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Clustering coefficient, C, measures the extent to which neighbors of a word are also
neighbors of each other, and has been shown to influence speech production, speech
perception, and several memory-related processes. In this study we examined how
C influences word-learning. Participants were trained over three sessions at 1-week
intervals, and tested with a picture-naming task on nonword-nonobject pairs. We found
an advantage for novel words with high C (the neighbors of this novel word are likely to be
neighbors with each other), but only after the 1-week retention period with no additional
exposures to the stimuli. The results are consistent with the spreading-activation
network-model of the lexicon proposed by Chan and Vitevitch (2009). The influence of
C on various language-related processes suggests that characteristics of the individual
word are not the only things that influence processing; rather, lexical processing may also
be influenced by the relationships that exist among words in the lexicon.
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INTRODUCTION
Network science has been used to examine various aspects of
the lexicon including semantic relationships among words (Hills
et al., 2010), phonological relationships among words in various
languages (Arbesman et al., 2010), the acquisition of words in
typically developing children (Carlson et al., 2011), and the acqui-
sition of words in children with language delays (Beckage et al.,
2011). When used in conjunction with conventional psycholin-
guistic tasks, network science enables researchers to examine
how structural relationships in the lexicon influence language
processing.

Consider the measure known as clustering coefficient, C
(Watts and Strogatz, 1998). In a network of phonologically related
words (Vitevitch, 2008), C assesses the extent to which neigh-
bors of a word are also neighbors of each other. Clustering
coefficient should not be confused with neighborhood density
(Luce and Pisoni, 1998); they are different measures, and, as
shown in Chan and Vitevitch (2009) are not correlated with
each other. To illustrate the difference, consider the words badge
and log in Figure 1, which have the same number of phonolog-
ical neighbors. However, many neighbors of the word badge are
also neighbors with each other. Although some neighbors of log
are neighbors with each other there are fewer such connections
among the neighbors of log (which has low C) than there are
among the neighbors of badge (which has high C). It is this rela-
tionship among the neighbors of a word that is assessed by C. (See
the Method for a more precise definition of C.).

Chan and Vitevitch (2009) and see also Yates (2013) found
that low C words were recognized more quickly and accurately
than high C words. Furthermore, it was found that low C words
were produced more quickly in a speeded picture-naming task
and more accurately in an analysis of speech errors than high C

words (Chan and Vitevitch, 2010). Thus, a very clear picture is
emerging for the influence of C on the retrieval of known words
with well-established representations in the lexicon: low C words
are retrieved more quickly and accurately than high C words.

Chan and Vitevitch (2009) accounted for the influence of C
on lexical retrieval with a model that proposed that activation
diffused across the lexical network. For low C words (log in
Figure 1), Chan and Vitevitch suggested that the small number
of interconnections among the neighbors results in some of the
activation from the neighbors spreading back to the target word,
and the remaining activation dispersing to the rest of the net-
work (i.e., words related to the neighbors of log, but not shown in
Figure 1). The strongly activated target word, log, would “stand
out” from the less activated neighbors (and less activated neigh-
bors of neighbors), resulting in rapid and accurate retrieval of
words with low C.

For high C words (badge in Figure 1), where the neighbors
are highly interconnected with each other, most of the activa-
tion remains amongst the interconnected neighbors rather than
spread back to the target word or to the rest of the network as
happens for low C words. With a highly activated target word
as well as highly activated neighbors, discrimination of the target
word becomes more difficult, resulting in slower and less accurate
retrieval of high C words. Note that for high C words, activation
will spread from the target word to the rest of the lexicon, but
to a lesser extent than for low C words. Vitevitch et al. (2011)
confirmed via computer simulation the model proposed by Chan
and Vitevitch (2009). That simulation not only accounted for
the influences of C observed by Chan and Vitevitch, but also
accounted for the independent and well-studied influence of
neighborhood density on spoken word recognition (Luce and
Pisoni, 1998), further clarifying the influence of these variables
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FIGURE 1 | The word BADGE has many connections within the neighborhood, thus a high clustering coefficient. The word LOG has few connections
within the neighborhood, thus a low clustering coefficient.

on the retrieval of known-words with well-established represen-
tations in the lexicon.

However, for lexical items with partially degraded representa-
tions being retrieved from short-term memory, a different influ-
ence of C on processing is observed. Vitevitch et al. (2012) found
in a serial recall task—used to examine the process of redintegra-
tion where lexical representations in long-term memory activate
degraded representations in short-term memory—an advantage
for high C words over low C words. Vitevitch et al. (2012) again
appealed to the differential amount of activation that circulates
amongst phonological neighbors with either high or low C to
account for this influence on the retrieval of partially degraded
representations of lexical items. For high C words, the recircula-
tion of activation amongst the neighbors continually activates a
small set of phonologically similar representations in long term
memory, which are used to partially activate the degraded rep-
resentation of the lexical item in short-term memory (for more
about redintegration see Hulme et al., 1997). For low C words,
the dispersion of activation to the rest of the network partially
activates many and varied lexical representations, which provides
little (consistent) support to the decaying representation of the
lexical item in short term memory. The difference in the amount
of activation available to support the redintegration of degraded
lexical representations of words with high vs. low C accounts for
the performance on such words observed by Vitevitch et al. (2012)
in the serial recall task.

Another situation where one finds “degraded” representations
of lexical items—or more precisely, incomplete representations—
is during the initial acquisition of word-forms (e.g., Gaskell and
Dumay, 2003). A model described by Storkel (2011) based on the
work of Carpenter and Grossberg (1987) provides some insight
into how C may influence the word learning process, when newly
acquired lexical representations are incomplete. Storkel’s model

describes a three stage process: triggering, configuration, and
engagement. The word-learning process is “triggered” when there
is significant mismatch between a newly encountered word and
existing lexical representations. The mismatch between the newly
encountered word and existing lexical representations indicates
that the word is not known, and must therefore be learned (i.e.,
new lexical and semantic representations must be formed). If
there is a match between the encountered word and existing
lexical representations (i.e., the word is known), then the corre-
sponding lexical representation is simply updated. That is, the
corresponding lexical and semantic level representations will be
adjusted to better match the encountered word.

Once learning is triggered, lexical information is stored in
long-term memory through the process known as configuration.
In the configuration process information in long term memory
is either created or modified. If learning has been triggered by
encountering a novel word, the lexical and semantic representa-
tions will be created in the lexicon. In the case of encountering
an already known word, the already existing lexical and seman-
tic information will be updated to better match the encountered
word.

Once a lexical representation has been established during the
configuration process, lexical engagement must occur. During
lexical engagement, the representation will integrate with other
existing representations in the lexicon by establishing connections
with them. These connections allow the new representation to
interact with other representations in the same way that exist-
ing representations interact with each other (e.g., neighborhood
density effects or C effects).

To further examine how C influences the retrieval of less well-
established, or, more precisely, nascent, lexical representations,
we used a well-established word-learning paradigm, in which
participants are given several blocks of exposure to pairings of
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nonwords and nonobjects, and tested with a picture-naming task
after each block of exposure (Storkel et al., 2006). Based on Chan
and Vitevitch (2009), we reasoned that for a novel word with high
C, the activation that circulates amongst the neighbors would
strengthen the nascent lexical representation, allowing it to be
better incorporated into the lexicon at the engagement stage of
word learning (where connections to other words in the lexicon
are established). In contrast, the dispersion of activation to the
rest of the network that occurs for low C words would—as in the
process of redintegration examined in Vitevitch et al. (2012)—
provide inadequate support to the nascent lexical representation
at the engagement stage of word learning, resulting in an advan-
tage for novel words with high C over novel words with low C at
later stages of testing.

METHODS
PARTICIPANTS
Thirty-two participants, enrolled in lower level psychology
courses at the University of Kansas, took part in the experiment
for extra credit. The experiment was approved by the Institutional
Review Board at the University of Kansas. None of the partici-
pants reported speech or hearing problems or uncorrected-visual
disorders.

STIMULI
The stimuli (see Supplementary Material) consisted of 24
phonotactically legal (in English), monosyllabic nonwords that
contained three phonemes with a consonant-vowel-consonant
(CVC) structure. Half of the items had high C (mean = 0.55; sd =
0.12) and half had low C [mean = 0.23; sd = 0.08; t(22) = 7.57,
p < 0.0001]. C is the ratio of the number of existing connections
in a neighborhood compared to the number of possible connec-
tions in a neighborhood. A value close to one indicates many
connections among the neighbors, whereas a value close to zero
indicates few connections among the neighbors. A more precise
definition is provided in Equation (1) (Watts and Strogatz, 1998):

Ci = 2
∣
∣{ejk}

∣
∣

ki(ki − 1)
(1)

ejk refers to the presence of a connection between two neighbors
(j and k) of node i, |...|is used in this case to indicate cardinality
(i.e., the number of elements in the set, not the absolute value),
and ki refers to the degree (i.e., neighborhood density) of node i.
Thus, the clustering coefficient is the proportion of connections
that exist among the neighbors of a given node divided by the
number of connections that could exist among the neighbors of
a given node. The C value of the nonword stimuli was calculated
by assessing the connections among the real word phonological
neighbors of each nonword.

There were no significant differences between high and low C
words on several variables that influence processing (see Table 1):
segment probability, biphone probability, and number of real word
neighbors. Segment probability and biphone probability values
were obtained from Vitevitch and Luce (2004).

Each nonword was randomly paired with a picture of a
nonsense-object from Kroll and Potter (1984), henceforth called

Table 1 | Variables controlled in the two groups of nonwords

varying in C.

Variable High C Low C

Phonotactic probability 0.12 (0.04) 0.13 (0.04)

Biphone probability 0.005 (0.005) 0.004 (0.004)

Number of real word neighbors 13.25 (4.12) 11.63 (3.36)

Stimulus onset (measured in seconds) 0.008 (0.004) 0.01 (0.01)

Stimulus offset (measured in seconds) 0.009 (0.006) 0.01 (0.009)

Stimulus duration (measured in seconds) 0.51 (0.06) 0.53 (0.10)

File duration (measured in seconds) 0.52 (0.06) 0.56 (0.10)

Concreteness rating 4.44 (0.87) 4.47 (0.86)

First word associate strength 0.15 (0.08) 0.14 (0.07)

Second word associate strength 0.09 (0.03) 0.10 (0.04)

Semantic set size 10.5 (0.52) 10.5 (0.52)

Mean values are reported (with standard deviations in parentheses). None of the

differences between high and low C were statistically significant (all p’s > 0.35).

Phonotactic probability refers to how often a phoneme occurs in a certain posi-

tion (Jusczyk et al., 1994), biphone probability refers to how often two phonemes

occur next to each other (Jusczyk et al., 1994), number of real word neighbors

refers to how many words can be formed by substituting, adding, or deleting a

single phoneme, stimulus onset refers to the amount of silence between the

beginning of the sound file and the start of the stimulus, stimulus offset refers

to the amount of silence between the end of the stimulus and the end of the

sound file, stimulus duration refers to the total duration of the stimulus within

the sound file, file duration refers to the total duration of the sound file, concrete-

ness rating refers to the extent to which the nonobject resembles an object in

the real world (assessed in Kroll and Potter, 1984), first word associate strength

refers to the associative strength of the most common semantic associate of a

nonobject (assessed in Storkel and Adlof, 2009), second word associate strength

refers to the associative strength of the second most common semantic asso-

ciate of a nonobject (assessed in Storkel and Adlof, 2009), and semantic set size

refers to the total number of words semantically associated with a nonobject

(assessed in Storkel and Adlof, 2009).

nonobjects to act as a referent. As shown in Table 1, there were
no significant differences between the pictures assigned to high
and low C words on concreteness ratings (degree to which the
nonobject resembles an object in the real world; assessed in Kroll
and Potter, 1984), first word associate strength, second word asso-
ciate strength, and semantic set size (assessed in Storkel and Adlof,
2009).

A male native-speaker of American English (the second
author) produced all of the nonwords at a normal rate and loud-
ness level in a sound-attenuated booth. Recordings were made
using a Marantz PMD671 recorder, and transferred directly to
hard-drive for editing using Praat (Boersma and Weenink, 2009).
There were no significant differences between the high and low C
nonwords on various measures of duration; see Table 1.

PROCEDURE
A common word-learning methodology was used in this exper-
iment (Storkel et al., 2006; Storkel and Lee, 2011). To make
learning more manageable for participants in the limited time
they were in the laboratory, the 24 stimuli were randomly split
into two lists, each containing 6 high C and 6 low C non-
words. The experiment occurred across three separate sessions,
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with ∼1 week between each session. In session one, partici-
pants were trained on the nonword-nonobject pairings in the
first list. Nonword-nonobject pairs in each list were presented in
a different random order in each training period and for each
participant. During training, participants were presented with an
image of a nonobject on the screen while the associated non-
word was presented auditorily over headphones. The nonwords
appeared as the final word in a set of short phrases (e.g., “This is
a ____,” “Look at the _____,” “Remember, it’s a _____,” “Listen
closely, it’s called a _____,” “Don’t forget the ____”). Each phrase
was presented only once, giving the participant 5 exposures to
each nonword-nonobject pairing before the next pairing was
presented.

Training ended after all 12 nonword-nonobject pairs in the list
were presented, and was followed by a test using a picture-naming
task. Trials in the picture-naming task proceeded in the following
way: ∗∗∗∗∗ appeared for 1000 ms to signal the start of a trial, fol-
lowed by a nonobject in the center of the screen. Participants were
to say out loud the nonword paired with the nonobject. There was
no time limit for participants to respond, but they were instructed
to answer as quickly and as accurately as possible. Responses
triggered a PsyScope button box voice key, which recorded mil-
lisecond response latencies. Upon completion of a trial the
next trial began. The nonobjects were presented in random
order.

After the test, participants took part in a second training
period with the same set of nonword-nonobject pairings, fol-
lowed by another test. This concluded session one. After an
interval of ∼1 week (M = 7.08 days), participants returned to
the laboratory for session two. The second session began with
a third and final test of list one. Note that participants did not
receive any additional exposure to the nonword-nonobject pair-
ings before this final test. Participants were then trained on list
2 of the nonwords-nonobjects, and then tested with the picture-
naming task. After the first test, participants were trained on list
2 a second time, and given a second test of list 2. After another
interval of ∼1 week (M = 7.16 days), participants returned for
the third and final session of the experiment, where they were
given the third and final test of list 2.

RESULTS
No differences or interactions were observed across lists, so we
collapsed across lists in subsequent analyses. Incorrect responses
and responses that exceeded two standard deviations above
(>9500 ms) or below the mean (<500 ms) were not included in
the analyses. Not surprisingly, the long (and highly variable) reac-
tion times in the picture-naming task in the present experiment
failed to show any statistically significant differences F(5, 31) =
2.16, p = 0.06. Due to the significant interaction between C and
testing period in the accuracy data, post-hoc analyses were per-
formed on the individual testing periods for the reaction times,
however no significant effects of C were observed at Test 1 (High
C: Mean = 4527 ms, SD = 5473 ms; Low C: Mean = 3250 ms
SD = 2284 ms), at Test 2 (High C: Mean = 2887 ms, SD = 1737;
Low C: Mean = 2409 ms, SD = 1300 ms), or at Test 3 (High C:
Mean = 3409 ms, SD = 2107 ms; Low C: Mean = 2864 ms, SD =
1537 ms) (all p > 0.1).

It is not uncommon to see long (Test 1 mean response
time ∼4 s, Test 2 mean response time ∼3 s, and Test 3 mean
response time ∼3 s) and highly variable reaction times in word-
learning tasks like that used in the present study. Furthermore,
when these response times are compared to the picture-naming
task used in Chan and Vitevitch (2010) with well-known English
words that varied in C—mean response time was ∼0.7 s—it is
obvious that automatic processes were not engaged in the present
task, making the response times uninformative. Therefore, accu-
racy rate was the only dependent variable of interest. A repeated-
measures ANOVA was used to analyze the accuracy data with Test
and C as independent variables. A response was marked as correct
if 2 out of the 3 phonemes were produced correctly. This measure
of accuracy is more sensitive than a completely correct measure
of accuracy (i.e., 3 out of 3 phonemes) and has been used in other
studies of word learning [see Storkel et al. (2006) for a discussion
regarding the different measures of accuracy].

The results showed that there was no main effect of C, but
there was a significant main effect for test [F(3, 31) = 283.01,
p < 0.0001]. These main effects, however, must be interpreted in
the context of the significant interaction observed between Test
and C; F(1, 31) = 6.17, p < 0.001. Planned comparisons showed
that there was no significant difference in C at Test 1 (High C:
Mean = 0.45, SD = 0.18; Low C: Mean = 0.41, SD = 0.20) or
at Test 2 (High C: Mean = 0.69, SD = 0.21; Low C: Mean =
0.71, SD = 0.19), all p > 0.1. However, a significant difference
between accuracy rates of the high (Mean = 0.40, SD = 0.21)
and low C nonwords (Mean = 0.27, SD = 0.17) was observed
at Test 3, which occurred after 1 week elapsed and with no
additional exposure to the stimuli, F(1, 31) = 13.39, p < 0.001;
Cohen′sd = 0.7. Statistical conventions indicate that Cohen’s d
(Cohen, 1988) ∼0.2–0.3 is considered a small effect, ∼0.5 is con-
sidered a medium effect, and greater than 0.8 is considered a large
effect. By these conventions, the effect observed in the present
experiment is medium to large in magnitude.

Of the responses that were not correct, the most common
“error” that was produced was the response “Don’t know”
(69.3%). The next most common type of “error” (19.9%) was
to use one of the nonwords to name the wrong object (e.g., in
Test 1 a participant might use the same novel name in response to
three different objects, but by Test 3 the correct name-nonobject
pairing had been established for the items). Another 6.8% of the
errors were responses in which participants would produce the
initial phoneme of the nonword, but nothing else of the non-
word (much like what happens in the tip-of-the-tongue state with
real words). The remaining responses (3.9%) were completely
wrong (i.e., the participant created their own nonword to name
the nonobject).

DISCUSSION
In this study novel words with high C were learned better than
novel words with low C, but only after multiple exposures and a 1-
week delay between final exposure and final test (i.e., only at Test
3). Numerous studies have shown that delays of ∼1-week may be
required to fully integrate the representation of a novel word into
the lexicon, and for that novel word to affect the processing of one
of its neighbors (e.g., Gaskell and Dumay, 2003; Tamminen and
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Gaskell, 2013). For example, Gaskell and Dumay (2003) report
that after an initial exposure, a novel word (e.g., cathedruke) facil-
itates processing of a similar sounding real word (e.g., cathedral);
similar sounding words that are already established in the lexicon
tend to compete with each other. However, after a week with-
out any further exposure the novel word impedes processing of
the real word, as measured by performance on the real word in a
lexical decision task, suggesting that the novel word has been suc-
cessfully integrated (i.e., interacting with other established words)
in the lexicon. In the present case, learners needed to form a rep-
resentation of the novel word, and connect that representation to
the representations of many well-known neighbors rather than
just one word as in the study by Gaskell and Dumay (2003). Thus,
it is not surprising that a relatively long period of time may be
required for the observed influence of the relationships among
all the neighbors of a novel word on the learning/retrieval of that
novel word to emerge.

To account for the present results we appeal to: (1) the
word-learning framework described in Storkel et al. (2006) and
simulated in Vitevitch and Storkel (2013), and (2) the network
diffusion framework described in Chan and Vitevitch (2009) and
simulated in Vitevitch et al. (2011).

Storkel et al. (2006) suggested that the partial phonological
overlap that exists between a novel word and the representations
of known words in the lexicon strengthen the newly formed lex-
ical representation of a novel word (see also Jusczyk et al., 1994).
A newly formed representation that resembles many known
words in the lexicon will be strengthened to a greater extent
than a newly formed representation that resembles few known
words in the lexicon, leading to the advantage for learning novel
words with dense compared to sparse neighborhoods observed
by Storkel et al. (2006) and others (e.g., Stamer and Vitevitch,
2012).

However, the novel words in the present study had as neigh-
bors the same number of known words; they instead differed in
the extent to which the real word neighbors were neighbors with
each other, or C. Here we turn to the framework described by
Chan and Vitevitch (2009), which started with the network struc-
ture for the phonological lexicon observed by Vitevitch (2008),
and included the additional assumption that activation would
diffuse from an initially activated node to the nodes that it was
connected to, and then on to the nodes that they in turn were
connected to (which included the node from which activation was
initially received). Although other models of cognitive processing
often include additional parameters such as inhibition, decay of
activation, threshold levels, etc., no such assumptions were made
in the description offered by Chan and Vitevitch (2009) and sim-
ulated in Vitevitch et al. (2011). That is, Vitevitch et al. (2011)
used a much simpler model to account for the observed results.

In the case of a word with low C in the mental lexicon, Chan
and Vitevitch (2009) suggested that the small number of inter-
connections among the neighbors would result in some of the
activation from the neighbors spreading back to the target word,
and the remaining activation dispersing to the rest of the net-
work. In the case of spoken word recognition, which was the
process investigated by Chan and Vitevitch (2009), the strongly
activated target word would “stand out” from the less activated

neighbors, resulting in target words with low C being retrieved
rapidly and accurately from the lexicon. However, in the case of
word-learning, the focus of the present investigation, the “target”
word is actually a weak, nascent representation, requiring supple-
mental activation from its neighbors—as suggested by the work of
Storkel et al. (2006)—in order to become a fully integrated lexical
representation (i.e., a known word). In a neighborhood with low
C, activation is dispersed to the rest of the network, leaving lit-
tle activation to strengthen the representation of the novel word,
leading to the difficulty in acquiring word-forms with low C.

In the case of a word with high C in the mental lexicon, where
the neighbors are highly interconnected with each other, Chan
and Vitevitch (2009) suggested that most of the activation would
remain amongst the interconnected neighbors rather than spread
to the rest of the network as happens for words with low C. With a
highly activated target word as well as highly activated neighbors,
discrimination of the target word becomes more difficult, result-
ing in slower and less accurate retrieval of target words with high
C from the lexicon. However, in the case of word-learning, the
activation that recirculates amongst the neighbors (rather than
being dispersed to the rest of the network) is precisely what a
nascent representation needs to become a fully integrated lexical
representation. In a neighborhood with high C, the activation that
circulates amongst the neighbors serves to strengthen the repre-
sentation of the novel word, leading to the ease in acquiring such
word-forms (despite the difficulty that such word-forms experi-
ence later in the word recognition process). Note that a similar
mechanism was proposed by Vitevitch et al. (2012) to account for
the influence of C on the process of redintegration, which occurs
when lexical representations in long-term memory are used to
activate degraded lexical representations in short-term memory.

The influence of C in various processes—production (Chan
and Vitevitch, 2010), recognition (Chan and Vitevitch, 2009),
memory (Vitevitch et al., 2012), and now word-learning—hints
toward new avenues for future investigation. For example, the
picture-naming task used in the present study and in Chan and
Vitevitch (2010) may provide researchers with a methodology
that can map the transition from a nascent representation to a
well-learned word in the lexicon. Recall that Chan and Vitevitch
(2010) observed that well-known English words with low C were
named more quickly than well-known English words with high C.
In a future study one could continually train and test participants
on these novel words until the picture-naming times to those
items were comparable to the picture-naming times observed for
well-known English words (i.e., the response times drop from ∼4
to 0.7 s). At that point, one could then examine if the influence of
C changed from the learning advantage for high C words observed
in the present study to the production advantage for low C words
observed by Chan and Vitevitch (2010).

The influence of C on various processes also suggests that char-
acteristics of individual words are not the only things that influ-
ence processing. Rather, various language-related processes are
also influenced by the relationships that exist among neighbors
in the lexicon. Network science offers a wide array of statistical
tools to analyze relationships between individual words in the
lexicon (i.e., the micro-level of the network), characteristics of
the over-all structure of the lexicon (i.e., the macro-level of the
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network), as well as relationships that exist at various levels in
between (i.e., the meso-level of the network). Future studies could
examine structural characteristics at other levels of the lexical net-
work (e.g., Siew, 2013; Vitevitch et al., 2014) to determine how
they influence word-learning. Even if network science measures
are not used in future studies to examine the relationships that
exist among words, an increasing amount of evidence is making
it clear that more than just the characteristics of the individual
word influence various lexical processes.
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