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Abstract

A first-order sentence is quasi-modal if its class of models is closed
under the modal validity preserving constructions of disjoint unions,
inner substructures and bounded epimorphic images.

It is shown that all members of the proper class of canonical struc-
tures of a modal logic A have the same quasi-modal first-order theory
WA, The models of this theory determine a modal logic A¢ which is
the largest sublogic of A to be determined by an elementary class. The
canonical structures of A° also have ¥/ as their quasi-modal theory.
In addition there is a largest sublogic A¢ of A that is determined by
its canonical structures, and again the canonical structures of A° have
4 are their quasi-modal theory. Thus ¥4 = ¥4° = ¢g4°,

Finally, we show that all finite structures validating A are models
of ¥4, and that if A is determined by its finite structures, then ¥ is
equal to the quasi-modal theory of these structures.

1 Overview

This is a contribution to the problem of fully understanding the role played
by so-called canonical structures in the model theory of modal and other
intensional logics. Each logic A defines a sequence

<6£ : k is an infinite cardinal>

of such structures, with 6,{} being of size 2%. There are many questions
about their theories (both modal and first-order), and other relationships
between them, that remain unanswered.



A modal formula that is valid in &2 must be a A-theorem. Thus the
modal theory of each &4 is a sublogic of A. In the converse direction we
say that A is canonical if its theorems are validated by all its canonical
structures, in which case the modal theory of every &2 is exactly A itself.
There are logics that are known not to be canonical, because some of their
theorems are falsifiable in their canonical structures. Notable examples in-
clude the modal logic of the provability predicate of Peano arithmetic, and
the tense logic of a continuous temporal ordering, defined by taking the real
numbers under their natural order as the model of time.

When s < p there is a natural validity-preserving projection of 6;}
onto G2, Then any formula valid in 6{} will be valid in &2. It seems
plausible to conjecture that the converse is true and indeed, more strongly,
that validity in just the smallest structure &7 is enough to ensure validity in
every G4, This would imply that if G2 validates A then so do all the other
structures, and hence A is canonical. The motivation for this is the belief
that G2 is sufficiently “saturated” that any falsification of a formula in a
larger canonical structure could be reproduced within &/ itself. However
these conjectures are unresolved.

A logic A is called elementary if there exists a collection K of relational
structures (Kripke frames) that is an elementary class, i.e. is axiomatisable
in first-order logic, and which determines A in the sense that the formulae
that are valid in all members of K are precisely the A-theorems. It was shown
in [2] that every modal logic which is elementary must be canonical, but the
canonicity conjecture that, conversely, every canonical logic is elementary,
has remained open for 25 years. A strong version of this asserts that if A
is valid in &/ then it is elementary. If true, it would confirm the above
conjecture that validity in 6£ implies canonicity.

Given the nature of the size (2¥) of canonical structures, one might well
ask whether the answers to some of these questions depend on the nature
of the ambient set theory, including the status of the continuum hypothesis.
Relevant to this issue is the result in the recent paper [9] that even in a
context in which &2 and 6:}1 have the same size, i.e. 2¥ = 2“!, the two
structures cannot be isomorphic when A is any sublogic of S5 (and some
other cases as well). That only adds pertinence to questions about the logical
equivalence or distinguishability of different canonical structures. Can they
have different modal theories, or must they all define the same sublogic of
A? Can they be differentiated by some elementary property, or do they all
have the same first-order theory?

Some progress on the link between canonicity and elementarity was made



in the author’s articles [3, 7] by studying those sentences of first-order logic
that are preserved by the three constructions of disjoint unions, inner sub-
structures and bounded epimorphisms. We will dub such sentences quasi-
modal' because these constructions are the primary modal validity preserv-
ing operations on structures, and so the quasi-modal sentences include any
first-order sentence that defines the class of all structures validating some
modal formula. Let ¥/ be the set of quasi-modal sentences that are true
in the canonical structure G, Then according to Theorem 11.4.2 of [3],
if A is determined by some elementary class, then it must be determined
by the elementary class Mod ¥/ of all models of ¥\, This suggests that in
trying to prove the canonicity conjecture it would be appropriate to focus
on showing that if A is valid in &7, then it is also valid in any model of the
quasi-modal theory ¥/ of 4.

In fact if A is elementary, then it is determined by the elementary class of
models of any ¥/, as will be shown below (Theorem 6.1). But even when A
is not elementary we still have a natural elementary class Mod ¥/ defining
a canonical sublogic of A for each k. The principal result of this article is
that in fact there is only one elementary class thus defined: it turns out that
¥ = @ for all infinite cardinals &, so the canonical structures of a logic
A all have exactly the same quasi-modal first-order theory. The models of
this theory define a single sublogic A° of A that is in fact the the largest
elementary sublogic of A.

In carrying out this analysis it will also be shown that there is a largest
canonical sublogic A¢ of A. If A is canonical then A° = A, and if the
canonicity conjecture is true then A¢ = A°. In general we know only that
A€ C A¢ C A, but will show that all of the canonical structures of all three
logics have the same quasi-modal theory: ¥/ = #/A° = ¢/t = ¥4 for all &.

Finally, we prove that all finite structures validating A are models of %/;17
and that if A is determined by its finite structures, then Wu/} is equal to the
quasi-modal theory of these structures.

Although the results of this paper are stated for the propositional lan-
guage of a single unary modality, it should be noted that they adapt readily
to hold for polymodal logics having n-ary modalities (for various n > 1)
interpreted semantically by n + 1-ary relations.

'The more opaque adjective “pseudo-equational” was used in [3, 7]. “Quasi-modal”
seems more evocative of the intended meaning.



2 Validity of Modal Formulae

Let Var = {py : Ais an ordinal} be a class of distinct propositional vari-
ables. For each infinite cardinal k, put Var, = {p) : A < k}. The class Fma
of modal formulae consists of all (finite) formulae generated from members
of Var by truth-functional connectives and the modality [J. If V is a sub-
set of Var, we write Fma(V') for the set of formulae generated by V| i.e.
those formulae whose variables belong to V. The set of formulae generated
by Var, will be denoted F'ma,. These are the k-formulae: the ones who
variables all have index less than k.

Let £ be the first-order language of a single binary predicate. An L-
structure & = (S, R) comprises a binary relation R on a set S. & is also
called a (Kripke) frame. A V-model M = (&, v) on & is given by a valuation
v assigning a subset v(p) of S to each variable p in V. When V = Vary,
we call this a k-model. The set M(y) of points at which the modal formula
@ is true in M is then defined inductively for all formulae in Fma(V) by
putting M(p) = v(p), interpreting each truth-functional connective by the
appropriate Boolean set operation, and defining s € M(Oy) iff {¢: sRt} C
M(p). If & = == is the dual modality to O, then s € M(Oyp) iff
Jt € M(p) (sRt).

Formula ¢ is true in model M if it is true at all points of M, i.e if
M(p) = S. ¢ is valid in structure S if it is true in every model on & whose
valuation includes the variables of ¢ in its domain. The class of structures
in which ¢ is valid will be denoted Str ¢.

For a first-order L-sentence o, the word “model” will be used as usual
to denote any L-structure in which o is true. Mod Y denotes the class of
all models of a set X' of L-sentences. A class K of structures is elementary
if it equal to Mod X' for some X.

3 Logics and Canonical Structures

A logic is a subclass A of Fma that includes all tautologies and instances
of the schema (¢ — ) — (Hp — O4) and is closed under the inference
rules of Modus Ponens, Necessitation (if ¢ € A then [y € A); and uniform
substitution of a formula for a variable. Members of logic A may be called
A-theorems.

A class I of L-structures defines a logic, namely the class of formulae
that are valid in all members of K. We say that logic A is determined by
clagss K if it is the logic defined by K in this way. A given logic may be



determined by more than one class. On the other hand there are incomplete
logics that are not determined by any class of structures.

We can also consider logics within fragments of the form Fma(V') by
allowing only formulae with variables from V in the definition of “logic”.
Thus if A is a logic in F'ma, then A, = AN Fmay is a logic in F'ma,. In fact
A is uniquely characterised by A, because a formula has only finitely many
variables while Var, is infinite. Thus we can associate with any formula
@ a substitution instance of it in Fma,, that is a A-theorem iff ¢ is. This
can be used to show that A is the only logic in F'ma whose restriction to
Fma,, is A, and likewise A, is the only logic in Fma, whose restriction to
Fmay,, is A,. Indeed A is just the closure of A, in F'ma under substitution,
and similarly A, is the substitution-closure of A, in F'ma,. Moreover, a
structure validates A iff it validates A,,.

A set s of formulae is A-consistent if = is never a A-theorem when ¢ is
the conjunction of finitely many members of s. For a cardinal s, the canon-
ical Ag-structure is &2 = (SA RA), with S2 being the set of all maximally
A-consistent subsets of Fma,, and sRAtiff {¢ : Oy € s} C t. The canonical
Ag-model is the k-model M4 = (G4, v2), where v/ (py) = {s € S4 : py € s}
for all A < k. An inductive argument then shows that M2 (p) = {s € S :
¢ € s} for all k-formulae . From this it is shown that M2 determines A,
i.e. a s-formula is true in M2 iff it is a A-theorem, and hence that any &-
formula valid in &4 must be a A,-theorem. But since validity in a structure
is preserved by substitution, it follows that any member of F'ma which is
valid in G4 must be a A-theorem.

4 Operations on Classes of Structures

An L-structure (S, R') is a inner substructure of (S, R) if S C S, R’ is the
restriction of R to S’, and S’ is R-closed in the sense that if sRt and s € S,
then ¢ € S’. Inner substructures are also known as generated subframes.

A bounded morphism f: (S, R) — (S’, R') is a function f : S — S’ such
that sRt implies f(s)R'f(t), and f(s)R'u implies 3t € S(sRt and f(t) = u).
If f is surjective, then it is called a bounded epimorphism, and (S’, R') is a
bounded epimorphic image of (S, R). Bounded morphisms are often called
p-morphisms in the modal literature.

If {&;:j € J} is a collection of structures, with &; = (S;, R;), then
structure & = (S, R) is the bounded union of the &;’s if each &; is an inner
substructure of &, and S = |J{S; : j € J}. &' is a disjoint union of the &;’s
if it is the union of a collection {63 : j € J} of pairwise disjoint isomorphic



copies of the &;s, i.e. &) = &, and S7N S} = () when j # i € J. Then each
&) is an inner substructure of &', so &' is the bounded union of the &/’s.

In order to handle these constructions more conveniently, we introduce
some notation for operations on a class I of structures:

SK = the class of isomorphic images of inner substructures of
members of .

HK = the class of bounded epimorphic images of members of K.

UdKC = the class of disjoint unions of collections of structures
isomorphic to members of K.

UbK = the class of bounded unions of collections of structures
isomorphic to members of .

Pu/l = the class of isomorphic images of ultraproducts of collections
of structures in /C.

Pw/C = the class of isomorphic images of ultrapowers of structures
in K.

RuK = the class of structures & having some ultrapower &7 /U

isomorphic to a member of K. This is the class of ultraroots
of members of K.

There are many relationships between constructions that can be expressed
in this operator notation [7]. For instance the fact that a disjoint union of
structures is also a bounded union of (isomorphic copies of) them can be
expressed by the observation that UdXC C UbK for any class K.

As a partial converse to this, observe that if & is the bounded union of
the 6,’s, and & is their disjoint union, then the isomorphisms &) = &;
combine to give a function &’ — & which is a bounded epimorphism. Thus a
bounded union of structures is a bounded epimorphic image of their disjoint
union, giving

UbK C HUdK. (1)

A particularly important fact for us is that in general ultraproducts commute
with bounded unions:

PulUbK C UbPuk.

A proof of this can be found in [3, Lemma 11.1.2] or [7, Theorem 2.4].
Combined with the above observations it yields

PulUdK C HUdPuK. (2)



The three constructions of inner substructures, bounded epimorphic images
and disjoint unions all preserve modal validity. In other words, the class
Str ¢ of structures validating ¢ is closed under S, H, and Ud.? Hence by
(1) it is closed under Ub as well. Validity is also preserved by ultraroots
(see [4, Theorem 1.16.2] or [7, Theorem 2.1(10)]), so altogether

S Stryp = HStr o = UdStr ¢ = Ru Str ¢ = Str .

Truth of first-order sentences is preserved by the operations Pu, Pw, and
Ru. In fact a class K is elementary (i.e. of the form Mod X)) iff it is closed
under ultraproducts and ultraroots: Pull = RuXC = K.

5 Operations on Canonical Structures

At the end of Section 3 it was noted that the canonical model M2 determines
the modal logic A,. There is a close relationship between this model and
any other k-model M that determines A,. It was shown in [2] that if an
elementary extension M’ of M is sufficiently saturated, then its underlying
structure has a bounded epimorphism onto 6,{}. Now such an extension M’
can be constructed as an ultrapower, and so we have the following result.

Lemma 5.1 If a k-model M = (S,v) determines A, then G is a bounded
epimorphic image of an ultrapower &7 JU of &.

Proof.  We briefly explain the construction. If &/ /U = (S’ /U, Ry) is any
ultrapower of &, define a k-model My = (&7 /U, vy) by declaring

KU €vy(py) iff {j € J:h(j) €vipy)} €U

for all h/U € S7 /U and X\ < k. Then it can be shown that for any x-formula
12

h/U € My(p) iff {j € J:h(j) e Mp)} eU.

From this it follows that any x-formula true in M must be true in My,
and hence in particular that all A-theorems are true in My . Then for each
element s of &7 /U, the set of k-formulae

f(s)={p:s€ Muy(p)}

This is shown in a number of places, including sections 1.4-1.6 of [4] and section 3.3
of [1]. An algebraic version is given in Theorem 3.7.2(2) of [5].




is maximally A-consistent in Fma,, and so is an element of GZ. This
construction defines a function f : &7/U — &4, which proves to be a
bounded epimorphism if &7 /U is w-saturated. For details of this see Section
3.6 of [5] or Section 11.2 of [3]. O

From this we obtain an important result about the way in which canonical
structures can be built from members of a class that determines their logic:

Theorem 5.2 Let K be a class of structures that determines the logic A.
Then &2 € HPwUdK for any cardinal . Moreover, if K is closed under
ultraproducts, then &4 € HUdK and A is valid in G2

Proof.  Let {¢j : j € J} be the set of all x-formulae that are not A-
theorems. Since K determines A, each ¢; is invalid in some member of IC,
so there is a model M; = (&;,v;) with &; € K and ¢; not true in M;. Let
M = (6, v) be the disjoint union of the models M; for all j € J. M falsifies
each non-A-theorem, while & validates A because each &; does. Thus M
determines A. By Lemma 5.1 there is an ultrapower &/ /U of & having 6;‘
as a bounded epimorphic image. But & is the disjoint union of {G; : j €
J} C K, s0 & € UdK, hence &/ /U € PwUdK and so &} € HPwUdK as
required.

Now suppose PuKC = K. Then using result (2) from Section 4 and the
fact that HH = H, we get

HPwUdK C HPuUdK C HHUdPuK = HUdK,

so that indeed &2 € HUdK. But all members of K validate A, and validity
is preserved by H and Ud, so A is validated by all members of HUdI,
including now &2. 0

Next we consider structural relationships between different canonical struc-
tures. First, a simple fact that will be used several times.

Lemma 5.3 Let A be a logic in Fma or in some Fma,, and s a set of
formulae. If AC s and {p: Oy € s} Ct, then A Ct.

Proof. 1f ¢ € A, then [y € A by the Necessitation rule, so [y € s and
hence ¢ € t. l

Theorem 5.4 If A* is a sublogic of A, i.e. A* C A, then & is an inner
substructure of GA".



Proof. A set that is maximally A-consistent in F'ma, must also be max-
imally A*-consistent in F'ma,®. Thus S4 is a subset of 4" and R is the
restriction of R2™ to SA.

If s belongs to S2 and sRA't, then A, C s and so Lemma 5.3 gives
A, C t. This shows that ¢ is maximally A-consistent in Fmay, i.e. t € SA.
Therefore S7 is RA"-closed. UJ

Theorem 5.5 If k < u, then &2 is a bounded epimorphic image of Gﬁ.

Proof. ~ We have Fma, C Fma,. If s is a set of y-formulae, put f(s) = sN
Fma,,. If s is maximally A-consistent in F'ma,, then f(s) will be maximally
A-consistent in F'ma,. But if v is maximally A-consistent in F'ma,, then it
is A-consistent in F'ma, and so extends to a maximally A-consistent set s
in F'ma,, with s N F'ma, = u. Hence f : S[} — §4 is surjective.

If sR{}t, then Oy € s N Fma, implies ¢ € t N Fmay, so f(s)RAf(1).
Finally, suppose s € Sl/} and f(s)R3u in SA. Let

to = {¢ € Fma, : Uy € s} Uu.

Now if tg is not A-consistent, then since the two sets that make up tg are
each closed under conjunction there would be formulae ¢, with [lp € s,
Y € u, and (p = ) € A. Then (Hp — O—-ep) € 4, C s, so Ll=p € s as
Oy € s. But L= is a k-formula, so it belongs to f(s), and hence =) € u
as f(s)RAu. Since 9 € u, this contradicts the A-consistency of u. Therefore
to must be A-consistent, and so extends to a set ¢t € S{} which includes u,
whence f(t) = u, and has st}t. O

6 Quasi-Modal £-Sentences

An L-sentence will be called quasi-modal if it has the syntactic form Vzp,
with p being an L-formula that is constructed from amongst atomic formulae
and the constants L (False) and T (True) using at most the connectives A
(conjunction), V (disjunction), and the bounded universal and existential
quantifier forms Vz(yRz — 7) and 3z(yRz A7) with y # 2.

Any quasi-modal sentence o is preserved by H, S, and Ud (and hence
by Ub as well). Conversely, any L-sentences that is preserved by those three

3Here it is useful to know that s is maximally A-consistent in F'ma, iff every A,-
theorem is in s, and for each k-formula ¢, exactly one of ¢,y is in s.



operations is logically equivalent to a quasi-modal sentence. More generally,
if the class of models of a set X of L-sentences is closed under H, S, and
Ud, then Mod X = Mod X* for some set X* of quasi-modal sentences. A
proof of this may be found in [5, Section 4].

For a class K of structures, let WX be the quasi-modal theory of K, i.e.
the set of all quasi-modal L-sentences that are true in all members of K.
Then the class Mod¥* of all models of X is an elementary class including
K. When K itself is elementary, the members of Mod %X can be constructed
from KC by using operations that preserve validity of modal formulae. In fact
K only needs to be closed under ultraproducts for this to be so. The result,
which is proven in [7, Section 7], is that

PuK =K implies Mod¥" = RuUbRuUbRuHSK. (3)

Now let ¥/ be the set of all quasi-modal L-sentences that are true in the
canonical structure G4, Our goal is to show that all canonical structures
for A have the same quasi-modal theory, i.e. !I/,f = !I//f for all cardinals &, p.
The following result will be needed for this.

Theorem 6.1 Let A be a logic that is determined by a class K of structures
that is closed under ultraproducts. Then for all k, A is determined by the
class Mod W4 of all models of ¥/,

Proof.  Suppose PuK = K and K determines A. All members of I validate
A, and validity is preserved by Ru, Ub, H and S, so by (3) any A-theorem
is valid in all members of Mod¥*. By Theorem 5.2, &/ € HUdK, so any
quasi-modal sentence true throughout K will be true in G4, i.e. % C @A
Thus Mod¥ C ModW¥*, and so any A-theorem is valid in all members
of ModW/. But by definition G4 € Mod ¥/, so any formula valid in all

members of Mod ¥/ will be valid in &4 and hence a A-theorem. UJ

7 The Largest Elementary Sublogic

A logic A will be called elementary if it is determined by the elementary class
Mod X of all models of some set X' of L-sentences. Theorem 6.1 implies that
an elementary logic A is determined by the elementary class Mod w,g‘ for any
k. We will show that these classes are all equal, and that in general they
give the best elementary approximation to a logic.

10



Theorem 7.1 For any logic A, the logic A® determined by Mod W) is the
largest sublogic of A that is elementary.

Proof.  A° is elementary by definition. Since G/ is a ¥/-model, any A°-
theorem is valid in &/}, hence is a A-theorem, so A° C A.

Now let A* be any sublogic of A that is elementary. We want to show
A* C A°. Since G2 is an inner substructure of G2 (Theorem 5.4), every
quasi-modal sentence true in &2" is true in G/, which means that ¥/" is
included in /. Therefore

ModW¥ C ModWw!".
But by Theorem 6.1, since A* is elementary it is determined by Mod Wf*,

so A* is valid in all members of Mod ¥/, hence is included in A°. O

Theorem 7.2 For any logic A, the quasi-modal L-theory of any of its canon-
ical structures G2 is equal to that of G2, i.e. WA = WA, and hence Mod W/} =
Mod W),

Proof.  Firstly, &2 is a bounded epimorphic image of G4 (Theorem 5.5),
so quasi-modal sentences true in G are true in G2, i.e. ¥ C @,
For the converse, since Mod Wu/} determines A¢, Theorem 5.2 gives

S e HUdMod ¥4 = Mod w2 (4)

(¥ being preserved by H and Ud). But &2 is an inner substructure of &
(Theorem 5.4), so from (4) we get

SA e SModW! = Mod W,
Thus G is a model of ¥/, implying ¥4 C ¥/, O
Corollary 7.3 The canonical structures of the logic A® all have the same
quasi-modal L-theory as those of A, i.e. W/ =W for all k.
Proof. By result (4) above, G4° is a model of ¥/, implying ¥/ C w/".

Conversely, since G4 is an inner substructure of &%, we get #A° C ¥/, But
by the Theorem, ¥} = /. U

11



Mod®/ is by no means the only elementary class to determine A°. In fact
any class K satisfying
G e K C Modw!

determines A°, and amongst these is any class of the form Mod X with X
being a set of L-sentences that includes ¥ and has G/° as a model. Some
notable example of such X' are:

1. The set of all L-sentences true in GA°. In this case Mod ¥ is the class
of structures elementarily equivalent to GA°.

2. The set of all S-sentences true in G4°. An S-sentence is any L-sentence
that is constructed from amongst L, T, atomic formulae and negations
of atomic formulae by using at most A, V, bounded existential quan-
tifiers, and arbitrary universal quantifiers. These are, up to logical
equivalence, precisely the sentences that are preserved by inner sub-
structures [5, 4.2.5(4)].

3. The set of all H-sentences true in G/, these being constructed from
amongst |, T, and atomic formulae by at most A, V, and arbitrary uni-
versal and existential quantifiers. They are, up to logical equivalence,
precisely the sentences that are preserved by bounded epimorphic im-
ages. [5, 4.2.5(5)].

8 The Largest Canonical Sublogic

A logic A is canonical if it is valid in all its canonical structures. Theorem
5.2 states that being determined by a Pu-closed class is enough to make A
valid in all 6,{,}’8. In particular, every elementary logic is canonical.

Theorem 8.1 For any logic A, there is a largest sublogic A¢ of A that is
canonical. Moreover, A® is a sublogic of A°.

Proof.  Let {A7 : j € J} be the collection of all canonical sublogics of A.
For each &, define the structure &, = (S,, R,) to be the intersection of the
canonical structures &4’ for all j € J. Thus

Se={SY :jeJ}
and sRt iff s,t € S, and {p : Oy € s} C t. Define A° to be the logic

determined by the class {Sy, : ¥ an infinite cardinal}.

12



Now &4 is an inner substructure of each G’ (as A/ C A), and so is an
inner substructure of &,. Thus any formula valid in all &;’s will be valid
in all G4’s, giving A° C A.

Next we observe that for any given j € J, each &, is an inner substruc-
ture of &, ensuring similarly that A7 is a sublogic of A°. To see this, let s
be an element of S and suppose that sRYtin &Y ie. {p:Opes} Ct.
Then for each i € J we have s € S, so AL C s, hence A% C t by Lemma
5.3, implying t € S/ ‘Since this holds for all 2 € J it follows that ¢ € S,
showing that S, is RZ -closed as desired.

It remains to prove that A€ is canonical. We show that each of its
canonical structures G4° is an inner substructure of G, so formulae valid
in &, are valid in &4°, showing that &/ does indeed validate A°. Firstly,
if s belongs to SA° then A¢ C s, so for any j € J, AL, C s as A is a
sublogic of A, making s € S&’. Thus s € S, establishing that &/° is
a substructure of &,. Finally, S,fc is R.-closed for the same reason as in
the previous paragraph: if s € S/° and sR,t, then AS C ¢ by Lemma 5.3,
implying t € S°.

This completes the proof that A€ is the largest canonical sublogic of A.
But the sublogic A¢ is elementary, and therefore canonical, so it is equal to
one of the A7’s and hence is included in A°. O

Theorem 8.2 The canonical structures of the logic A® all have the same
quasi-modal L-theory as those of A, i.e. UA° =@ for all k.

Proof.  Since A° C A° C A, &2 is an inner substructure of G°, and &/
is an inner substructure of G4°. Preservation of quasi-modal sentences by S
then implies ¥A° C ¥/° C w4, But by 7.2 and 7.3 we have V° = 0 = ¢/,
so altogether, for all &,

oA =gl =gt =gl

9 Finite A-Structures and Mod ¥

We conclude with some results that further demonstrate the centrality of
¥/ to the model theory of A. Let Fiin, be the class of finite A-structures,
i.e. finite structures that validate A. Write !I/fm for the set of quasi-modal
sentences that are true in all members of Fin 4.

13



It will be shown that if a quasi-modal sentence is true in the canonical
structure &, then it is true in all finite A-structures; and that the converse
holds if A is determined by F'in 4.

Theorem 9.1 Every finite A-structure is a model of ¥

w’

and so W/ C Wﬁn

Proof. Take & = (S, R) € Finy,, in order to show & € Mod ¥/, For each
element s of G, let &, be the inner substructure of G generated by s. This is
the substructure based on the set {s' € S: sR*s'}, where R* is the reflexive
transitive closure of R. Now & is the bounded union of all these &;’s, and
Mod W[{} is closed under bounded unions, so it suffices to show that each &,
is in Mod ¥/,

Let the elements of &5 be s = s¢,... ,s, for some finite n. Let M be
any model on &, having M(p;) = {s;} for all j < n, and put

t={p € Fma,:se M)},

the set of all w-formulae that are true in M at s. Then since &, validates A,
t is a maximally A-consistent subset of F'ma,,, i.e. a point in the canonical
structure G, Let T be the inner substructure of G2 generated by t. We
will show that there is a bounded epimorphism f from ¥ onto &;. Since 6:}
is a model of ¥, preservation of ¥/ under S and H guarantees that ¥ and
then G, is a model of ¥/ as desired.

The following modal formulae are true at s in M, and hence belong to
t. (Here 00" denotes a sequence of [’s of length m.)

O™(po V-V pp) for all m < w,
O™ =(pj A pr) forallm <w and all 0 < j #k <n.

Using these formulae it can be shown that each member of ¥ contains exactly
one of the variables po, ... ,p,. Also, for each j < n, there is some m; that
the formula &™ip; is true at s, hence a member of ¢, ensuring that p;
belongs to some member of T. Thus putting

flu)=s; iff pjeu

gives a well-defined function from T onto G;. With the help of further
formulae true at s it is then seen that f is a bounded morphism, as desired.
Formulae that suffice for this are:

O™ (p; — O-py) for all m < w, if not s;Rsy,
d™(p; = k) for all m < w, if s;Rs;,.
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Corollary 9.2 If A is an elementary logic, then it is valid in any ultraprod-
uct of finite A-structures.

Proof. The Theorem shows that Fin, C Mod%/}. Thus PuFiny C
ModW. But if A is elementary, then by Theorem 6.1, every A-theorem is
valid in all members of Mod ¥/, hence in all members of Pu Fin 4. 0]

Since every elementary logic is canonical, one way to show that a logic is not
elementary would be to show that it is not canonical. But this strategy is
obviously not available if we want to try to show that some canonical logic is
not elementary. Corollary 9.2 gives a possible strategy that is independent
of canonicity: in order to show that no elementary class whatsoever could
determine A it is enough to exhibit a particular set of finite structures that
validate A and an ultraproduct of them that does not.

Theorem 9.3 Suppose that A is determined by Fina. Then a quasi-modal
sentence that is true in all finite A-structures must be true in S

5, and so
v, =0y
m w "

Proof.
If Fin, determines A, then by Theorem 5.2

61 € HPwUdFin,
C HPwUdMod¥f;,
= Mod"yf,.

Thus 6£ is a model of Q/fAm, implying Q/fAm C !Pu/} Equality follows by 9.1.
0]

Corollary 9.4 If an elementary logic A is determined by Finy, then it is
determined by Mod W;‘m

Proof.  Mod Q/fAm = ModW/, and Mod¥/ determines A. UJ
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