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Abstract

A variety V of Boolean algebras with operators is singleton-persistent
if it contains a complex algebra whenever it contains the subalgebra gen-
erated by the singletons. V is atom-canonical if it contains the complex
algebra of the atom structure of any of the atomic members of V .

This paper explores relationships between these “persistence” prop-
erties and questions of whether V is generated by its complex algebras
or its atomic members, or is closed under canonical embedding algebras
or completions. It also develops a general theory of when operations in-
volving complex algebras lead to the construction of elementary classes of
relational structures.
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1 Introduction and Overview

This paper explores relationships between certain generation and persistence
properties of varieties of Boolean algebras with operators (BAO’s). The most
well known generation property is completeness: a variety is complete if it is
generated by complex algebras CmS of relational structures S. Here CmS is
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a BAO based on the Boolean algebra of all subsets of S. Completeness of a
variety of modal algebras corresponds to the notion of a modal logic that is
characterised by its Kripke frames. A variety is elementarily generated if it is
generated by the class CmK = {CmS : S ∈ K} for some elementary (i.e. first-
order definable) class K of structures. This corresponds to a modal logic being
characterised by some elementary class of frames.

Persistence properties refer to closure of a variety V under passage from a
given member A to some “larger” algebra A∗. The most well known persistence
property is canonicity, in which A∗ is the canonical embedding algebra (or
perfect extension) of A, a complex algebra based on the Stone space of A. It
is known that every elementarily generated variety is canonical, i.e. is closed
under canonical embedding algebras. The question of whether, conversely, every
canonical variety is elementarily generated remains unanswered.

A partial answer to this question was given by the author in [6, Theorem
5.8] by invoking another persistence property that concerns the atom structure
AtA of an atomic BAO A. As the name suggests, AtA is a certain relational
structure based on the set of atoms of A. A variety V is atom-canonical if
it contains the complex algebra CmAtA whenever it contains A. If AtV is
the class of all atom structures of atomic members of V , then atom-canonicity
amounts to the requirement that CmAtV ⊆ V . The result of [6] was that if V
is atom-canonical then AtV is an elementary class, and if V is also canonical
then CmAtV generates V .

Further insight into this situation was provided by Venema [14] through
consideration of the singleton algebra of a structure S. This algebra, which we
denote SnS, is the subalgebra of CmS generated by the singleton subsets of
S. S is a weak structure for V if SnS ∈ V . Venema showed that the class
WstV = {S : SnS ∈ V } of all weak structures for V is always elementary. If
V is atom-canonical, then AtV is equal to WstV , and moreover both are equal
to the class StrV = {S : CmS ∈ V } of all structures for V .

A number of problems were listed in [14] concerning the relationship between
canonicity and atom-canonicity, and the question of whether every variety is
generated by its atomic members. In this paper we address some of these issues
and relate them to what will be called singleton-persistence of V . This means
that WstV = StrV : every weak structure for V is a structure for V , i.e. CmS

belongs to V whenever SnS does. Every atom-canonical variety is singleton-
persistent.

The main contributions of the paper are as follows.

• Let Φ be an operation assigning to each structure S a subalgebra ΦS of
CmS. Conditions on Φ are given which guarantee that {S : ΦS ∈ V } is
an elementary class whenever V is a variety, or more generally a universal
class, of BAO’s. These conditions apply when Φ = Sn , and lead to a
structural proof that WstV is elementary (see 3.2, 3.3).

• Any canonical singleton-persistent variety is elementarily generated (3.4).

• Examples are constructed of a variety that is singleton-persistent but not
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atom-canonical (4.1), and one that is atom-canonical but not complete
and therefore not canonical (4.2). On the other hand is it shown that if
an atom-canonical variety is generated by its finite members, then it is
canonical.

• If a variety of BAO’s with completely additive operators is closed under
completions in the sense of [12], then it is atom-canonical, and is canonical
if and only if it is complete (5.1).

• In the completely additive setting, a singleton-persistent variety is gener-
ated by its atomic members if and only if it is complete, and this holds if
and only if it is canonical (5.2).

2 Background

Familiarity will be assumed with the general theory of varieties of BAO’s [4, 6,
7, 10], but the main concepts needed here will now be reviewed.

An operator on a Boolean algebra B is a finitary function on B which
is additive, meaning that it preserves the join operation of B in each of its
arguments. Such a function is always monotonic, i.e. preserves the order relation
≤, in each argument. An operator is normal if it preserves the least element of
B in each argument. A BAO (Boolean algebra with operators) is an algebra of
the form A = (B, {fi : i ∈ I}) where each fi is an operator on Boolean algebra
B.

Extensive use will be made of notation for operations on classes of algebras
and relational structures that produce new classes closed under isomorphism.
If V is a class of algebras then SV denotes the closure of V under isomorphic
copies of subalgebras of its members. We write A � A′ to mean that there
exists an injective homomorphism from A to A′, so we can say that

SV = {A : A � A′ for some A′ ∈ V }.

Similarly HV , PV , and PuV denote the closure of V under isomorphic copies
of homomorphic images, direct products, and ultraproducts of its members,
respectively. A famous theorem of Birkhoff states that V is a variety, i.e. is
the class of all models of some set of equations, if and only if V is closed under
subalgebras, homomorphic images and direct products: V = SV = HV = PV .
The variety generated by a class V is the smallest variety including V (and is
equal to HSPV ). An algebra A belongs to the variety generated by V if and
only if every equation satisfied by all members of V is also satisfied by A.

A class V is universal, i.e. is the class of all models of some set of universal
first-order sentences, if and only if it is closed under isomorphism, subalgebras
and ultraproducts: V = SV = PuV (see [2, Theorem V.2.20]).

We will assume throughout this paper that

• all BAO’s discussed are normal, i.e. have only normal operators; and
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• any class V of BAO’s under consideration is closed under isomorphic im-
ages of subalgebras, i.e. SV = V , and thus is closed under isomorphism.

If K is a class of relational structures, then PuK and PwK denote the closure
of K under isomorphic copies of ultraproducts and ultrapowers of its members,
respectively. K is an elementary class, i.e. is the class of all models of some set of
first-order sentences, if and only if it is closed under isomorphism, ultraproducts
and ultraroots. The latter means that if an ultrapower SJ/U belongs to K then
so does the structure S.

Associated with any relational structure S = (X, {Ri : i ∈ I}) is its complex
algebra

CmS = (Sb(X), {fRi
: i ∈ I}).

This is the normal BAO in which Sb(X) is the Boolean powerset algebra of X
and, if Ri is an n + 1-ary relation on X, then fRi is the normal n-ary operator
on Sb(X) defined by

fRi(Y1, . . . , Yn) = {x : Ri(x, y1, . . . , yn) for some yi ∈ Yi}.

Associated with each class K of structures is its class

CmK = {A : A ∼= CmS for some S ∈ K}

of complex algebras and their isomorphic images. Associated with each class V
of BAO’s is the class

StrV = {S : CmS ∈ V }
of structures for V . Since V is closed under isomorphism, CmStrV ⊆ V . Also
StrV is closed under isomomorphism, because V is so closed and S1

∼= S2

implies CmS1
∼= CmS2. A variety V is called complete if it is generated by the

class {CmS : CmS ∈ V } of complex algebras in V , or equivalently is generated
by CmStrV .

Associated with any BAO A is a certain relational structure CstA, the canon-
ical structure of A, based on the set of ultrafilters of A [4, 6]. The canonical
embedding algebra, or perfect extension, of A is the complex algebra CmCstA.
This construction was introduced in [11] where it was shown that A � CmCstA.
A class V is called canonical if it contains the canonical embedding algebras of
all its members. If this holds then CstA ∈ StrV whenever A ∈ V , and so
V ⊆ SCmStrV . Consequently, any canonical variety is generated by CmStrV
and so is complete. The converse is false: algebraic semantics for modal log-
ics provide a number of significant examples of complete varieties that are not
canonical, such as the variety of diagonalisable algebras [4, Section 3.7], the
algebras validating the McKinsey axiom �♦p → ♦�p [5], and the algebraic
models of the tense logic of real time [7, Section 5.6].

A fundamental result in this context is that if a class K of structures is
closed under ultraproducts, then the variety generated by CmK is canonical [4,
Theorem 3.6.7]. Of particular relevance here is the case that K = StrV for some
variety V . Then for StrV to be closed under ultraproducts it suffices for it to
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be closed under ultrapowers. Indeed the condition PwStrV = StrV is sufficient
to ensure that StrV is an elementary class [4, Theorem 3.8.4]. In that case the
variety generated by CmStrV is canonical. This generated variety is equal to V
precisely when V is complete, so altogether it follows that

if StrV is elementary, then the variety V is canonical if and only if
it is complete.

We will use this observation several times in what follows.

3 Elementary Classes from Complex Operations

For any structure S, define SnS, the singleton algebra of S, to be the subalgebra
of CmS generated by the set {{s} : s ∈ X} of singleton subsets of the underlying
set X of S. Let

WstV = {S : SnS ∈ V }.
WstV is called the class of all weak structures for V [14], and is closed under
isomorphism because S1

∼= S2 implies SnS1
∼= SnS2. Since V is closed under

subalgebras, CmS ∈ V always implies SnS ∈ V , so StrV ⊆ WstV . We say
that V is singleton-persistent, or more briefly Sn-persistent, if SnS ∈ V implies
CmS ∈ V , i.e. any weak structure for V is a structure for V . Thus V is Sn-
persistent iff WstV = StrV .1

There are many Sn-persistent varieties, as indicated early in Section 4 below.
On the other hand some significant varieties are not Sn-persistent, including
the variety RRA of representable relation algebras and the variety RCAn of
representable cylindric algebras of dimension n for all finite n ≥ 3 [9]. Another
example, which is explained immediately after Theorem 4.1 below, is the variety
of algebras for the modal logic K4M.

It was shown in [14] that WstV is an elementary class of structures whenever
V is a variety. The proof was model-theoretic, and it was noted that it can be
adapted to the case of V being a universal class. A structural proof of this fact
will now be given in a generalised setting that applies to other class operations
than Sn .

By a complex operation we will mean any operation Φ which assigns to each
structure S a subalgebra ΦS of CmS and which preserves isomorphisms. Thus
ΦS � CmS, and if S1

∼= S2 then ΦS1
∼= ΦS2. Let

Φ∗V = {S : ΦS ∈ V }.

Then since SV = V , we always have StrV ⊆ Φ∗V . Also Φ∗V is always closed
under isomorphism because Φ preserves isomorphism and V is closed under
isomorphism.

1Singleton persistence corresponds in modal logic to the notion of a formula being “di-
persistent”[1, Section 5.6], meaning that it is valid in a Kripke frame F whenever it is valid in
some general frame (F, P ) that is discrete, i.e. P contains all singleton subsets of F.
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A class V will be called Φ-persistent if Φ∗V ⊆ StrV , i.e. ΦS ∈ V implies
CmS ∈ V , and hence Φ∗V = StrV . Note that WstV = Sn∗V .

A complex operation Φ will be said to subcommute with ultraproducts if for
any collection {Sj : j ∈ J} of structures and any ultrafilter U on J there is an
injective BAO-homomorphism

Φ(
∏

JSj/U) �
∏

JΦSj/U.

We symbolise this property by ΦPu � PuΦ. Similarly Φ preserves ultrapower
embeddings, symbolised Φ � ΦPw , if for any structure S there is an injective
homomorphism

ΦS � Φ(SJ/U).

If both ΦPu � PuΦ and Φ � ΦPw , then Φ will be called an elementary op-
eration. The justification for this name is that an elementary operation creates
elementary classes, as will now be shown.

Theorem 3.1

(1) If Φ subcommutes with ultraproducts and V is closed under ultraproducts,
then Φ∗V is closed under ultraproducts.

(2) If Φ preserves ultrapower embeddings, then Φ∗V is closed under ultraroots.

Proof.

(1) Let {Sj : j ∈ J} ⊆ Φ∗V . Then each ΦSj is in V , so if PuV ⊆ V ,∏
J ΦSj/U ∈ V . Thus if ΦPu � PuΦ, since SV ⊆ V we get Φ(

∏
JSj/U) ∈

V , and hence
∏

J Sj/U ∈ Φ∗V .

(2) Let SJ/U ∈ Φ∗V , i.e. Φ(SJ/U) ∈ V . From Φ � ΦPw and SV ⊆ V we
immediately get ΦS ∈ V , and so S ∈ Φ∗V as desired.

�

Corollary 3.2 Let Φ be an elementary complex operation. Then for any uni-
versal class V of BAO’s, Φ∗V is an elementary class of structures. Conse-
quently, if V is a Φ-persistent universal class, StrV is elementary.

Proof. If V is universal, then PuV = SV = V , so if ΦPu � PuΦ and Φ �
ΦPw , Theorem 3.1 yields that Φ∗V is closed under ultrapowers and ultraroots.
But Φ∗V is closed under isomorphism, so altogether it is an elementary class.
The last statement of the Theorem follows because Φ-persistence means that
StrV = Φ∗V . �

Theorem 3.3 Sn is an elementary complex operation. Hence for any universal
class V , WstV is elementary.
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Proof. For any collection {Sj : j ∈ J} of structures there is an injective
homomorphism

θ :
∏

JCmSj/U � Cm(
∏

JSj/U)

given by the relationship

g/U ∈ θ(G/U) iff {j ∈ J : g(j) ∈ G(j)} ∈ U

for all g ∈
∏

J Sj and G ∈
∏

J CmSj (see [4, Lemma 3.6.5]). Also, the inclusions
SnSj � CmSj give rise to an injective homomorphism

ρ :
∏

JSnSj/U �
∏

JCmSj/U.

Now each singleton {g/U} in Cm(
∏

JSj/U) is the image under θ ◦ ρ of the
element 〈{g(j)} : j ∈ J〉/U of

∏
J SnSj/U . Hence the image of θ ◦ ρ is a

subalgebra of Cm(
∏

JSj/U) that contains all the singletons, and therefore in-
cludes the algebra Sn(

∏
JSj/U). Consequently the inverse of θ ◦ ρ is an injec-

tive homomorphism mapping Sn(
∏

JSj/U) into
∏

J SnSj/U , establishing that
SnPu � PuSn .

Next, to show that Sn � SnPw , observe that the injection θ above spe-
cializes, for a single structure S, to an injection (CmS)J/U � Cm(SJ/U).
Composing this with the standard elementary embedding CmS � (CmS)J/U
gives an injective homomorphism τ : CmS � Cm(SJ/U). Now τ maps a
singleton {s} to the singleton {gs/U}, where gs(j) = s for all j ∈ J . Hence
τ maps all the singletons from CmS into Sn(SJ/U). Since SnS is generated
by these singletons, it follows that τ embeds SnS into Sn(SJ/U), giving the
desired result.

Thus if V is universal, Corollary 3.2 entails that Sn∗V is an elementary class.
But Sn∗V = WstV . �

Corollary 3.4 A canonical singleton-persistent variety is elementarily gener-
ated.

Proof. Elementary generation of a variety V means that V is generated
by CmK for some elementary class K. Here we can take K = StrV : if V
is singleton-persistent then StrV is elementary by Theorem 3.3, and if V is
canonical then any A ∈ V has A � CmCstA ∈ V , so CstA ∈ StrV . Hence
V = SCmStrV and CmStrV generates V . �
For other examples of elementary complex operations, let Φ = Fo where FoS

is the class of all subsets of S that are definable by some first-order formula
with parameters in S. Then FoS is a subalgebra of CmS that includes SnS,
since the singleton {s} is definable by the formula (v = s). With the help
of �Loś’s Theorem and reasoning as in the proof of 3.3, it is readily seen that
FoPu � PuFo and Fo � FoPw . The same conclusion holds for Φ = Fon, where
FonS is the algebra of subsets definable by first-order formulas with at most
n free variables. Thus Fo∗V and Fo∗nV are elementary classes whenever V is
universal.
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The paper [8] gives a remarkable proof that StrRRA is not an elementary
class. Hence

StrRRA � Fo∗RRA,

and RRA is not Fo-persistent: there exists a structure whose algebra of first-
order definable sets is a representable relational algebra but whose complex
algebra is not.

4 Singleton-Persistence and Atom-Canonicity

If a BAO A = (B, {fi : i ∈ I}) is atomic, i.e. B is an atomic Boolean algebra,
then the atom structure of A is the relational structure

AtA = (AtB, {Rfi : i ∈ I}),

where AtB is the set of atoms of B, and

Rfi(a, b1, . . . , bn) if and only if a ≤ fi(b1, . . . , bn).

Define
AtV = {S : S ∼= AtA for some atomic A ∈ V }.

Now the atoms of a complex algebra CmS are just the singleton subsets {s}
of S. CmS is always atomic with AtCmS ∼= S, the isomorphism being given
by the correspondence {s} ↔ s. Since SnS contains all the singletons, it is
itself atomic, with AtSnS = AtCmS ∼= S. Hence SnS ∈ V implies S ∈ AtV .
Therefore we have

StrV ⊆ WstV ⊆ AtV.

V is called atom-canonical [13] if AtV ⊆ StrV , or equivalently CmAtV ⊆ V .
Obviously atom-canonicity implies Sn-persistence (i.e. WstV = StrV ). Any
variety of conjugated BAO’s defined by Sahlqvist equations is atom-canonical
[13, Theorem 2] and therefore Sn-persistent.

It was shown in [6, Theorem 5.8] that if V is an atom-canonical variety
then AtV = StrV is elementary. Venema’s introduction of the class WstV gave
a deeper understanding of this situation: WstV is always elementary, and is
equal to StrV under atom-canonicity. But it is enough to to know that V is
Sn-persistent to conclude that StrV is elementary, and hence that V is canonical
if and only if it is complete. Moreover this can happen in the absence of atom-
canonicity:

Theorem 4.1 There exists a variety that is singleton-persistent but not atom
canonical.

Proof. Let η be the equation f1x ≤ f2f1x, where f1 and f2 are unary operator
symbols, and let Vη be the variety of all algebras satisfying η. Then results of
[13] and [3] show that Vη fulfills the claim of the Theorem.
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In [13, Theorem 3] an atomic normal BAO A is constructed such that A |= η
and CmAtA �|= η. Thus AtA ∈ AtVη but AtA /∈ StrVη, so Vη is not atom-
canonical.

On the other hand Vη is Sn-persistent. This follows from a stronger property
of closure of Vη under “completions” analysed in [3], as will be explained below
(see Theorem 5.1(1) and the discussion following that Theorem). But it is
instructive to see a direct proof of the Sn-persistence of Vη that displays the role
of the singletons.

If a structure S = (X, R1, R2) has SnS ∈ Vη, then for each b ∈ X, since
{b} ∈ SnS we have fR1({b}) ⊆ fR2(fR1({b})). This ensures that S satisfies the
first-order condition

aR1b implies ∃c(aR2c and cR1b), (i)

which is enough to yield fR1(Y ) ⊆ fR2(fR1(Y )) for all Y ⊆ X. Hence CmS ∈ Vη

as desired.
Note that this argument shows directly that WstV = StrV = the elementary

class defined by (i). �
There are varieties that are canonical but not atom-canonical. An example
was described in [6, p. 592]: it is the variety V4M of algebras for the modal
logic K4M, the smallest normal logic having the transitivity axiom �α → ��α
and the McKinsey axiom �♦α → ♦�α. In fact this variety is not even Sn-
persistent, since it contains Sn(ω, <) but not Cm(ω, <). But it is elementarily
generated: StrV4M is an elementary class and V4M is complete, hence canonical
and generated by CmStrV4M .

In the converse direction, the question was raised in [14, p. 304] as to whether
every atom-canonical variety must be canonical. We will now give a counter-
example. The point, as with Sn-persistence above, is that if a variety V is
atom-canonical, then since its class StrV is elementary, V will be canonical
iff complete. So our proposed counter-example must be atom-canonical but
incomplete. Let V0 be the variety of all BAO’s with two normal operators, f
and f ′, that satisfy

(η0) : fx ≤ fdf ′(x · −f ′x),

where fd is the dual of f , i.e. fdy = −f−y.

Theorem 4.2 The variety V0 is atom-canonical but incomplete, and therefore
not canonical.

Proof. If A is any atomic member of V0, then the atom structure AtA has
the form (X, R, R′), where X is the set of atoms of A, xRy iff x ≤ fy, and xR′y
iff x ≤ f ′y. But for such a structure we will show that R = ∅, so that in the
complex algebra CmAtA the operator fR satisfies the equation fx = 0. This
implies that CmAtA |= η0, making CmAtA a member of V0 and establishing
that V0 is atom-canonical.
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To see that R = ∅, suppose on the contrary that there exist x, y ∈ X with
xRy, i.e. x ≤ fy. Then we must also have y ≤ f ′(y · −f ′y). For if not, then
y ≤ −f ′(y · −f ′y) as y is an atom, so as f is monotonic

x ≤ fy ≤ f−f ′(y · −f ′y) = −fdf ′(y · −f ′y),

so x � fdf ′(y · −f ′y) as x �= 0. But since A |= η0 we have

x ≤ fy ≤ fdf ′(y · −f ′y),

so this is a contradiction. Thus we must indeed have y ≤ f ′(y · −f ′y), and so
y ≤ f ′y. But now f ′(y · −f ′y) �= 0, as y �= 0, so y · −f ′y �= 0 as f ′ is normal.
Since y is an atom, this implies y · −f ′y = y and therefore y ≤ −f ′y. Since
we already concluded y ≤ f ′y, this is an outright contradiction with y �= 0.
Thus the assumption R �= ∅ is false, and the proof that V0 is atom-canonical is
finished.

Now we show that V0 is incomplete, and therefore cannot be canonical.
If S ∈ StrV0, then CmS ∈ V0 and so putting A = CmS in the proof just
given shows that CmAtCmS ∼= CmS satisfies fx = 0. Thus every member
of CmStrV0 satisfies fx = 0. If V0 were complete it would be generated by
CmStrV0, so every member of V0 would satisfy fx = 0. But this is not so:
consider the structure S0 = (X, R, R′) with

X = {0, . . . , ω + 1},
R = {(ω + 1, ω)},
R′ = {(p, q) : p, q ≤ ω and p > q}.

Let A0 be the collection of all finite subsets of X that exclude ω together with
the complements of such subsets. A0 is closed under the operators fR and fR′ ,
as well as the Boolean set operations, so is a subalgebra of CmS0. In that
algebra we have

fR(Y ) =

{
{ω + 1} if ω ∈ Y,

∅ if ω /∈ Y.

In particular ω + 1 ∈ fR(X) so fx = 0 fails in A0. On the other hand A0 is in
V0. For if ω ∈ Y ∈ A0, then Y must be cofinite and have a least element p ∈ ω.
Then ωR′p ∈ (Y ∩ −fR′Y ), yielding ω ∈ fR′(Y ∩ −fR′Y ). This implies that
ω + 1 ∈ fR

dfR′(Y ∩−fR′Y ), and so fR(Y ) ⊆ fd
RfR′(Y ∩−fR′Y ). But this last

inclusion also holds if ω /∈ Y , since then fR(Y ) = ∅, so A0 satisfies η0. �
Another question raised in [14] is whether every atom-canonical variety gener-
ated by its finite members must be canonical. This time the answer is positive,
and requires only the hypothesis of Sn-persistence in place of atom-canonicity.
This is because a finite algebra A is isomorphic to the full complex algebra
CmAtA (see below), so if V is generated by its finite members then it is gener-
ated by CmStrV , i.e. is complete. But Sn-persistence of V entails that StrV is
elementary, which together with completeness implies canonicity of V . Hence

a variety that is singleton-persistent and generated by its finite mem-
bers is canonical.
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5 Complete Additivity and Atomic Generation

An operator on a Boolean algebra is completely additive if, in each argument, it
preserves all existing joins of sets of elements. We say that a BAO is completely
additive if all of its operators are, and a class of BAO’s is completely additive
if all of its members are.

For instance, in any complex algebra CmS the operators fR are completely
additive. Conversely if A is an atomic and complete BAO whose operators
are completely additive, then A ∼= CmAtA. This was shown by Jónsson and
Tarski [11, Theorem 3.9], who established a bijective correspondence between
completely additive normal n-ary operators on the powerset algebra of a set X
and n + 1-ary relations on X. More strongly, if A is atomic then the standard
embedding

x �→ {a ∈ AtA : a ≤ x}
of the Boolean part of A into the powerset of its set of atoms will preserve the op-
erators of A if these operators are completely additive (see [13, Lemma 1] or [14,
Proposition 5.1] for details). In other words, when A is atomic and completely
additive there is an injective BAO-homomorphism from A into CmAtA. The
image of this injection contains all the singleton subsets of AtA (since a �→ {a}),
and hence includes SnAtA. By inverting the injection we obtain an embedding
of SnAtA back into A, and altogether we have

SnAtA � A � CmAtA

[14, Proposition 5.1]. But then if A belongs to a class V , so does SnAtA
(remember V is S-closed), making AtA a weak structure for V . This shows
that

if V is completely additive, then AtV = WstV

[14, Theorem 1.4]. It follows immediately that

if V is completely additive, then V is singleton-persistent if and only
if it is atom-canonical.

Any completely additive BAO has a completion A+. The Boolean part of A+

is complete and atomic and has A as a dense subalgebra, i.e. each element of
A+ is the join of the elements of A below it. Each n-ary operator f of A lifts
to a completely additive f+ on A+ with f+(x) =

∑
{f(y) : x ≥ y ∈ An}. The

existence and uniqueness (up to isomorphism) of A+ was established in [12].
For further discussion of the construction see [3].

A class V of BAO’s will be called completion-closed if A+ ∈ V whenever
A is a completely additive member of V . Note that this does not require all
members of V to be completely additive.

Theorem 5.1

(1) If V is completion-closed, then it is singleton-persistent.
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(2) If V is completion-closed and completely additive, then it is atom-canonical.

(3) A completion-closed variety is canonical if and only if it is complete.

Proof.

(1) For any structure S, CmS is a completion of SnS, so if V is completion
closed then SnS ∈ V only if CmS ∈ V , i.e. V is Sn-persistent.

(2) This follows from (1), since Sn-persistence implies atom-canonicity in the
completely additive setting (see above).

(3) If V is a completion closed variety then by (1) and Corollary 3.2, StrV =
WstV is elementary, so V is canonical iff complete.

�
The conclusion of 5.1(1) cannot be strengthened to “V is atom-canonical”, and
so the hypothesis of complete additivity in 5.1(2) is essential. This is exemplified
by the variety Vη, where η is (f1x ≤ f2f1x). Vη was shown not to be atom-
canonical in the proof of Theorem 4.1. That Vη is closed under completions is
an instance of the general fact that any inequality σ ≤ σ′ is preserved under
completions if σ and σ′ are strictly positive terms [3, Corollary 31(iii)]. In the
case of η the proof is quite straightforward. If A |= η and A+ is a completion of
A, then using the fact that fiz ≤ f+

i z for any z ∈ A , as well as the monotonicity
of f+

i , we calculate that if y ∈ A and y ≤ x ∈ A+, then

f1y ≤ f2f1y ≤ f+
2 f1y ≤ f+

2 f+
1 y ≤ f+

2 f+
1 x.

Thus f+
1 x =

∑
{f1y : x ≥ y ∈ A} ≤ f+

2 f+
1 x, showing that A+ |= η.

In relation to 5.1(3), it is presently unknown whether there is a completion-
closed variety that is incomplete. If not, then every completion-closed variety
must be canonical. Either conclusion would be of interest in understanding the
nature of varieties of BAO’s. Note that the variety of algebras for the modal
logic K4M (see Section 4) is canonical but not Sn-persistent, and therefore not
completion-closed.

A further question raised in [14] is whether every variety of BAO’s is atomi-
cally generated, i.e. generated by its atomic members. The following result bears
on this issue.

Theorem 5.2 Let V be a completely additive variety that is singleton-persistent.
Then the following are equivalent.

(1) V is atomically generated.

(2) V is complete.

(3) V is canonical.
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Proof. We have already observed that (2) and (3) are equivalent when V is
Sn-persistent. It is always true that (2) implies (1), since a complete variety
is generated by complex algebras CmS which are atomic. Thus our task is to
show that (1) implies (2), and this is where we require completely additivity.

Let Vat be the class of all atomic members of V , and take A ∈ Vat. Now
the hypotheses on V imply that it is atom-canonical, so then AtA ∈ StrV . But
since A is completely additive, A � CmAtA as explained above, so altogether

A � CmAtA ∈ CmStrV,

showing that A ∈ SCmStrV . Thus

Vat ⊆ SCmStrV ⊆ V,

so the subvariety of V generated by CmStrV must include Vat, and therefore
must include the variety generated by Vat. Hence if Vat generates V itself, then
so does CmStrV , i.e. (1) implies (2). �
The assumption that V is completely additive is indispensible in Theorem 5.2,
as may be seen by refining the example of the variety V0 discussed in Section 4.
Let V1 be the subvariety generated by the atomic members of V0. The algebra
A0 belongs to V1 because it is atomic: its atoms are all the singleton subsets of
S0 except {ω} and every member of A0 includes such a singleton. The operator
fR is not completely additive in A0 since

∑
p∈ω fR({p}) = ∅ but

fR(
∑

p∈ω{p}) = fR({0, . . . ω}) = {ω + 1}.

By definition, V1 is atomically generated. Also V1 is Sn-persistent, and indeed
is atom-canonical, for if A in V1 is atomic then CmAtA belongs to V0 by atom-
canonicity of V0, and hence belongs to V1 because it is atomic. However V1 is
not complete: its complex algebras all belong to V0 and so satisfy fx = 0, but
A0 ∈ V1 and A0 �|= fx = 0, so V1 is not generated by its complex algebras. Thus
V1 is Sn-persistent but violates the conclusion of the Theorem.

It follows from Theorem 5.2 that to exhibit a variety that is not atomically
generated, it suffices to construct a completely additive one that is Sn-persistent
and incomplete. The variety V0 is Sn-persistent and incomplete, but it lacks
complete additivity. Now one way to impose complete additivity on a BAO A

with unary operators is to require each operator f of A to have a conjugate f c.
Here fc is a function on A satisfying

f(x) · y = 0 if and only if x · f c(y) = 0.

This condition can be expressed equationally [11, Theorem 1.15], and if a func-
tion f has a conjugate in A then f must be normal and completely additive
[11, Theorem 1.14]. This all suggests that a candidate for a completely additive
Sn-persistent and incomplete variety might be the variety of conjugated BAO’s
that satisfy the equation η0. However that prospect is nullified by the following
result, which implies that this is just the variety of conjugated BAO’s satisfying
fx = 0, a variety which is complete.
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Theorem 5.3 If A |= η0 and f is conjugated in A, then A |= fx = 0.

Proof. Let fc be the conjugate of f in A. To prove that fx = 0 it is enough
to show that fc1 = 0, for then x · fc(1) = 0 and so by conjugacy f(x) · 1 = 0.
We will use the fact that fcfdz ≤ z in general, which follows by conjugacy from
fdz · f(−z) = 0.

Now if fx ≤ fdy then

1 = −fx + fdy = fd−x + fdy ≤ fd(−x + y).

Putting y = f ′(x · −f ′x) and invoking A |= η0 here then yields

1 = fd(−x + f ′(x · −f ′x)).

Hence
fc1 = fcfd(−x + f ′(x · −f ′x)) ≤ (−x + f ′(x · −f ′x)).

Now taking x = fc1 at this point gives

fc1 ≤ (−fc1 + f ′(fc1 · −f ′fc1)),

which by Boolean algebra and the monotonicity of f ′ yields

fc1 ≤ f ′(fc1 · −f ′fc1) ≤ f ′fc1.

Thus fc1 · −f ′fc1 = 0, and so

fc1 ≤ f ′(fc1 · −f ′fc1) = f ′0 = 0.

�
This result has an interesting interpretation in the field of modal logic. Consider
the propositional language of two modalities ♦1 and ♦2, with duals �1 and �2.
Let L be the smallest normal logic in this language that includes the schema

♦1p → �1♦2(p ∧ ¬♦2p).

The algebraic models for L are the members of the variety V0. L is incom-
plete with respect to its Kripke semantics, which is based on structures S =
(X, R1, R2) in which Ri interprets the modality ♦i. If such a structure validates
L then it validates the formula ¬♦1�. This may be seen by adapting the ar-
gument that V0 is atom-canonical. However ¬♦1� is not a theorem of L, since
the algebra A0 validates L but not ¬♦1�.

Now in CmS, the operators fRi are conjugated. Their conjugates are the
operators fR−1

i
, where R−1

i is the inverse relation to Ri [11, Theorem 3.6]. (The
algebra A0 is a subalgebra of CmS0 that is not closed under these conjugates,
as Theorem 5.3 implies.) We may expand the language for L by adding new
modalities ♦−1

i interpreted in a structure by the relations R−1
i . Let L+, the
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minimal conjugated extension of L, be the smallest normal logic in this language
that includes L and the conjugation schemata

♦−1
i �ip → p, ♦i�−1

i p → p.

The argument in the proof of Theorem 5.3 can be adapted proof-theoretically
to show that ¬♦1� is a theorem of L+, and in fact that L+ is the smallest
normal logic in the extended language that includes ¬♦1� and the conjugation
schemata. By well-known methods it is readily inferred that L+ is complete, and
characterised by the class of all structures (X, Ri, R

−1
i )i=1,2 in which R1 = ∅.

Indeed the canonical L+-frame satisfies this description and characterises L+.
We thus see that L is an example of a logic that is incomplete for Kripke

semantics, but whose minimal conjugated extension is complete and canonical.
Moreover it is only necessary to add the conjugate modality for ♦1 to achieve
this canonicity.

In conclusion, let us record the open problems that have been identified above:

(1) Does there exist a completion-closed variety that is not canonical (or equiv-
alently, incomplete)?

(2) Does there exist a completely additive variety that is singleton-persistent
but incomplete, and therefore not generated by its atomic members?
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