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1 Introduction

A variety of notions of probability, playing different roles, are relevant in
physics. One crucial notion, typicality, while not genuinely probabilistic at
all, is arguably the mother of them all.

There are lots of different words for probability. Here are some: chance,
likelihood, distribution, measure. There are also a variety of different notions
of probability:

• Subjective chance (Bayesian?)

• Objective chance (propensity?)

• Relative frequency, empirical (pattern)

• A mathematical structure providing a measure of the size of sets (Kol-
mogorov)

Sometimes these are presented as competing notions. That’s not my inten-
tion here. I wish only to emphasize at this point that when one speaks of
probability it is a good idea to be clear about which notion one has in mind.

∗I am very pleased to dedicate this article to the memory of Itamar Pitowsky. Itamar
was an exceptionally creative philosopher and scientist, and one with a sophisticated un-
derstanding of mathematics. In recent years he had become very interested in typicality,
a subject on which he was working at the time of his death.
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My main concern in this paper, however, is with typicality, a notion
that, while extremely important for understanding probability, is not really
a notion of probability at all. The logic of typicality is this. Many important
phenomena, in physics and beyond, while they cannot be shown to hold
without exception, can be shown to hold with very rare exception, suitably
understood. Such phenomena are said to hold typically; a proof that they
do so is a typicality proof.

Regarded as mathematics, such results can be very interesting, with prizes
awarded for their achievement. Of course the practical relevance of such
results is that if some observed behavior has been shown to hold with rare
exception, one should not be surprised if no exceptions are seen and one will
tend to feel justified in regarding the behavior as explained.

It must be admitted, however, that as a matter of logic such practical con-
clusions don’t follow. If exceptions exist there is nothing that would preclude
the exceptional cases from being the only cases we ever encounter. Nonethe-
less, science could make little if any progress without invoking appeals to
typicality, at least implicitly.

Here is an important example of a typicality statement:

One should not forget that the Maxwell distribution is not a state
in which each molecule has a definite position and velocity, and
which is thereby attained when the position and velocity of each
molecule approach these definite values asymptotically. . . . It is
in no way a special singular distribution which is to be contrasted
to infinitely many more non-Maxwellian distributions; rather it is
characterized by the fact that by far the largest number of possi-
ble velocity distributions have the characteristic properties of the
Maxwell distribution, and compared to these there are only a rel-
atively small number of possible distributions that deviate signif-
icantly from Maxwell’s. Whereas Zermelo says that the number
of states that finally lead to the Maxwellian state is small com-
pared to all possible states, I assert on the contrary that by far
the largest number of possible states are “Maxwellian” and that
the number that deviate from the Maxwellian state is vanishingly
small. (Ludwig Boltzmann, 1896 [1])

Notice that this statement of Boltzmann involves probability (“distribu-
tion”) and typicality. Boltzmann is saying here that states with Maxwellian
probabilities are typical (“by far the largest number of possible states are
‘Maxwellian’ . . . the number that deviate from the Maxwellian state is van-
ishingly small”). This illustrates an important source of confusion in this
business: that typicality statements often concern probabilities, making it
all too easy to conflate typicality and probability.
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2 History

There has been a revival of interest in typicality among physicists and philoso-
phers in recent years. However the recognition of the importance of the notion
is not new. That goes back to the very beginnings of probability theory in
the 18th century. What I shall describe here of the relevant ancient history
I’ve learned from Glenn Shafer [2, 3]. Notice in what follows how some of the
founding fathers of probability theory struggled to finesse the gap between
an event having extremely small size as measured in some natural way and
the event being impossible, or certain to fail.

2.1 Ancient History (< 1950)

• Jakob Bernoulli, in his great work Ars Conjectandi (1713), writes that
“Because it is only rarely possible to obtain full certainty, necessity
and custom demand that what is merely morally certain be taken as
certain.”

• Antoine Cournot (1843) writes that “A physically impossible event
is one whose probability is infinitely small. This remark alone gives
substance—an objective and phenomenological value—to the mathe-
matical theory of probability.” This later became known as Cournot’s
principle.

• According to Paul Levy (≈1919), Cournot’s principle is the only con-
nection between probability and the empirical world. He calls it “the
principle of the very unlikely event.”

• Hadamard refers instead to “the principle of the negligible event.”

• Kolmogorov, in his Foundations of Probability (1933), Chapter 1, §2,
The Relation to Experimental Data, writes that “Only Cournot’s prin-
ciple connects the mathematical formalism with the real world.”

• Similarly Borel (≈1948) writes that “The principle that an event with
very small probability will not happen is the only law of chance.”

2.2 Modern History (> 1950)

Notice that while the probablists did not refer to “typical” or “typicality,”
that notion, or something very much in its vicinity, is what they had in
mind. In more recent years the “t”-word has been used quite frequently,
most often, curiously, in connection with probability in quantum mechanics.
I hope the following quotations help convey the idea of the method of appeal
to typicality.
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In order to establish quantitative results, we must put some sort of
measure (weighting) on the elements of a final superposition. This
is necessary to be able to make assertions which hold for almost
all of the observer states described by elements of the superposi-
tion. We wish to make quantitative statements about the relative
frequencies of the different possible results of observation—which
are recorded in the memory—for a typical observer state; but to
accomplish this we must have a method for selecting a typical
element from a superposition of orthogonal states. . . .

The situation here is fully analogous to that of classical statis-
tical mechanics, where one puts a measure on trajectories of
systems in the phase space by placing a measure on the phase
space itself, and then making assertions . . . which hold for “al-
most all” trajectories. This notion of “almost all” depends here
also upon the choice of measure, which is in this case taken to be
the Lebesgue measure on the phase space. . . . Nevertheless the
choice of Lebesgue measure on the phase space can be justified
by the fact that it is the only choice for which the “conservation
of probability” holds, (Liouville’s theorem) and hence the only
choice which makes possible any reasonable statistical deductions
at all. (Hugh Everett, III, 1957 [4, page 460])

Then for instantaneous macroscopic configurations the pilot-wave
theory gives the same distribution as the orthodox theory, insofar
as the latter is unambiguous. However, this question arises: what
is the good of either theory, giving distributions over a hypothet-
ical ensemble (of worlds!) when we have only one world.

. . . a single configuration of the world will show statistical distri-
butions over its different parts. Suppose, for example, this world
contains an actual ensemble of similar experimental set-ups. . . .
it follows from the theory that the ‘typical’ world will approx-
imately realize quantum mechanical distributions over such ap-
proximately independent components. The role of the hypotheti-
cal ensemble is precisely to permit definition of the word ‘typical.’
(John S. Bell, 1981 [5, page 129])

3 Typicality in Statistical Mechanics

If there is a branch of physics in which typicality is most prominently used
it is probably statistical mechanics. And the most famous use of typicality
in statistical mechanics concerns Boltzmann’s equation. Moreover one could
scarcely have a better illustration of the point of and the need for a typicality
argument than in the transition from Boltzmann’s presentation of 1872 to
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his presentation in 1877. Boltzmann (1872) claimed that (at low density)
the state of a gas must evolve in accord with his equation. Boltzmann (1877)
claimed, in effect, only that it would typically do so. Here are some details.

Boltzmann’s equation is an evolution equation for a function f(q,v, t),
where q is a point in physical space, v is a velocity, and t of course is time.
Boltzmann analyzed the behavior of a certain function of q and v that pro-
vides an efficient summary of the most important details of the state of a gas,
namely the empirical one-particle distribution ρemp(q,v) ≡ fX(q,v), giving
basically the density of particles of the gas that are at or near q with velocity
more or less v.

Here, for an N -particle system, X = (q1 ,v1 , . . . ,qN
,v

N
) is the point in

the N -particle phase space describing the detailed state of the gas. The
subscripts “emp” and X on ρ and f are to emphasize that fX is indeed an
empirical distribution, determined by the phase point X, and not a probabil-
ity distribution that describes a random system or a hypothetical ensemble
of systems. As the phase point X(t) evolves according to the Hamiltonian
dynamics for the system, ρemp evolves accordingly: ρemp(q,v, t) ≡ fX(t)(q,v).

What Boltzmann claimed to have shown in 1872 is that for a low density
gas it must be the case that fX(t)(q,v) is well approximated by a solution
f(q,v, t) to Boltzmann’s equation. On the basis of an analysis of that equa-
tion using his H-function

H(f(q,v, t)) =

∫
f(q,v, t) log f(q,v, t)dqdv .

Boltzmann then argued that for large times t, f(q,v, t)—and hence also
fX(t)(q,v)—will approach the distribution that minimizes H, namely the

equilibrium distribution—the Maxwellian distribution—feq(q,v) ∝ e−
1
2
mv2/kT ,

where k is Boltzmann’s constant and T is the temperature of the gas.
Because of Loschmidt’s reversibilty objection, by 1877 Boltzmann had

realized that his earlier claim could not be right. He concluded that he
had shown, not that fX(t)(q,v) is, approximately, a solution to Boltzmann’s
equation for all initial phase points X(0), but only for most of them. More
precisely, he concluded that he had shown that given any distribution func-
tion f(q,v), even one that is non-Maxwellian and that does not correspond
to equilibrium, fX(t) will approximate a solution to Boltzmann’s equation for
the overwhelming majority, suitably understood, of initial phase points for
which fX(0) is (approximately) f—the overwhelming majority of phase points
in the macrostate defined by f . In other words, in 1877 Boltzmann argued
that the evolution of a gas in accord with Boltzmann’s equation, while not
inevitable, is typical. (Boltzmann’s proof was not rigorous. Almost a cen-
tury later, a rigorous typicality proof, valid only for short times, was found
by Oscar Lanford [6].)

More important for our understanding of the origin of thermodynamics,
in 1877 Boltzmann arrived at a far deeper appreciation of why a gas will
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tend to approach a state of equilibrium, in which nothing seems to change.
Crucial to this understanding is the notion of macrostate, alluded to above.
The macrostate Γf = {X ∈ ΓE | fX(q,v) ≈ f(q,v)} corresponding to f is
the set of phase points, in the energy surface ΓE of phase points having energy
E, that are all macroscopically like f—in the sense that the macro-variable
fX is approximately f . The phase points in the same macrostate are thus
very similar from a macroscopic perspective.

The most important fact about these macrostates, recognized by Boltz-
mann, concerns their sizes as measured using the natural volume measure on
the phase space, Lebesgue or Liouville measure. It is, in fact, this natural
volume measure that provides a sufficiently precise notion of “overwhelming
majority” for his typicality claim.

Here are two depictions of the partition of ΓE into macrostates (corre-
sponding to different choices of f):

ΓE ΓE

One special macrostate is singled out here by “Eq,” indicating the equilibrium
macrostate Γfeq , which is larger than all the others. The crucial fact is that
the depiction on the left is utterly misleading, giving a very wrong sense of
the relative sizes of the macrostates.

The depiction on the right is much better. But in fact the equilibrium
macrostate is so very much larger than the other macrostates that no picture
could adequately depict the difference in sizes. In fact, as Boltzmann showed,
at low density |Γf | ∼ e−NH(f). For a macroscopic system, with particle
number N ∼ 1020 or greater, this means that the overwhelming majority
of the points of ΓE are in Γfeq , the ratio of the size of a non-equilibrium
macrostate to that of the equilibrium macrostate being ridiculously small, of
order 10−1020

.
The depiction on the right illustrates another one of Boltzmann’s typi-

cality results—that equilibrium is typical: the overwhelming majority of the
phase points X in the energy surface ΓE correspond to a gas having equilib-
rium properties, in the sense that fX is approximately feq. This typicality
result, which is easy, should not be confused with the typicality result for
Boltzmann’s equation, which is very hard. For the former, “overwhelming
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majority” is relative to the entire energy surface, while for the latter it is
mainly relative to the incredibly small non-equilibrium macrostates.

Be that as it may, the estimates associated with the depiction do in
fact provide us with a good rule of thumb for the relative size of atypical
events of all sorts in statistical mechanics: corresponding to the ratio 10−1020

.
You should at least not be surprised when events corresponding to sets of
possibilities that are so small aren’t observed.

Besides the two typicality results that I’ve mentioned there are many
others in statistical mechanics—either proven already or awaiting a rigorous
proof. Some examples are the second law of thermodynamics, the derivation
of hydrodynamic equations, approach to equilibrium in quantum mechanics,
and the universality of the canonical ensemble in quantum mechanics (canon-
ical typicality). And outside of statistical mechanics there is, for example,
the origin of quantum randomness in Bohmian mechanics, to which I now
turn.

4 Bohmian Mechanics

Bohmian mechanics [7–10] is arguably the simplest formulation of non-rela-
tivistic quantum mechanics. It concerns the dynamics of a system of parti-
cles, with positions Q1 , . . . ,QN

, defining a configuration Q. This dynamics is
determined by the usual quantum mechanical wave function ψ, itself evolv-
ing, as in standard quantum mechanics, according to Schrödinger’s equation.
In the simplest case, of particles without spin, ψ is a function ψ(q1 , . . . ,qN

)
of the possible positions of the particles. The joint evolution of ψ and Q is de-
terministic. Nonetheless, as a consequence of a typicality analysis, the usual
quantum probabilities, given by |ψ(q)|2, govern the results of observations in
a Bohmian universe.

Quantum equilibrium, corresponding to the quantum equilibrium distri-
bution ρqe(q) = |ψ(q)|2, should be thought of, in this regard, as roughly
analogous to thermodynamic equilibrium, corresponding to the Maxwellian
feq ∝ e−

1
2
mv2/kT . A proper understanding of quantum equilibrium probabil-

ities and of thermodynamic equilibrium probabilities both require that we
appreciate that there are a variety of conceptually different probablistic ob-
jects relevant to the analysis, as I shall explain later. They also require that
we appreciate that there are, in both cases, two different sorts of systems to
be dealt with: a large system, for thermodynamics a gas in a box, and for
Bohmian mechanics the entire universe; and a small subsystem of the large
system, which in both cases we will take here, for simplicity, to be a single
particle.
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4.1 The Wave Function of a Subsystem

Consider a 1-particle subsystem of an N -particle Bohmian universe. Let’s
denote by Q the position of the particle and by Qenv the configuration of the
rest of the particles of our universe—the configuration of the environment.
Let Ψ be the wave function of the universe. It is a function Ψ(q, qenv).
(Here we’ve used, as is common in Bohmian mechanics, lower case letters
to indicate possible values, generic values, as opposed to the actual values,
denoted with capital letters.)

The appropriate notion for the wave function of our subsystem is given
by the conditional wave function

ψ(q) = Ψ(q, Qenv) ,

a function of the generic position of our particle obtained by plugging the ac-
tual configuration of its environment into the wave function of the universe.
Note that ψ need not be normalized—its absolute square integral over all of
space need not be 1. Whenever ψ appears as part of a probability formula it
should be regarded as having been normalized via multiplication by the ap-
propriate positive real number. Note also that because of the dependence on
the actual configuration of the environment, which inherits its own typically
complicated evolution from the Bohmian evolution of the configuration of the
universe, the wave function of our particle depends on time in a somewhat
complicated way:

ψt(q) = Ψt(q, Qenv(t)) ,

with Ψ itself, as a solution of Schrödinger’s equation, depending on t. As a
consequence of this evolution, the wave function of a subsystem in Bohmian
mechanics can evolve in a variety of ways. In particular it will evolve accord-
ing to Schrödinger’s equation when the system is suitably decoupled from its
environment, and will undergo collapse of the wave packet in the appropriate
measurement situations.

For our purposes here, the most important fact about the conditional
wave function is that it provides us with the probability distribution of our
subsystem—in fact in a variety of senses. The most basic sense in which it
does so is expressed in the following simple mathematical fact:

P (Q(t) ∈ dq |Qenv(t)) = |ψt(q)|2dq (1)

Here P is the probability distribution on initial configurations of the universe
(at a time, say, shortly after the big bang) given by |Ψ(q)|2. This fundamen-
tal conditional probability formula of Bohmian mechanics says that for such
a random universe the conditional distribution of the position of a particle
at any time, given its enviroment at that time, depends only on its condi-
tional wave function at that time, and does so via the usual Born, quantum
equilibrium, probability formula.
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As a consequence of this formula it follows via a typicality analysis [10]
that for the overwhelming majority—in the sense of the measure P—of ini-
tial configurations of a Bohmian universe, the empirical distribution for the
positions of particles (and for larger subsystems) in suitable real world ensem-
bles of systems having given conditional wave function ψ is (approximately)
the quantum equilibrium distribution |ψ|2. In short, quantum equilibrium is
typical.

5 Probability and Typicality

In a typical typicality analysis in physics—and arguably in any serious ap-
plication of probability to the real world—probability structures play several
quite different roles, the most important of which are the following:

• ρemp: empirical distribution (relative frequency)

• ρth: theoretical distribution (idealization, N →∞)

• P : measure for typicality

It is the empirical distribution that describes a real world pattern of events
that is responsible for what we observe. The theoretical distribution is an
idealization providing a good approximation to the empirical distribution,
ρemp ≈ ρth, in the limit of large ensembles of subsystems. P is a probability
distribution on the big system containing the subsystems. It is via a law of
large numbers kind of analysis using P that one can show that it typically
happens that ρemp ≈ ρth, with typicality defined in terms of P .

Many different probability distributions P define the same sense of typi-
cality. This is because, insofar as typicality is concerned, the detailed prob-
ability of a set is not relevant; all that matters is which sets have very large
measure and which very small. Nonetheless, it is often the case that a par-
ticular choice of P is special. It is for such a choice that one in fact can most
efficiently carry out the relevant analysis. For this special P the theoretical
distribution will be in some sense a conspicuous part of P , meaning that:

ρth(x)dx = ρP (x)dx = “P (X ∈ dx)” .

Here I use X and x for the subsystem variables. (I shall use X and x—
without bold—to refer to the variables for the big system.) ρP is a sort of
marginal distribution of the subsystem, arising from the distribution P of
the big system, and the quotation marks are to indicate that ρP is often
only “sort of” a marginal, and not always an actual marginal. For example
the relevant ρP in Bohmian mechanics is a conditional marginal, just as is
suggested by the fundamental conditional probability formula (1).
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For the second typicality result in statistical mechanics mentioned above,
that “equilibrium is typical,” P (dx) is the microcanonical ensemble on ΓE,
the uniform distribution over the energy surface. However, to illustrate the
points I wish to make here it would be better to make a different but physi-
cally equivalent choice for P , namely the canonical ensemble, given by

P (dx) ∝ e−H(x)/kTdx .

And we shall assume we are dealing with the simplest case, that of non-
interacting particles, with H =

∑
i

1
2
mvi

2. In this case P =
∏

i feq(vi) is
simply the product over all the particles of the equilibrium distribution for
each particle.

Then [with x = (q,v)] we have that

ρemp(x) ≡ ρ(X)
emp(x) = fX(q,v)

(the precise definition of ρemp is ρ
(X)
emp(q,v) = 1

N

∑
(qi,vi)∈X δ(q−qi)δ(v−vi))

and that
ρth(x) ≡ feq(x) = ρP (x) ∝ e−

1
2
mv2/kT .

In particular the theoretical distribution here is a factor of P—a piece, as it
were, of the measure for typicality.

In Bohmian mechanics (writing x for q, etc.) we have that

P (dx) = |Ψ(x)|2dq

ρemp(x) ≡ ρXemp(x) =
1

N

∑
xi∈X

δ(x− xi)

and
ρth(x) ≡ ρqe(x) = ρP (x) = |ψ(x)|2 .

Here too the theoretical distribution is sort of a piece of the measure for
typicality.

A typicality analyis binds tightly together these three very different prob-
ablistic objects. This is particularly so for the special choice of P , a choice
for which P has some nice properties—more on these shortly—the simplest
such being that P be a product measure as above. When P is thus “nice”
one can show via a law of large numbers type analysis that (when N is large)
ρemp ≈ ρP , P -typically—that for the P -overwhelming majority of points X,
ρXemp is approximately the theoretical distribution, with the latter itself be-
ing a quasi-marginal of the measure for typicality P . We shall say in this
situation that P is statistically transparent.
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5.1 Ergodicity and Statistical Transparency

Statistical transparency is closely connected to the notion of ergodicity [11].
That is because it is often the case that ρemp is more or less a time-average or
space-average—the sorts of things with which ergodicity is concerned. The
ergodicity of P (under either space or time translation) implies that these
averages agree with the phase averages, i.e., with the theoretical distribution
ρP arising from P . Thus we can more or less identify statistical transparency
with the ergodicity of P .

This does, however, have to be taken with a grain of salt, since the space
averages relevant to ergodicity would be infinite system averages (so N = ∞)
or for time averages, infinite time averages (T = ∞), idealizations that
might not exactly match the typicality analysis under consideration. We
shall however ignore this point, abusing mathematics a bit, and simply pre-
tend without qualification that statistical transparency can be identified with
ergodicity—that it is the ergodicity of P that makes it special, so that we
have statistical transparency.

5.2 Symmetry and Statistical Transparency

There is another way in which P might be special: among all measures
defining the same sense of typicality, it might be one that is symmetric, and
the only one that is.

The relevant symmetry here depends upon whether ρemp involves space or
time averages. In the former case the symmetry is that of spatial-translation
invariance (remember we are pretending that our system is suitably ideal-
ized, and thus spatially infinite if necessary), in the latter case that of time-
translation invariance. Suppose P is in this sense symmetric. The set of
measures P̃ defining the same sense of typicality as P are those of the form
P̃ (dx) = g(x)P (dx) obtained from P by multiplying it by a positive function
g that is bounded above and away from zero below. And if, as we are pre-
tending, ρemp involves infinite space or time averages, the set of probability
measures equivalent to P in the sense of typicality could now be taken to
correspond to the requirement that g be positive, with integral with respect
to P equal to 1—i.e., to the set of probability measures equivalent to P in
the sense of measure theory.

The connection between symmetry and statistical transparency is then
this: P is the only symmetric probability measure in the class of equivalent
ones precisely in case there is statistical transparency. That’s because of
the connection between ergodicity and statistical transparency just discussed
together with the fact that a system is ergodic precisely in the case of there
being a unique symmetrical P in the equivalence class.
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5.3 Predictive Typicality and Ergodicity

The discussion has so far taken for granted that we have unambiguous (space
or time) averages, i.e., that ρemp is unambiguous. This predictive typicality,
we should remark, is a property of the typicality class itself, and not a char-
acterization of a special member of that class. Predictive typicality is more
or less equivalent to the requirement that the typicality equivalence class has
an ergodic member P . This will of course be the member of the class that
most directly expresses the observed probabilities ρemp.

5.4 The Good, the Bad, and the Ugly

To summarize, the three probability measures, ρemp, ρth = ρP , and P , in-
volved in the usual typicality analysis are intimately related: We have that

ρemp ↔ ρP ↔ P ,

conveying that the observed probability distribution ρemp, which of course
varies from trial to trial of the same experiment, is well approximated by
the theoretical distribution ρP (which of course is the same for all trials
of an experiment), the latter being a conspicuous part of the meausure for
typicality P .

This is both good and bad. It is good, because it suggests a nice simplic-
ity, inasmuch as it means that for many practical purposes one need worry
about just one probability measure and not three. At the same time it is bad,
because the simplicity is a misleading simplicity, since the three probability
measures are conceptually of entirely different natures, despite their close-
ness for practical purposes. And the consequences of the conflation of three
such very different notions—the discussions and analyses in which crucial
distinctions between very different objects are not properly recognized—can
be quite ugly.

The confusion is probably greater still with regard to the typicality analyis
for Bohmian mechanics, which can be summarized like so:

ρemp ↔ ρψth ↔ PΨ

Here ρψth = |ψ|2 and PΨ = |Ψ|2 are given by the very same formula, with the
only difference being ψ versus Ψ. Unless one appreciates the great differ-
ence between the wave function ψ of a subsystem and that of the universe
Ψ, this can make it difficult to accept that the probablisitic objects involved
are so very different.

6 Two Directions for Typicality Research

I have discussed here the method of appeal to typicality and given some
examples. I have indicated that, while typicality is fundamentally not a
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version of probability, it can nonetheless easily seem to be one. But we
have not attempted here to justify the conclusions that scientists arrive at
by appealing to typicality. In particular I have not explained why what is
typical should be expected to happen.

Nor shall I do so here: a systematic analysis would require that we deal
with some of the most fundamental issues in the philosophy of science, such
as the meaning and nature of scientific explanation. I do feel, however, that a
comprehensive philosophical analysis of scientific explanation and the logic of
appeal to typicality would be most welcome. (Some gestures in this direction
can be found in section 6 of [12].)

6.1 Types of Typicality

I would, however, like to mention here three distinctions between types of
typicality that are relevant to how strongly typicality seems to compel our ex-
pectations: (i) natural versus axiomatic, (ii) continuum versus finite, and (iii)
hypothetical versus actual. The measure of typicality might be natural, like
the uniform distribution over the space of possibilities, naturally expressed;
or it might be merely stipulated axiomatically. The set of possibilities might
be finite, or it might be a continuum (it of course might also be infinite
but not a continuum). The possibilities might be merely possibilities—they
might be hypothetical—or they might, as with many-worlds, be all actual.

Other things being equal, typicality corresponding to the first type of
each pair seems to more strongly compel our expectations. For example, the
notion of most elements of a finite set seems entirely unambiguous, corre-
sponding to counting measure, whereas with a continuum one might be able
to argue that there are a variety of reasonable senses of most. The worst case
in this regard is that of axiomatic typicality with a finite set of actualities.
(It might well be that the only way typicality can be persuasively applied to
the case in which the possibilities are in fact actual is within the Humean ap-
proach to law and probability advocated by Barry Loewer [13]; however, the
goal in this approach is more modest: description rather than explanation.)

6.2 Typicality not Given by Probability

I will conclude by putting on the table a possibility afforded by the recog-
nition that typicality is not probability. While it is usually the case that
typicality is defined using a probability measure, a different way of deciding
which sets are large and which small, for example one that is given by a set
function that violates the axioms of probability, is feasible. Such a wider no-
tion of typicality could be used for the formulation of new types of physical
theories.

Along such lines not much has yet been done. But Murray Gell-Mann
and James Hartle [14] have noted with regard to their decoherent histories
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version of quantum mechanics that insofar as their decoherence functional
fundamentally is used to define, in effect, typicality (though they don’t use
that word) the fact that it may end up violating the axioms of probabil-
ity in a limited sort of way need not concern us. And Bruno Galvan [15]
has proposed a trajectory based version of quantum mechanics that, unlike
Bohmian mechanics, is defined solely in terms of a typicality that is not based
on probability. While Galvan’s theory is a bit odd, it does have the virtue of
seeming to exploit only traditional quantum mechanical structure.

The possibility of a typicality liberated from probability might be a great
source of inspiration for theory formation. I think that this possibility would
have pleased Itamar very much.
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