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Abstract. The tangle modality is a propositional connective that extends basic modal
logic to a language that is expressively equivalent over certain classes of finite frames to
the bisimulation-invariant fragments of both first-order and monadic second-order logic.
This paper axiomatises several logics with tangle, including some that have the universal
modality, and shows that they have the finite model property for Kripke frame semantics.
The logics are specified by a variety of conditions on their validating frames, including
local and global connectedness properties. Some of the results have been used to obtain
completeness theorems for interpretations of tangled modal logics in topological spaces.
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1. Introduction

The tangle modality, which we denote by 〈t〉, is a polyadic propositional
connective that creates a new formula 〈t〉Γ out of any finite non-empty set
Γ of formulas. 〈t〉Γ has the following semantics in a model on Kripke frame
(W, R):

〈t〉Γ is true at x iff there is an endless R-path xRx1 · · ·xnRxn+1 · · · · · ·
in W with each member of Γ being true at wn for infinitely many n.

This connective was introduced by Dawar and Otto [2] in a study of lan-
guage fragments that are bisimulation-invariant over finite frames. It is well
known that over the class of all frames, the bisimulation-invariant fragment
of first-order logic is expressively equivalent to the basic modal language L�
of a single modality � (van Benthem’s Theorem [19,20]). This equivalence
also holds over any elementary class of frames, such as the class of all tran-
sitive ones [2, Thm. 2.12], and over the class of all finite frames [13]. By
contrast, the bisimulation-invariant fragment of monadic second-order logic
is equivalent over all frames to the much more powerful modal mu-calculus
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[10]. But [2] proved the striking result that over the class of finite transitive
frames, and a number of its subclasses, the bisimulation-invariant fragment
of monadic second-order logic and the mu-calculus are both equivalent to the
bisimulation-invariant fragment of first-order logic, and all three are equiva-
lent, not to L�, but to the language L〈t〉

� that expands L� by the addition
of the tangle modality 〈t〉.

Subsequently, Fernández-Duque [4,5] studied the logic of L〈t〉
� -formulas

valid in S4 frames, i.e. reflexive transitive frames, axiomatising it as an exten-
sion of S4, and showing that it has the finite model property. We call this
logic S4t. Its essential axioms involving 〈t〉 are

Fix: 〈t〉Γ → ♦(γ ∧ 〈t〉Γ), all γ ∈ Γ,

Ind: �(ϕ → ∧
γ∈Γ ♦(γ ∧ ϕ)) → (ϕ → 〈t〉Γ),

where ♦ is the dual modality to �. These axioms encapsulate the fact that
〈t〉Γ has the same meaning as the mu-calculus formula

νp
∧

γ∈Γ
♦(γ ∧ p),

which is interpreted (loosely speaking) as the greatest fixed point of the
function ϕ �→ ∧

γ∈Γ ♦(γ ∧ ϕ). Fix expresses that 〈t〉Γ is a (post)fixed point
of this function, while Ind expresses that it is the greatest.

To explain this further, denote by [[ϕ]] the set of points at which a formula
ϕ is true in a model on a frame (W,R), and let fΓ be the function on subsets
S of W defined by

fΓ(S) =
⋂

γ∈Γ
R−1([[γ]] ∩ S),

where in general R−1(V ) is the R-preimage {x ∈ W : ∃y(xRy ∈ V )} of V .
Since [[♦ϕ]] = R−1[[ϕ]], we see that

fΓ([[ϕ]]) = [[
∧

γ∈Γ
♦(γ ∧ ϕ)]].

A set S is a postfixed point of fΓ if S ⊆ fΓ(S). It can be shown that [[〈t〉Γ]]
is equal to the union ⋃

{S ⊆ W : S ⊆ fΓ(S)} (1.1)
of all postfixed points of fΓ, which implies by the Knaster-Tarski Theorem
[18] that [[〈t〉Γ]] is a fixed point of fΓ, i.e. fΓ[[〈t〉Γ]] = [[〈t〉Γ]], that is larger than
all others (see the introduction to [9] for more on the mu-calculus reading of
〈t〉).

Fernández-Duque also provided the name ‘tangle’ for 〈t〉, motivated by a
topological semantics for it studied further in [3,6]. That interprets � as the
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interior operator in a topological space, and hence ♦ as the closure operator,
while 〈t〉 is interpreted as an operation of tangled closure assigning to any
collection of sets the largest subset in which each member of the collection
is dense. In an S4 frame, R−1(V ) is the topological closure of V under the
Alexandroff topology generated by the successor sets R(x) = {y ∈ W : xRy}
of all points x ∈ W . In this topology, [[〈t〉Γ]] is the tangled closure of {[[γ]] :
γ ∈ Γ}.

The purpose of the present paper is to axiomatise several other L〈t〉
� -

logics whose L� fragment is weaker than S4, and show that they have the
finite model property for Kripke semantics. First we deal with the logics
K4t and KD4t, characterised by validity in frames that are transitive, and
serial and transitive, respectively. Then we study a sequence of axioms Gn

in the variables p0, . . . , pn, introduced by Shehtman [15]. Putting Qi = pi ∧∧
i �=j≤n ¬pj for each i ≤ n, then Gn can be defined as the formula

∧

i≤n
♦Qi → ♦

(∧

i≤n
♦∗¬Qi

)
,

where in general ♦∗ϕ is ϕ ∨ ♦ϕ. Gn expresses a certain graph-theoretic local
n-connectedness property of a frame as a directed graph, namely that the
successor set R(x) of each point x has at most n path-connected components.
We prove the finite model property over such frames for a logic K4Gnt, and
for a number of extensions of it. These include expanding the language by
including the universal modality ∀ and its dual ∃, and adding the axiom

∃ϕ ∧ ∃¬ϕ → ∃(♦∗ϕ ∧ ♦∗¬ϕ),

which expresses global connectedness (any two points have a connecting path
between them). We show that any weak1 canonical frame of an extension of
K4Gnt is locally n-connected, using Fix and Ind to refine an analysis of the
L�-logic KD4G1 given in [15].

Our initial motivation for this work involves a different topological seman-
tics in which ♦ is interpreted as the derivative (i.e. set of limit points) opera-
tor of a topological space, and the interpretation of 〈t〉 is modified to use the
derivative in place of topological closure. In [8,9] we have obtained complete-
ness theorems for the resulting logics of a range of spaces. For instance, the
’tangle logic’ KD4G1t is the logic of the Euclidean space Rn for all n ≥ 2, and
includes the logic of every dense-in-itself metric space; KD4G2t is the logic of
the real line R; and KD4t is the logic of any zero-dimensional dense-in-itself
metric space (examples include the space of rationals Q, the Cantor space,

1‘Weak’ means built from a language with finitely many variables.



134 R. Goldblatt, I. Hodkinson

and the Baire space ωω). The technique used to prove these results, and
others, is to construct validity preserving maps from the space in question
onto finite frames for the logic, and to appeal to the finite model property to
ensure that there are sufficiently many such frames available to yield com-
pleteness. Thus the work of this paper is an essential prerequisite to these
completeness theorems. At the same time we consider that the paper has its
own interest as a contribution to modal Kripke semantics that goes beyond,
and is independent of, the topological applications.

Our approach to the finite model property for languages with 〈t〉 differs
from that of [5]. It follows a well known procedure of building a canonical
Henkin model and then collapsing it to a finite one by the filtration process.
But there are some stumbling blocks in the presence of 〈t〉. The first is that
a canonical model, whose points are maximally consistent sets of formulas,
may fail to satisfy the ‘Truth Lemma’ that a formula is true at point x iff
it belongs to x. We show below that there is an endless R-path xRx1R · · ·
in the canonical model for K4t along which a variable q and its negation ¬q
are each true infinitely often, so 〈t〉{q, ¬q} is true at x, but 〈t〉{q, ¬q} /∈ x.
Consequently, we are obliged to work with the membership relation ϕ ∈ x of
a canonical model, rather than its truth relation.

The second problem is that the filtration process may reproduce the first
problem. There may be endless R-paths in a finite collapsed model MΦ

that contradict the falsity of formulas of the form 〈t〉Γ. To overcome this we
‘untangle’ the binary relation of the frame of MΦ, refining it to a subrelation
that gives a new model Mt, in such a way that such ‘bad paths’ do not
occur in Mt. This construction is the heart of the paper, and is carried out
in Section 6 by making vital use of the tangle axioms Fix and Ind (with the
latter modified slightly for the sub-S4 context).

Each result about the finite model property that we prove is stated as a
formal Proposition, typically at the end of a section. In the final section there
is a summary table listing all of the logics that we analyse, and giving for
each of them of a class of frames over which it has the finite model property.

2. Syntax and Semantics

We assume familiarity with Kripke semantics for modal logic, but include
some review of basics as we establish notation and terminology. Let Var be
a set of propositional variables, which may be finite or infinite. Formulas
of the language L� are constructed from these variables by the standard
Boolean connectives �, ¬, ∧ and the unary modality �. The other Boolean
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connectives ⊥, ∨, →, ↔ are introduced as the usual abbreviations, and the
dual modality ♦ is defined to be ¬�¬.

The language L〈t〉
� is defined as for L� but with the additional formation

of a formula 〈t〉Γ for each finite non-empty set Γ of formulas. Later we will
add the universal modality ∀ and its dual ∃.

A (Kripke) frame is a pair F = (W,R) with R a binary relation on set W .
For each x ∈ W , the set R(x) = {y ∈ W : xRy} is the set of R-successors or
R-alternatives of x.

A model M = (W,R, h) on a frame is given by a valuation function
h : Var → ℘W . The relation M, x |= ϕ of a formula ϕ of L〈t〉

� being true at
x in M is defined by an induction on the formation of ϕ as follows:

1. M, x |= p iff x ∈ h(p), for p ∈ Var.

2. M, x |= �.

3. M, x |= ¬ϕ iff M, x �|= ϕ.

4. M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ.

5. M, x |= �ϕ iff M, y |= ϕ for every y ∈ R(x).

6. M, x |= 〈t〉Γ iff there is a sequence x = x0, x1, . . . in W with xnRxn+1

for each n < ω and such that for each γ ∈ Γ there are infinitely many
n < ω with M, xn |= γ.

Consequently we have

7. M, x |= ♦ϕ iff M, y |= ϕ for some y ∈ R(x).

A formula ϕ is true in model M if it is true at all points in M, and valid in
frame F if it is true in all models on F .

A subframe of a frame F is any frame F ′ = (W ′, R′) for which W ′ ⊆ W
and R′ is the restriction of R to W ′. Then F ′ is an inner subframe of F if it
is closed under R in the sense that R(x) ⊆ W ′ for all x ∈ W ′.

We say that a frame (W,R), or any model on that frame, is finite if W is
finite, and is reflexive if R is reflexive, transitive if R is transitive, etc.

3. Clusters in Transitive Frames

From now on we will work throughout with models on transitive frames
(W, R). If xRy, we may say that the R-successor y comes R-after x, or is
R-later than x. We write xR•y when xRy but not yRx: then y is strictly
after/later, or is a proper R-successor. A point x is reflexive if xRx, and
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irreflexive otherwise. R is (ir)reflexive on a set X ⊆ W if every member of
X is (ir)reflexive.

An R-cluster is a subset C of W that is an equivalence class under the
equivalence relation

{(x, y) : x = y or xRyRx}.

A cluster is degenerate if it is a singleton {x} with x irreflexive. Note that a
cluster C can only contain an irreflexive point if it is a singleton. For, if C
has more than one element, then for each x ∈ C there is some y ∈ C with
x �= y, so xRyRx and thus xRx by transitivity. On a non-degenerate cluster
the relation R is universal. For C to be non-degenerate it suffices that there
exist x, y ∈ C with xRy, regardless of whether x = y or not.

Write Cx for the R-cluster containing x. Thus Cx = {x} ∪ {y : xRyRx}.
The relation R lifts to a well-defined partial ordering of clusters by putting
CxRCy iff xRy. A cluster C is R-maximal when there is no cluster that
comes strictly R-after it, i.e. when CRC ′ implies C = C ′. A point x ∈ W is
R-maximal, or just maximal if R is understood, if Cx is a maximal cluster, or
equivalently if xRy implies yRx. This means that R•(x) = ∅, where R•(x) =
{y ∈ W : xR•y}.

An R-chain is a sequence C1, C2, . . . of pairwise distinct clusters with
C1RC2R · · · . In a finite frame, such a chain is of finite length. Hence we can
define a notion of rank in a finite frame by declaring the rank of a cluster
C to be the number of clusters in the longest chain of clusters starting with
C. So the rank is always ≥ 1, and a rank-1 cluster is maximal. The rank of
a point x is defined to be the rank of Cx. The key property of this notion is
that if xR•y, equivalently if Cy comes strictly R-after Cx, then y has smaller
rank than x.

An endless R-path is a sequence {xn : n < ω} such that xnRxn+1 for
all n, as in the semantic clause (6) for the truth of 〈t〉Γ. Such a path starts
at/from x0. The terms of the sequence need not be distinct: for instance, any
reflexive point x gives rise to the endless R-path xRxRxR . . . . In a finite
frame, an endless path must eventually enter some non-degenerate cluster C
and stay there, i.e. there is some n such that xm ∈ C for all m ≥ n.

If (W ′, R′) is an inner subframe of (W,R), then every R′-cluster is an
R-cluster, and every R-cluster that intersects W ′ is a subset of W ′ and is an
R′-cluster.

In a model M, a set Γ of formulas is satisfied by the cluster C if each
member of Γ is true in M at some point of C. So Γ fails to be satisfied by C
if some member of Γ is false at every point of C. In a finite model, an endless
path must eventually enter some non-degenerate cluster and stay there, so
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we get that

x |= 〈t〉Γ iff there is a y with xRy and yRy and Γ is satisfied by Cy.
(3.1)

To put this another way, x |= 〈t〉Γ iff Γ is satisfied by some non-degenerate
cluster following Cx.

Write 〈t〉ϕ for the formula 〈t〉{ϕ}. Then 〈t〉ϕ is true at x iff there is an
endless path starting at x along which ϕ is true infinitely often. For finite
models we have

x |= 〈t〉ϕ iff there is a y with xRy and yRy and y |= ϕ,

i.e. the meaning of 〈t〉ϕ is that there is a reflexive alternative at which ϕ is
true. Thus for finite reflexive models (i.e. finite S4 models) this reduces to
the standard Kripkean interpretation (7) of ♦. More strongly, it is evident
that while 〈t〉ϕ → ♦ϕ is valid in all transitive frames, reflexive transitive
frames validate 〈t〉ϕ ↔ ♦ϕ.

Observe further that in a finite model that is partially ordered (i.e. R is
reflexive, transitive and anti-symmetric), 〈t〉Γ is equivalent to ♦

∧
Γ since

each cluster is a non-degenerate singleton {y} which satisfies Γ iff
∧

Γ is true
at y. On the other hand, in an irreflexive finite model no formula 〈t〉Γ can
be true anywhere, since all clusters are degenerate.

Write ♦∗ϕ for the formula ϕ ∨ ♦ϕ, and �∗ϕ for ϕ ∧ �ϕ. In any transitive
frame, define R∗ = R ∪ {(x, x) : x ∈ W}. Then R∗ is the reflexive-transitive
closure of R, and in any model M on the frame we have

M, x |= �∗ϕ iff for all y, if xR∗y then M, y |= ϕ.

and
M, x |= ♦∗ϕ iff for some y, xR∗y and M, y |= ϕ.

Note that if Cx = Cy, then xR∗y. For each x let R∗(x) = {y ∈ W : xR∗y}.
Then R∗(x) = {x} ∪ R(x).

4. Tangle Logics

A tangle logic, in any language including L〈t〉
� , is a set of formulas that includes

all tautologies and all instances of the schemes

K: �(ϕ → ψ) → (�ϕ → �ψ)

4: ♦♦ϕ → ♦ϕ

Fix: 〈t〉Γ → ♦(γ ∧ 〈t〉Γ), all γ ∈ Γ,

Ind: �∗(ϕ → ∧
γ∈Γ ♦(γ ∧ ϕ)) → (ϕ → 〈t〉Γ),
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and whose rules include modus ponens and �-generalisation (from ϕ infer
�ϕ). These schemes are all true in any transitive model M, and so {ϕ :
ϕ is true in M} is a tangle logic. So too is {ϕ : ϕ is valid in F} for any
transitive frame F .

Our naming convention will be that if N is the name of some logic in a
language without 〈t〉, then Nt denotes the smallest tangle logic that contains
all instances of members of N. Thus the smallest tangle logic will be denoted
K4t, since K4 is the smallest normal L�-logic to contain the scheme 4.

Any tangle logic includes the following schemes:

〈t〉ϕ → ♦ϕ

4∗: ♦♦∗ϕ → ♦ϕ

4t: ♦〈t〉Γ → 〈t〉Γ
〈t〉ϕ → ♦ϕ is derived from Fix, and 4∗ from 4, using the modal principles
♦(ϕ ∧ ψ) → ♦ϕ and ♦(ϕ ∨ ψ) → ♦ϕ ∨ ♦ψ and Boolean reasoning. 4t will
be explicitly needed in Section 9, to establish a condition called (r4). Here
is a derivation of 4t, in which the justification “Bool” means by principles of
Boolean logic, “Reg” is the Regularity rule from ϕ → ψ infer ♦ϕ → ♦ψ, and
“Nec” is the Necessitation rule from ϕ infer �∗ϕ.

For each γ ∈ Γ we derive
1. 〈t〉Γ → ♦(γ ∧ 〈t〉Γ) Fix
2. ♦(γ ∧ 〈t〉Γ) → ♦〈t〉Γ K-theorem (Bool + Reg)
3. 〈t〉Γ → ♦〈t〉Γ 1, 2 Bool
4. γ ∧ 〈t〉Γ → γ ∧ ♦〈t〉Γ 3, Bool
5. ♦(γ ∧ 〈t〉Γ) → ♦(γ ∧ ♦〈t〉Γ) 4, Reg
6. 〈t〉Γ → ♦(γ ∧ ♦〈t〉Γ) 1, 5 Bool
7. ♦〈t〉Γ → ♦♦(γ ∧ ♦〈t〉Γ) 6, Reg
8. ♦〈t〉Γ → ♦(γ ∧ ♦〈t〉Γ) 7, Axiom 4, Bool.

Since this holds for every γ ∈ Γ we can continue with
9. ♦〈t〉Γ → ∧

γ∈Γ ♦(γ ∧ ♦〈t〉Γ) 8 for all γ

in Γ, Bool.
10. �∗(♦〈t〉Γ → ∧

γ∈Γ ♦(γ ∧ ♦〈t〉Γ)) 9, Nec.

11. �∗(♦〈t〉Γ → ∧
γ∈Γ ♦(γ ∧ ♦〈t〉Γ)) → (♦〈t〉Γ → 〈t〉Γ) Ind with

ϕ = ♦〈t〉Γ.
12. ♦〈t〉Γ → 〈t〉Γ 10, 11, Bool.

The members of a logic L may be referred to as the L-theorems. A formula
ϕ is L-consistent if ¬ϕ is not an L-theorem. If K is a class of frames, then
we will say that L has the finite model property over K if it is validated by



The Finite Model Property for Logics with the Tangle Modality 139

all finite members of K, and each L-consistent formula is true at some point
in some model on some finite member of K. Equivalently, this means that L
is sound and complete over the class of finite members of K, i.e. a formula is
an L-theorem iff it is valid in all finite members of K.2 We may say that L
has the finite model property, simpliciter, if it has the finite model property
over some class of frames. This implies that L has the finite model property
over the class of all frames that validate L.

5. Canonical Frame

For a tangle logic L, the canonical frame is FL = (WL, RL), with WL the set
of maximally L-consistent sets of formulas, and xRLy iff {♦ϕ : ϕ ∈ y} ⊆ x
iff {ϕ : �ϕ ∈ x} ⊆ y. The relation RL is transitive, by axiom 4.

Suppose F = (W,R) is an inner subframe of FL, i.e. W is an RL-closed
subset of WL, and R is the restriction of RL to W .

By standard canonical frame theory (e.g. [1, Chapter 4] or [7, Chapter 3]),
we have that for all formulas ϕ and all x ∈ W :

♦ϕ ∈ x iff for some y ∈ W, xRy and ϕ ∈ y. (5.1)
♦∗ϕ ∈ x iff for some y ∈ W, xR∗y and ϕ ∈ y. (5.2)
�ϕ ∈ x iff for all y ∈ W, xRy implies ϕ ∈ y. (5.3)

�∗ϕ ∈ x iff for all y ∈ W, xR∗y implies ϕ ∈ y. (5.4)

We will say that a sequence {xn : n < ω} in F fulfils the formula 〈t〉Γ if
each member of Γ belongs to xn for infinitely many n. The role of the axiom
Fix is to provide such sequences:

Lemma 5.1. In F , if 〈t〉Γ ∈ x then there is an endless R-path starting from
x that fulfils 〈t〉Γ. Moreover, 〈t〉Γ belongs to every member of this path.

Proof. Let Γ = {γ1, . . . , γk}. Put x0 = x. From 〈t〉Γ ∈ x0 by axiom Fix
we get ♦(γ1 ∧ 〈t〉Γ) ∈ x0, so by (5.1) there exists x1 ∈ W with x0Rx1 and
γ1, 〈t〉Γ ∈ x1. Since 〈t〉Γ ∈ x1, by Fix again there exists x2 ∈ W with x1Rx2

and γ2, 〈t〉Γ ∈ x2. Continuing in this way ad infinitum cycling through the
list γ1, . . . , γk we generate a sequence fulfilling 〈t〉Γ, with γi ∈ xn whenever
n ≡ i mod k, and 〈t〉Γ ∈ xn for all n < ω. �

2This does not imply that L is sound over the class of all members of K. For example,
the well-known Gödel-Löb provability logic has the finite model property over the class
of all finite irreflexive transitive frames, but is invalidated by some infinite irreflexive
transitive frames.
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The canonical model ML on FL has h(p) = {x ∈ WL : p ∈ x} for all
p ∈ Var, and has ML, x |= ϕ iff ϕ ∈ x, provided that ϕ is 〈t〉-free. But
this ‘Truth Lemma’ can fail for formulas containing the tangle connective,
even though all instances of the tangle axioms belong to every member of
WL. For this reason we will work directly with the structure of FL and the
membership relation ϕ ∈ x, rather than with truth in ML.

For an example of failure of the Truth Lemma, consider the set

Σ = {♦p0} ∪ {�(p2n → ♦(p2n+1 ∧ ¬q)),�(p2n+1 → ♦(p2n+2 ∧ q)) : n < ω},

where q and the pn’s are distinct variables. Each finite subset of Σ ∪
{¬〈t〉{q, ¬q}} is satisfiable in a transitive frame, and so is K4t-consistent.
Explanation: if Γ is a finite subset, M a model with transitive frame, and
M, x |= Γ, then {ϕ : ϕ is true in M} is a tangle logic that excludes ¬ ∧

Γ,
so ¬ ∧

Γ /∈ K4t.
Since the proof theory of K4 is finitary, it follows that Σ ∪ {¬〈t〉{q, ¬q}}

is K4t-consistent, so is included in some member x of WK4t. Using the fact
that Σ ⊆ x, together with (5.1) and (5.3), we can construct an endless RK4t-
path starting from x that fulfills {q, ¬q}, hence satisfies each of q and ¬q
infinitely often in MK4t. Thus MK4t, x |= 〈t〉{q, ¬q}. But 〈t〉{q, ¬q} /∈ x,
since ¬〈t〉{q, ¬q} ∈ x and x is K4t-consistent.

6. Definable Reductions

Fix a finite set Φ of formulas closed under subformulas. We now develop a
refinement of the filtration method of reducing a model to a finite one that
is equivalent in terms of satisfaction of members of Φ. Let Φt be the set of
all formulas in Φ of the form 〈t〉Γ, and Φ♦ be the set of all formulas in Φ of
the form ♦ϕ.

Let F = (W,R) be an inner subframe of FL. Then by a definable reduction
of F via Φ we mean a pair (MΦ, f), where MΦ = (WΦ, RΦ, hΦ) is a model
on a finite transitive frame,3 and f : W → WΦ is a surjective function, such
that the following hold for all x, y ∈ W :

(r1): p ∈ x iff f(x) ∈ hΦ(p), for all p ∈ Var ∩ Φ.

(r2): f(x) = f(y) implies x ∩ Φ = y ∩ Φ.

(r3): xRy implies f(x)RΦf(y).

(r4): f(x)RΦf(y) implies y ∩ Φt ⊆ x ∩ Φt and {♦ϕ ∈ Φ : ♦∗ϕ ∈ y} ⊆ x.

3MΦ is not uniquely determined by Φ.
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(r5): For each subset C of WΦ there is a formula ϕ that defines f−1(C) in
W , i.e. ϕ ∈ y iff f(y) ∈ C.

The existence of definable reductions will be shown later in Section 9. We
will be making crucial use of the following consequence of their definition.

Lemma 6.1. If f(x) and f(y) belong to the same RΦ-cluster, then x ∩ Φt =
y ∩ Φt and x ∩ Φ♦ = y ∩ Φ♦.

Proof. If f(x) = f(y), then x ∩ Φ = y ∩ Φ by (r2) and so x ∩ Φt = y ∩ Φt

and x ∩ Φ♦ = y ∩ Φ♦. But if f(x) �= f(y), then f(x)RΦf(y)RΦf(x), and so
y ∩Φt ⊆ x∩Φt ⊆ y ∩Φt by (r4). Also if ♦ϕ ∈ y ∩Φ then ♦∗ϕ = ϕ∨♦ϕ ∈ y,
and so ♦ϕ ∈ x by (r4), and likewise ♦ϕ ∈ x ∩ Φ implies ♦ϕ ∈ y. �

Note that the second conclusion of (r4) is a concise way of expressing that
both

{♦ϕ ∈ Φ : ϕ ∈ y} ⊆ x and {♦ϕ ∈ Φ : ♦ϕ ∈ y} ⊆ x.

Given a definable reduction (MΦ, f) of F , we will replace RΦ by a weaker
relation Rt, producing a new model Mt = (WΦ, Rt, hΦ), the untangling
of MΦ, with the property that satisfaction in Mt of any formula ϕ ∈ Φ
corresponds exactly via f to membership of ϕ in points of F . In other words,

ϕ ∈ x iff Mt, f(x) |= ϕ,

a result we refer to as the Reduction Lemma. This result could fail if MΦ

is put in place of Mt: there may be a formula 〈t〉Γ ∈ Φ with 〈t〉Γ /∈ x
but Γ is satisfied in MΦ by some RΦ-cluster coming RΦ-after f(x), so that
MΦ, f(x) |= 〈t〉Γ. The definition of Rt will cause each RΦ-cluster to be
decomposed into a partially ordered set of smaller Rt-clusters, in such a way
that this obstruction is removed.

In what follows we will write |x| for f(x). Then as f is surjective, each
member of WΦ is equal to |x| for some x ∈ W . In later applications the set
WΦ will be a set of equivalence classes |x| of points x ∈ W , under a suitable
equivalence relation, and f will be the natural map x �→ |x|.

Our first step makes the key use of the axiom Ind:

Lemma 6.2. Let 〈t〉Γ ∈ Φ. Suppose that 〈t〉Γ /∈ x, where x ∈ W , and let
|x| ∈ C ⊆ WΦ. Then there is a formula γ ∈ Γ and some y ∈ W such that
xR∗y, |y| ∈ C and

if yRz and |z| ∈ C, then γ /∈ z. (6.1)

Proof. By (r5) there is a formula ϕ that defines {y ∈ W : |y| ∈ C},
i.e. ϕ ∈ y iff |y| ∈ C. Then ϕ ∈ x and 〈t〉Γ /∈ x, so by the axiom Ind,
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�∗(ϕ → ∧
γ∈Γ ♦(γ ∧ ϕ)) /∈ x. Hence by (5.4) there is a y with xR∗y and

(ϕ → ∧
γ∈Γ ♦(γ ∧ ϕ)) /∈ y. Then ϕ ∈ y, so |y| ∈ C, and for some γ ∈ Γ we

have ♦(γ ∧ ϕ) /∈ y. Hence by (5.1), if yRz and |z| ∈ C, then γ ∧ ϕ /∈ z and
ϕ ∈ z, so γ /∈ z, which gives (6.1). �

Lemma 6.3. Let formulas 〈t〉Γ1, . . . , 〈t〉Γk belong to Φ but not to x. Suppose
that |x| ∈ C ⊆ WΦ. Then there are formulas γ1 ∈ Γ1, . . . , γk ∈ Γk and some
yk ∈ W such that xR∗yk, |yk| ∈ C and

if ykRz and |z| ∈ C, then {γ1, . . . , γk} ∩ z = ∅. (6.2)

Proof. By induction on k. If k = 1, by Lemma 6.2, there exists γ1 ∈ Γ1

and y1 ∈ W such that xR∗y1, |y1| ∈ C and

if y1Rz and |z| ∈ C, then γ1 /∈ z,

which gives (6.2) in this base case.
For the induction case, assume the result holds for k, and take formu-

las 〈t〉Γ1, . . . , 〈t〉Γk, 〈t〉Γk+1 ∈ Φ − x with |x| ∈ C. Then by the induction
hypothesis there are formulas γ1 ∈ Γ1, . . . , γk ∈ Γk and some yk ∈ W such
that xR∗yk, |yk| ∈ C and (6.2) holds.

Now 〈t〉Γk+1 /∈ x, so ♦〈t〉Γk+1 /∈ x by scheme 4t. Hence ♦∗〈t〉Γk+1 =
〈t〉Γk+1 ∨ ♦〈t〉Γk+1 /∈ x. As xR∗yk, this implies 〈t〉Γk+1 /∈ yk by (5.2). So by
Lemma 6.2, with yk in place of x, there exists γk+1 ∈ Γk+1 and yk+1 ∈ W
such that ykR∗yk+1, |yk+1| ∈ C and

if yk+1Rz and |z| ∈ C, then γk+1 /∈ z. (6.3)

Now by transitivity of R∗ we have xR∗yk+1. We now show that (6.2) holds
with k replaced by k + 1. If yk+1Rz and |z| ∈ C, then from ykR∗yk+1Rz
we get ykRz, and so {γ1, . . . , γk} ∩ z = ∅ by (6.2). Together with (6.3) this
shows that {γ1, . . . , γk+1} ∩ z = ∅. This establishes (6.2) with k replaced by
k + 1, proving that the result holds for k + 1 and completing the induction
case. �

Define a formula ϕ ∈ Φ to be realised at a member |z| of WΦ iff ϕ ∈ z.
Note that this definition does not depend on how the member is named, for
if |z| = |z′|, then z ∩ Φ = z′ ∩ Φ by (r2), and so ϕ ∈ z iff ϕ ∈ z′.

Lemma 6.4. Let C be any RΦ-cluster. Then there is some y ∈ W with
|y| ∈ C, such that for any formula 〈t〉Γ ∈ Φt − y there is a formula in Γ that
is not realised at any |z| ∈ C such that yRz.

Proof. Take any |x| ∈ C. It Φt−x is empty, then putting y = x immediately
makes the statement of the Lemma true (vacuously).



The Finite Model Property for Logics with the Tangle Modality 143

Alternatively, if Φt−x �= ∅, put Φt−x = {〈t〉Γ1, . . . , 〈t〉Γk}. By Lemma 6.3
there is some y with xR∗y and |y| ∈ C, and formulas γi ∈ Γi for 1 ≤ i ≤ k
such that if yRz and |z| ∈ C, then γi /∈ z, hence γi is not realised at |z|.

Now |x| and |y| belong to the same RΦ-cluster C, so y ∩ Φt = x ∩ Φt

by Lemma 6.1. Hence Φt − y = Φt − x. So if 〈t〉Γ ∈ Φt − y, then Γ = Γi

for some i, and then γi is a member of Γ not realised at any |z| ∈ C such
that yRz. �

Now for each RΦ-cluster C, choose and fix a point y as given by
Lemma 6.4. Call y the critical point for C, and put

C◦ = {|z| ∈ C : yRz}.

Lemma 6.4 states that if 〈t〉Γ ∈ Φt − y, then there is a formula in Γ that is
not realised at any point of C◦.

We call C◦ the nucleus of the cluster C. If yRy then |y| ∈ C◦, but in
general |y| need not belong to C◦. Indeed the nucleus could be empty. For
instance, it must be empty when C is a degenerate cluster. To show this,
suppose that C◦ �= ∅. Then there is some |z| ∈ C with yRz, hence |y|RΦ|z|
by (r3), so as |y| ∈ C this shows that C is non-degenerate. Consequently, if
the nucleus is non-empty then the relation RΦ is universal on it.

We introduce the subrelation Rt of RΦ to refine the structure of C by
decomposing it into the nucleus C◦ as an Rt-cluster together with a singleton
degenerate Rt-cluster {w} for each w ∈ C − C◦. These degenerate clusters
all have C◦ as an Rt-successor but are incomparable with each other. So the
structure replacing C looks like the diagram below, with the black dots being
the degenerate clusters determined by the points of C − C◦. Doing this to
each cluster of (WΦ, RΦ) produces a new transitive frame Ft = (WΦ, Rt)
with Rt ⊆ RΦ.

• •{w} · · · · · · · · · •

C◦

Rt can be more formally defined on WΦ simply by specifying, for each
w, v ∈ WΦ, that wRtv iff wRΦv and either

• w and v belong to different RΦ-clusters; or

• w and v belong to the same RΦ-cluster C, and v ∈ C◦.
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This ensures that each member of C is Rt-related to every member of the
nucleus of C. The restriction of Rt to C is equal to C × C◦, so we could also
define Rt as the union of the relations C × C◦ for all RΦ-clusters C, plus all
inter-cluster instances of RΦ.

If the nucleus is empty, then so is the relation Rt on C, and C decomposes
into a set of pairwise incomparable degenerate clusters. If C = C◦, then Rt

is universal on C, identical to the restriction of RΦ to C.

Lemma 6.5. (Reduction Lemma) Every formula in Φ is true in Mt = (WΦ,
Rt, hΦ) precisely at the points at which it is realised, i.e. for all ϕ ∈ Φ and
all x ∈ W ,

Mt, |x| |= ϕ iff ϕ ∈ x. (6.4)

Proof. This is by induction on the formation of formulas. For the base case
of a variable p ∈ Φ, we have Mt, |x| |= p iff |x| ∈ hΦ(p), which holds iff p ∈ x
by (r1). The inductive cases of the Boolean connectives are standard.

Next, take the case of a formula ♦ϕ ∈ Φ, under the induction hypothesis
that (6.4) holds for all x ∈ W . Suppose first that Mt, |x| |= ♦ϕ. Then there
is some y ∈ W with |x|Rt|y| and Mt, |y| |= ϕ, hence ϕ ∈ y by the induction
hypothesis on ϕ. Then ♦∗ϕ ∈ y. But Rt ⊆ RΦ, so |x|RΦ|y|, implying that
♦ϕ ∈ x, as required, by (r4). Conversely, suppose that ♦ϕ ∈ x. Let C be the
RΦ-cluster of |x|, and y the critical point for C. Then ♦ϕ ∈ y by Lemma
6.1, so there is some z with yRz and ϕ ∈ z, hence Mt, |z| |= ϕ by induction
hypothesis. Now if |z| ∈ C, then |z| belongs to the nucleus of C and hence
|x|Rt|z|. But if |z| /∈ C, then as |y|RΦ|z| by (r3), and hence |x|RΦ|z|, the
RΦ-cluster of |z| is strictly RΦ-later than C, and again |x|Rt|z|. So in any
case we have |x|Rt|z| and Mt, |z| |= ϕ, giving Mt, |x| |= ♦ϕ. That completes
this inductive case of ♦ϕ.

Finally we have the most intricate case of a formula 〈t〉Γ ∈ Φ, under the
induction hypothesis that (6.4) holds for every member of Γ for all x ∈ W .
Then we have to show that for all z ∈ W ,

Mt, |z| |= 〈t〉Γ iff 〈t〉Γ ∈ z. (6.5)

The proof proceeds by strong induction on the rank of |z| in (WΦ, RΦ), i.e.
the number of RΦ-clusters in the longest chain of such clusters starting with
the RΦ-cluster of |z|. Take x ∈ W and suppose that (6.5) holds for every z for
which the rank of |z| is less than the rank of |x|. We show that Mt, |x| |= 〈t〉Γ
iff 〈t〉Γ ∈ x. Let C be the RΦ-cluster of |x|, and y the critical point for C
(which does exist by Lemma 6.4, even if C is degenerate).

Assume first that 〈t〉Γ ∈ x. Then 〈t〉Γ ∈ y by Lemma 6.1. By Lemma 5.1,
there is an endless R-path {yn : n < ω} starting from y = y0 that fulfills
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〈t〉Γ and has 〈t〉Γ belonging to each point. Then by (r3) the sequence {|yn| :
n < ω} is an endless RΦ-path in WΦ starting at |y| ∈ C. But to make 〈t〉Γ
true at a point in Mt we need an endless Rt-path.

Suppose that |yn| ∈ C for all n. Then for all n > 0, since yRyn we get
|yn| ∈ C◦. So there is the endless Rt-path π = |x|Rt|y1|Rt|y2|Rt · · · starting
at |x|. As {yn : n < ω} fulfills 〈t〉Γ, for each γ ∈ Γ there are infinitely
many n for which γ ∈ yn and so Mt, |yn| |= γ by the induction hypothesis
on members of Γ. Thus each member of Γ is true infinitely often along π,
implying that Mt, |x| |= 〈t〉Γ.

If however there is an n > 0 with |yn| /∈ C, then the RΦ-cluster of |yn|
is strictly RΦ-later than C, so |x|Rt|yn| and |yn| has smaller rank than |x|.
Since 〈t〉Γ ∈ yn, the induction hypothesis (6.5) on rank then implies that
Mt, |yn| |= 〈t〉Γ. So there is an endless Rt-path π from |yn| along which each
member of Γ is true infinitely often. Since |x|Rt|yn|, we can append |x| to the
front of π to obtain such an Rt-path starting from |x|, showing that Mt, |x| |=
〈t〉Γ (this last part is an argument for soundness of 4t). So in both cases we
get Mt, |x| |= 〈t〉Γ. That proves the forward implication of (6.4) for 〈t〉Γ.

For the converse implication, suppose Mt, |x| |= 〈t〉Γ. Since WΦ is finite,
it follows by (3.1) that there exists a z ∈ W with |x|Rt|z| and |z|Rt|z|
and the Rt-cluster of |z| satisfies Γ. By the induction hypothesis (6.4) on
members of Γ, every formula in Γ is realised at some point of this cluster.
Suppose first there is such a z for which the rank of |z| is less than that of
|x|. Then as the Rt-cluster of |z| is non-degenerate and satisfies Γ, we have
Mt, |z| |= 〈t〉Γ. Induction hypothesis (6.5) then implies that 〈t〉Γ ∈ z. But
|x|RΦ|z|, as |x|Rt|z|, so by (r4) we get the required conclusion that 〈t〉Γ ∈ x.

If however there is no such z with |z| of lower rank than |x|, then the |z|
that does exist must have the same rank as |x|, so it belongs to C. Hence as
|x|Rt|z|, the definition of Rt implies that |z| ∈ C◦. Thus the Rt-cluster of |z|
is C◦. Therefore every formula in Γ is realised at some point of C◦, i.e. at
some |z′| ∈ C with yRz′. But Lemma 6.4 states that if 〈t〉Γ /∈ y, then some
member of Γ is not realised in C◦. Therefore we must have 〈t〉Γ ∈ y. Then
〈t〉Γ ∈ x as required, by Lemma 6.1. That finishes the inductive proof that
Mt satisfies the Reduction Lemma. �

7. Adding Seriality

If the logic L contains the D-axiom ♦�, then RL is serial : ∀x∃y(xRLy). This
follows from (5.1), since each x ∈ WL has ♦� ∈ x. The relation R of the
inner subframe F is then also serial. From this we can show that Rt is serial.
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The key point is that any maximal RΦ-cluster C must have a non-empty
nucleus. For, if y is the critical point for C, then there is a z with yRz,
as R is serial. But then |y|RΦ|z| by (r3) and so |z| ∈ C as C is maximal.
Hence |z| ∈ C◦, making the nucleus non-empty. Now every member of C is
Rt-related to any member of C◦ so altogether this implies that Rt is serial on
the rank 1 cluster C. But any point of rank > 1 will be Rt-related to points
of lower rank, and indeed to points in the nucleus of some rank 1 cluster.
Since Rt is reflexive on a nucleus, this shows that Rt satisfies the stronger
condition that ∀w∃v(wRtvRtv) — “every world sees a reflexive world”.

8. Adding Reflexivity

Suppose that L contains the scheme

T: ϕ → ♦ϕ.

Then it contains

Tt:
∧

Γ → 〈t〉Γ.

To see this, let ϕ =
∧

Γ. Then ϕ → ∧
γ∈Γ(γ ∧ ϕ) is a tautology, hence

derivable. From that we derive

�∗(ϕ → ∧
γ∈Γ♦(γ ∧ ϕ)) (8.1)

using the instances (γ ∧ ϕ) → ♦(γ ∧ ϕ) of axiom T and K-principles. But
(8.1) is an antecedent of axiom Ind, so we apply it to derive ϕ → 〈t〉Γ, which
is Tt in this case.

Axiom T ensures that the canonical frame relation RL is reflexive, and
hence so is RΦ by (r3). Thus no RΦ-cluster is degenerate. We modify the
definition of Rt to make it reflexive as well. The change occurs in the case of
an RΦ-cluster C having C �= C◦. Then instead of making the singletons {w}
for w ∈ C − C◦ be degenerate, we make them all into non-Rt-degenerate
clusters by requiring that wRtw. Formally this is done by adding to the
definition of wRtv the third possibility that

• w and v belong to the same RΦ-cluster C, and w = v ∈ C − C◦.

Equivalently, the restriction of Rt to C is equal to (C × C◦) ∪ {(w, w) : w ∈
C − C◦}.

The proof of the Reduction Lemma for the resulting reflexive and tran-
sitive model Mt now requires an adjustment in one place, in its last para-
graph, where |x|Rt|z| ∈ C. In the original proof above, this implied that
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the Rt-cluster of |z| is C◦. But now we have the new possibility that
|x| = |z| ∈ C − C◦. Then the Rt-cluster of |z| is {|z|}, so every formula
of Γ is realised at |z|, implying

∧
Γ ∈ z. The scheme Tt now ensures that

〈t〉Γ ∈ z, so by Lemma 6.1 we still get the required result that 〈t〉Γ ∈ x, and
the Reduction Lemma still holds for this modified reflexive version of Mt.

9. Finite Model Property for K4t, KD4t and S4t

Given a tangle logic L and a finite set Φ of formulas closed under subformulas,
we can construct a definable reduction of any inner subframe F = (W,R)
of FL by filtration through Φ. An equivalence relation ∼ on W is given by
putting x ∼ y iff x ∩ Φ = y ∩ Φ. Then with |x| = {y ∈ W : x ∼ y} we put
WΦ = {|x| : x ∈ W}. The set WΦ is finite, because the map |x| �→ x ∩ Φ is a
well-defined injection of WΦ into the finite powerset ℘Φ. Thus WΦ has size
at most 2sizeΦ.

Letting Rλ = {(|x|, |y|) : xRy} (the least filtration of R through Φ), we
define RΦ ⊆ WΦ×WΦ to be the transitive closure of Rλ. Thus wRΦv iff there
exist w1, . . . , wn ∈ WΦ, for some n > 1, such that w = w1Rλ · · ·Rλwn = v.
The definition of MΦ is completed by putting hΦ(p) = {|x| : p ∈ x} for
p ∈ Φ, and hΦ(p) = ∅ (or anything) otherwise. We call MΦ the standard
transitive filtration through Φ.

The surjective function f : W → WΦ is given by f(x) = |x|. The con-
ditions (r1) and (r2) for a definable reduction are then immediate, and the
definability condition (r5) is standard (e.g. [7, p. 36]). For (r3) observe that
xRy implies |x|Rλ|y| and hence |x|RΦ|y|.

(r4) takes more work, but is also standard for the case of ♦, and similar
for 〈t〉. To prove it, let |x|RΦ|y|. Then by definition of RΦ as the transitive
closure of Rλ, there are finitely many elements x1, y1, . . . , xn, yn of W (for
some n ≥ 1) such that

x ∼ x1Ry1 ∼ x2Ry2 ∼ · · · ∼ xnRyn ∼ y.

Then 〈t〉Γ ∈ y ∩Φt implies 〈t〉Γ ∈ yn as yn ∼ y, hence ♦〈t〉Γ ∈ xn as xnRyn,
which implies 〈t〉Γ ∈ xn by the scheme 4t. If n = 1 we then get 〈t〉Γ ∈ x
because x ∼ x1. But if n > 1, we repeat this argument back along the above
chain of relations, leading to 〈t〉Γ ∈ xn−1, . . . ,〈t〉Γ ∈ x1, and then 〈t〉Γ ∈ x
as required to conclude that y ∩ Φt ⊆ x ∩ Φt.

To show that {♦ϕ ∈ Φ : ♦∗ϕ ∈ y} ⊆ x, note that if ♦∗ϕ ∈ y, then either
ϕ ∈ y or ♦ϕ ∈ y. If ϕ ∈ y, then ϕ ∈ yn as yn ∼ y and ϕ ∈ Φ, hence ♦ϕ ∈ xn

as xnRyn. But if ♦ϕ ∈ y then ♦ϕ ∈ yn, hence ♦♦ϕ ∈ xn, and so again
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♦ϕ ∈ xn, this time by scheme 4. Repeating this back along the chain leads
to ♦ϕ ∈ x as required.4

Thus (MΦ, f) as constructed is a definable reduction of F .

Proposition 9.1. 1. K4t, the smallest tangle logic, has the finite model
property over transitive frames.

2. KD4t, the smallest tangle logic containing ♦�, has the finite model prop-
erty over serial transitive frames.

3. S4t, the smallest tangle logic containing T, has the finite model property
over reflexive transitive (i.e. S4) frames.

Proof. 1. Let L = K4t and let F be its canonical frame FK4t. If ϕ is
a K4t-consistent formula then ϕ ∈ x for some point x of F . Let Φ be
the set of subformulas of ϕ, and Mt the untangling of the standard
transitive filtration MΦ through Φ as just defined. Then Mt, |x| |= ϕ by
the Reduction Lemma. Since the finite frame Ft = (WΦ, Rt) is transitive,
this shows that ϕ is true at a point of some finite transitive model. But
all transitive frames validate K4t.

2. If we replace K4t in (1) by the smallest tangle logic containing ♦�,
then the frame Ft is serial by Section 7, hence it validates ♦� and thus
validates KD4t. Thus KD4t has the finite model property over serial
transitive frames, which are precisely the frames that validate the L�-
logic KD4.

3. By Section 8 we get that if L contains the scheme T, then the frame Ft

above is reflexive, so it validates T and thus validates S4t. �

10. Universal Modality

Extend the syntax of L〈t〉
� to include the universal modality ∀ with semantics

M, x |= ∀ϕ iff for all y ∈ W , M, y |= ϕ.

Let L〈t〉
�∀ be the resulting language, and K4t.U be the smallest tangle logic in

this language that includes the S5 axioms and rules for ∀, and the scheme

U: ∀ϕ → �ϕ,

4The arguments in the last two paragraphs could be made more formal by proving by
induction over all k having 0 ≤ k < n that 〈t〉Γ ∈ xn−k and ♦ϕ ∈ xn−k.
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equivalently ♦ϕ → ∃ϕ, where ∃ = ¬∀¬ is the dual modality to ∀. These
axioms and rules involving ∀ are sound in any model.

Let L be any tangle logic in L〈t〉
�∀ that extends K4t.U. Define a relation SL

on WL by: xSLy iff {ϕ : ∀ϕ ∈ x} ⊆ y. Then also xSLy iff {∃ϕ : ϕ ∈ y} ⊆ x,
and SL is an equivalence relation with RL ⊆ SL. Moreover,

∀ϕ ∈ x iff for all y ∈ WL, xSLy implies ϕ ∈ y

(this is essentially the result (5.3) for the modality ∀ in place of �). For any
fixed x ∈ WL, let W x be the equivalence class SL(x) = {y ∈ WL : xSLy}.
Then for z ∈ W x,

∀ϕ ∈ z iff for all y ∈ W x, ϕ ∈ y. (10.1)

Let Rx be the restriction of RL to W x. Since RL ⊆ SL it follows that
Fx = (W x, Rx) is an inner subframe of (WL, RL). If MΦ is a definable
reduction of Fx, and Mt its untangling, then using (10.1) it can be shown
that if a formula ϕ ∈ Φ satisfies the Reduction Lemma

Mt, |z| |= ϕ iff ϕ ∈ z

for all z in W x, then so does ∀ϕ. So the Reduction Lemma holds for all
members of Φ.

Proposition 10.1. K4t.U has the finite model property over transitive
frames; KD4t.U has the finite model property over serial transitive frames;
and S4t.U has the finite model property over reflexive transitive frames.

Proof. The standard transitive filtration can be applied to Fx to produce
a definable reduction of it. Consequently, if L is a tangle logic in L〈t〉

�∀ that
extends K4t.U as above, ϕ is an L-consistent formula, x is a point of WL with
ϕ ∈ x, and Φ is the set of all subformulas of ϕ, then Mt, |x| |= ϕ where Mt

is the untangling of the standard transitive filtration of Fx through Φ. Since
K4t.U is valid in any transitive frame this gives the finite model property for
K4t.U over transitive frames.

This construction preserves seriality and reflexiveness in passing from
RL to Rx and then Rt. Consequently, the finite model property holds
for the tangle systems KD4t.U and S4t.U over the KD4 and S4 frames,
respectively. �

11. Path Connectedness

A connecting path between w and v in a frame (W,R) is a finite sequence
w = w0, . . . , wn = v, for some n ≥ 0, such that for all i < n, either wiRwi+1
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or wi+1Rwi. We say that such a path has length n. The points w and v of W
are path connected if there exists a connecting path between them of some
finite length. Note that any point w is connected to itself by a path of length
0 (put n = 0 and w = w0). The relation “w and v are path connected” is
an equivalence relation whose equivalence classes are the path components of
the frame. The frame is path connected if it has a single path component, i.e.
any two points have a connecting path between them.

Later we will make use of the fact that a path component P is R-closed.
For if x ∈ P and xRy, then x and y are path connected, so y ∈ P . It follows
that any R-cluster C that intersects P must be included in P , for if x ∈ P ∩C
and y ∈ C, then xR∗y and so y ∈ P , showing that C ⊆ P .

We now wish to show that in passing from the frame FΦ = (WΦ, RΦ) to
its untangling Ft, as above, there is no loss of path connectivity. The two
frames have the same path connectedness relation and so have the same path
components. The idea is that the relations that are broken by the untangling
only occur between elements of the same RΦ-cluster, so it suffices to show
that such elements are still path connected in Ft. For this we need to make
the assumption that Φ contains the formula ♦�. This is harmless as we can
always add it and its subformula �, preserving finiteness of Φ.

Lemma 11.1. Let ♦� ∈ Φ. If w,w′ are points in WΦ with wRΦw′ or w′RΦw,
but neither wRtw

′ or w′Rtw, then there exist a v with wRtv and w′Rtv.

Proof. If wRΦw′, then since not wRtw
′ we must have w and w′ in the same

cluster. The same follows if w′RΦw, since not w′Rtw.
Thus there is an RΦ-cluster C with w,w′ ∈ C, so both wRΦw′ and w′RΦw.

If C is not RΦ-maximal, then there is an RΦ-cluster C ′ with CRΦC ′ and
C �= C ′. Taking any v ∈ C ′ we then get wRtv and w′Rtv.

The alternative is that C is RΦ-maximal. Then we show that the nucleus
C◦ is non-empty. Let w = |u| and w′ = |s|. Since |u|RΦ|s|, � ∈ s, and
♦� ∈ Φ, property (r4) implies that ♦� ∈ u. Now if y is the critical point for
C, then ♦� ∈ y by Lemma 6.1. Hence there is a z with yRz. So |y|RΦ|z| by
(r3). Maximality of C then ensures that |z| ∈ C, so this implies that |z| ∈ C◦.
Then by definition of Rt, since w,w′ ∈ C we have wRt|z| and w′Rt|z|. �

Lemma 11.2. If ♦� ∈ Φ, then two members of WΦ are path connected in FΦ

if, and only if, they are path connected in Ft. Hence the two frames have the
same path components.

Proof. Since Rt ⊆ RΦ, a connecting path in Ft is a connecting path in FΦ,
so points that are path connected in Ft are path connected in FΦ.
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Conversely, let π = w0, . . . , wn be a connecting path in FΦ. If, for all
i < n, either wiRtwi+1 or wi+1Rtwi, then π is a connecting path in Ft. If
not, then for each i for which this fails, by Lemma 11.1 there exists some vi

with wiRtvi and wi+1Rtvi. Insert vi between wi and wi+1 in the path. Doing
this for all “defective” i < n, creates a new sequence that is now a connecting
path in Ft between the same endpoints. �

Now let K4t.UC be the smallest extension of system K4t.U in the language
L〈t〉

�∀ that includes the scheme

C: ∀(�∗ϕ ∨ �∗¬ϕ) → (∀ϕ ∨ ∀¬ϕ),

or equivalently ∃ϕ∧∃¬ϕ → ∃(♦∗ϕ∧♦∗¬ϕ). This scheme is valid in any path
connected frame [16].

Let L be any K4t.UC-logic. Let Fx be a point-generated subframe of
(WL, RL) as above, and MΦ its standard transitive filtration through Φ.
Then the frame FΦ = (WΦ, RΦ) of MΦ is path connected, as shown by
Shehtman [16] as follows. If P is the path component of |x| in FΦ, take a
formula ϕ that defines f−1(P ) in W x, i.e. ϕ ∈ y iff |y| ∈ P , for all y ∈ W x.
Suppose, for the sake of contradiction, that P �= WΦ. Then there is some
z ∈ W x with |z| /∈ P , hence ¬ϕ ∈ z. Since ϕ ∈ x, this gives ∃ϕ ∧ ∃¬ϕ ∈ x.
By the scheme C and (10.1) it follows that for some y ∈ W x, ♦∗ϕ∧♦∗¬ϕ ∈ y.
Hence there are s, u ∈ W x with yR∗s, ϕ ∈ s, yR∗u and ¬ϕ ∈ u.

From this we get |y|RΦ
∗|s| and |y|RΦ

∗|u| so the sequence |s|, |y|, |u| is a
connecting path between |s| and |u| in FΦ. But |s| ∈ P as ϕ ∈ s, so this
implies |u| ∈ P . Hence ϕ ∈ u, contradicting the fact that ¬ϕ ∈ u. The
contradiction forces us to conclude that P = WΦ, and hence that FΦ is path
connected.

From Lemma 11.2 it now follows that the untangling Ft of FΦ is also
path connected when ♦� ∈ Φ. Thus if ϕ is an L-consistent formula, we take
Φ to be the finite set of all subformulas of ϕ or ♦� and proceed as in the
K4t.U case to obtain a model Mt that has ϕ true at some point, and is
based on a path connected frame by the argument just given, because L now
includes scheme C and ♦� ∈ Φ. But path connected frames validate K4t.UC.
Moreover, the arguments for the preservation of seriality and reflexiveness by
Ft continue to hold here. So these observations establish the following.

Proposition 11.3. K4t.UC has the finite model property over the path-
connected transitive frames; KD4t.UC has the finite model property over path-
connected serial transitive frames; and S4t.UC has the finite model property
over path-connected reflexive transitive frames.
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Note that for the L�∀-fragments of these logics (i.e. their restrictions to
the language without 〈t〉), our analysis reconstructs the finite model property
proof of [16] by using MΦ instead of Mt. For, restricting to this language, if
MΦ is a standard transitive filtration of an inner subframe of FL, then any
〈t〉-free formula is true in MΦ precisely at the points at which it is realised
(for L� this is a classical result first formulated and proved in [14]). Thus
a finite satisfying model for a consistent L�∀-formula can be obtained as
a model of this form MΦ. Since seriality and reflexivity are preserved in
passing from RL to RΦ, and FΦ is path connected in the presence of axiom
C, this implies that the finite model property holds for each of the systems
K4.UC, KD4.UC and S4.UC in the language L�∀.

12. The Schemes Gn

Fix n ≥ 1 and take n + 1 variables p0, . . . , pn. For each i ≤ n, define the
formula

Qi = pi ∧
∧

i �=j≤n

¬pj . (12.1)

Gn is the scheme consisting of all uniform substitution instances of the L�-
formula

∧

i≤n
♦Qi → ♦(

∧

i≤n
♦∗¬Qi). (12.2)

This is a theorem of S4, indeed of KT, and is true in any model at any
reflexive point.

(12.2) is equivalent in any logic to

�(
∨

i≤n
�∗Qi) →

∨

i≤n
�¬Qi,

the form in which the Gn’s were introduced in [15]. When n = 1, (12.2) is

♦(p0 ∧ ¬p1) ∧ ♦(p1 ∧ ¬p0) → ♦(♦∗¬(p0 ∧ ¬p1) ∧ ♦∗¬(p1 ∧ ¬p0)). (12.3)

As an axiom, (12.3) is equivalent to

♦p ∧ ♦¬p → ♦(♦∗p ∧ ♦∗¬p), (12.4)

or in dual form �(�∗p ∨ �∗¬p) → �p ∨ �¬p, which is the form in which G1

was first defined in [15]. To derive (12.4) from (12.3), substitute p for p0 and
¬p for p1 in (12.3). Conversely, substituting p0 ∧ ¬p1 for p in (12.4) leads to
a derivation of (12.3).

For the semantics of Gn, we use the set R(x) = {y ∈ W : xRy} of R-
successors of x in a frame (W,R). We can view R(x) as a frame in its own
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right, under the restriction of R to R(x), and consider whether it is path
connected, or how many path components it has etc. (W,R) is called locally
n-connected if, for all x ∈ W , the frame F(x) = (R(x), R�R(x)) has at
most n path components. Note that path components in F(x) are defined
by connecting paths in (W,R) that lie entirely within R(x). If x is reflexive,
then R(x) has a single path component: any y, z ∈ R(x) have the connecting
path y, x, z since x ∈ R(x).

A K4 frame validates Gn iff it is locally n-connected. For a proof of this
see [12, Theorem 3.7].

When ♦ϕ is interpreted in a topological space as the set of limit points
of the set interpreting ϕ, then the L�-logic of Rn is KD4G1 for n ≥ 2, and
is KD4G2 when n = 1. This was shown by Shehtman [15,17], and was the
motivation for introducing the Gn’s. The n = 1 result was also proven by
Lucero-Bryan [12].

13. Weak Models

We now assume that the set Var of variables is finite. The adjective “weak”
is sometimes applied to languages with finitely many variables, as well as to
models for weak languages and to canonical frames built from them. Weak
models may enjoy special properties. For instance, a proof is given by She-
htman in [15, Lemma 8] that in a weak distinguished5 model on a transitive
frame, there are only finitely many maximal clusters. This was used to show
that a weak canonical frame for the L�-logic KD4G1 is locally 1-connected,
giving a completeness theorem for KD4G1 over locally 1-connected frames,
and then from this to obtain the finite model property for that logic by fil-
tration. The corresponding versions of these results for KD4Gn with n ≥ 2
are worked out in [12].

We wish to lift these results to the language L〈t〉
� with tangle. One issue

is that the property of a canonical model being distinguished depends on it
satisfying the Truth Lemma: ML, x |= ϕ iff ϕ ∈ x. As we have seen, this
can fail for tangle logics. Therefore we must continue to work directly with
the relation of membership of formulas in points of WL, rather than with
their truth in ML. We will see that it is still possible to recover Shehtman’s
analysis of maximal clusters in FL with the help of the tangle axioms Fix
and Ind.

5A model is distinguished if for any two of its distinct points there is a formula that is
true in the model at one of the points and not the other.
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Another issue is that we want to work over K4Gn without assuming the
seriality axiom. This requires further adjustments, and care with the distinc-
tion between R and R∗.

Let L be any tangle logic in our weak language. Put At = Var ∪ {♦�}.
For each s ⊆ At define the formula

χ(s) =
∧

ϕ∈s

ϕ ∧
∧

ϕ∈At\s

¬ϕ.

For each point x of WL define τ(x) = x ∩At. Think of At as a set of “atoms”
and τ(x) as the “atomic type” of x. It is evident that for any x ∈ WL and
s ⊆ At we have

χ(s) ∈ x iff s = τ(x). (13.1)
Writing χ(x) for the formula χ(τ(x)), we see from (13.1) that χ(x) ∈ x, and
in general χ(y) ∈ x iff τ(y) = τ(x).

Now fix an inner subframe F = (W,R) of FL. If C is an R-cluster in F ,
let

δC = {τ(x) : x ∈ C}
be the set of atomic types of members of C. We are going to show that
maximal clusters in F are determined by their atomic types. The key to this
is:

Lemma 13.1. Let C and C ′ be maximal clusters in F with δC = δC ′. Then
for all formulas ϕ, if x ∈ C and x′ ∈ C ′ have τ(x) = τ(x′), then ϕ ∈ x iff
ϕ ∈ x′. Thus, x = x′.

Proof. Suppose C and C ′ are maximal with δC = δC ′. The key property of
maximality that is used is that if x ∈ C and xRy, then y ∈ C, and likewise
for C ′.

The proof proceeds by induction on the formation of ϕ. The base case,
when ϕ ∈ Var, is immediate from the fact that then ϕ ∈ x iff ϕ ∈ τ(x).
The induction cases for the Boolean connectives are straightforward from
properties of maximally consistent sets.

Now take the case of a formula ♦ϕ under the induction hypothesis that
the result holds for ϕ, i.e. ϕ ∈ x iff ϕ ∈ x′ for any x ∈ C and x′ ∈ C ′ such that
τ(x) = τ(x′). Take such x and x′, and assume ♦ϕ ∈ x. Then ϕ ∈ y for some
y such that xRy. Then y ∈ C as C is maximal. Hence τ(y) ∈ δC = δC ′, so
τ(y) = τ(y′) for some y′ ∈ C ′. Therefore ϕ ∈ y′ by the induction hypothesis
on ϕ. But ♦� ∈ x (as xRy), so ♦� ∈ τ(x) = τ(x′). This gives ♦� ∈ x′

which ensures that x′Rz for some z, with z ∈ C ′ as C ′ is maximal, hence C ′



The Finite Model Property for Logics with the Tangle Modality 155

is a non-degenerate cluster.6 It follows that x′Ry′, so ♦ϕ ∈ x′ as required.
Likewise ♦ϕ ∈ x′ implies ♦ϕ ∈ x, and the Lemma holds for ♦ϕ.

Finally we have the case of a formula 〈t〉Γ under the induction hypothesis
that the result holds for every γ ∈ Γ. Suppose x ∈ C and τ(x) = τ(x′)
for some x′ ∈ C ′. Let 〈t〉Γ ∈ x. Then by axiom Fix, for each γ ∈ Γ we have
♦(γ∧〈t〉Γ) ∈ x, implying that ♦γ ∈ x. Then applying to ♦γ the analysis of ♦ϕ
in the previous paragraph, we conclude that C ′ is non-degenerate and there
is some yγ ∈ C ′ with γ ∈ yγ . Now if x′R∗z, then z ∈ C ′, so for each γ ∈ Γ
we have zRyγ , implying that ♦γ ∈ z. This proves that �∗(

∧
γ∈Γ ♦γ) ∈ x′.

But putting ϕ = � in axiom Ind shows that the formula

�∗(� →
∧

γ∈Γ

♦(γ ∧ �)) → (� → 〈t〉Γ)

is an L-theorem. From this we can derive that �∗(
∧

γ∈Γ ♦γ) → 〈t〉Γ is an L-
theorem, and hence belongs to x′. Therefore 〈t〉Γ ∈ x′ as required. Likewise
〈t〉Γ ∈ x′ implies 〈t〉Γ ∈ x, and so the Lemma holds for 〈t〉Γ. �
Corollary 13.2. If C and C ′ are maximal clusters in F with δC = δC ′,
then C = C ′.

Proof. If x ∈ C, then τ(x) ∈ δC = δC ′, so there exists x′ ∈ C ′ with
τ(x) = τ(x′). Lemma 13.1 then implies that x = x′ ∈ C ′, showing C ⊆ C ′.
Likewise C ′ ⊆ C. �
Corollary 13.3. The set M of all maximal clusters of F is finite.

Proof. The map C �→ δC is an injection of M into the double power set
℘℘At of the finite set At. This gives an upper bound of 22n+1

on the number
of maximal clusters, where n is the size of Var. �

Given subsets X,Y of W with X ⊆ Y , we say that X is definable within
Y in F if there is a formula ϕ such that for all y ∈ Y , y ∈ X iff ϕ ∈ y. We
now work towards showing that within each inner subframe R(x) in F , each
path component is definable. For each cluster C, define the formula

α(C) =
∧

s∈δC

♦∗χ(s) ∧
∧

s∈℘At\δC

¬♦∗χ(s).

The next result shows that a maximal cluster is definable within the set of
all maximal elements of F .

Lemma 13.4. If C is a maximal cluster and x is any maximal element of F ,
then x ∈ C iff α(C) ∈ x.

6That is the reason for including ♦� in At.
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Proof. Let x ∈ C. If s ∈ δC, then s = τ(y) for some y such that y ∈ C,
hence xR∗y, and χ(s) = χ(y) ∈ y, showing that ♦∗χ(s) ∈ x. The converse of
this also holds: if ♦∗χ(s) ∈ x, then for some y, xR∗y and χ(s) ∈ y. Hence y ∈
C by maximality of C, and s = τ(y) by (13.1), so s ∈ δC. Contrapositively
then, if s /∈ δC, then ♦∗χ(s) /∈ x, so ¬♦∗χ(s) ∈ x. Altogether this shows
that all conjuncts of α(C) are in x, so α(C) ∈ x.

In the opposite direction, suppose α(C) ∈ x. Let C ′ be the cluster of x.
Then we want C = C ′ to conclude that x ∈ C. Since x is maximal, i.e. C ′ is
maximal, it is enough by Corollary 13.2 to show that δC = δC ′.

Now if s ∈ δC, then s = τ(y) for some y ∈ C. But ♦∗χ(s) is a conjunct
of α(C) ∈ x, so ♦∗χ(s) ∈ x. Hence there exists z with xR∗z and χ(s) ∈ z.
Then z ∈ C ′ by maximality of C ′, and by (13.1) s = τ(z) ∈ δC ′.

Conversely, if s ∈ δC ′, with s = τ(y) for some y ∈ C ′, then xR∗y as
x ∈ C ′, and so ♦∗χ(s) ∈ x as χ(s) = χ(y) ∈ y. Hence ¬♦∗χ(s) /∈ x. But then
we must have s ∈ δC, for otherwise ¬♦∗χ(s) would be a conjunct of α(C)
and so would belong to x. �

It is shown in [15] that any transitive canonical frame (weak or not) has
the Zorn property :

∀x∃y(xR∗y and y is R-maximal).

Note the use of R∗: the statement is that either x is R-maximal, or it has an
R-maximal successor. The essence of the proof is that the relation {(x, y) :
xR•y or x = y} is a partial ordering for which every chain has an upper
bound, so by Zorn’s Lemma R(x) has a maximal element provided that it is
non-empty.

The Zorn property is preserved under inner substructures, so it holds for
our frame F . One interesting consequence is:

Lemma 13.5. For each x ∈ W , the frame F(x) = (R(x), R�R(x)) has finitely
many path components, as does F itself.

Proof. The following argument works for both F and F(x), noting that
the R�R(x)-cluster of an element of F(x) is the same as its R-cluster in F ,
and that all maximal clusters of F(x) are maximal in F .

Let P be a path component and y ∈ P . By the Zorn property there is an
R-maximal z with yR∗z. Then z ∈ P as P is R∗-closed. So the R-cluster of
z is a subset of P . Since this cluster is maximal, that proves that every path
component contains a maximal cluster.

Now distinct path components are disjoint and so cannot contain the
same maximal cluster. Since there are finitely many maximal clusters (Corol-
lary 13.3), there can only be finitely many path components. �
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Lemma 13.6. Let C be a maximal cluster in F . Then for all x ∈ W :

1. C ⊆ R(x) iff ♦�∗α(C) ∈ x.

2. C ⊆ R∗(x) iff ♦∗�∗α(C) ∈ x.

Proof. For (1), first let C ⊆ R(x). Take any y ∈ C. Then if yR∗z we
have z ∈ C as C is maximal, therefore α(C) ∈ z by Lemma 13.4. Thus
�∗α(C) ∈ y. But y ∈ R(x), so then ♦�∗α(C) ∈ x.

Conversely, if ♦�∗α(C) ∈ x then for some y, xRy and �∗α(C) ∈ y. By
the Zorn property, take a maximal z with yR∗z. Then α(C) ∈ z, so z ∈ C
by Lemma 13.4. From xRyR∗z we get xRz, so z ∈ R(x) ∩ C. Since R(x) is
R∗-closed, this is enough to force C ⊆ R(x).

The proof of (2) is similar to (1), replacing R by R∗ where required. �

For a given x ∈ W , let P be a path component of the frame F(x) =
(R(x), R�R(x)). Let M(P ) be the set of all maximal R-clusters C that have
C ⊆ P . Then M(P ) ⊆ M , where M is the set of all maximal clusters of F ,
so M(P ) is finite by Corollary 13.3. Define the formula

α(P ) =
∨

{♦∗�∗α(C) : C ∈ M(P )}.

Then α(P ) defines P within R(x):

Lemma 13.7. For all y ∈ R(x), y ∈ P iff α(P ) ∈ y.

Proof. Let y ∈ R(x). If y ∈ P , take an R-maximal z with yR∗z, by the
Zorn property. Then z ∈ R(x), and z is path connected to y ∈ P , so z ∈ P .
The cluster Cz of z is then included in P (if w ∈ Cz then zR∗w so w ∈ P ),
and Cz is maximal, so Cz ∈ M(P ). The maximality of Cz together with
Lemma 13.4 then ensure that �∗α(Cz) ∈ z. Hence ♦∗�∗α(Cz) ∈ y. But
♦∗�∗α(Cz) is a disjunct of α(P ), so α(P ) ∈ y.

Conversely, if α(P ) ∈ y, then ♦∗�∗α(C) ∈ y for some C ∈ M(P ). By
Lemma 13.6(2), C ⊆ R∗(y). Taking any z ∈ C, since also C ⊆ P we have
yR∗z ∈ P , hence y ∈ P . �

Theorem 13.8. Suppose that L includes the scheme Gn. Then every inner
subframe F of FL is locally n-connected.

Proof. Let x ∈ W . We have to show that R(x) has at most n path compo-
nents. If it has fewer than n there is nothing to do, so suppose R(x) has at
least n path components P0, . . . , Pn−1. Put Pn = R(x)\(P0∪· · ·∪Pn−1). We
will prove that Pn = ∅, confirming that there can be no more components.

For each i < n, let ϕi be the formula α(Pi) that defines Pi within R(x)
according to Lemma 13.7. Let ϕn be ¬ ∨{α(Pi) : 0 ≤ i < n}, so ϕn defines
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Pn within R(x). Now for all i ≤ n let ψi be the formula obtained by uniform
substitution of ϕ0, . . . , ϕn for p0, . . . , pn in the formula Qi of (12.1). Observe
that since the n + 1 sets P0, . . . , Pn form a partition of R(x), each y ∈ R(x)
contains ψi for exactly one i ≤ n, and indeed ψi defines the same subset of
R(x) as ϕi.

Now suppose, for the sake of contradiction, that Pn �= ∅.7 Then for each
i ≤ n we can choose an element yi ∈ Pi. Then xRyi and ψi ∈ yi. It fol-
lows that

∧
i≤n ♦ψi ∈ x. Since all instances of Gn are in x, we then get

♦(
∧

i≤n ♦∗¬ψi) ∈ x. So there is some y ∈ R(x) such that for each i ≤ n

there exists a zi ∈ R∗(y) such that ¬ψi ∈ zi, hence ψi /∈ zi. Now let P be the
path component of y. If P = Pi for some i < n, then as y ∈ Pi and yR∗zi,
we get zi ∈ Pi, and so ψi ∈ zi – which is false. Hence it must be that P is
disjoint from Pi for all i < n, and so is a subset of Pn. But then as yR∗zn

we get zn ∈ P ⊆ Pn, and so ψn ∈ zn. That is also false, and shows that the
assumption that Pn �= ∅ is false. �

14. Completeness and Finite Model Property for K4Gnt

For the language L� without 〈t〉, Theorem 13.8 provides a completeness
theorem for any system extending K4Gn by showing that any consistent
formula ϕ is satisfiable in a locally n-connected weak canonical model (take
a finite Var that includes all variables of ϕ and enough variables to have Gn

as a formula in the weak language). But the “satisfiable” part of this depends
on the Truth Lemma, which is unavailable in the presence of 〈t〉. We will
need to apply filtration/reduction to establish completeness itself for K4Gnt,
by showing it has the finite model property.

Suppose that L is a weak tangle logic that includes Gn, F = (W,R) is an
inner subframe of FL, and Φ is a finite set of formulas that is closed under
subformulas.

Recall that M is the set of all maximal clusters of F , shown to be finite
in Corollary 13.3. For each x ∈ W , define

M(x) = {C ∈ M : C ⊆ R(x)}.

Then M(x) is finite, being a subset of M .
Define an equivalence relation ≈ on W by putting

x ≈ y iff x ∩ Φ = y ∩ Φ and M(x) = M(y).

7In that case Pn is the union of finitely many path components, by Lemma 13.5, but
we do not need that fact.
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We then repeat the earlier standard transitive filtration construction, but
using the finer relation ≈ in place of ∼. Thus we put |x| = {y ∈ W : x ≈ y}
and WΦ = {|x| : x ∈ W}. The set WΦ is finite, because the map |x| �→
(x ∩ Φ,M(x)) is a well-defined injection of WΦ into the finite set ℘Φ × ℘M ,
so WΦ has size at most 2sizeΦ · 2sizeM . The surjective function f : W → WΦ

is given by f(x) = |x|.
Let MΦ = (WΦ, RΦ, hΦ), where RΦ ⊆ WΦ × WΦ is the transitive closure

of Rλ = {(|x|, |y|) : xRy}, hΦ(p) = {|x| : p ∈ x} for p ∈ Φ, and hΦ(p) = ∅
otherwise.

We now verify that the pair (MΦ, f) as just defined satisfies the axioms
(r1)–(r5) of a definable reduction of F via Φ.

(r1): p ∈ x iff |x| ∈ hΦ(p), for all p ∈ Var ∩ Φ.
By definition of hΦ.

(r2): |x| = |y| implies x ∩ Φ = y ∩ Φ.
If |x| = |y| then x ≈ y, so x ∩ Φ = y ∩ Φ by definition of ≈.

(r3): xRy implies |x|RΦ|y|.
xRy implies |x|Rλ|y| and Rλ ⊆ RΦ.

(r4): |x|RΦ|y| implies y ∩ Φt ⊆ x ∩ Φt and {♦ϕ ∈ Φ : ♦∗ϕ ∈ y} ⊆ x.
The proof is the same as the proof given earlier of (r4) for the standard
transitive filtration, but using ≈ in place of ∼ and the fact that x ≈ y
implies x ∩ Φ = y ∩ Φ.

(r5): For each subset C of WΦ there is a formula ϕ that defines f−1(C) in
W , i.e. ϕ ∈ y iff |y| ∈ C.
To see this, for each x ∈ W let γx be the conjunction of (x∩Φ)∪{¬ψ :
ψ ∈ Φ \ x}. Then for any y ∈ W ,

γx ∈ y iff x ∩ Φ = y ∩ Φ.

Next, let μx be the conjunction of the finite set of formulas

{♦�∗α(C) : C ∈ M(x)} ∪ {¬♦�∗α(C) : C ∈ M \ M(x)}.

Lemma 13.6 showed that each C ∈ M has C ∈ M(x) iff ♦�∗α(C) ∈ x.
From this it follows readily that for any y ∈ W ,

μx ∈ y iff M(x) = M(y).

So putting ϕx = γx ∧ μx, we get that in general

ϕx ∈ y iff x ≈ y iff |y| ∈ {|x|}.
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Now if C = ∅, then ⊥ defines f−1(C) in W . Otherwise if C = {|x1|, . . . ,
|xn|}, then the disjunction ϕx1 ∨ · · · ∨ ϕxn

defines f−1(C) in W .8

Consequently, the reduction Mt of MΦ satisfies the Reduction Lemma. We
will show that Gn is valid in the frame of Mt. But first we show that it
is valid in the frame of MΦ. Both cases involve some preliminary analysis,
involving linking points of RΦ(|y|) and Rt(|y|) back to points of R(y). This
requires further work with maximal elements and clusters.

Lemma 14.1. For all x, y ∈ W , |x|R∗
Φ|y| implies M(y) ⊆ M(x).

Proof. If |x|R∗
Φ|y| there is a finite sequence x = z0, . . . , zk = y for some k ≥

1 such that for all i < k, either zi ≈ zi+1 or ziRzi+1. But zi ≈ zi+1 implies
M(zi) = M(zi+1), and ziRzi+1 implies M(zi+1) ⊆ M(zi) by transitivity of
R. This yields M(zk) ⊆ M(z0) by induction on k. �

Lemma 14.2. Suppose At ⊆ Φ and a ∈ W is R-maximal. Then for all x ∈ W ,
xRa iff |x|RΦ|a|.
Proof. xRa implies |x|RΦ|a| by (r3). For the converse, suppose |x|RΦ|a|
and let K be the maximal R-cluster of a.

If K is non-degenerate then K ⊆ R(a), so K ∈ M(a). Then from |x|RΦ|a|
we get K ∈ M(x) by Lemma 14.1, implying xRa as required.

But if K is degenerate, then K = {a} and R(a) = M(a) = ∅. Also ♦� /∈ a.
Since |x|RΦ|a|, by definition of RΦ there are z, w ∈ W with |x|R∗

Φ|z| and
zRw ≈ a. As At ⊆ Φ, from w ≈ a we get w ∩ At = a ∩ At, i.e. τ(w) = τ(a).
In particular ♦� /∈ w, hence w is also R-maximal. Therefore a and w are
maximal elements with the same atomic type, so w = a by Lemma 13.1. Thus
zRa and so K ∈ M(z). Since |x|R∗

Φ|z| this implies K ∈ M(x) by Lemma
14.1, giving the required xRa again. �

Lemma 14.3. Suppose At ⊆ Φ and for any y ∈ W , let A be the set of all
R-maximal points in R(y). Then each point v ∈ RΦ(|y|) has vR∗

Φ|a| for some
a ∈ A.

Proof. Let v = |z| ∈ RΦ(|y|). By the Zorn property there exists an a with
zR∗a and a is R-maximal. Then |z|R∗

Φ|a| by (r3). Since |y|RΦ|z|, this implies
|y|RΦ|a| by transitivity. Hence yRa by Lemma 14.2, and so a ∈ A. �

8An alternative approach to this construction would be to enlarge Φ by adding
{♦�∗α(C) : C ∈ M} and closing under subformulas. Then Φ would still be finite and
the relation ∼ it induces would have x ∼ y only if M(x) = M(y). This would obviate the
need to verify that ≈ gives rise to a definable reduction, but would also multiply the upper
bound on the size of WΦ by more than 2sizeM .
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Theorem 14.4. If At ⊆ Φ, the frame FΦ = (WΦ, RΦ) is locally n-connected.

Proof. For any point |y| ∈ WΦ, we have to show that RΦ(|y|) has at most
n path components. But if it had more than n, then by picking points from
different components we would get a sequence of more than n points no two
of which were path connected. We show that this is impossible, by taking
an arbitrary sequence v0, . . . , vn of n + 1 points in RΦ(|y|), and proving that
there must exist distinct i and j such that vi and vj are path connected in
RΦ(|y|).

For each i ≤ n, by Lemma 14.3 there is an R-maximal ai ∈ R(y) with
viR

∗
Φ|ai|. This gives us a sequence a0, . . . , an of members of R(y). But R(y)

has at most n path components, by Theorem 13.8. Hence there exist i �= j ≤
n such that there is a connecting R-path ai = w0, . . . , wn = aj between ai

and aj that lies in R(y). So for all i < n we have yRwi and either wiRwi+1

or wi+1Rwi, hence |y|RΦ|wi| and either |wi|RΦ|wi+1| or |wi+1|RΦ|wi|.
This shows that |ai| and |aj | are path connected in RΦ(|y|) by the sequence

|w0|, . . . , |wn|. Since viR
∗
Φ|ai| and vjR

∗
Φ|aj |, it follows that vi and vj are path

connected in RΦ(|y|), as required. �

Proposition 14.5. 1. In the language L�, for all n ≥ 1 the finite model
property holds for K4Gn and KD4Gn over locally n-connected K4 and
KD4 frames, respectively.

2. In the language L�∀, the finite model property holds for the four families
of logics K4Gn.U, K4Gn.UC, KD4Gn.U and KD4Gn.UC.

Proof. For (1), take a consistent L�-formula ϕ and let Φ be the closure
under L�-subformulas of At ∪ {ϕ}. Then Φ is finite and ϕ is satisfiable in
the model MΦ (see the remarks about MΦ at the end of Section 11). But
the frame FΦ of MΦ is locally n-connected by the theorem just proved, so
validates Gn. Together with the preservation of seriality by FΦ, this implies
the finite model property results for K4Gn and KD4Gn.

(2) follows correspondingly, using the results about ∀ from Section 10 and
the fact that FΦ is path connected in the presence of axiom C. �

The result for KD4Gn in part (1) of this Proposition was conjectured in
general and proven for n = 1 in [15]. The conjecture was proven in [21]. In
part (2) the cases involving D were shown in [12].

We turn now to the corresponding results for the versions of these systems
that include the tangle connective.

Lemma 14.6. If y ∈ W is the critical point for some RΦ-cluster, then z ∈
R(y) implies |z| ∈ Rt(|y|).
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Proof. Let y be critical for cluster C. If z ∈ R(y), then |y|RΦ|z| (r3), so if
|z| /∈ C then immediately |y|Rt|z|. But if |z| ∈ C, then |z| ∈ C◦ and again
|y|Rt|z|. �

Lemma 14.7. Suppose ♦� ∈ Φ. Let y ∈ W be a critical point, and z, z′ ∈
R(y). If z and z′ are path connected in R(y), then |z| and |z′| are path
connected in Rt(|y|).
Proof. Let z = z0, . . . , zn = z′ be a connecting path between z and z′

within R(y). The criticality of y ensures, by Lemma 14.6, that |z0|, . . . , |zn|
are all in Rt(|y|). We apply Lemma 11.1 to convert this sequence into a
connecting Rt-path within Rt(|y|).

For each i < n we have ziRzi+1 or zi+1Rzi, hence either |zi|RΦ|zi+1| or
|zi+1|RΦ|zi| by (r3). So if there is such an i that is “defective” in the sense that
neither |zi|Rt|zi+1| nor |zi+1|Rt|zi|, then by Lemma 11.1, which applies since
♦� ∈ Φ, there exists a vi with |zi|Rtvi and |zi+1|Rtvi. Then vi ∈ Rt(|y|)
by transitivity of Rt, as |zi| ∈ Rt(|y|). We insert vi between |zi| and |zi+1|
in the sequence. Doing this for all defective i < n turns the sequence into a
connecting Rt-path in Rt(|y|) with unchanged endpoints |z| and |z′|. �

Lemma 14.8. Suppose At ⊆ Φ and a ∈ W is R-maximal. Then for all x ∈ W ,
|x|Rt|a| iff |x|RΦ|a|.
Proof. |x|Rt|a| implies |x|RΦ|a| by definition of Rt. For the converse, sup-
pose |x|RΦ|a|, and let C be the RΦ-cluster of |x|. If |a| /∈ C, then since
|x|RΦ|a| it is immediate that |x|Rt|a| as required. We are left with the case
|a| ∈ C. Then since |x|RΦ|a|, we see that C is non-degenerate, so if y is
the critical point for C then |y|RΦ|a|. Hence yRa by Lemma 14.2. But then
|a| ∈ C◦ and so again |x|Rt|a| as required. �

Theorem 14.9. If At ⊆ Φ, the frame Ft = (WΦ, Rt) is locally n-connected.

Proof. This refines the proof of Theorem 14.4. If u ∈ WΦ, we have to show
that Rt(u) has at most n path components. Now if C is the RΦ-cluster of
u, then Rt(u) is the union of the nucleus C◦ and all the RΦ-clusters coming
strictly RΦ-after C. Hence Rt(u) = Rt(w) for all w ∈ C. In particular,
Rt(u) = Rt(|y|) where y is the critical point of C. So we show that Rt(|y|)
has at most n path components. We take an arbitrary sequence v0, . . . , vn of
n + 1 points in Rt(|y|), and prove that there must exist distinct i and j such
that vi and vj are path connected in Rt(|y|).

Let A be the set of all R-maximal points in R(y). For each i ≤ n we have
vi ∈ RΦ(|y|) and so by Lemma 14.3 there is an ai ∈ A ⊆ R(y) such that
viR

∗
Φ|ai|. Hence viR

∗
t |ai| by Lemma 14.8. This gives us a sequence a0, . . . , an
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of members of R(y). But R(y) has at most n path components, by Theorem
13.8. Hence there exist i �= j ≤ n such that ai and aj are path connected in
R(y). Therefore by Lemma 14.7, |ai| and |aj | are path connected in Rt(|y|).
Since viR

∗
t |ai| and vjR

∗
t |aj |, and vi, vj ∈ Rt(|y|), it follows that vi and vj are

path connected in Rt(|y|). That shows that Rt(|y|) does not have more than
n path components. �

This result combines with the analysis as in other cases to give the fol-
lowing results.

Proposition 14.10. The finite model property holds for the tangle logics
K4Gnt, K4Gnt.U, K4Gnt.UC, KD4Gnt, KD4Gnt.U and KD4Gnt.UC, for
all n ≥ 1.

Proof. The proof for K4Gnt is like that for K4Gn in Proposition 14.5, but
using Mt in place of MΦ and observing that Ft validates Gn by Theorem
14.9. This then combines with the analysis as in other cases to give the
remaining results. �

It is noteworthy that for languages without 〈t〉 there is an alternative
approach to Theorem 14.4 due to Kudinov and Shehtman [11, Lemma 7]. It
expands the filtrating set Φ to include formulas of the form �∗ϕ, where ϕ is
a Boolean combination of the formulas from our Lemma 13.6(2). These for-
mulas are used to define the path components of RΦ(|y|) in such a way that
the axiom Gn can be applied more directly to prove local n-connectedness of
FΦ in the manner of Theorem 13.8, without having to first prove the latter.
Moreover, this is done by taking FΦ to be the classical filtration constructed
from the equivalence relation ∼ as in Section 9, rather than working with
the stronger relation ≈ of this Section which ensures that |x| = |y| implies
M(x) = M(y). However the method of [11] depends on RΦ satisfying (r3), a
property that is lost when we untangle RΦ and replace it by Rt. It would be
possible to apply the method to the stronger filtration based on ≈ and with
the relation Rt, using the partial restoration of (r3) provided here in Lem-
mas 14.2 and 14.8. But the use of ≈ instead of ∼ multiplies the upper bound
on the size of WΦ by 2sizeM as we noted, and the inclusion of the formulas
�∗ϕ in Φ multiplies that upper bound by an even greater exponential factor.
So this alternative method does not appear to provide an advantage from a
complexity standpoint for languages that include the tangle connective.
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15. Summing Up

The table below summarizes our results on the finite model property (fmp) for
tangle logics in the languages L〈t〉

� and L〈t〉
�∀ over various classes K of frames.

The result for S4t is due to [5]. The others are new here. Several of them
are essential to completeness theorems for certain spatial interpretations of
tangle logics in [8,9], as explained in the Introduction to this paper.

A natural direction for further study would be to obtain completeness
theorems for the tangle extension of logics in other languages, for instance
the logics of [11] with the difference modality [�=] expressing “at all other
points”, or more strongly, logics with graded modalities that can count the
number of successors of a given point.

Conditions defining K Logics with the fmp over K
Transitive K4t, K4t.U
Transitive and serial KD4t, KD4t.U
Transitive and reflexive S4t, S4t.U
Transitive and path connected K4t.UC
Transitive, serial and path connected KD4t.UC
Transitive, reflexive and path connected S4t.UC
Transitive and locally n-connected K4Gnt, K4Gnt.U
Transitive, serial and locally n-connected KD4Gnt, KD4Gnt.U
Transitive, path connected and locally

n-connected K4Gnt.UC
Transitive, serial, path connected and

locally n-connected KD4Gnt.UC

Another direction would be to study the general relationship between
logics and their tangle extensions, considering what properties are preserved
in passing from L to Lt, such as conditions under which a Kripke-frame
complete L would have a Kripke-frame complete Lt.
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