¢j (65](;16))

(3) There is a surjection Xpo : My (AP) - (I A;)P defined by xpo(x)(d) = evY (z).
Proof.  See Section 9.1. O

The partial surjections 6, of Theorem 4.1 are built using the y-functions from Lemma 4.2.
In the case (3) of powers, xpo Will not in general be bijective. For instance, in the ultrapower
case we get a surjection (AP)V — (AY)P but if A is finite then AY will be of the same size
as A, so (AY)P will be of the same size as AP, which may be of strictly lower cardinality
than (AP)Y. Moreover, there does not seem to be a naturally definable injection of (AY)?P
into (AP)Y. This accounts for the direction of the 8, arrows, which may at first sight appear
to be the opposite of what it should be.

The definitions of (p4, oa;)T and 6, proceed by induction on the formation of the type o,
as follows. In each case, Dom (p4, o a;)* is defined by the equation 4.1(1). The justification
of the definitions, where required, and the verifications of their properties, may be found in
Section 9.2.

Here we let D = [o], so that |o| is the constant functor D. Define 6, to be

the inverse of the injection ep : D = DY, and put
(pa; 0 i)t (z) = 0, ((pa; 0 ;)Y ()
to give the following version of the first diagram of 4.1 in this case.

HUA:_ Ty A;

fe) [o]
(pAi o ai)+ <pA¢ o ai>U
0, U
D <«+———o0D

Here |o| is the identity functor Id. Let 6, be the inverse of the inclusion

My A — Ty A;, and put (pa; 0 a;) " (z) = (pa, 0 i)V (2):

HUA;’_ > HUAi
o (o]

(pAi Oai)+ (pAi oai>U

0
HUA;F <<LO HUA,'

Case 0 = 01 X 09 | Make the induction hypothesis that the statement of Theorem 4.1 holds

p X p.-T;
for o1 and oy. From the path |r|—~|o| we obtain, for j = 1 and 2, the path p’ = |T|—-J>|aj|
and, by the induction hypothesis, a diagram

HUA;F Ty A4;
o o

(P, 0 i) (P, o i)V

|0y A <0 TIy|o;] A;

fulfilling Theorem 4.1, with pih_ = 7;; 0 pa;, where 7;; projects |o1|A; X |o2|A; onto |o;|A;.
Let 05, x5 = (85, X 05,) © Xpr, the composition of

r 00’ X 0(7
HU(|UI|Ai X |U2|Az) X—p) HU|01|Ai X HU|0'2|A1' ot 3

|0']_ |HUA:_ X |0'2|HUA?_.
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Define (p4; o ;)™ to be the pairing function ((ply, o a;)*, (p%, 0 a;) ™).

HUA;'_ < > Iy A;
(o]

o

(pAi oai)+ (pAi oai>U

0
|0'1|HUAZ‘+ X |0'2|HUA@'+ 44% HU(lallAi X |0’2|Az)

‘ Case 0 = 01 + 09 ‘ Assume the Theorem holds for o7 and o». This time we define p’ to be

PEj
the path |T|—"’J‘>|0'J‘| and, by the induction hypothesis, have the same diagram

HUA:_ > Ty A;
(o] o]

P, 0o ai)t Py, 0 i)V
0|y A ++——0 Ty|o;|A;

fulfilling Theorem 4.1, but now pih_ =€jioPa;.
Let 05,40, = (B5; + 05y) © Xco, the composition of

+ 00-2

co 05
Hu(|0'1|Ai + |02|A,’) Xeoy HU|01|A,' + HU|02|A,~ o 3 |01|HU14;'_ + |02|HUA;'_.

It then turns out that ITy A} NDom (p4; 0a;)Y is the disjoint union of the domains Dom (pY;. o
;)" and Dom (p%. o a;)*, so we put

(pa, 0 ai)F(z) = 1;((p)y, 0 i) (@) € |o1|Tly AF + |oa|TIy AF

for the unique j such that @3;1,- o a;)t(z) is defined.

HUA;F c > [Ty A;
o]

o

<pAi o ai>+ <pAi ° ai)U

00’ g
o1 [Ty A + |02 Ty AF <2226 TIy(Jou | Ai + |o2] As)

Assume the Theorem holds for o and let D = [o]. Then from the path

|T|—'Ij'~>|0 = o| we obtain, for each d € D, the path p? = |T|pi1;i|a| and, by hypothesis on o,

the diagram

HUA;F > Ty A4;
o]

(p4, o i)™ (p%, o i)V

|0'|HUA;+_ 44—00 HU|0'|A1

Let 68,—, be the composition of

bo 07
My ((|lo]4:)”) 2% (Mylo|Ai)” o—Z— (|o|Ty AF)".

Define (p4; o ;) (z) € (Jo|Iy A7 )P by putting

(pa; 0 i) (2)(d) = (ph, 0 )" (z) € |o|TIy AT
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HUAj_ S HUAz'
o]

(pa; 0 ai)* (pa, 0 i)V

00 o
(lo|Ty AF)P =70 Ty((|o|A4:)P)

0

That completes the construction of the coalgebra a*. To conclude this section here are
some technical results that will be needed later about how U-lifting preserves the semantics
of case terms, applications, and A-abstractions.

Lemma 4.3 Suppose T is a context with list of types 11,...,7,. Let x € Iy A; and v €
HU|T1|A1' X -+ X HUlTn|A,'.

(1) Given termsT' >N : 01 +02 andT',vj : 05> Mj : 0 for j =1 and 2, and resultant term
T > case(N, My, M2) : o, then if [T > N]Y(z,7) € Domsgj we have

[T > case(N, My, M>)]”(,7) = [T, v; : 05 > M;]7(2, 7,65 [T > N1V (,7))-
(2) Giventerms T>M :0=0 andT'1> N : o,
[T M- N:o]%(z,7) = eval (IT & M]Y (2,7), [T > N1V (z,7).

(3) Given term T,v:01> M : o, then for any d € [o],
e ([T wM:0=0]Y(z,7) =[T,v:0> M]Y(z,v,d").

Proof.  See Section 9.3. O

5 Lo$’s Theorem and (Non)Compactness

We are going to eventually show that a polynomial coalgebra (A4,a) validates the same
observable formulas as any of its observational ultrapowers (Corollary 5.3). To prove this
we first have to establish a result (Theorem 5.2), about satisfaction of formulas by elements
of an ultraproduct, which is the analogue in this setting of Lo§’s Theorem in the standard
theory of ultraproducts (see the discussion at the beginning of Section 4).

The use we make of an observational ultrapower o™ derives ultimately from the fact
that for a ground observable term M : o, the denotation [ M ],+ agrees with the U-lifting
[M]YV of [M] : A — [o] in the sense that [ M Jo+ = 6, 0o ([M ]V | AT), or equivalently
[M]UTA* =epopo [M]a+:

[0]Y
[Mm]Y 90\ ‘6[0]
——— [o]

+
4 [M]]a"'

Similarly it can be shown that if M is ground of type St, then [ M ]+ is just the restriction
of [M]Y, i.e. [M]o+(z) = [M]Y(z) for all z € A*. But to prove such facts takes an
induction on the formation of the ground term @) > M, which may involve more complex
types and non-empty contexts. Therefore we have to prove a more elaborate result in
Theorem 5.1 below.

We formulate this result for any observational ultraproduct (Il Af,at) of an I-tuple
of T-coalgebras (A;, a;), with a = (a; : 7 € I). Given a context T’ with types o1,... ,0p, let
Or =0,, x---x0,, be the product of the functions

Hok ZHU|0'k|Ai O—>> |0’k|HUA2_ = [[O'k ]]a+
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given by Theorem 4.1. Then Dom 6r is the product of the Dom §,,,’s, and so I'IUAZ.+ x Dom O
is a subset of the domain of the U-lifting [T > M ]V of the denotations [T > M ], for any
term M in context I', since

Dom [T'> M]YV =TIy A; x My|oy|4; x --- x Ty|o,|A4;

(see (4.ii1)). Note that 6r : Domfr o— [T'],+ is surjective, because each 6,, is surjective
and maps onto [og Jo+-

We can now state the theorem that explains the sense in which [I'>M ],+ can be viewed
as a restriction of [T > M ]Y. The main use of this result will be to derive our version of
Lo$’s Theorem in 5.2.

Theorem 5.1 For any T-term T > M : o, any = € Iy A}, and any v € Dom 6r:

[T>M]Y

HUA;F x Dom 01‘* HU|U|AZ

id x 01‘ 00’

v v

My A} x [Tar 222 d0t o,
(1) [T > M]Y(z,v) € Domb,;
(2) 05 0[T > M]Y(2,7) = [T > M]a+ (2,00 (7));
(3) Ife €O, [T>M]Y(2,7) =efopo [T > Mo+ (z,00(7)).
(4) If o =St, [T > M]Y(z,7) = [T > M ] ot (z,00(7))-

Proof.  See Section 9.4. O

Theorem 5.2 (Lo§’s Theorem for observational ultraproducts)
Let T 1> ¢ be an observable T-formula, with T = (v : 01,... ,0n : Op).

(1) If fV e Iy A, and gY € Dom 8, for all k < n, then
ot fV,00,(90),- - 100, (97) ET > ¢ if, and only if,

{iel:a,f(i),g1(i),...,9.0) ET >} el.

2) at, fYET>@ if and only if, {i€l:a;, f(i) ET D>} eU.
@B)If{iel:a;=T>y}eU,thenat =T > .

(4) If every member of Ty A; is observable, then ot =T 1> ¢ implies
{iel:aqET>ptel.

Proof. (1) is proven by induction on the formation of formulas by the rules of Figure 3.
The base case is where ¢ is an equation M; ~ My with I'> M7 : 0 and T' > Ms : o for some
observable type o.

Let v = (¢V,...,gY) € Dom#ér and 0r(y) = (0,,(9Y),...,0,,.(gY)). Fori € I, put
9(@) = (91(9), - - -, gn(7)). Then

at, fU.60r(y) ET > My ~ M, iff

[T Mo+ (f7,00(y)) = [T > Mz o+ (FY, 60 (7)),

which, by Theorem 5.1(2) holds iff

0,(IT > M1]Y(fY, 7)) = 6.([T > M21Y(fY, 7).
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This in turn is equivalent to

[T M ]7(fY,7) = [T > M2 17 (7, ),
because 0, is injective (being inverse to [o] — [0]Y). Now this last equation holds iff

([T > MiJo, (£(0),9()) i € DT = ([T > Ma Lo, (f(0), 9(3)) : i € )7,

which holds iff the set

{iel:[T>M]a(f@),g() =T > M;]a.(f(@),9(i)}

belongs to U. But this set is just

{iel:ai,f(i),9100);-..  gn(i) = T >}

Thus (1) holds for all observable equations. The inductive cases then follow by standard
arguments from the fact that U is an ultrafilter.
Given (1), to prove (2) let

J={iel: o f(i) ET > @}

Suppose J € U. Then for any § € [T'],+, let § = Or(y) for some v € Dom8r (since O is
surjective). Let g(i) be related to § as in the proof of (1). Then

{iel:aif(i),9() ET>@}2JET,
so by (1), a*, fU,§ =T > . This shows that at, fU |= ¢.

For the converse we reason contrapositively, assuming J ¢ U. Now for each i ¢ J there
exist elements gy (¢) € [or ]4;, for all £ < n, such that

Oéi,f(i);gl(i); v :gn(i) bé I'>e.

For i € J, choose g (i) arbitrarily in [og ]4,. Then the set

{i €10 f(i),91(0),--- ,9n(0) ET > o}

is included in J, so if J ¢ U then this set cannot belong to U either, hence

a+7fU700'1(g{])7"' 700n(g7({) l# FDSD

by part (1), showing that o, fU £ T > ¢ and proving (2).

For (3),let J' = {i € I : a; =T > ¢} and suppose J' € U. Then if fU € My A}, the
set {i € I : a;, f(i) E T > ¢} includes J' and so also belongs to U. Hence by part (2),
at, fU =T > . Since this holds for all states fU of at, it follows that o™ =T > ¢.

For (4),let J' = {i € I : a; =T 1> ¢} as in the proof of (3). Then for each i ¢ J' there
exist a state f(i) € A; and elements g4 (¢) as in the proof of part (2), with

ai;f(i)7gl(i)7 s 79”(2) bé r > p-

For i € J' we choose f(i) € A; and g (i) € [ oy ], arbitrarily. But now if every member of
I A; is observable, then in particular fU € Iy Af, so we can proceed in the manner of the
proof of (2) to argue contrapositively that if J' ¢ U, then at, fV 0,,(gV),...,0,,(9%)
['> ¢, and hence a™ £ T > .

5.2(4) states that the converse of 5.2(3) holds when IIy A} = Iy A4; (for example when all
sets [ o] of observable elements are finite, as we saw in Section 4). But this converse of 5.2(3)
does not hold in general — by contrast with the satisfaction of first-order formulas in classical
ultraproducts. As we saw in Section 4, it is possible for a* to be the empty coalgebra even
when every «; is non-empty. In that case we have a™ = L while {i € [:a; E L} =0 ¢ U.
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To give an example that avoids this rather singular case of the empty coalgebra, we
take up again the w-coalgebras (A, a,) from Section 4 that have A, = {n,n+1,...} and
oy, + A, = w the inclusion function. Let (Z, ¢) be a fixed w-coalgebra whose state set is finite
and disjoint from w. Define the coalgebra (B, 3,) to be the union (4., a,) + (Z,¢). Then
if U is a non-principal ultrafilter on w, the resulting observational ultraproduct (I, B, )
is just an isomorphic copy of (Z, (). For if f* € 11, By, then either {n: f(n) € 4,} € U, in
which case fU is not observable by the same argument as for the a,,’s, or else {n : f(n) €
Z} € U, in which case there is some 2 € Z with fU = zU (by the finiteness of Z). The
verification that zU is observable, and that this leads to an isomorphism g+ = ¢, is left to
the interested reader. (It helps to observe that in general G, is a subcoalgebra of Gy, from
which it follows that for any ground observable term M and any state z € B,, the value
[ M ], (x) is independent of n).

Now suppose that Z consists of a single state x with ((x) = 0. Then the ground observable
formula (tr(s) = 0) valid in ¢, so 81 |= (tr(s) = 0). But each 3, has states z with §,(z) # 0,
so {n €w: By [ (tr(s) # 0)} = 0 ¢ U, giving another counter-example to the converse of
5.2(3).

On the other hand the converse of 5.2(3) does always hold for ultrapowers. Indeed, the
class of all models of an observable formula is invariant under observational ultrapowers:

Corollary 5.3 Let at be an observational ultrapower of a T-coalgebra o over an ultrafilter
U. If T > ¢ is an observable 7-formula, then

aET > if, and only if, o™ =T 1> .

Proof.  The implication from left to right is given by 5.2(3) for this case: if a; = a for all
i€l and a ET >, then

{iel:aqET>p}=I€U,

so by 5.2(3), at ET > ¢.

For the converse, let a® = T'> ¢. Then for any a € 4, at,aV =T 1> ¢, so by 5.2(2) the
set

{iel:aa(i) =T}

belongs to U. Hence this set is non-empty, implying that a,a = I' > ¢. This shows that
aE=T>p.

(Note that this converse follows alternatively from Theorem 2.2, which states that the
class of models of an observable formula is closed under subcoalgebras and isomorphism.
Here « is isomorphic to a subcoalgebra of a™ under the embedding e4 : A — At.) O

Compactness

One of the fundamental uses of ultraproducts and Lo§’s Theorem in first-order logic is to
prove the Compactness Theorem, stating that a set of sentences must have a model if each
of its finite subsets has a model (see [6, p. 102]). In the present coalgebraic setting this
statement is trivially fulfilled, because every set of formulas whatsoever has a model — the
empty coalgebra. To avoid this vacuity we will say that the Compactness Theorem holds for
the type 7 if the following is true:

a set of observable T-formulas has a non-empty model whenever each of its finite
subsets has a non-empty model.

Another approach is to consider satisfaction of formulas at particular states, rather than
validity in models. A set ® of formulas will be called satisfiable if there exists a coalgebra
a and a state x of a such that every member of & is true at  in «. Then an alternative
formulation of compactness is the statement:

a set of observable T-formulas is satisfiable whenever each of its finite subsets is
satisfiable.
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It turns out that both of these formulations fail for coalgebraic logic. This can be seen from
our earlier example involving the @-coalgebras (A,,a,) with A, = {n,n+1,...} and a,
the inclusion function A,, < w. Let ¢, be the (ground observable) formula (tr(s) % n) and
®, = {pn :n € w}. At any state z of a @-coalgebra « there will be some n such that ¢, is
false at z, namely n = a(z). Hence ®,, is not satisfiable, and so has no non-empty models.
But each of its finite subsets is satisfiable, and indeed has a non-empty model, because

an Epo A ANpn_1.

Compactness does hold for some types, such as those for which every ultraproduct is obser-
vational (e.g. those for which each [o] is finite). More generally we have

Theorem 5.4 Suppose that every observational ultraproduct of non-empty 7-coalgebras is
non-empty. Then the Compactness Theorem holds for 7.

Proof. In this case the standard ultraproduct proof of Compactness applies, as we now
confirm. Let ® be a set of observable 7-formulas, and take I to be the set of all finite
subsets of ®. Suppose that each ¢ € I has a non-empty model o;. For each formula ¢ € &,
let I, ={ieI:p€i}. ThenlI, C{i€l: 04 |= ¢}, because o; = i.

Now the collection {I,, : ¢ € ®} has the finite intersection property, because

{o1,...,pn} €I, N---N1,, .

Hence there is an ultrafilter U on I extending {I, : ¢ € ®}. Then for each ¢ € ®, the set
{i € I : a; = ¢} belongs to U, so a™ |= ¢ by Lo$’s Theorem 5.2(3).
This shows that ot is a model of ®. But by hypothesis, at is non-empty.
U

6 Enlarging Ultrapowers

A set ® of ground formulas is satisfiable in coalgebra « if there is some state of a at which
all members of ® are true, i.e. some z € A such that a,z |= ¢ for all p € . ® is finitely
satisfiable in « if each finite subset of ® is satisfiable in o (different finite subsets of & may
be satisfied at different states of ). Putting ¢® = {z € A : a,z = ¢}, we see that & is
finitely satisfiable in « iff the collection ®* = {p* : ¢ € ®} of subsets of A has the finite
intersection property, i.e. every non-empty finite subset of ®* has non-empty intersection.

There is a well-known construction in the theory of ultrapowers that will enable us to
force certain finitely a-satisfiable ®’s to become satisfiable in some observational ultrapower
ot of a. By choosing a suitable ultrafilter U it can be arranged that

any collection S of subsets of A with the finite intersection property has a “non-
standard element in its intersection”. This element is an fU € AV such that for
each C € S, fU ey C, which means that {i: f(i) € C} € U.

If this property holds, then a® will be called an enlarging observational ultrapower of a.

To see how the enlarging property can be enforced, let I4 be the set of all finite subsets
of the powerset of A. A typical element of 14 is of the form i = {C1,...,C,} with the
C;’s being subsets of A. For each k € I4, let I, = {i € In : k C i}. The collection
Ua = {I : k € I4} has the finite intersection property, since Iy, N---N I, contains the
element 4 = k; U---Uk,. Let U be any ultrafilter on I4 that extends U 4.

Now if § is a collection of subsets of A with the finite intersection property, let f : [4 — A
be any function such that f(i) € (i N S) whenever i NS # (). Note that by the finite
intersection property, if i NS # @ then (i N S) # 0, so such an f does exist. Then for any
C € S, put k= {C} € I4. Observe that if i € I;¢y then C € iNS, so f(i) € C. This shows
that Iy C {i : f(i) € C}, and therefore fU €y C. Hence fU is in the intersection of S, as
desired.

Thus we see that any coalgebra does indeed have enlarging observational ultrapowers.
Here now is our main application of this construction.
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Theorem 6.1 Let 7 be a type that has at least one non-trivial observable subtype. Let a and
B be T-coalgebras, and ot an enlarging observational ultrapower of o.. Then the bisimilarity
relation from ot to B is surjective if, and only if, every ground observable T-formula valid
in « is valid also in B.

Proof.  Surjectivity of bisimilarity here means that for each state of y of 3 there is a state
z of a with © ~ y. If this holds then every observable formula valid in o is valid in 3,
because validity of observable formulas is preserved by surjective bisimulations (see Theorem
2.2. The details are in [10, Theorem 5.4]). Then any observable formula valid in « is also
valid in a by Corollary 5.3, hence is valid in 3.

For the converse, assume that every ground observable formula valid in « is valid in 8.
Let y be any state of 8. If M : o is any ground observable term, let cpr = [ M ]s(y) € [o]-
Let ®, be the set of equations M =~ cy for all ground observable M. By definition, ®, is
satisfied by y in 3.

Each finite {¢1,...,9n} C ®, is satisfiable in «, for otherwise the ground observable
formula

(1 A=+ Apn)

would be valid in ¢, hence valid in 8 by hypothesis, contrary to the fact that this formula
is false at y. This establishes that ®, is finitely satisfiable in @, which means, as noted in
the first paragraph of this section, that the collection ®5 = {p® : ¢ € ®,} of subsets of A
has the finite intersection property.

It follows by the enlarging property that if U is the ultrafilter that gives rise to at, then
there is some fU € AV such that for each equation (M =~ cp) € ®, we have fU €y (M =~
cpr)®, which means that the set

Iny={iel:o,fO)EM=~cu}
={iel:[M]a(f(@)) = cum}

belongs to U. Since this holds for all ground observable M, fU is observable by (4.iv), so
fY € A+, Also, since Iy € U, Lo$’s Theorem 5.2(2) implies that at, fV = M ~ ¢y, so

[M]a+(fV) = en = [M]5(y)-

Therefore fU and y assign the same values to all ground observable terms, and so are
bisimilar by Theorem 3.2(4). This establishes that each state of § is bisimilar to a state in
AT, as desired. Ul

Surjectivity of bisimilarity from a® to 8 can be understood as meaning that all possible
behaviours of 3 are represented in o™, since each state of 8 is bisimilar to one of at.
Theorem 6.1 states that this situation obtains precisely when g is a model of what we may
call the observational theory of o™, the set of all ground observable formulas that are valid
in a™.

Let us call two coalgebras a and (3 totally bisimilar if each state of one is bisimilar to
a state of the other, i.e. bisimilarity is surjective both from a to 8 and from 3 to «. This
means that a« and § are behaviourally equivalent: any behaviour of either is represented in
the other. Other equivalent formulations of this notion are that bisimilarity from a to 3 is a
total and surjective relation, and that the bisimilarity relations in both directions are total.

Two coalgebras will be called logically equivalent if they have the same logically express-
ible properties, which we define to mean that they validate the same ground observable
formulas, i.e. they have the same observational theory. Totally bisimilar coalgebras must be
logically equivalent, by the preservation of validity under surjective bisimulations. Here is
an exact relationship between these two notions of equivalence of coalgebras:

Theorem 6.2 Two coalgebras are logically equivalent if, and only if, they have totally bisim-
ilar observational ultrapowers.

Proof.  Suppose o and 3 have observational ultrapowers o™ and 3% that are totally
bisimilar. Then o™ and 8% are logically equivalent. But by Corollary 5.3, « is logically
equivalent to o™, and 3 to 8. Hence a and 3 are logically equivalent.
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Conversely, if @ and 3 are logically equivalent, take enlarging observational ultrapowers
at and Bt. Since 8 is logically equivalent to 8 (Corollary 5.3), 87 is then a model of the
observational theory of a. Hence by Theorem 6.1, with 81 in place of 3, it follows that
bisimilarity is surjective from ot to 8.

Interchanging the roles of @ and 3 in this argument yields that ™ and 3% are totally
bisimilar. O

7 Logically Definable Classes of Coalgebras

The machinery needed to give a structural characterisation of logically definable classes of
coalgebras has now all been exposed. The following result is the analogue for polynomial
functors of Theorem 9.2 of [11] for monomial functors.

Theorem 7.1 If 7 has at least one non-trivial observable subtype, then for any class K of
T-coalgebras, the following are equivalent.

(1) K is the class of all models of some set of ground observable formulas.
(2) K is the class of all models of some set of rigid observable formulas.

(3) K is closed under disjoint unions, images of bisimulations, and observational ultrapow-
ers.

(4) K is closed under disjoint unions, images of bisimilarity relations, and enlarging obser-
vational ultrapowers.

Proof. (1) implies (2) by definition. Theorem 2.2 and Corollary 5.3 explain why (2) implies
(3). (3) implies (4) by definition. Thus it remains to show that (4) implies (1).

Let @ be the set of all ground observable formulas that are valid in all members of K.
By definition all members of K are models of ®, so it suffices to prove that all models of ®
are members of K to establish (1). Let 8 be any model of ®. For each ground observable
¢ such that g £ ¢ there must be some a, € K such that a, }£ ¢, or else ¢ is valid in all
members of K, hence ¢ belongs to ®, hence § |= ¢ contrary to assumption. Let a be the
disjoint union of all these a,’s from K. Since «,, is isomorphic to a subcoalgebra of @, any
observable formula valid in o will be valid in a,. Thus a [~ ¢ when 3 [~ ¢. In other words,
any ground observable formula valid in « is valid in every a,,, hence valid in 8. Therefore
if we take ot to be an enlarging observational ultrapower of o, then by Theorem 6.1 the
bisimilarity relation from ot to 3 is surjective.

In sum: [ is the image under bisimilarity of an enlarging observational ultrapower of a
disjoint union of coalgebras from K. The closure conditions listed in (4) then ensure that

BeK. O

There are a number of equivalent ways of expressing the closure conditions identified in
Theorem 7.1. A covariety is a class K that is closed under subcoalgebras, images of coalge-
braic morphisms, and disjoint unions; while a behavioural covariety is one that is also closed
under images of total bisimulations (the origin of this terminology is explained in Section
8). In fact a behavioural covariety K is closed under images of arbitrary bisimulations, not
just total ones, for if R is a surjective bisimulation from « to 3, then the domain Dom R
is a subcoalgebra of o and R is a total bisimulation from Dom a onto 3, so a € K implies
B € K by closure under subcoalgebras and images of total bisimulations.

On the other hand, a class of coalgebras that is closed under images of bisimulations
must be closed under domains and images of morphisms (the domain of a morphism is
the image of the inverse bisimulation of that morphism). Hence the class is closed under
subcoalgebras, since a subcoalgebra is the domain of the inclusion morphism.

Altogether then we see that a behavioural covariety is precisely the same thing as a
class K that is closed under images of bisimulations and disjoint unions. So according
to Theorem 7.1, the model classes of sets of rigid observable formulas are precisely the
behavioural covarieties that are closed under observational ultrapowers.
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Recall that Mod & is the class of all models of a set ® of formulas, and Mod ¢ is the class
of all models of a single formula ¢. Using the notion of observational ultrapower, we can
now give structural conditions under which a class of coalgebras is of the form Mod :

Theorem 7.2 Let K be a class of T-coalgebras, where T has at least one non-trivial observ-
able subtype. If K is closed under disjoint unions, images of bisimulations, and observational
ultrapowers, and the complement of K is closed under observational ultraproducts, then K
is the class of all models of a single ground observable formula.

Proof. By the complement of K we mean the class of all 7-coalgebras that are not in K.

Now by Theorem 7.1 and the given closure conditions on K we know that K = Mod ¢
for some set @ of ground observable formulas. Let I be the set of all finite subsets of ®. We
will show that K = Mod i for some i € I.

Suppose this does not hold. Then for each ¢ € I, K # Modi, so as K C Modi there
must be some 7-coalgebra a; with a; € Mod i, i.e. a; =i, but o; ¢ K. By the construction
in the compactness proof of Theorem 5.4, there is then an ultrafilter U on I such that the
resulting observational ultraproduct a™ of the a;’s over U is a model of ®. Hence a™ € K.
But this contradicts the assumption that the complement of K is closed under observational
ultraproducts.

It follows that we must have K = Mod {¢1,...,¢n}, where ¢1,...,p, are some finite
number of members of ®. Then K = Mod ¢ where ¢ is the single ground observable formula
Y1 A AQn. O

The converse of Theorem 7.2 requires that if ¢ is ground and observable then the complement
of Mod ¢ is closed under observational ultraproducts. This is true when all ultraproducts
of T-coalgebras are observational (by 5.2(4)), but it is not true in general. As we have seen,
there are examples where a; £ ¢ for all i € I, but at = ¢.

To conclude this discussion of logically definable classes of coalgebras, we exhibit a class
of the form Mod ® that is not equal to Mod ¢ for any observable formula . Take ® to be
the set ®, = {¢, : n > 1} of 7-formulas from the game machine example discussed at the
end of Section 2. Recall the collection {a, : n > 1} of 7-coalgebras constructed there such
that a, |= ¢ whenever k < n, but a, & ¢,. Hence a,, ¢ Mod ®,, for all n.

Now let U be a non-principal ultrafilter on {n : n > 1}, and a™ the observational
ultraproduct of the a,’s over U. Then for each k > 1, the set {n : @, = @i} includes
the cofinite set {n : n > k}, and so belongs to U. Hence by 5.2(3), a* = ¢x. Thus
ot € Mod @, showing that the complement of Mod ®,, is not closed under observational
ultraproducts.

The type 7 in this example involves the observable types data, 1 and bool. If we make the
(reasonable) assumption that [data] is finite, then all three sets of observable elements are
finite, and so all ultraproducts of 7-coalgebras are observational, i.e. have l'IUA;r =TMyA;.
Hence by 5.2(4) the complement of Mod ¢ is closed under observational ultraproducts for
any observable 7-formula ¢. This demonstrates that Mod ®,, is not equal to Mod ¢ for any
such ¢.

8 The Analogy With Birkhoff’s Theorem

Many coalgebraic concepts arise by categorical duality from concepts from the theory of
algebras. The nature of this duality is that a notion defined by some diagram with arrows
gives rise to a dual notion by reversing all the arrows. Thus coproducts are dual to products,
monomorphisms to epimorphisms, hence subobjects to epimorphic images and vice versa,
etc.

In suggesting that Theorem 7.1 is an analogue of the theorem of Birkhoff [7] we are not
claiming that 7.1 is the dual of Birkhoff’s result. Rather, it is being viewed as result of the
same species, in a way that we now explain.

Birkhoff’s theorem states that a certain logical description of a class of abstract algebras
is equivalent to another structural characterization. The logical description is that of an
equationally definable class: the class of all models of some set of equations. Such a class
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is sometimes called a variety, borrowing a term from classical algebraic geometry, where a
variety is (or was originally) the set of solutions of some system of equations'. The structural
characterization is that of closure under homomorphic images (H), subalgebras (S) and direct
products (P). Birkhoff showed that a variety is the same thing as an HSP-closed class, and
this is now sometimes called the Variety Theorem, or the HSP Theorem.

Subsequently there were developed many results in classical model theory stating that a
class of structures is the class of all models of a set of sentences having a particular syntactic
form if, and only if, it is closed under certain algebraic constructions. The deepest result of
this kind (deepest in terms of difficulty of proof) is the theorem of Keisler and Shelah that a
class K is basic elementary, i.e. is the class of models of some first-order sentence, iff K and
its complement are both closed under isomorphism and ultraproducts. Many results in this
area are expressed as preservation theorems, stating that a sentence or formula is logically
equivalent to one of a special syntactic form iff its validity is preserved by certain construc-
tions. Thus a theorem of Lo$ and Tarski states that a first-order sentence is equivalent to
a universal sentence (one with only universal quantifiers in its prenex normal form) iff it is
preserved by substructures. Chang, Lo§ and Suszko characterized the sentences preserved
by unions of chains as those equivalent to universal-existential sentences. Lyndon charac-
terized syntactically the sentences preserved under homomorphisms, and those preserved by
subdirect products, while Keisler characterized those preserved by reduced products. These
and other such results about inverse limits, direct products et alia are discussed extensively
in [9, Sections 3.2, 6.2, 6.3], [8, Section V.2] and [12, Chapter 7].

Theorems 7.1 and 7.2 of this paper may be seen as results that belong to this model-
theoretic tradition. We have developed a syntax and semantics that provide a natural logic
for polynomial coalgebras, analogous to the natural role of equations in abstract algebra.
This view is supported by the role played by observable terms and formulas in logically
specifying such coalgebraic concepts as bisimilarity, morphism, the action of path functions,
and modal assertions about state transitions [10]. We have then sought to find appropriate
structural closure conditions that identify the model classes defined by observable formulas.
This has required, not just a dualization of the HSP constructions, but the introduction of
the new construction of observational ultrapowers.

Over time Birkhoff’s theorem turned into a definition: it became common to define
a variety as being an HSP-closed class. Then as coalgebraic theory developed, the term
covariety was adopted [35, 36] for the dual notion of a class of coalgebras closed under
subcoalgebras, images of morphisms and disjoint unions (coproducts) . A number of papers
developed approaches to characterizing such covarieties by concepts replacing Birkhoff’s
equational satisfaction. Rutten [35, 36, Section 17] worked with the idea of a colouring
A — C of the state-set A of a coalgebra, and showed that for a given covariety K there
is a “colour set” C' and a special subcoalgebra ax of the coalgebra ac cofreely generated
over C, such that each C-colouring of a coalgebra a € K lifts to a morphism a — a¢ that
factors through ag. This lifting property characterizes the members of K, and moreover,
any subcoalgebra of a¢ determines a covariety in this way. These results were established
for coalgebras of endofunctors on Set that have a “boundedness” condition guaranteeing
the existence of cofree coalgebras.

The notion of a colouring dualizes that of a variable assignment X — A, giving values
to a set X of variables in an algebra 4. Rutten’s use of a subcoalgebra of a cofree coalgebra
dualizes the situation of a set E of equations in the variables X determining a quotient
Fx — Fg of the free algebra Fx of terms in X, this quotient being given by the smallest
congruence on Fx containing the pairs of terms of the equations in E. An algebra A is
a model of E iff each assignment X — A lifts to a homomorphism Fx — A that factors
through Fx — FE.

The importance of subcoalgebras of cofree coalgebras had already been demonstrated by
Jacobs [22] who dualized the notion of a congruence on an algebra to that of a mongruence,
a subset of a coalgebra that is closed under the coalgebraic operations. He showed how a
set F of coalgebraic equations determines a subcoalgebra of a cofree coalgebra, based on the

11 have been told by Bernhard Neumann and Paul Cohn that Philip Hall used the term “variety” for
equationally defined classes of algebras in lectures in the 1940’s.
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largest mongruence satisfying E. This construction was used to prove that for a polynomial
T : Set — Set, the forgetful functor on the category of T-coalgebras satisfying E has a
right adjoint and is comonadic. Jacobs concluded by asking if there was a “Birkhoff variety”
theorem in this context.

Gumm and Schroder [15] analysed Rutten’s construction further by studying, for 3 a
subcoalgebra of «, the class Q(a, 3) of coalgebras p with the property that any morphism
p — « factors through 8. They showed that Q(«, 3) is a covariety if « has the extension
property that given any monomorphism m : @ — o', each morphism with domain « factors
through m. Rutten’s work showed that for coalgebras of a bounded functor, every covariety
is of the form Q(ac,B) with ac cofree over C. Gumm and Schroder proved that in the
bounded case, a coalgebra has the extension property iff it is a retract of a cofree algebra.
They also studied covarieties that are closed under images of total bisimulations, showing
that they can be characterized as the classes @ (ac, 8) where a¢ is a final coalgebra, which
means that it is cofree over a one-element colour set C. They called such covarieties complete,
while [3] later suggested the more evocative name behavioural. As noted earlier, the model
classes of Theorem 7.1 are precisely those behavioural covarieties that are closed under
observational ultrapowers.

Gumm [13, 14] developed the idea of a coequation with covariables in X as an element of
a coalgebra cofreely generated over X, viewing such an element as a “behaviour pattern with
variables in X”. Satisfaction of a coequation by a coalgebra a meant that it was omitted
from the image of any morphism from a to the cofree coalgebra, so that the coequation
constituted a “forbidden behaviour pattern”. Covarieties then prove to be the same as
classes of models of sets of such coequations. A coequation over a single colour/covariable
would appear to be an abstract analogue of the formulas in this paper that have a single
state parameter s.

Kurz [27, 29] formulated a covariety theorem by developing an abstract version of the
notion of a modal logic, including abstract definitions of formulas, models and satisfaction.
Rosu [33] gave a characterization of equationally specifiable classes of coalgebras that is
closer to the spirit of the present paper, involving closure under certain constructions, one
of which is defined in terms of satisfaction of equations, so is logical rather than structural.

An early attempt to “categorize” the notion of an equation was that of Hatcher [16],
who worked with the idea of an identity/equation in an arbitrary category as being a pair
of arrows with the same domain and codomain, abstracting from the perception of an equa-
tion as a pair of members of a free algebra of terms. He characterised categories closed
under products and subobjects in terms of “satisfaction” of such identities. This work was
generalized by Herrlich, Ringel and Banaschewski [20, 5]. The notion of an equation with
variables in X as a pair ¢, u of arrows into the free algebra FX generated by X became the
notion of an epimorphism e : FX — & (the coequaliser of ¢ and u). An algebra A satis-
fies the “equation” e if every morphism FX — A factors through e. In category-theoretic
language, this says that A is injective with respect to e. It corresponds to the idea that
A satisfies the equation ¢ ~ u when any function X — A, lifts to a morphism FX — A
that identifies ¢ and u. From this emerged the conception of an equational category as one
whose objects are just those that are injective with respect to a class of epimorphisms of
a certain kind. Birkhoff-style theorems then state that such equational categories can be
characterized by categorical closure conditions. Dualizations of Birkhoff’s theorem along
these lines has been extensively developed by Awodey and Hughes [3, 21, 4], Kurz [28] and
Adamek and Porst [2] for coalgebras of endfunctors on a wide range of categories defined by
categorical axioms. These results take the form of showing that a covariety is coequational
in the sense that it consists of those coalgebras that are pro-jective with respect to some
class of mono-morphisms. In many cases these monomorphisms, or coequations, correspond
to subobjects of cofree coalgebras.
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9 Proofs of Technical Results

9.1 Proof of Lemma 4.2

(1) For f € II;(A1; x Ay;) we get mj; o f(i) € Aj; where m; + Ay; x Ayy — Aj; is the
projection. Thus we can define

Xpr (FY) = ({mai 0 f(D)Y, (mai 0 F(0)T) = ({m }V (V) {m2}7 (£7))-

The proof that this gives a well-defined bijection is routine. Since xp, is just the pair-
ing function ({m1}V,{m}V) and n¥’ is the j-th projection from IlyyAy; x Iy A it is
immediate that 7Y o xpr = {m;}V.

(2) For f € Ij(A1; + As;), the sets {i € I: f(i) € 11;41;} and {i € I : f(i) € 19;A2;} are
disjoint and have union I, so exactly one of them belongs to the ultrafilter U. In other
words, there is exactly one j = 1 or 2 for which {i € I : f(i) € 1;;A;} € U. Since
tjiAji = Domeji, it follows that f¥ € DomeY, where ¥ : Ty (A1i + Ag;i) o—> Ty Ay
is the U-lifting of the extractions €;;. For this j put

Xeo(FV) = 1;(e] (f)) € My Ay + Ty Ag;.
Again it is straightforward to show that xco is bijective.

(3) Recall that evY : Iy (AP) — Iy A; is the U-lifting of the functions evq; : AP — A;
that evaluate at d.
If z € Iy (AP), then the function d — evY (z) belongs to (IyA;)P, and we take it to
be xpo(z). To see that xpo as defined is surjective, take any g € (Ily 4;)?. Then for
each d € D, g(d) is equal to gY for some g4 € II;A;. Now define f € II;(AP) by the
formula f(i)(d) = ga(i). Thus ga(i) = evai(f(i)), so

Xpo (FO)(d) = ev (fU) = (evai(£ (i) : i € )V = g = g(d),
and hence xpo(fY) = g. O

9.2 Proof of Theorem 4.1

For a given 7, the proof proceeds by induction on the formation of the end-type o of the
path p. The definitions of (p4, o a;)* and 6, are repeated here. In each case of the proof
we verify 4.1(1)—(4) and show that the first diagram of 4.1 commutes when defined. For the
second diagram we then have only to check that the left square commutes when defined,
since the right square is just the ultrapower case of the first diagram.

Let M, = p[tr(s)/v] be the ground term of type o given by the Path Lemma 3.1. Then
the function pg4; o a; agrees with [ M, ]a; whenever it is defined, which implies that

(pa; o a;)V(z) = [ M, ]V (x) whenever z € Dom (pa, o a;)V.

Here we have D = [o ], |o] is the constant functor D, and 6, is the inverse of

the injection ep : D — DU. Since ep is a total function, this makes 6, an injective partial
mapping onto D = [o ]+, so 8, is surjective.

Now for each z € Iy A] N Dom (pa, o ;)V, from above (pa, o a;)V(z) = [M,]Y(z),
which belongs to ep(D) since M, is of observable type and z € HUA;'“, i.e. z is an observable
element. But ep(D) = Dom#,, so we can define Dom (pa, o ;)T to be Ily A7 NDom (p4; o
a;)V and put (pa, o a;)t(z) = 6,((pa, o a;)V(z)) to make 4.1(1) and 4.1(2) true and the
following diagram commute as required.

HUAj Ty A;
(o]

(pAi o ai>+ <pAi ° ai>U
D <<—00 DU
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Moreover, in the ultrapower case, if a € Dom (p4 o @), then @ €y Dom (p4 o @), so
ea(a) =a¥ € Dom (paoa)V N AT =Dom (pgoa)t,

proving 4.1(3). Moreover

UGV

(paoa)V(@’) =paoala) =ea(paoala)),

Z(? (paca)t(ea(a)) =8,((paca)l(@’)) =0,(ea(paoala))) = paoala), showing that the
iagram

A At

o] (o]
pao« aoa)t
(paca)

p_ 4 .p

commutes, which is the left square of the second diagram of 4.1 in this case.
Finally, for 4.1(4), if b € [o ], then bV = ep(b) € Dom 6, as required.

Here |o| is the identity functor Id and 6, is the inverse of the inclusion
My Af — Iy A;. Hence 6, maps onto Iy A} = |o|lly Af, so is surjective.

For each z € IIy A7 NDom (p4, o a;)V, we have (pa; o a;)V (z) € Iy AF. To see this, let
N : o0 be any ground observable term. Then by the rule (s-Subst), N[M,/s] : o is a ground
observable term, and so [ N[M,/s]]Y(z) € e[ o] as = is observable. Then

[N17(pa; 0 i)V () = [N]7([M3]7 (@) = ([N o 0 [ M ]}V (z) =
(by the semantics of s-Subst) ([ N[M,/s]]a:)Y (z) = [ N[M,/s]]Y (z)
which belongs to e[o]. Since this holds for all ground observable N, it follows that (pa, o
a;)V(z) is observable as desired. Thus we can define
Dom (pa; o a;)* = Iy A} N Dom (pa, 0 a;)V

and (pa, o ;)T (x) = (pa, o ;)Y (x) to make

HUA:_ Iy A;
o ]

(pAi Oai)+ (pAi oai>U

HUAj <<LO HUA,

commute and 4.1(1) and 4.1(2) be true in this case.

For the ultrapower situation, it follows just as in the previous case ¢ € Q that if a €
Dom (paoa), then es(a) € Dom (paca)™, giving 4.1(3), and (paoca)t(ea(a)) =0, (ea(pac
a(a))), which in this case is just e4(pa o a(a)), so

A AL g
o o]

pao« (paoa)t
A Lo

commutes, which is the left square of the second diagram of 4.1 when o = St.
For 4.1(4), if b€ [St]a = A, bV € AT = Dom 8s;.
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Case 0 = 01 X 02 ‘ In this first inductive case we make the induction hypothesis that the

statement of Theorem 4.1 holds for oy and o2. From the path |T|—12H|0'| we obtain, for j =1
. p-m;
and 2, the path p? = |7|—~|0;| and, by the induction hypothesis, the diagram

HUA:_ Ty A;
(o] o]

(P, 0 i) (P, o i)V

|05y A «—"—0 TIy|o;] A;

fulfilling Theorem 4.1. Here p]A, = Tj; 0 pa,;, Where m;; projects |o1|A; X |o2]|A; onto |o;|A;.
Let 0y, xo0 = (051 X 055) © Xpr, the composition of

Os, X 05,

Oy (o1 |A; X |o2]4;) 225 Ty |oy|A; x y|os|4; o o1 |y AT X |0 | Ty A

The induction hypothesis gives that 6,, and 6,, are surjective, from which it follows readily
that 0,, % 0,, is surjective. Since xpr is a bijection (Lemma 4.2) it then follows that
0oy x5 = Xpr © (05, X 05,) is surjective.

From the definition of xpr as ({m1}V, {ma}Y) we see that in general

z € Domb,,xr, iff {m;}V(z) € Domb,, for j =1 and 2. (9.0)
If z € Dom 6y, 0, then 8, %0, () = (05, {71}V (2)), 05, {72}V (z))) and
7Tj(0<71 X o2 (m)) = aaj({ﬂ'j}U(m))- (g.ii)

Now as 7;; and o; are total, Dom (p’A o ;) = Dom (p4, o a;). Hence

Dom (p7A oa;)T =y A NDom (pf;‘i oa;)V =Ty Af NDom (pa, o a;)V

independently of j. Thus justifies our defining (pa, o a;)* to be the pairing function ((py o

a;) T, (p%, o a;)t) on Iy AF NDom (pa;, o a;),

HUA;F < > Iy A;
(o]

o

(pAi oai)+ (pAi oai>U

00' g
|0'1|HUAZ'+ X |0'2|HUA,'+ 4% HU(lallAi X |0’2|Az)
and thereby satisfying 4.1(1). 4
For 4.1(2), let = € Dom (p4; © a;)* = Dom (p);, 0 ;). Then for j = 1,2, {m;}V({pa; o
;)Y (z)) = (), 0 a;)V (z), which belongs to Dom#6,, by 4.1(2) for o;. Hence by condition
(9.), (pa; o ;)Y (x) € Dom8,, xs,, as required. Moreover in this case,

Ti[001 oo (P4 © 1)V (2))] = 0, ({73} ({pa; 0 i) (2))) by (9:i0)

=0, (1), © i)V (2)) from above
= (p)y, o i)t (2) diagram for o;
= m;[{pa; © i) (z)]

for j = 1 and 2. Hence 0,,xo,({pa, © @)V (z)) = (pa, o a;)*(z), making the last diagram
commute.
For the ultrapower case, the hypothesis gives commuting of

A At

(o] o

Phoa (Phoa)t

lojlea
[oj]a —2— [o;]a+
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For 4.1(3), let a € Dom (p4 o @) = Dom (p; o @). Then by 4.1(3) for 7, e4(a) € Dom (p, o
a)T = Dom (pa o @)™ as required. Also

mil(pa 0 @) (ea(@)] = () o )" (ea(a)
= |ojlea (@’ o a(a)) last diagram
= |ojlea(mj(pa o afa)))
= 7rj[|01 X 0’2|6A( PA© a( ))], definition of |01 X 09

for j =1 and 2, so (pa o a)t(ea(a)) = |o1 x o2]lea(pa o a(a)) and the diagram

€A . A+

o

A »
o

40 aoa)t
p (paoa)

|0’1 X 0’2|6A

[o1]a x[o2]a [o1]a+ x [02]a+

commutes as well. .
For 4.1(4), let b € [o1]a x [02]a. For each j, m;(b) € [o;]a. But {m;}V(Y) =
- _\U
(mj o )V = <7rj(b)) , which belongs to Dom#@,, by 4.1(4) assumed inductively for o;.

Hence by (9.i), 8Y € Dom6,, x,,-
This completes the inductive proof that Theorem 4.1 holds for o; X 3.

‘ Case 0 = 01 + 09 ‘ Assume the Theorem holds for o; and o». This time we define p’ to be
Pp.€j
the path |T|—"i>|0']‘| and, by the induction hypothesis, have the same diagram

HUA?_ > TIyA;
fe) o]

Py, o i)t P, o)V

0|y Af ++—"—0 Ty|o;|A;

fulfilling Theorem 4.1, but now pf;,i = €j; 0 pa,;, where ¢;; is the (partial) extraction from
|0'1|A,' + |0’2|Ai to |0']|A,
Let 05,40, = (05, + 05y) © Xco, the composition of

00’1 + 00’2

HU(|01|A,~ + |02|A ) XCO HU|O'1|A + HU|O'2|A o |01|HuA?_ + |02|HUA?_.

Since 8,, and 8, are surjective by induction hypothesis, then so is 6,, + 6,,, and hence so
is 05, 40, @S Xco 18 bijective.

If x € Iy (|o1|A; + |o2]|A;), then we have € Dom 6, 44, iff xco(z) € Dom (6, + 6,.,).
But by Lemma 4.2(2) there is a unique j with z € Dom Eg-] and xeol(Z) = ¢ (sgj(x)), where
€; = (g;;). We then see that x € Dom§6,, 4, iff agj(x) € Dom@,,, with

051405 (7) = 13(85, (€] (2)))-
Thus we have
x € Dom#,, 4, iff ey(m)i and €; Y(z) € Dom§,, for some j. (9.iii)
In view of the relationship between extractions and insertions we can also conclude that
z € Doméb,, ., iff x = Lf(y) for some j and some y € Dom 6,,. (9.iv)

Hence for any y € Dom#,,, by putting = Lg-](y) in the above we get y = sgj(w) and so

Oos+02 (15 (1)) = 15(0, (1))- (9-v)
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Now as p/y, = €j; o pa;, a € Domp) oaq; iff a € Dompy, o a; and pa, o a;(a) € Domegj;.
Since |o1|A; + |o2|A; is the disjoint union of Dome;; and Domeg;, Dom (pa; o ;) is the
disjoint union of Dom (pY, 0 a;) and Dom (p% o a;). From this it can be seen that IIy Af N
Dom (py, oa;)Y is the disjoint union of Iy AF NDom (p}y, 0a;)V and Ty AF NDom (p%, 0a;)Y,
and hence is the disjoint union of Dom (p} o a;)* and Dom (p%. o a;)* by 4.1(1) for o1 and
o3. Moreover, 2 € Dom (p;, 0 a;)V iff & € Dom (pa, 0 o)V and (pa, 0 a;)V(z) € DomeY.

Thus we can define Dom (py, o a;)* = Iy Af N Dom (p4, o a;)V
and put

as in previous cases,

(pa; 0 i)™ (x) = 1;(()y, 0 i) (2)) € |1 [Ty AT + |oa [Ty A
for the unique j such that (pf4 o a;)T(z) is defined.

HUAj_ < > HUAz
o

o

<pAi o ai>+ <pAi ° ai)U

00' g
|0'1|HUA,?_ + |0'2|HUA?_ <<$O HU(|0'1|Ai + |0'2|A,)

Now when (p’; o a;)*(z) is defined, so too are (p’ o a;)U(z) and (pa, o ;) (z), with
(pa, 0 a;)V(z) € DomeY. But since £j; o pa, = p,, we see that e ((pa, o a;)V(z)) =
(p)y, © a;)V (), which belongs to Dom8,; by 4.1(2) for o;. From (9.iii) it follows that
(pa, o a;)V(z) € Dom by, ., fulfilling 4.1(2) for 1 + o2. Also

0110, ((Pa; © i)V (2)) = 1(05; (€] ((a; © i) ()~ definition of b5, 1,

=1;(0, J,(<pAi oa;)Y(x))) from above
= 1;((ply, 0 i)™ () diagram for o
= <pAi o Oéi)+(.'L'),

so the last diagram commutes as required.
For the ultrapower case, again the hypothesis gives commuting of

A At

o] o]

Phoa (Phoa)t

|ojlea
[o;]a —— [0} ]a+

Now let @ € Dom (p4 o ). Then a € Dom (p’A o @) for a unique j, and so by 4.1(3) for ¢,
ea(a) € Dom (p’, 0 a)t C Dom (pa o )™,

proving 4.1(3) for o1 + o2. Also

(paca)t(ea(a)) =1;((poa)t(e ( ))) by definition
=1;(lojlea(®’y o a(a))) last diagram
=1;(|ojlea(e;(pa o ala))))
= |(71 + (72|6A(pA o Oz((l))a definition of |(71 + 02|7

so the the following diagram commutes as required:

eA At

o

o
Y

paoa (paca)t

|o1 + o2lea

[o1]a+[02]a [oi]a+ +[o2]a+
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For 4.1(4), let b € [o1]a + [02]a. Then b = 1(c) for some j and some ¢ € [o;]a. By
4.1(4) for 0;, ¥ € Dom,,. But bY = (¥ (eV), so by (9.iv), bY € Dom by, 1,
Hence Theorem 4.1 holds for o1 + o».

Assume the Theorem holds for ¢ and let D = [o]. Then from the path
p.evg

P
|7|—~|o = o| we obtain, for each d € D, the path p¢ = |7| — |o| and, by hypothesis on o,
the diagram
HUA;F > Ty 4;
[e] (o]
(pilh o ai)+ (PdAi o Oéi)U

|0'|HUA;F 44—00 HU|U|AZ

fulfilling Theorem 4.1. Here pff\i = evg; o pa,, with evg; : (|Jo|4;)P = |o|A;, so as evy; and
o; are total, Dom (p%. o o;) = Dom (p4; © a;).

Let 6,—, be the composition of
Dy Xpo p 07 +\D
My ((lo]4i)7) = (Mulo]4i)” o—"— (|lo[lly 4])",

where the partial function 2 has g € Dom@P iff for all d € D, g(d) € Domé,; and
6P(g) = 0, o g. Thus if §2(g) is defined, 82 (g)(d) = 8, (g(d)) for all d € D.

Since 6, is surjective by induction hypothesis, given any h € (|o|TlyAf )P we can define
a g by the condition that 6, (g(d)) = h(d) for all d. Then 62 (g) = h, so 6P is surjective,
and therefore so is 8,=.,, since xpo is surjective by Lemma 4.2(3).

Now in general z € Dom 6, iff xpo(z) € Dom 62 Since xpo(z)(d) = evy(z), it follows
that

r € Domf,, iff forallde [o],evy(x) € Doméb,; (9.vi)
and when 0, ,(z) is defined,
B0 (2)(d) = 85 (evg (). (9.vii)
Now since Dom (p%. o a;) = Dom (p4;, © a;), by 4.1(1) for o,
Dom (p%. 0 a;)* = Iy A} N Dom (p%, 0 a;)V = Iy A} N Dom (pa, o a;)V

for all d € D. So we define Dom (p4; oa;)* = Iy A} NDom (pa, oa;)V as usual, and specify
{pa; © ;) (z) € |0y A7)P by putting

(pa; 0 i)™ (2)(d) = (p%h, 0 i)t (z) € |o|TIu A7

MyAf ——— Ty A;
(o] (o]

<pAi o ai>+ <pAi o ai)U
+\D 00:>0' D
(lo[My A7)™ <««——o My ((Jo|4:)")
For 4.1(2), let € Dom (p4; o o). Then for any d € D, « € Dom (p%_ o a;)™ and
“(

evg ((pa; 0 @)V (x)) = (evai o pa, 0 )" (2) = (p§, 0 i) (x),

which belongs to Dom 8, by 4.1(2) for o. Tt follows by condition (9.vi) that (p4, o ;) (z) €
Dom#,_,,, as required. Moreover in this case,

Oo=o ((Pa; 0 i)V (2))(d) =05 (evy ((pa; 0 i)V (x))) by (9.vii)

=0, ((p%, 0 i)V (2)) from above
= (p4, o a;)t () diagram for o
= (pa; 0 a;)" (2)(d).
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This shows that 8,—,((pa, 0 ;)Y (x)) = (p4, o ;)T (x), making the right square of the last
diagram commute.

For the ultrapower case, for each d € D the induction hypothesis on ¢ gives the com-
muting of the diagram

For 4.1(3), let a € Dom (pa o ). Then for any d € D, a € Dom (p% o a) so by 4.1(3) for o,
ea(a) € Dom (p4 o @)™ = Dom (p4 o a)t as required. Also

(Paca)t(ea(a))(d) = (phoa)t(ea(a))

= |olea(pd o ala)) last diagram

= |olea(eva(pa o afa)))

= |olea((pa o a(a))(d))

=|o = olea(pa o ala))(d) definition of |0 = o|

$0 (pa o a)t(ea(a)) = |o = olea(pa o a(a)) and the diagram

A ca . At
o] [0}
paoc (paoa)t
0= 0lea
[0]7 1222, [5yn,

commutes too. ~ ~
For 4.1(4),let h € [¢]§. Then h € ([o]})!. For each d € D, evgoh = h(d) € ([o]a)’.

Thus evf (hV) = (d)U, which belongs to Dom 6, by 4.1(4) for o. Therefore by (9.vi), we
get hY € Dom 6,
That completes the induction case for 0 = ¢, and hence completes the proof of Theorem

4.1. O
9.3 Proof of Lemma 4.3

LetfoU and’YZ(’Y{]a---a”)’g)-

(1) For each i € I, put
h(i) = [T > NJa, (f(0),91(0), - -, gn ().

Then [T > N]Y(x,7) = hY, so by hypothesis h¥ € Dome¥. It follows that the set
In ={i€I:h(i) € Dome;;} belongs to U.

But for all 7 € I,

[T > case(N, M1, M2)]a; (f(2),91(3), .., gn(3))
=[T,vj : 05 > Mj]a; (£(4),91(2), - - -, gn(d),€5h(3)).

Since Ij, € U, this is enough to ensure that

[T > case(N, My, M) 1V (£, 97, 92)
= [[F7Uj 105 > M] ]]U(fU7g{J,_ .- 797[{75_(7'](}1[]))7

which is the desired conclusion.
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(2) Define h(i) as in the proof of (1), and

k(i) = [T > Mo, (£(2),91(0), - - -, gn ().
Then [T > MY (x,v) = kY and [T > N]Y(z,v) = hV. Thus

[T>M-NJY(z,7)
=([T> M- Na;(f(i); 91(i), ..., gn(i)) : i € )V
= (k(i)(h(i)) : i € )Y
= (eval;(k(i), h(i)) : i € )Y

= evalV (kYY)
as required.

(3) This time define
h(i) = [T > M. M Ja,; (f (i), 91(3), - - - , gn (i)
for all ¢ € I. Then

evd ([T > M.M]Y(z,7))

= evf (hY)

= (evgq;(h(i)) :i € I)U

=([T,v: 05 Mo, (f(i),91(3), .. gn(0),d) : i € )V
= |:[F7U : ODM]]U(fU7gijﬂﬂg’nU7JU)

9.4 Proof of Theorem 5.1

The proof is by induction on the formation of the term I' > M. Part (3) is immediate from
(2), since 6, is inverse to e[, when o is observable. Part (4) follows from (1) and (2), as
fs: is the inverse of the inclusion Iy A7 < Iy 4;. So our task is to prove (1) and (2) for
each case of the axioms and rules of Figure 2, as well as the rule (7-Tr).

The results (9.1)—(9.vii) cited below can all be found in Section 9.2.

Here T' > M has the form v : ¢ > v : 0. Then [v : 0 > v],; is the projection
A; x |o|A; = |o]A;, so [v: o> v]Y is the projection Iy 4; x IT,|o|A; — I,|o|4;. Also
[v:o>v].+ is the projection Iy A} x |o|lly A} — |o|HyAf. Thus for z € Iy Af and
v € Dom#,, [v:o>v]Y(z,7) = v € Dom#,, and

O ([v:0>0]"(2,7) =0:(7) = [v: 0> v]a+ (2,8, (7))

If ¢ € [o], then [¢ : 0]a; : Ai = [o] is the function with constant value ¢, so
[c:0]Y(z)=(c:ieI)V =ef,j(c) € Domb,, and

0o([c]V(2)) = ¢ = [cla+ (@)
when z € HUA;".

Since [s: St]a; = ida,, [s: St]Y is the identity function on Iy 4;. But 6s; is inverse
to the inclusion Iy A} «—— Ty 4;, so for € My A}, [s]Y(z) = » € Dom fs,, and

O5:([s]7 (z)) = = = [s]a+(2).

Assume that 5.1(1) and 5.1(2) hold for a term I > M : St. We prove that they then
hold for the term I' > tr(M) : 7.
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Recall from the construction of a* (Theorem 4.1) that if y € Iy A} then aV(y) € Domé,
and 0, (aY(y)) = at(y) = a™(0st(y)). Thus if z € Iy A} and v € Dom#ér, by hypothesis
5.1(1) for T > M,

y=[T'>M]"(z,v) € Dom#bs, =y Af,

so V([T > M]Y(z,7)) € Dom#,. But
a’([T > M]Y(z,7)) = (@i o [T > M]a,)7 (z,7) = [T > tr(M) : 7] (2,7),
so this proves 5.1(1) for T 1> tr(M). Also

0-([T > tr(M) : 7]V (,7))
=0 (@”([T > M]Y(z,7)))

=at(@st([T > M]Y(z,7))) as above for y € My A}
=at ([T > M]u+(z,0r(7))) by5.1(2) for T'> M

[T > tr(M) e (2, 6r(1),

which proves 5.1(2) for ' > tr(M).

[
==

Assume the result for a term I', TV > M : o, and suppose variable v does not occur
in T or I, In line with the fact that U-liftings preserve projections, it is straightforward to
show that in general

[T,o:6",T">M:0](z,7,9,7) =[T,T'>M:a]%(z,7,7).
It then readily follows by the induction hypothesis that 5.1(1) and 5.1(2) hold for I',v :
o, T'">M:o.
Assume the result foraterm I'> M : 07 X 09. If 2 € HUA;|r and v € Dom fr, then

by 5.1(1) for T > M, we get [T > M ])Y(z,7) € Dom#,, xs,- Then for each j = 1,2, from
(9.i) it follows that
{m;}Y ([T > M]Y(z,7)) € Dom¥,,.

But using the fact that [T > ;M ], = mj; o [T > M o, we can show that
[T > mM]Y(z,7) = {m;}" ([T > M]"(2,7)),
so this proves 5.1(1) for I'> ;M : 0;. Then

0o, ([T > m M ]Y(z,7))
= 0o; ({m;}V ([T > M ]"(2,7)))
= 71']'(901 XUz([[F > M]]U(:Ea'y))) by (9.ii)

i ([T > M Jo+ (z,0r (7)) by 5.1(2) for T'> M
= |[F > 7T]'M]]a+(ib',01"(’7 )7

giving 5.1(2) as well for I' > 7; M.

Assume the result for terms I''> M : o for j = 1 and 2. If z € Iy A} and v € Dom 6.,
then for each j

{m}7 ([T > (M1, M) 7 (2,7)) = [T > mj{ My, M2) ]V (,7)
= [T > M;](z,7),

which belongs to Dom 6, by 5.1(1) for T' > M;. Therefore [T > (M, M5)]Y(z,v) belongs
to Dom 8,, x5, by (9.1), giving 5.1(1) for the term I' > (M1, M>) : 01 X 03. Also

700, x5 ([T > (M, M2) 1Y (2,7))]
= 0o, ({m; }V ([T > (M1, M) ]Y (z,7))) Dy (9.i)
=05, ([T > M;]Y(z,7)) from above
=[T'> M;]a+(z,0r(7)) by 5.1(2) for I' > M;

= 7TJ[|[P > <M17M2) ]]a+ ('/1"761_‘(’7))]7
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for j =1 and 2, so
O, oo ([T > (M1, M2) ]V (2,7)) = [T & (M, M2) ] (2,60 (7))
Hence 5.1(2) holds for ' > (M1, Ms) : 01 X 03.

Assume the result for ' > M : 0. If z € Iy A and v € Dom6r, then by 5.1(1) for
L'> M, [T>M]Y(z,~) € Doméb,,, so by (9.iv),

i (IT > M]Y(x,7)) € Dom by, 1.
But using the fact that [T' > ¢; M Jo, = tji o [T > M ], we can show that
[F > LJ'M]]U("L./Y) = L?([[F > M]]U("I::ry))a
so this proves 5.1(1) for I'> ;M : 01 + 0. Then

0(71+<72([[F > LjM]]U($77))
= 0014—02 (L‘g](l[]'—‘ > M]]U($7ry)))
= 1j(0, ([T > M]Y(z,7))) by (9.v)
L ([T > M ]+ (2,00 (7)) by 5.1(2) for T > M
= [F > LjM]]a+ (.’17,01*(’7)).

Hence 5.1(2) holds for I' > ¢; M : 01 + 02.

Here we assume the result for terms I''> N : 01 + 02 and I',v; : 0; > M; : o for j =1
and 2, and prove it for I' > case(IN, M1, M>) : 0.

If x € Iy A} and v € Dom#@r, by 5.1(1) for T > N, [T > N]Y(x,7) € Domby,44,, 50
by (9.ii) there is some j with [T > N ]Y(z,7v) € Dome¥ and

E;][[F > N]Y(z,v) € Dom6,,.
Then by 5.1(1) for T, v, : 0; > M;,
[F,'Uj o5 > Mj ]]U(Z',’)/,E;]ﬂr > N]]U('Z'J’Y)) € Dom 6,

By Lemma 4.3(1), this means that [T 1> case(N, My, M) ]Y(z,~) € Dom6,, as required for
5.1(1). For 5.1(2), note that by 5.1(2) for I'> N,

Oo1+0,(IT > N]%(2,7) = [T > N]a+ (2,60 (7)),
and so by the definition of 6,,,,
1309, (V[T > N1V (2,9))) = [T & N o (2,60(7)). (9.vii)
Hence [T' > N ],+(z,0r(y)) € Domej;, and then

0 ([T > case(N, M1, M>)]Y (z,7))

= 00-([1—‘,’1)]' 105 D> Mj ]]U(ma’%s;]l[r > N]]U(xa’)/))) Lemma 43(1)
=[T,v; : 0; > M;]o+(z,00(7),00, (V[T > N1V (x,7))) by 5.1(2) for term

F,’Uj 105 D> Mj
=[T,vj:0; > M;]a+(z,0r(7),6;[T > N]o+(z,0r(y))) from (9.viii) above
= [T > case(N, My, M2) Jo+ (2,600 (7)). case semantics

This completes the proof of the result for I > case(N, My, Ms) : 0.

Assume the result for T'>M : 0= 0 and T > N : 0. If z € Il A] and v € Dom 6, by

5.1(1) for T'> N, [T>N]Y(z,v) € Dom#é,. Since 6, is inverse to the injection [o] — [o]Y,
there must be some d € [o] with [T > N]Y(z,v) = dV. Then by 5.1(2) for T > N,

[T > N o+ (2,00 (7)) = 6,([T > N1Y(z,7)) = d.
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Now by 5.1(1) for T > M, [T > M ]Y(x,7) € Dom6,—,, so by (9.vi),

evy ([T > M]Y(z,7)) € Dom§,.

But
[T>M-N]Y(z,7)
= eval’ ([T > M]Y(2,7),[T > N]V(2,7)) Lemma 4.3(2)
= evalV ([T > M]Y(z,7),d")
= evg ([T > M]%(z,7)), (4.ii)
so from above [T > M - N|Y(z,v) € Dom6,, which is 5.1(1) for ['> M - N : 0. Then

0,([T>M - N]Y(x,
=6, (evY ([T > M]Y(z,7))) from above
=00 ([T > M]Y(2,7))(d)  (9.vii)
=[T > M]y+(z,0r(y))(d) by 51(2) for T' > M
= |[F > M- N]]a+($7gr(7))

7))

asd= [T > N]u+(x,0r(y)). This proves 5.1(2) for T't>M - N : 0.

Assume the result for T,v: o> M : 0. If x € l'IUA;'r and v € Dom fr, then for any
d € [o], by Lemma 4.3(3)

e ([T > .M:0=0]Y(z,7) =[T,v:0> M]Y(z,,dY),

which belongs to Dom 8, by 5.1(1) for T, : 0 > M, since dV € Dom ,. By (9.vi) this means
that [T > Av.M ]Y(z,~) € Domf,,, so 5.1(1) holds for T > A\v.M. Then

fo=o ([T > Av.M Y (2,7))(d)
=0, (ev ([T > . M]]U( 7)) by (9.vii)
=0,([T,v:0> M]Y(x,7,d")) Lemma 4.3(3)

=[T,v:0> M]a+(z,0r(7),0,(dV)) by 5.2(2) for T,v:0> M
=[T,v:0> M]y+(z,0r(v),d)
= [T > X.M Jo+ (2, 0r(7))(d)

for any d € [o]. Hence
Bomso ([T > .M Y (2,7)) = [T > M. M ]+ (z, 00 (7)),

proving 5.1(2) for I' > Av. M.
This completes the proof of Theorem 5.1. (]
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