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ABSTRACT. If ZFC is consistent, then each of the following

are consistent with ZFC + 2ℵ0 = ℵ2:

1. X ⊆ IR is of strong measure zero iff |X | ≤ ℵ1 + there

is a generalized Sierpinski set.

2. The union of ℵ1 many strong measure zero sets is a

strong measure zero set + there is a strong measure

zero set of size ℵ2.
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§0. Introduction

In this paper we continue the study of the structure of strong measure zero sets. Strong

measure zero sets have been studied from the beginning of this century. They were dis-

covered by E. Borel, and Luzin, Sierpinski, Rothberger and others turned their attention

to the structure of these sets and proved very interesting mathematical theorems about

them. Most of the constructions of strong measure zero sets involve Luzin sets, which

have a strong connection with Cohen reals (see [6]). In this paper we will show that this

connection is only apparent; namely, we will build models where there are strong measure

zero sets of size c without adding Cohen reals over the ground model.

Throughout this work we will investigate questions about strong measure zero sets under

the assumption that c = 2ℵ0 = ℵ2. The reason is that CH makes many of the questions

we investigate trivial, and there is no good technology available to deal with most of our

problems when 2ℵ0 > ℵ2.

0.1 Definition: A set X ⊆ IR of reals has strong measure zero if for every sequence

〈εi : i < ω〉 of positive real numbers there is a sequence 〈xi : i < ω〉 of real numbers such

that

X ⊆
⋃

i<ω

(xi − εi, xi + εi)

We let S ⊂ P(IR) be the ideal of strong measure zero sets.

0.2 Remark: (a) if we work in ω2 then X ⊆ ω2 has strong measure zero if

(∀h ∈ ωω)(∃g ∈
∏

n

h(n)2)(∀x ∈ X)(∃∞n)(g(n) = x|h(n))

or equivalently,

(∗) (∀h ∈ ωω)(∃g ∈
∏

n

h(n)2)(∀x ∈ X)(∃n)(g(n) = x|h(n))

(b) To every question about strong measure zero sets in IR there is a corresponding ques-

tion about a strong measure zero set of ω2, and for all the questions we consider the

corresponding answers are the same. So we will work sometimes in IR, sometimes in ω2.

0.3 Definition: Assume that H ⊆ ωω. We say that ν̄ has index H, if ν̄ = 〈νh : h ∈ H〉

and for all h ∈ H, νh is a function with domain ω and ∀n νh(n) ∈ h(n)2. We let

Xν̄ :=
⋂

h∈H

⋃

k∈ω

[νh(k)]

(where we let [η] := {f ∈ ω2 : η ⊆ f}).

We say that Xν̄ is the set “defined” by ν̄.
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0.4 Fact: Assume H ⊆ ωω is a dominating family, i.e., for all f ∈ ωω there is h ∈ H such

that ∀n f(n) < h(n). Then:

(1) If ν̄ has index H, then Xν̄ is a strong measure zero set.

(2) If X is a strong measure zero set, then there is a sequence ν̄ with index H

such that X ⊆ Xν̄ .

0.5 Definition: A set of reals X ⊆ IR is a GLuzin (generalized Luzin) set if for every

meager set M ⊆ IR, X ∩ M has cardinality less than c. X is a generalized Sierpinski set

if set if for every set M ⊆ IR of Lebesgue measure 0, X ∩ M has cardinality less than c.

0.6 Fact: (a) If c is regular, and X is GLuzin, then X has strong measure zero.

(b) A set of mutually independent Cohen reals over a model M is a GLuzin set.

(c) If c > ℵ1 is regular, and X is a GLuzin set, then X contains Cohen reals over L.

Proof: See [6].

0.7 Theorem: [6] Con(ZF) implies Con(ZFC + there is a GLuzin set which is not strong

measure zero).

0.8 Theorem: [6] Con(ZF) implies Con(ZFC + c > ℵ1 + ∃X ∈ [IR]c, X a strong measure

zero set + there are no GLuzin sets).

In theorem 0.16 we will show a stronger form of 0.8.

0.9 Definition:

(1) Let Unif(S) be the following statement: “Every set of reals of size less

than c is a strong measure zero set.”

(2) We say that the ideal of strong measure zero sets is c-additive, or Add(S),

if for every κ < c the union of κ many strong measure zero sets is a strong

measure zero set. (So Add(S) ⇒ Unif(S).)

0.10 Remark: Rothberger ([13] and [12]) proved that the following are equivalent:

(i) Unif(S)

(ii) for every h : ω → ω, for every F ∈ [
∏

n h(n)]<c, there exists f∗ ∈ ωω such

that for every f ∈ F there are infinitely many n satisfying f(n) = f∗(n).

Miller ([10]) noted that this implies the following:

Add(M) iff Unif(S) and b = c

(See 0.17 for definitions)

Rothberger proved interesting results about the existence of strong measure zero sets,

namely:

If b = ℵ1, then there is a strong measure zero set of size ℵ1. (See [5].)

In this spirit, we first prove the following result:
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0.11 Theorem: If Unif(S) and d = c, then there exists a strong measure zero set of size

c.

We start the proof by proving the following

0.12 Fact: If d = c, then there is a set {fi : i < c} of functions in ωω such that for every

g ∈ ωω, the set

{i < c : fi ≤
∗ g}

has cardinality less than c.

Proof of the fact: We build 〈fi : i < c〉 by transfinite induction. Let ωω = {gj : j < c}.

We will ensure that for j < i, fi 6<
∗ gj . This will be sufficient.

But this is easy to achieve, as for any i, the family {gj : j < i} is not dominating, so there

exists a function fi such that for all j < i, for infinitely many n, fi(n) > gj(n).

This completes the proof of 0.12.

0.13 Proof of 0.11: Using d = c, let 〈fi : i < c〉 be a sequence as in 0.12. Let F : ωω →

[0, 1] − Q be a homeomorphism. (Q is the set of rational numbers.) We will show that

X := {F (fi) : i < c} is a strong measure zero set.

Let 〈εn : n < ω〉 be a sequence of positive numbers. Let {rn : n ∈ ω} = Q. Then

U1 :=
⋃

n∈ω(rn−ε2n, rn +ε2n) is an open set. So K := [0, 1]−U1 is closed, hence compact.

As K ⊆ rng(F ), also F−1(K) ⊆ ωω is a compact set. So for all n the projection of F−1(K)

to the nth coordinate is a compact (hence bounded) subset of ω, say ⊆ g(n). So

F−1K ⊆ {f ∈ ωω : f ≤∗ g}

Let Y := X − U1 ⊆ K. Then Y ⊆ F (F−1(K)) ⊆ {F (fi) : fi ≤
∗ g} is (by assumption on

〈fi : i < c〉) a set of size < c, hence has strong measure zero. So there exists a sequence of

real numbers 〈xn : n < ω〉 such that Y ⊆ U2, where

U2 :=
⋃

n∈ω

(xn − ε2n+1, xn + ε2n+1)

and X ⊆ U1 ∪ U2. So X is indeed a strong measure zero set.

In section 2 we will build models where Add(S) holds and the continuum is bigger than

ℵ1 without adding Cohen reals. First we will show in 3.4:

0.14 Theorem: If ZFC is consistent, then

ZFC + c = ℵ2 + S = [IR]≤ℵ1 + there are no Cohen reals over L

is consistent.

Note that c = ℵ2 and S = [IR]≤ℵ1 implies

(1) Add(S). (Trivially)

(2) b = d = ℵ1. (By 0.11)
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The same result was previously obtained by Corazza[3]. In his model the nonexistence of

strong measure zero sets of size c is shown by proving that every set of size c can be mapped

uniformly continuously onto the unit interval (which is impossible for a strong measure

zero set). Thus, the question arises whether is possible to get a model of S = [IR]<c +

c = ℵ2 + “not all set of size c can be continuously mapped onto [0, 1].”

By adding random reals to our construction, we answer this question in the following

stronger theorem:

0.15 Theorem: If ZFC is consistent, then

ZFC + c = ℵ2 + S = [IR]≤ℵ1 + there are no Cohen reals over L

+ there is a generalized Sierpinski set

is consistent. (See 0.5.)

By a remark of Miller [8, §2] a generalized Sierpinski set cannot be mapped continuously

onto [0, 1] (not even with a Borel function).

Pawlikowski [11] showed that the additivity of the ideal S of strong measure zero sets does

not imply the additivity of the ideal M of meager sets. For this he built a model satisfying

Add(S) + c = ℵ2 + b = ℵ1. He used a finite support iteration of length ω2. So he adds

many Cohen reals, and in the final model Cov(M) holds (i.e., IR can not be written as the

union of less than c many meager sets). We will improve his result in the next theorem:

0.16 Theorem: If ZFC is consistent, then

ZFC + c = d = ℵ2 > b + Add(S) + no real is Cohen over L

is consistent.

(Note that by 0.11, d = c + Add(S) implies that there is a strong measure zero set of

size c.)

0.17 Notation: We use standard set-theoretical notation. We identify natural numbers

n with their set of predecessors, n = {0, . . . , n− 1}. AB is the set of functions from A into

B, A<ω :=
⋃

n<ω
nA. |A| denotes the cardinality of a set A. P(A) is the power set of a

set A, A ⊂ B means A ⊆ B &A 6= B. A − B is the set-theoretic difference of A and B.

[A]κ := {X ⊆ A : |X | = κ}. [A]<κ and [A]≤κ are defined similarly. (We write A := B or

B =: A to mean: the expression B defines the term (or constant) A.)

Ord is the set of ordinals. cf(α) is the cofinality of an ordinal α. Sα
β := {δ ∈ ωβ : cf(δ) =

ωα}. In particular, S1
2 is the set of all ordinals < ω2 of uncountable cofinality.

IR is the set of real numbers. c = |IR| is the size of the continuum. For f, g ∈ ωω we let

f < g iff for all n f(n) < g(n), and f <∗ g if for some n0 ∈ ω, ∀n ≥ n0 f(n) < g(n). The

“bounding number” b and the “dominating number” d are defined as

b :=min{|H| : H ⊆ ωω, ∀g ∈ ωω ∃h ∈ H ¬(h <∗ g)}

d :=min{|H| : H ⊆ ωω, ∀g ∈ ωω ∃h ∈ H g < h}

=min{|H| : H ⊆ ωω, ∀g ∈ ωω ∃h ∈ H g <∗ h}

(It is easy to see ω1 ≤ b ≤ d ≤ c.)
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We call a set H ⊆ ωω dominating, if ∀g ∈ ωω ∃h ∈ H g < h.

M is the ideal of meager subsets of IR (or of ω2). S is the ideal of strong measure zero sets.

For any ideal J ⊂ P(IR), Add(J ) abbreviates the statement: “The union of less than c

many sets in J is in J .” Cov(J ) means that the reals cannot be covered by less than c

many sets in J .

If f is a function, dom(f) is the domain of f , and rng(f) is the range of f . For A ⊆ dom(f),

f |A is the restriction of f to A. For η ∈ 2<ω, [η] := {f ∈ ω2 : η ⊆ f}.

0.18 More Notation: If Q is a forcing notion, GQ is the canonical name for the generic

filter on Q. We interpret p ≤ q as q is stronger (or “has more information”) than p. (So

p ≤ q ⇒ q|⊢p ∈ GQ.)

When we deal with a (countable support) iteration 〈Pα, Qα : α < ε〉, we write Gα for the

canonical name of the generic filter on α, and G(α) for the generic filter on Qα. If there

is a natural way to associate a “generic” real to the generic filter on Qα, we write gα for

the real given by G(α). We write |⊢α for the forcing relation of Pα. If β < α, Gβ always

stands for Gα ∩ Pβ . V = V0 is the ground model, and Vα = V [Gα]. Pε is the countable

support limit of 〈Pα : α < ε〉. Pε/Gα is the Pα-name for {p ∈ Pε : p|α ∈ Gα} (with the

same ≤ relation as Pε). The forcing relation with respect to Pε/Gα (in Vα) is denoted by

|⊢αε.

There is a natural dense embedding from Pε into Pα ∗ Pε/Gα. Thus we always identify

Pα-names for Pε/Gα-names with the corresponding Pε-names.

∅α is the weakest condition of Pα, and ∅α|⊢αϕ is usually abbreviated to |⊢αϕ. (So

|⊢α(|⊢αδϕ) iff |⊢δϕ).

0.19 Even more Notation: The following notation is used when we deal with trees of

finite sequences:

For η ∈ V <ω, i ∈ V , η⌢i is the function η ∪ {〈|η|, i〉} ∈ V <ω.

p ⊆ ω<ω is a tree if p 6= ∅, and for all η ∈ p, all k < |η|, η|k ∈ p. Elements of a tree are

often called “nodes”. We call |η| the “length” of η. We reserve the word “height” for

the notion defined in 2.2.

For p ⊆ ω<ω, η ∈ p, we let succp(η) := {i : η⌢i ∈ p}.

If p is a tree, η ∈ p, let p[η] := {ν ∈ p : η ⊆ ν or ν ⊆ η}.

If p ⊆ ω<ω is a tree, b ⊆ p is called a branch, if b is a maximal subset of p that is linearly

ordered by ⊆.

Clearly, if ∀η ∈ p succp(η) 6= ∅, then a subset b ⊆ p is a branch iff b is of the form

b = {f |n : n ∈ ω} for some f ∈ ωω.

We let stem(p) be the intersection of all branches of p.
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§1. A few well known facts

We collect a few more or less well known facts about forcing, for later reference.

1.1 Definition: An ultrafilter U on ω is called a P-Point, if for any sequence 〈An : n ∈ ω〉

of sets in U there is a set A in U that is almost contained in every An (i.e., ∀n A − An is

finite).

1.2 Definition: For any ultrafilter U on ω, we define the P-point game G(U) as follows:

There are two players, “IN” and “NOTIN”. The game consists

of ω many moves.

In the n-th move, player NOTIN picks a set An ∈ U , and player

IN picks a finite set an ⊆ An.

Player IN wins if after ω many moves,
⋃

n an ∈ U .

We write a play (or run) of G(U) as

〈A0; a0 → A1; a1 → A2; . . . 〉.

It is well known that an ultrafilter U is a P-point iff player NOTIN does not have a winning

strategy in the P-point game.

For the sake of completeness, we give a proof of the nontrivial implication “⇒” (which is

all we will need later):

Let U be a P-point, and let σ be a strategy for player NOTIN. We will construct a run of

the game in which player NOTIN followed σ, but IN won.

Let A0 be the first move according to σ. For each n, let An be the set of all responses of

player notin according to σ in an initial segment of a play of length ≤ n in which player

IN has played only subsets of n:

An := {Ak : k ≤ n, 〈A0; a0 → A1; . . . ; ak−1 → Ak〉 is an

initial segment of a play in which NOTIN

obeyed σ, and a0, . . . , ak−1 ⊆ n}

Note that A0 = {A0}, and for all n, An is a finite subset of U .

As U is a P-point, there is a set X ∈ U such that for all A ∈
⋃

n An, X − A is finite.

Let X ⊆ A0 ∪ n0, and for k > 0 let nk satisfy

nk > nk−1 and ∀A ∈ Ank−1
X ⊆ A ∪ nk

Either
⋃

k∈ω[n2k, n2k+1) ∈ U , or
⋃

k∈ω[n2k+1, n2k+2) ∈ U .

Without loss of generality we assume
⋃

k∈ω[n2k, n2k+1) ∈ U .

Now define a play 〈A0; a0 → A1; a1 → A2; . . . 〉 of the game G(U) by induction as follows:

A0 is given.

Given Aj , let aj := Aj ∩ [n2j, n2j+1) and let Aj+1 be σ’s response to aj.
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Then as a0, . . . , aj−1 ⊆ n2j , we have X ⊆ Aj ∪ n2j for all j. Therefore for all j we

have X ∩ [n2j, n2j+1) ⊆ (Aj ∪ n2j) ∩ [n2j, n2j+1) = Aj ∩ [n2j , n2j+1) = aj . So
⋃

j∈ω aj ⊇

X ∩
⋃

j∈ω[n2j , n2j+1) ∈ U .

Thus player IN wins the play 〈A0; a0 → A1; a1 → A2; . . .〉 in which player NOTIN obeyed

σ.

1.3 Definition: We say that a forcing notion Q preserves P-points, if for every P-point

ultrafilter U on ω, |⊢Q“U generates an ultrafilter”, i.e. |⊢Q ∀x ∈ P(ω) ∃u ∈ U (u ⊆

x or u ⊆ ω − x).”

[9] defined the following forcing notion:

1.4 Definition: “Rational perfect set forcing”, RP is defined as the set of trees p ⊆ ω<ω

satisfying

(1) for all η ∈ p, |succp(η)| ∈ {1,ℵ0} (See 0.19)

(2) for all η ∈ p there is ν ∈ p with η ⊆ ν and |succp(η)| = ℵ0.

We let p ≥ q iff p ⊆ q.

Then the following hold:

1.5 Lemma:

(1) RP preserves P-points. ([9, 4.1])

(2) RP adds an unbounded function. ([9, §2])

(3) RP is proper. (This is implicit in [9]. See also 2.16)

The next lemma can be found, e.g., in [7, VII ?? and Exercise H2]:

1.6 Fact: If Q is a forcing notion satisfying the ℵ2-cc, then

(1) If |⊢Q c∼ : ωV
2 → ωV

2 , then there is a function c : ω2 → ω2 such that

|⊢Q∀α < ω2 : c∼(α) < c(α).

(2) |⊢Qℵ
V
2 = ℵ2.

(3) For every stationary S ⊆ ℵ2, |⊢Q “S is stationary on ℵ2”.

The following fact is from [14, V 4.4]:

1.7 Fact: Assume 〈Pα, Qα : α < ω2〉 is an iteration of proper forcing notions Qα. Then

for every δ ≤ ω2 of cofinality > ω, |⊢δ
ωω ∩Vδ = ωω ∩

⋃
α<δ Vα, or in other words: “no new

reals appear in limit stages of cofinality > ω”.

As a consequence, |⊢ω2
“If X ⊆ ωω, |X | ≤ ℵ1, then there is δ < ω2 such that X ∈ Vδ.”

We also recall the following facts about iteration of proper forcing notions:

1.8 Lemma: Assume CH, and let 〈Pα, Qα : α < ω2〉 be a countable support iteration

such that for all α < ω2, |⊢α“Qα is a proper forcing notion of size ≤ c.”

Then

(1) ∀α < ω2: |⊢αc = ℵ1. (see [14, III 4.1])
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(2) |⊢ω2
c ≤ ℵ2. (This follows from 1.7 and (1))

(3) For all α ≤ ω2, Pα is proper [14, III 3.2] and satisfies the ℵ2-cc. (See [14,

III 4.1])

(4) |⊢ω2
ℵV

1 = ℵ1. (See [14, III 1.6])

In [2, 4.1] the following is proved:

1.9 Lemma: Assume 〈Pα, Qα : α < ω2〉 is as in 1.8, and for all α < ω2:

|⊢α“Qα preserves P-points.”

Then for all α ≤ ω2, Pα preserves P-points.

1.10 Definition: We say that a forcing notion Q is ωω-bounding, if the set of “old”

functions is a dominating family in the generic extension by Q, or equivalently,

|⊢Q∀f ∈ ωω ∃g ∈ ωω ∩ V ∀n f(n) < g(n)

[14, V 4.3] proves:

1.11 Lemma: Assume 〈Pα, Qα : α < ω2〉 is as in 1.8, and for all α < ω2:

|⊢α“Qα is ωω-bounding and ω-proper.”

Then for all α ≤ ω2, Pα is ωω-bounding.

(We may even replace ω-proper by “proper”, see [14], [4])

The following is trivial to check:

1.12 Fact: Assume Q is a forcing notion that preserves P-points or is ωω-bounding. Then

|⊢Q“There are no Cohen reals over V ”

1.13 Definition: A forcing notion P is strongly ωω-bounding, if there is a sequence

〈≤n : n ∈ ω〉 of binary reflexive relations on P such that for all n ∈ ω:

(1) p ≤n q ⇒ p ≤ q.

(2) p ≤n+1 q ⇒ p ≤n q.

(3) If p0 ≤0 p1 ≤1 p2 ≤3 · · · , then there is a q such that ∀n pn+1 ≤n q.

(4) If p |⊢“α∼ is an ordinal,” and n ∈ ω, then there exists q ≥n p and a finite

set A ⊆ Ord such that Q|⊢α∼ ∈ A.

1.14 Definition: (1) If 〈Pα, Qα : α < ε〉 is an iteration of strongly ωω-bounding forcing

notions, F ⊆ ε finite, n ∈ ω, p, q ∈ Pε, we say that p ≤F,n q iff p ≤ q and ∀α ∈

F q|α|⊢p(α) ≤n q(α).

(2) A sequence 〈〈pn, Fn〉 : n ∈ ω〉 is called a fusion sequence if 〈Fn : n ∈ ω〉 is an increas-

ing family of finite subsets of ε, 〈pn : n ∈ ω〉 is an increasing family of conditions in Pε,

∀n pn ≤n,Fn
pn+1 and

⋃
n dom(pn) ⊆

⋃
n Fn.

Note that 1.13 is not a literally a strengthening of Baumgarter’s “Axiom A” (see [1]), as

we do not require that the relations ≤n are transitive, and in (2) we only require pn+1 ≤n q

rather than pn+1 ≤n+1 q. Nevertheless, the same proof as in [1] shows the following fact:
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1.15 Fact:

(1) If the sequence 〈〈pn, Fn〉 : n ∈ ω〉 is a fusion sequence, then there exists a

condition q ∈ Pε such that for all n ∈ ω, pn+1 ≥Fn,n q.

(2) If α∼ is a Pε-name of an ordinal, n ∈ ω, F ⊆ Pε finite, then for all p there

exists a condition q ≥n,F p and a finite set A of ordinals such that q|⊢α∼ ∈ A.

(3) If X∼ is a Pε-name of a countable set of ordinals, n ∈ ω, F ⊆ Pε finite,

then for all p there exists a condition q ≥n,F p and a countable set A of

ordinals such that q|⊢X∼ ⊆ A.

The next fact is also well known:

1.16 Fact: Let B be the random real forcing. Then B is strongly ωω-bounding.

[Proof: Conditions in B are Borel subsets of [0, 1] of positive measure, p ≤ q iff p ⊇ q.

We let p ≤n q iff p ≤ q and µ(p − q) ≤ 10−n−1µ(p), where µ is the Lebesgue measure.

Then if p0 ≥0 p1 ≥1 · · ·, letting q :=
⋂

n pn we have for all n, all k ≥ n, µ(pk − pk+1) ≤

10−k−1µ(pk) ≤ 10−k−1µ(pn), so µ(pn − q) ≤ 10−n−1 + 10−n−2 + · · · ≤ 2 ∗ 10−n−1µ(pn).

In particular, µ(q) ≥ 0.8 ∗ µ(p0), so q is a condition, and q ≥n−1 pn for all n > 0.

Given a name α∼, an integer n and a condition p such that p|⊢“α∼ is an ordinal,” let A be

the set of all ordinals β such that [[α∼ = β]] ∩ p has positive measure ([[ϕ]] is the boolean

value of the statement ϕ, i.e. the union of all conditions forcing ϕ). Since
∑

β∈A µ([[α∼ =

β]] ∩ p) = µ(p) there is a finite subset F ⊆ A such that letting q := p ∩
⋃

β∈A[[α∼ = β]] we

have µ(q) ≥ (1 − 10−n−1)µ(p). So q ≥n p and q|⊢α∼ ∈ F .]

We will also need the following lemma from [17, §5, Theorem 9]:

1.17 Lemma: Every stationary S ⊆ ℵ2 can be written as a union of ℵ2 many disjoint

stationary sets.

Finally, we will need the following easy fact (which is true for any forcing notion Q)

1.18 Fact: If f
∼

is a Q-name for a function from ω to ω, |⊢Q f
∼

/∈ V , and r0, r1 are any two

conditions in Q, then there are l ∈ ω, j0 6= j1, r′0 ≥ r0, r′1 ≥ r1 such that r′0|⊢f
∼

(l) = j0,

r′1|⊢f
∼

(l) = j1.

[Proof: There are a function f0 and a sequence r0 = r0 ≤ r1 ≤ · · · of conditions in Q such

that for all n, rn|⊢f
∼
|n = f0|n. Since r1|⊢f

∼
/∈ V , r1|⊢∃l f

∼
(l) 6= f0(l). There is a condition

r′1 ≥ r1 such that for some l ∈ ω and some j1 6= f0(l), r′1|⊢f
∼

(l) = j1. Let j0 := f0(l), and

let r′0 := rl+1.]
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§2 H-perfect trees

In this section we describe a forcing notion PTH that we will use in an iteration in the

next section. We will prove the following properties of PTH :

(a) PTH is proper and ωω-bounding.

(b) PTH preserves P-points.

(c) PTH does not “increase” strong measure zero sets defined in the ground

model.

(d) PTH makes the reals of the ground model (and hence, by (c), the union of

all strong measure zero sets defined in the ground model) a strong measure

zero set.

2.1 Definition: For each function H with domain ω satisfying ∀n ∈ ω 1 < |H(n)| < ω,

we define the forcing PTH , the set of H-perfect trees to be the set of all p satisfying

(A) p ⊆ ω<ω is a tree.

(B) ∀η ∈ p ∀l ∈ dom(η) : η(l) ∈ H(l).

(C) ∀η ∈ p : |succp(η)| ∈ {1, |H (|η|)|}.

(D) ∀η ∈ p ∃ν ∈ p : η ⊆ ν, |succp(ν)| = |H(|ν|)|.

2.2 Definition:

(1) For p ∈ PTH , we let the set of “splitting nodes” of p be

split(p) := {η ∈ p : |succp(η)| > 1}

(2) The height of a node η ∈ p ∈ PTH is the number of splitting nodes strictly

below η:

htp(η) := |{ν ⊂ η : ν ∈ split(p)}|

(Note that htp(η) ≤ |η|.)

(3) For p ∈ PTH , k ∈ ω, we let the kth splitting level of p be the set of splitting

nodes of height k.

splitk(p) := {η ∈ split(p) : htp(η) = k}

(Note that split0(p) = {stem(p)}.)

(4) For u ⊆ ω, we let

splitu(p) :=
⋃

k∈u

splitk(p)

2.3 Remarks:

(i) Since H(n) is finite, (3) just means that either η has a unique successor

η⌢i, or succp(η) = H(|η|).)

(ii) Letting H ′(n) = |H(n)|, clearly PTH is isomorphic to PTH′ (and the

obvious isomorphism respects the functions η 7→ htp(η), 〈p, k〉 7→ splitk(p),

etc)
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2.4 Remark: If we let H(n) = ω for all n, then 2.1(A)–(D) define RP , rational perfect

set forcing. The definitions in 2.2 make sense also for this forcing. Since we will not use

the fact that H(n) is finite before 2.12, 2.5–2.11 will be true also for RP .

2.5 Fact: Let p, q ∈ PTH , n ∈ ω, η, ν ∈ ω<ω. Then

(1) If η ⊂ ν ∈ p, then htp(η) ≤ htp(ν). If moreover η ∈ split(p), then

htp(η) < htp(ν).

(2) If b ⊆ p is a branch, then b ∩ splitn(p) 6= ∅.

(3) If p ⊇ q, then for all n, q ∩ splitn(p) 6= ∅.

(4) If η ∈ p and htp(η) ≤ n then ∃ν ∈ p, η ⊆ ν and ν ∈ splitn(p).

(5) If η0 6= η1 are elements of splitn(p), then η0 6⊆ η1, and η1 6⊆ η0.

Proof: (1) is immediate form the definition of ht.

For (2), it is enough to see that b ∩ split(p) is infinite. (Then ordering b by inclusion, the

nth element of b ∩ split(p) will be in splitn−1(p).)

So assume that b∩split(p) is finite. Recall that each η ∈ b−split(p) has a unique successor

in p. By 2.1(C), b cannot have a last element, so b is infinite. Hence there is η0 ∈ b such

that

∀ν ∈ b : η0 ⊆ ν ⇒ |succp(ν)| = 1.

A trivial induction on |ν| shows that this implies

∀ν ∈ p : η0 ⊆ ν ⇒ ν ∈ b.

Hence

∀ν ∈ p : η0 ⊆ ν ⇒ |succp(ν)| = 1.

This contradicts 2.1(D).

To prove (3), let b be any branch of q. b is also a branch of p, so (2) shows that q∩splitn(p) ⊇

b ∩ splitn(p) 6= ∅.

Proof of (4): Let b be a branch of p containing η. By (2) there is ν ∈ b ∩ splitn(p). If

ν ⊂ η, then htp(η) > htp(ν) = n, which is impossible. Hence η ⊆ ν.

(5) follows easily from (1).

2.6 Definition: For p, q ∈ PTH , n ∈ ω, we let

(1) p ≤ q (“q is stronger than p”) iff q ⊆ p.

(2) p ≤n q iff p ≤ q and splitn(p) ⊆ q. (So also splitk(p) ⊆ q for all k < n.)

2.7 Fact: If p ≤n q, n > 0, then stem(p) = stem(q).

2.8 Fact: Assume p, q ∈ PTH , n ∈ ω, p ≤n q.

(0) For all η ∈ q, htq(η) ≤ htp(η).

(1) For all k ≤ n, splitk(p) ⊆ split(q).

(2) For all k < n, splitk(p) = splitk(q).
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(3) If p ≤n q ≤n r, then p ≤n r.

Proof: (0) is clear.

(1): Let η ∈ splitk(p) for some k < n, then by 2.5(4) there is a ν, η ⊆ ν ∈ splitn(p) ⊆ q,

so η ∈ q.

(2): Let η ∈ splitk(p), then η ∈ split(q). Clearly htq(η) ≤ htp(η) = k. Using (1) induc-

tively, we also get htq(η) ≥ k.

(3): Let η ∈ splitn(p). So η ∈ q, htq(η) ≤ htp(η) = n. By 2.5(4), there is ν ∈ splitn(q),

η ⊆ ν. As ν ∈ r, η ∈ r.

2.9 Definition and Fact: If p0 ≤1 p1 ≤2 p2 ≤3 · · · are conditions in PTH , then we call

the sequence 〈pn : n < ω〉 a “fusion sequence”. If 〈pn : n < ω〉 is a fusion sequence, then

(1) p∞ :=
⋂

n∈ω pn is in PTH

(2) For all n: pn ≤n+1 p∞.

2.10 Fact:

(1) If η ∈ p ∈ PTH , then p[η] ∈ PTH , and p ≤ p[η]. (See 0.19.)

(2) If p ≤ q are conditions in PTH , η ∈ q, then p[η] ≤ q[η].

2.11 Fact: If for all η ∈ splitn(p), qη ≥ p[η] is a condition in PTH , then

(1) q :=
⋃

η∈splitn(p)

qη is in PTH ,

(2) q ≥n p

(3) for all η ∈ splitn(p), q[η] = qη.

2.12 Fact: If n ∈ ω, p ∈ PTH , then splitn(p) is finite.

Proof: This is the first time that we use the fact that each H(n) is a finite set: Assume

that the conclusion is not true, so for some n and p, splitn(p) is infinite. Then also

T := {η|k : η ∈ splitn(p), k ≤ |η|} ⊆ p

is infinite. As T is a finitely splitting tree, there has to be an infinite branch b ⊆ T . By

2.5(2), there is ν ∈ b ⊆ T , htp(ν) > n. This is a contradiction to 2.5(1).

2.13 Fact: PTH is strongly ωω-bounding, i.e.:

If α∼ is a PTH -name for an ordinal, p ∈ PTH , n ∈ ω, then there exists a finite set A of

ordinals and a condition q ∈ PTH , p ≤n q, and q|⊢α ∈ A.

Proof: Let C := splitn(p). C is finite. For each node η ∈ C, let qη ≥ p[η] be a condition

such that for some ordinal αη qη|⊢α∼ = αη. Now let

q :=
⋃

η∈C

qη and A := {αη : η ∈ C}

Since any extension of q must be compatible with some q[η] (for some η ∈ C), q|⊢α∼ ∈ A.
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2.14 Corollary: PTH is proper (and indeed satisfies axiom A, so is α-proper for any

α < ω1) and ωω-bounding. Moreover, if n ∈ ω, p ∈ PTH , τ∼ a name for a set of ordinals,

then there exists a condition q ≥n p such that

(1) If p |⊢“τ∼ is finite”, then there is a finite set A such that q|⊢“τ∼ ⊆ A”.

(2) If p |⊢“τ∼ is countable”, then there is a countable set A such that q|⊢“τ∼ ⊆ A”.

Proof: Use 2.13 and 2.9.

Similarly to 2.13 we can show:

2.15 Fact: Assume that α∼ is a RP -name for an ordinal, p ∈ RP , n ∈ ω.

Then there exists a countable set A of ordinals and a condition q ∈ PTH , p ≤n q, and

q|⊢α ∈ A.

Proof: Same as the proof of 2.13, except that now the set C and hence also the set A may

be countable.

2.16 Fact: RP is proper (and satifies axiom A). Proof: By 2.15 and 2.9.

2.17 Definition: Let G ⊆ PTH be a V -generic filter. Then we let g
∼

be the PTH-name

defined by

g
∼

:=
⋂

p∈G

p

We may write g
∼

H or g
∼

PTH
for this name g

∼
. If PTH is the αth iterand Qα in an iteration,

we write g
∼

α for g
∼

H .

2.18 Fact: ∅PTH
forces that

(0) g
∼

is a function with domain ω,

(1) ∀n g
∼

(n) ∈ H(n).

(2) For all f ∈ V , if ∀n f(n) ∈ H(n) then ∃∞n f(n) = g
∼

(n).

Furthermore, for all p ∈ PTH ,

(3) p|⊢ “{g
∼
|n : n ∈ ω} is a branch through p.

(4) p|⊢∀k∃ng
∼
|n ∈ splitk(p)

Proof: (0) and (2) are straightforward density arguments. (1) and (3) follow immedaitely

from the definition of g
∼

. (4) follows from (3) and 2.5(2), applied in V PTH .

2.19 Remark: Since Unif(S) is equivalent to

for every H : ω → ω, for every F ∈ [
∏

n H(n)]<c, there exists

f∗ ∈ ωω such that for every f ∈ F there are infinitely many n

satisfying f(n) = f∗(n),

2.18(2) shows that if we have c = ℵ2 and Martin’s Axiom for the forcing notions PTH (for

all H), then we also have Unif(S). (In fact the “easy” implication “⇐” of this equivalence

is sufficient.) This can be achieved by a countable support iteration of length ℵ2 of forcing

notions PTH , with the usual bookkeeping argument (as in [16]).
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We will show a stronger result in 3.3: If P := Pω2
is the limit of a countable support

iteration 〈Pα, Qα : α < ω2〉, where “many” Qα are of the form PTHα
for some Hα, then

some bookkeeping argument can ensure that V P |= Add(S).

Since PTH is ωω-bounding, it does not add Cohen reals. The same is true for a countable

support iteration of forcings of the form PTH . However, in 3.9 we will have to consider a

forcing iteration in which some forcing notions are of the form PTH , but others do add an

unbounded real. To establish that even these iterations do not add Cohen reals, we will

need the fact that the forcing notion PTH preserves many ultrafilters.

2.20 Definition: Let Q be a forcing notion, x∼ a Q-name, p ∈ Q, p|⊢x∼ ⊆ ω. We say that

x∗ ⊆ ω is an interpretation of x∼ (above p), if for all n there is a condition pn ≥ p such

that pn|⊢x∼∩ n = x∗ ∩ n.

2.21 Fact: Assume Q, p, x∼ are as in 2.20. Then

(1) There exists x∗ ⊆ ω such that x∗ is an interpretation of x∼ above p.

(2) If p ≤ p′ and x∗ is an interpretation of x∼ above p′, then x∗ is an interpretation

of x∼ above p.

2.22 Lemma: PTH preserves P-points, i.e.: If U ∈ V is a P-point ultrafilter on ω, then

|⊢PTH
“U generates an ultrafilter.”

Proof: Assume that the conclusion is false. Then there is a PTH-name τ∼ for a subset of

ω and a condition p0 such that

p0|⊢PTH
∀x ∈ U : |x ∩ τ∼| = |(ω − x) ∩ τ∼| = ℵ0.

For each p ∈ PTH we choose a set τ(p) such that

· τ(p) is an interpretation of τ∼ above p.

· If there is an interpretation of τ∼ above p that is an element of U , then

τ(p) ∈ U .

Note that if τ(p) ∈ U and p ≥ p′, then also τ(p′) ∈ U , since (by 2.21(2)) we could have

chosen τ(p′) := τ(p). Hence either for all p τ(p) ∈ U , or for some p1 ≥ p0, all p ≥ p1,

τ(p) /∈ U . In the second case we let σ∼ be a name for the complement of τ∼, and let

σ(p) = ω − τ(p). Then σ(p) ∈ U for all p ≥ p1. Also, σ(p) is an interpretation of σ∼ above

p.

So wlog for all p ≥ p1, τ(p) ∈ U for some p1 ∈ PTH , p1 ≥ p0.

We will show that there is a condition q ≥ p1 and a set a ∈ U such that q|⊢a ⊆ τ∼.

Recall that as U is a P-point, player NOTIN does not have a winning strategy in the

P-point game for U (see 1.2).

We now define a strategy for player NOTIN. On the side, player NOTIN will construct a

fusion sequence 〈pn : n < ω〉 and a sequence 〈mn : n < ω〉 of natural numbers.

438 14 January 1991



Goldstern, Judah, Shelah: Strong measure zero sets without Cohen reals

p0 is given.

Given pn, we let

An =
⋂

η∈splitn+1(pn)

τ(pn
[η])

This set is in U . Player IN responds with a finite set an ⊆ An. Let mn := 1 + max(an).

For each η ∈ splitn+1(pn) there is a condition qη ≥ pn
[η] forcing τ∼ ∩ mn = τ(pn

[η]) ∩ mn,

so in particular

qη|⊢an ⊆ τ∼ ∩ mn

Let pn+1 =
⋃

η∈splitn+1(pn)

qη.

Then

(∗) pn+1 ≥n+1 pn and pn+1|⊢an ⊆ τ∼

This is a well-defined strategy for player NOTIN. As it is not a winning strategy, there

is a play in which IN wins. During this play, we have constructed a fusion sequence

〈pn : n < ω〉. Letting a :=
⋃

n an, q :=
⋂

n pn, we have that a ∈ U , p0 ≤ q ∈ PTH (by 2.9),

and q|⊢a ⊆ τ∼ (by (∗)), a contradiction to our assumption.

The following facts will be needed for the proof that if we iterate forcing notions PTH with

carefully chosen functions H, then we will get a model where the ideal of strong measure

zero sets is c-additive.

2.23 Fact and Definition: Assume p ∈ PTH , u ⊆ ω is infinite, v = ω − u. Then

we can define a stronger condition q by “trimming” p at each node in splitv(p). (See

2.2(4).) Formally, let ~ı = 〈iη : η ∈ splitv(p)〉 be a sequence satisfying iη ∈ H(|η|) for all

η ∈ splitv(p).

Then

p~ı := {η ∈ p : ∀n ∈ dom(η) : If η|n ∈ splitv(p), then η(n) = iη|n}

is a condition in PTH

Proof: Let q := p~ı. q satisfies (A)–(B) of the definition 2.1 of PTH . The definition of p~ı

immediately implies:

(1) If η ∈ splitv(p) ∩ q, then succq(η) = {iη}.

(2) If η ∈ splitu(p) ∩ q, then succq(η) = succp(η) = H(|η|).

(3) If η ∈ q− split(p), then η ∈ p− split(p), so succq(η) = succp(η) is a singleton.

Note that split(p) = splitu(p) ∪ splitv(p), so (1)–(3) cover all possible cases for η ∈ q.

So q also satisfies 2.1(C).

From (1)–(3) we can also conclude:

(4) For all η ∈ q: succq(η) 6= ∅.
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To show that q ∈ PTH , we still have to check condition 2.1(D). So let η ∈ q. Since u is

infinite, there is k ∈ u, k > |η|. By (4), there is an infinite branch b ⊆ q containing η. By

2.5(2) there is ν ∈ b, htp(ν) = k. Then η ⊆ ν, and ν ∈ split(q).

2.24 Fact: p~ı |⊢“η ⊆ g
∼

& η ∈ splitv(p) ⇒ g
∼

(|η|) = iη” (where g
∼

is a name for the

generic branch defined in 2.18).

Proof: p~ı|⊢g
∼

⊆ p~ı and succp~ı
(η) = {iη}.

To simplify notation, we will now assume that for all n, H(n) ∈ ω. (If H(n) are just

arbitrary finite sets as in 2.1, then we could prove analogous statements, replacing 0 and

1 by any two elements 0n 6= 1n of H(n).)

2.25 Definition: Let f
∼

be a PTH-name for a function from ω to ω. We say that f
∼

splits

on p, k if for all η ∈ splitk(p) there are l and j1 6= j0 such that

p[η⌢0]|⊢f
∼

(l) = j0

p[η⌢1]|⊢f
∼

(l) = j1

2.26 Remark: If f
∼

splits on p, k, and q ≥k+1 p, then f
∼

splits on q, k.

(Proof: splitk(p) = splitk(q), and for η ∈ splitk(p), p[η⌢i] ≤ q[η⌢i].)

2.27 Lemma: If p|⊢f
∼

/∈ V , k ∈ ω, then there is q ≥k+1 p such that f
∼

splits on q, k.

Proof: For η ∈ splitk(p), i ∈ {0, 1} we let ηi be the unique element of splitk+1(p) satisfying

η⌢i ⊆ ηi.

By 1.18, for each η ∈ splitk(p) we can find conditions qη0
≥ p[η0], qη1

≥ p[η1] and integers

lη, jη,0 6= jη,1 such that qη0
|⊢f
∼

(lη) = j0, qη1
|⊢f
∼

(lη) = j1. If ν ∈ splitk+1(p) is not of the

form η0 or η1 for any η ∈ splitk(p), then let qν := p[ν].

By 2.11, q :=
⋃

ν∈splitk+1(p)

qν is a condition, q ≥k+1 p, and qν = q[ν] for all ν ∈ splitk+1(p).

We finish the proof of 2.27 by showing that f
∼

splits on q, k: Let η ∈ splitk(p) = splitk(q).

Then q[η⌢0] = q[η0] = qη0
, so q[η⌢0]|⊢f

∼
(lη) = jη,0. Similarly, q[η⌢1]|⊢f

∼
(lη) = jη,1.

2.28 Lemma: If p|⊢f
∼

/∈ V , then there is q ≥ p, f
∼

splits on q, k for all k.

Proof: By 2.27, 2.26 and 2.9 (using a fusion argument).

2.29 Lemma: Assume Q is a strongly ωω-bounding forcing notion. Let f
∼

be a Q-name

for a function, p a condition, n ∈ ω, p|⊢f
∼

/∈ V . Then there exists a natural numer k such

that

(∗) for all η ∈ k2 there is a condition q ≥n p, q|⊢f
∼

/∈ [η].

We will write kp,n or kf
∼

,p,n for the least such k. Note that for any k ≥ kp,n, (∗) will also

hold.

Proof: Assume that this is false. So for some f
∼

, n0, p0,

(⋆) ∀k ∈ ω ∃ηk ∈ k2 : ¬(∃q ≥n0
p0 q|⊢f

∼
/∈ [ηk])
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Let

T := {ηk|l : l ≤ k, k ∈ ω}

T is a finitely branching tree (⊆ ω2) of infinite height, so it must have an infinite branch.

Let f∗ ∈ ω2 be such that {f∗|j : j ∈ ω} ⊆ T .

Since f∗ ∈ V but p0|⊢Q f
∼

/∈ V , there exists a name m∼ of a natural number such that

p0|⊢f∗|m∼ 6= f
∼
|m∼. Let q ≥n0

p0 be such that for some m∗ ∈ ω, q|⊢m∼ < m∗.

Claim: For some k, q|⊢f
∼

/∈ [ηk]. This will contradict (⋆).

Proof of the claim: We have q|⊢f
∼
|m∗ 6= f∗|m∗. Since f∗|m∗ ∈ T , there is a k ≥ m∗ such

that f∗|m∗ = ηk|m
∗. Hence q|⊢f

∼
|m∗ 6= f∗|m∗ = ηk|m

∗, so q|⊢f
∼

/∈ [ηk|m
∗]. But then also

q|⊢f
∼

/∈ [ηk].

This finishes the proof of the claim and hence of the lemma.

2.30 Lemma: Assume that Q is a strongly ωω-bounding forcing notion, H is a dominating

family in V , and ν̄ = 〈νh : h ∈ H〉 has index H. Then

|⊢Q

⋂

h∈H

⋃

k∈ω

[νh(k)] ⊆ V

Proof: Assume that for some condition p and some Q-name f
∼

,

p|⊢f
∼

/∈ V & f
∼

∈
⋂

h∈H

⋃

n∈ω

[νh(n)].

We will define a tree of conditions such that along every branch we have a fusion sequence.

Specifically, we will define an infinite sequence 〈ln : n ∈ ω〉 of natural numbers, and for

each n a finite sequence

〈p(η0, . . . , ηn−1) : η0 ∈ η02, . . . , ηn−1 ∈ ln−12〉

of conditions satisfying

(0) p() = p

(1) For all n: ∀η0 ∈ η02, . . . , ηn−1 ∈ ln−12 : ln ≥ kp(η0,...,ηn−1),n.

(2) For all n: ∀η0 ∈ η02, . . . , ηn−1 ∈ ln−12 ∀ηn ∈ ln2

(a) p(η0, . . . , ηn−1) ≤n p(η0, . . . , ηn−1, ηn).

(b) p(η0, . . . , ηn−1, ηn)|⊢f
∼

/∈ [ηn].

Given p(η0, . . . , ηn−1) for all η0 ∈ η02, . . . , ηn−1 ∈ ln−12, we can find ln satisfying condition

(1). The by the definition of kp(η0,...,ηn−1),n we can (for all ηn ∈ ln2) find p(η0, . . . , ηn−1, ηn).

Now let h ∈ H be a function such that for all n, h(n) > ln. Define a sequence 〈ηn : n ∈ ω〉

by ηn := νh(n)|ln, and let pn := p(η0, . . . , ηn). Then p ≤ p0 ≤0 p1 ≤1 · · · , so there

exists a condition q extending all pn. So for all n, q|⊢f
∼

/∈ [ηn]. But then also for all n,

q|⊢f
∼

/∈ [νh(n)], a contradiction.
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Lemma 2.30 will be needed later to show that if we iterate focings of the form PTH together

with random real forcing, after ω2 many steps we obtain no strong measure zero sets of

size ℵ2. The proof (in 3.4) would be much easier if we could omit “strongly” from the

hypothesis of 2.30, i.e., if we could answer the following question positively:

2.31 Open Problem: Assume H ⊆ ωω is a dominating family (or even wlog H = ωω),

and ν̄ has index H. Let Q be an ωω-bounding forcing notion. Does this imply

|⊢Q

⋂

h∈H

⋃

n

[νh(n)] ⊆ V ?

2.32 Fact: Assume h∗ : ω → ω − {0}, H∗(n) = h∗(n)2. Let H ⊆ ωω be a dominating

family, and let ν̄ have index H. Let g
∼

∗ be the name of the generic function added by

PTH∗ .

Then

|⊢PTH∗
∃h ∈ H

⋃

k∈ω

[νh(k)] ⊆
⋃

n∈ω

[g
∼

∗(n)]

Proof: Assume not, then there is a condition p such that

(∗) p|⊢∀h ∈ H
⋃

k∈ω

[νh(k)] 6⊆
⋃

n∈ω

[g
∼

∗(n)]

Let h ∈ H be a function such that ∀k ∈ ω∀η ∈ split2k+1(p) h∗(|η|) ≤ h(k). This function

h will be a witness contradicting (∗).

For η ∈ split2k+1(p) let iη ∈ succp(η) = H∗(|η|) = h∗(|η|)2 be defined by iη := νh(k)|h∗(|η|).

(Note that νh(k) ∈ h(k)2 and h(k) ≥ h∗(|η|).)

Let ~ı := 〈iη : η ∈ split2k+1(p), k ∈ ω〉 and let q := p~ı.

Then q|⊢∀n∀k (g
∼
|n ∈ split2k+1(p) ⇒ g

∼
(n) = i g

∼
|n ⊆ νh(k)) by 2.24.

Since also q|⊢∀k∃n g
∼
|n ∈ split2k+1(p), we get q|⊢∀k∃n [νk(k)] ⊆ [g

∼
(n)]. This contra-

dicts (∗).

§3 Two models of Add(S).

Recall that S1
2 := {δ < ω2 : cf(δ) = ω1}.

3.1 Lemma: Let 〈Pα, Qα : α < ω2〉 be an iteration of proper forcing noitions as in 1.8,

p ∈ Pω2
, A∼ a Pω2

-name. If p|⊢“A∼ is a strong measure zero set,” then there is a closed

unbounded set C ⊆ ω2 and a sequence 〈ν̄δ : δ ∈ C ∩ S1
2〉 such that each ν̄δ is a Pδ-name,

and

p|⊢ω2
ν̄δ has index ωω ∩ Vδ and A

∼
⊆

⋂

h∈ωω∩Vδ

⋃

n∈ω

[νh(n)]

Proof: Let c∼ be a Pω2
-name for a function from ω2 to ω2 such that for all α < ω2,

|⊢ω2
∀h ∈ ωω ∩ Vα ∃νh ∈ V c

∼
(α) : ∀n νh(n) ∈ h(n)2 & A

∼
⊆

⋃

n

[νh(n)]
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(Why does c∼ exist? Working in V [Gω2
], note that there are only ℵ1 many functions in

ωω ∩ Vα, and for each such h there is a νh as required in
⋃

β<ω2
Vβ , by 1.7.)

As Pω2
satisfies the ℵ2-cc, by 1.6(1) we can find a function c ∈ V such that |⊢ω2

∀α c∼(α) <

c(α). Let

C := {δ : ∀α < δ c(α) < δ}

The set C is closed unbounded. In V , we can assign to each Pα-name h∼ (for α < δ ∈ C)

a Pδ-name ν∼
h
∼ such that

|⊢ω2
∀n ν

∼
h
∼(n) ∈

h
∼

(n)
2 & A

∼
⊆

⋃

n

[ν
∼

h
∼(n)]

Now in V [Gδ] we can choose for each h ∈ ωω an α < δ and a Pα-name h∼ such that

h = h∼[Gδ]. Then we let νh := (ν∼
h
∼)[Gδ]. Thus we found a sequence ν̄ = 〈νh : h ∈ Vδ〉 ∈ Vδ

as required.

3.2 Lemma:

Assume 〈Pα, Qα : α < ω2〉 is a countable support iteration of proper forcing notions, where

for each ordinal δ ∈ S1
2 |⊢δQδ = PTHδ

for some Pδ-name Hδ. We will write gδ for the

generic function added by Qδ.

Assume H∼ is a name for a dominating family (⊆ ω(ω − {0})) in Vω2
, and

|⊢ω2
“For all h ∈ H∼, Sh := {δ < ω2 :cf(δ) = ω1, Qδ = PTH

Vδ}

is stationary (where H(n) = h(n)2).”

Let Gω2
⊆ Pω2

be V -generic, then in V [Gω2
], a set A ⊆ IR is a strong measure zero set iff

there is a closed unbounded set C ⊆ ω2 such that for every δ ∈ C ∩ S1
2 , A ⊆

⋃
n[gδ(n)].

Proof: First we prove the easy direction. Assume that for some club C, for all δ ∈ C ∩S1
2 ,

A ⊆
⋃

n[gδ(n)]. Then for every h ∈ Vω2
∩ ω(ω − {0}) there is a δ = δh ∈ C ∩ Sh ⊆ S1

2 .

So Qδh
= (PTH)Vδh , where H(n) = h(n)2. Since gδh

(n) ∈ h(n)2, and A ⊆
⋃

[gδh
(n)] for

arbitrary h, A is a strong measure zero set.

Now for the reverse implication: In Vω2
, let A be a strong measure zero set. By the previous

lemma, there is a club set C ⊆ ω2 and a sequence 〈ν̄δ : δ ∈ C ∩ S1
2〉 such that each ν̄ ∈ Vδ

is a sequence with index ωω ∩ Vδ and Vω2
|= A ⊆ Xν̄δ

. By 2.32 we have for all δ ∈ C ∩ S1
2 :

Vδ+1 |= ∃h ∈ Vδ

⋃

n

[νh
δ (n)] ⊆

⋃

n

[gδ(n)]

So fix h0 ∈ Vδ witnessing this. This inclusion is absolute, so also

Vω2
|=

⋃

n

[νh0

δ (n)] ⊆
⋃

n

[gδ(n)]
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Thus

Vω2
|= A ⊆ Xν̄δ

⊆
⋃

n

[νh0

δ (n)] ⊆
⋃

n

[gδ(n)]

and we are done.

3.3 Corollary: Assume Pω2
is as above. Then |⊢Pω2

Add(S).

Proof: Let 〈Ai : i ∈ ω1〉 be a family of strong measure zero sets in Vω2
. To each i we can

associate a closed unbounded set Ci as in 3.2. Let C :=
⋂

i∈ω1

Ci, then also C is closed

unbounded, and for all δ ∈ C ∩ S1
2 ,

⋃

i∈ω1

Ai ⊆
⋃

n∈ω

[gδ(n)]. Again by 3.2,
⋃

i∈ω1

Ai is a strong

measure zero set.

Our first goal is to show that Unif(S) does not guarantee the existence of a strong measure

zero set of size c. Clearly the model for this should satisfy d = ℵ1 (if c = ℵ2), so we will

construct a countable support iteration of ωω-bounding forcing notions.

3.4 Theorem: If ZFC is consistent, then

ZFC + c = ℵ2 + S = [IR]≤ℵ1 + no real is Cohen over L

+ there is a generalized Sierpinski set

is consistent.

Proof: We will start with a ground model V0 satisfying V = L. Let H := ω(ω−{0})∩L =

{hα : α < ω1}, and let Hα(n) = hα(n)2.

Let 〈Sα : α < ω1〉 be a family of disjoint stationary sets ⊆ {δ < ω2 : cf(δ) = ω1}.

Construct a countable support iteration 〈Pα, Qα : α < ω2〉 satisfying

(1) For all even α < ω2:

|⊢Pα
For some h : ω → ω − {0}, letting H(n) = h(n)2, Qα = PTH .

(2) If δ ∈ Sα, then |⊢δQδ = PTHα
.

(3) For all odd α < ω2:

|⊢Pα
Qα = random real forcing.

By 1.11 (or as a consequence of 1.15), Pω2
is ωω-bounding, so |⊢ω2

“H is a dominating

family.” By 1.8(3) and 1.6 the assumptions of 3.3 are satisfied, so |⊢ω2
Add(S). Also,

|⊢ω2
“c = ℵ2 and there are no Cohen reals over L.” Letting X be the set of random reals

added at odd stages, X is a generalized Sierpinski set: Any null set H ∈ Vω2
is covered

by some Gδ null set H ′ that coded in some intermediate model. As coboundedly many

elements of X are random over this model, |H ∩ X | ≤ |H ′ ∩ X | ≤ ℵ1.

To conclude the proof of 3.4, we have to show

Vω2
|= “If X ⊆ IR is of strong measure zero, then |X | < c.”
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Since H is a dominating family, by 0.4 it is enough to show that in Vω2
the following holds:

If ν̄ has index H, then |Xν̄ | ≤ ℵ1.

We will show: If ν̄ ∈ Vα has index H, then Xν̄ ⊆ ωω ∩ Vα. (This is sufficient, by 1.7.)

Assume to the contrary that Gω2
is a generic filter, ν̄ ∈ Vα, and in V [Gω2

] there is δ > α,

f ∈ Vδ −
⋃

γ<δ Vγ , f ∈ Xν̄ . So also

V [Gδ] |= f ∈ Vδ −
⋃

γ<δ

Vγ and f ∈ Xν̄

Let f
∼

be a Pδ-name, ν̄∼ a Pα-name, and let p ∈ Pδ be a condition forcing all this. δ cannot

be a successor ordinal, by 2.30. So δ is a limit ordinal, and cf(δ) must be ω, otherwise we

would have ω2 ∩ Vδ = ω2 ∩
⋃

γ<δ Vγ .

So we have reduced the problem to the following lemma:

3.5 Lemma: Let 〈Pα, Qα : α < ε〉 be a countable support iteration of forcings where each

Qα (for even α) is of the form PTHα
for some (Pα-name) Hα, and Qα is random real

forcing for odd α. Let δ ≤ ε be a limit ordinal of countable cofinality, and let f
∼

be a

Pδ-name of a function in ω2 such that |⊢δ∀α < δ f
∼

/∈ Vα.

Let H ∈ V0 be a dominating family of functions, and assume that ν̄ has index H.

Then |⊢δ f
∼

/∈
⋂

h∈H

⋃
n∈ω

[νh(n)].

For notational simplicity, we again assume that for all even α, |⊢α“Hα : ω → ω (rather

than Hα : ω → 2<ω).”

Before we prove this lemma, we need the following two definitions (which make sense for

any countable support iteration 〈Pα, Qα : α < ω2〉).

3.6 Definition and Fact: For p ∈ Pε, α < ε, p|α|⊢p(α) ≤ r∼ ∈ Qα, we define p ∧ r∼ as

follows: (p ∧ r∼)(γ) = p(γ) for γ 6= α, and (p ∧ r∼)(α) = r∼.

Then p ∧ r∼ ∈ Pε, p ∧ r∼ ≥ p, and (p ∧ r∼)|α = p|α, so in particular p|α|⊢p ∧ r∼ ∈ Pε/Gα.

Furthermore, p|α|⊢(p ∧ r∼)(α) = r∼.

Also, if p(α) = r∼, then p ∧ r∼ = p.

3.7 Definition and Fact: If p ∈ Pα, A a countable subset of ε, and p|⊢ r∼ ∈ Pε/Gα & r∼ ≥

p & dom( r∼) ⊆ α ∪ A, then we define p ∧ r∼ as follows:

For γ < α, (p ∧ r∼)(γ) = p(γ). For γ ≥ α and γ ∈ A, (p ∧ r∼)(γ) = r(γ).

Again, p ∧ r∼ ∈ Pε, p ∧ r∼ ≥ p, and (p ∧ r∼)|α = p|α, so in particular p|α|⊢p ∧ r∼ ∈ Pε/Gα.

Also, if p1 ≤ p2, then p1 ∧ r∼ ≤ p2 ∧ r∼.

3.8 Proof of 3.5: cf(δ) = ω, so we can find an increasing sequence 〈δn : n < ω〉 of even

ordinals converging to δ. Assume there is a condition p forcing that f
∼

∈
⋂

h∈H

⋃
n∈ω

[νh(n)].
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We will define sequences 〈pn : n < ω〉,

〈Fn : n < ω〉,

〈ℓn : n < ω〉,

〈 s∼n : n ∈ ω〉

〈pi
n : n ∈ ω, i ∈ {0, 1}〉,

such that the following hold: For each n, pn, p0
n, p1

n are conditions in Pδ, δn is an even

ordinal < δ, Fn is a finite subset of δn, ℓn is an integer, and s∼n is a Pδn
-name for an

element of ω<ω. (We let p0 = p, F0 = ∅, ℓ0 = 0, p1
0 = p0

0 = p0, s0 = ∅). For all n > 0 we

will have:

(1) pn−1 ≤Fn,n pn.

(2) Fn ⊆ δn, Fn−1 ⊆ Fn+1,
⋃

k dom(pk) ⊆
⋃

k Fk.

(3) δn−1 ∈ Fn.

(4) pn|δn|⊢ s∼n = stem(pn(δn)) = stem(pn−1(δn))

(5) For i ∈ {0, 1}, pi
n = pn ∧ pn(δn)

[sn
⌢i]

.

(6) pn|δn|⊢δn
“∃l < ℓn ∃j0 6= j1 ∀i ∈ {0, 1} : pi

n|⊢δn,δ f
∼

(l) = ji.”

Note that (5) implies:

(5’) pn|δn|⊢pi
n ∈ Pδ/Gδn

,

and (6) implies

(6’) For all η ∈ ℓn2: pn|δn|⊢∃i ∈ {0, 1} : pi
n|⊢δn,δ f

∼
|ℓn 6= η

[Proof of (6) ⇒ (6’): In Vδn
, let i ∈ {0, 1} be such that η(l) 6= ji, where l is as in (6).]

Finally, let q =
⋃

n pn. Then q|δn|⊢stem(pn(δn)) = stem(q(δn)) = s∼n by (1), (3) and (4)

and 2.7. Let h∗ ∈ H be a function such that for all n, ℓn < h∗(n). So for all n, νh∗

(n)|ℓn

is a well-defined member of ℓn2.

For each n, let i∼n be a Pδn
-name of an element of {0, 1} such that

(6”) pn|δn|⊢p i
∼n

n |⊢f
∼
|ℓn 6= νh∗

(n)|ℓn

Now define a condition q′ as follows: For α /∈ {δn : n ∈ ω}, q′(α) = q(α), and

q′(δn) = q(δ)
[sn

⌢i
∼n]

(This is a Pδn
-name.)

Claim: q′ ≥ q ≥ p (this is clear) and q′|⊢f
∼

/∈
⋃

n∈ω

[νh∗

(n)].

To prove this claim, let Gδ ⊆ Pδ be a generic filter containing q′, and assume f := f
∼

[Gδ] is

in [νh∗

(n)]. Let in := i∼n[Gδn
]. Now q ∈ Gδ implies pn ∈ Gδ, so in particular pn|δn ∈ Gδn

.

Note that stem(q(δn)) = stem(pn(δn)) = sn, so q′ ∈ Gδ & pn ∈ Gδ implies pin
n ∈ Gδ. Also,

by (6”) we have q′|⊢f
∼

/∈
⋃

n[sf∗

(n)], a contradiction.

This finishes the proof of 3.5 modulo the construction of the sequences pn, Fn, etc.

First we fix enumerations dom(r) = {αm
r : m ∈ ω} for all r ∈ Pδ. We will write αm

n for

αm
pn

.
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Assume pn−1 is given. Let Fn := δn ∩ (Fn−1 ∪ {αm
k : k < n, m < n} ∪ {δn−1}). This will

take care of (2) and (3).

To define pn, first work in V [Gδn
], where pn−1|δn ∈ Gδn

.

We let sn := stem(pn−1(δn)).

We let r0 := pn−1 ∧ pn−1(δn)
[sn

⌢0]
, and r1 := pn−1 ∧ pn−1(δn)

[sn
⌢1]

.

By 1.18, we can find l, j0 6= j1 and r′0, r′1 such that r′i ≥ ri, and r′i|⊢f
∼

(l) = ji.

We now define a condition r ∈ Pδ/Gδn
as follows:

· r|δn = pn−1|δn.

· r(δn) = r′0(δn) ∪ r′1(δn) ∪
⋃
{pn−1(δn)

[sn
⌢i]

: i ∈ succpn−1(δn)(sn) − {0, 1}}.

(So stem(r(δn)) = sn.)

· If γ ∈ dom(pn−1)∪dom(r′0)∪dom(r′1) and γ > δn, we let r(γ) be a Pγ -name

such that

pn−1|δn |⊢
δn

|⊢
δn,γ

“For i in {0, 1}: If s∼n
⌢i ⊆ gδn

, then r(γ) = r′i(γ),

and if gδn
extends neither s∼n

⌢0 nor s∼n
⌢1,

then r(γ) = pn−1(γ)

(We write gδn
for gQδn

, the branch added by the forcing Qδn
.)

This is a condition in Pδ/Gδn
. Note that we have the following:

(i) stem(pn(δn)) = sn = stem(pn−1(δn))

(ii) For i ∈ {0, 1}, r ∧ r′i(δn) ≥ r′i.

(iii) r ≥δnδ pn−1.

Coming back to V , we can find names r∼, . . . , such that the above is forced by pn−1|δn.

Now let r̄ be a condition in Pδn
satisfying the following:

(a) r̄ ≥Fn,n pn−1|δn.

(b) For some countable set A ⊆ δ, r̄|⊢dom( r∼) ⊆ A.

(c) For some ℓn ∈ ω, r̄|⊢ l∼ < ℓn.

We can find a condition r̄ satisfying (a)–(c) by 1.15.

Finally, let pn := r̄ ∧ r∼. So pn|δn = r̄.

And let pi
n be defined by (5).

Why does this work?

First we check (1): pn−1|δn ≤Fn,n pn|δn by (a), and pn−1 ≤ pn, because pn|δn|⊢pn =

r̄ ∧ r∼ ≥ r∼ ≥ pn−1 (by (iii)). So pn−1 ≤Fn,n pn.

(2) and (3) are clear.

Proof of (4): pn|δn|⊢stem(pn(δn)) = stem((r̄ ∧ r∼)(δn)) = stem( r∼(δn)) = s∼n.

(6): Let Gδn
be a generic filter containing pn|δn. Work in V [Gδn

]. We write r for r∼[Gδn
],

etc.
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We want to show p0
n|⊢δnδ f

∼
(l) = j0. (p1

n|⊢δnδ f
∼

(l) = j1 is similar.) As r′0|⊢δnδ f
∼

(l) = j0, it

is enough to see p0
n ≥ r′0.

First we note that p0
n ≥ pn ≥ pn−1. Also p0

n = pn ∧ pn(δn)
[sn

⌢0] ≥ pn = r̄ ∧ r ≥ r.

Finally, p0
n(δn) = r(δn)

[sn
⌢0]

= r′0(δn).

So p0
n = p0

n ∧ r′0(δn) ≥ r ∧ r′0(δn) ≥ r′0, and we are done.

Our next model will satisfy

(∗) Unif(S) + d = c = ℵ2.

This in itself is very easy, as it is achieved by adding ℵ2 Cohen reals to L. (Also Miller

[10] showed that Unif(S) + c = ℵ2 + b = ℵ1 is consistent.)

Our result says that we can obtain a model for (∗) (and indeed, satisfying Add(S)) without

adding Cohen reals. In particular, (∗) does not imply Cov(M).

3.9 Theorem: Con(ZFC) implies

Con(ZFC + c = d = ℵ2 > b + Add(S) + no real is Cohen over L)

Proof (sketch): We will build our model by a countable support iteration of length ω2 where

at each stage we either use a forcing of the form PTH , or rational perfect set forcing. A

standard bookkeeping argument ensures that the hypothesis of 3.3 is satisfied, so we get

|⊢ω2
Add(S). Using rational perfect set forcing on a cofinal set yields |⊢ω2

d = c = ℵ2.

Since all P-point ultrafilters from V0 are preserved, no Cohen reals are added.

Proof (detailed version): Let {δ < ω2 : cf(δ) = ω1} ⊇
⋃

γ<ω2
Sγ , where 〈Sγ : γ < ω2〉 is a

family of disjoint stationary sets. Let Γ : ω2 × ω1 → ω2 be a bijection. We may assume

that δ ∈ SΓ(α,β) ⇒ δ > α.

First we claim that there is a countable support iteration 〈Pα, Qα : α < ω2〉 and a sequence

of names 〈〈H∼
β
α : α < ω2〉 : β < ω1〉 such that

(1) For all α < ω2, all β < ω1, H∼
β
α is a Pα-name.

(2) For all α < ω2, |⊢α{H
β
α : β < ω1} = ω(ω − {0, 1}).

(3) For all α < ω2: If α /∈
⋃

γ<ω2
Sγ , then |⊢αQα = RP .

(4) For all α < ω2, all β < ω1, all δ ∈ SΓ(α,β): |⊢δQδ = PT
H
∼

β
α
.

Proof of the first claim: By induction on α we can first define Pα, then 〈H∼
β
α : β < ω1〉 (by

1.8(1)), then Qα (by (3) or (4), depending on whether α ∈
⋃

γ<ω2
Sγ or not).

Our second claim is that letting H∼ be a name for all functions from ω to ω − {0, 1} in

V [Gω2
], the assumptions of 3.3 are satisfied, namely:

(a) |⊢ω2
“∀H ∈ H∼ ∃γ < ω2 Sγ ⊆ SH .”

(b) |⊢ω2
“∀γ < ω2 Sγ is stationary.”

(b) follows from 1.8(3) and 1.6, and (a) follows from

|⊢ω2
“For all H ∈ H∼ there is α < ω2 and β < ω1 such that H = H∼

β
α.”
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which in turn is a consequence of 1.7.

So by 3.3, Vω2
|= Add(S).

Let Gω2
⊆ Pω2

be a generic filter, Vω2
= V [Gω2

].

Again by 1.7, every H ⊆ ωω ∩ Vω2
of size ≤ ℵ1 is a subset of some Vα, α < ω2, so H

cannot be a dominating family, as rational perfect set forcing Qα+1 will introduce a real

not bounded by any function in H ⊆ Vα ⊆ Vα+1. Hence d = c = ℵ2.

Finally, any P-point ultrafilter from V is generates an ultrafilter in Vω2
, so there are no

Cohen reals over V .

This ends the proof of 3.9.
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