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Abstract

Monomodal logic has exactly two maximally normal logics, which are
also the only quasi-normal logics that are Post complete, and they are
complete for validity in Kripke frames. Here we show that addition of a
propositional constant to monomodal logic allows the construction of con-
tinuum many maximally normal logics that are not valid in any Kripke
frame, or even in any complete modal algebra. We also construct contin-
uum many quasi-normal Post complete logics that are not normal.

The set of extensions of S4.3 is radically altered by the addition of a
constant: we use it to construct continuum many such normal extensions
of S4.3, and continuum many non-normal ones, none of which have the
finite model property.

But for logics with weakly transitive frames there are only eight max-
imally normal ones, of which five extend K4 and three extend S4.

1 Introduction

This is a study of some properties of the set of propositional modal logics in a
language that has a one-place modality [J, with dual ¢, and a constant that is
interpreted as a fixed proposition (set of worlds) in a Kripke frame. There are a
number of natural examples of such logics, suggesting that a general meta-study
would be worthwhile. Here are some such examples:

Example 1.1. Anderson [2] constructed a deontic logic by starting with a
normal alethic logic, in which 0 is interpreted as ‘necessarily’, adding a constant
&, and defining ‘it is obligatory that p’ as J(—p — P AO—~?). The idea is that
& describes ‘some “bad” state-of-affairs’, and that ‘to say that p is obligatory
is to say that failure of p leads to [i.e. necessarily implies] a state-of-affairs &
which is “bad”, but avoidable (¢0—22) .

Prior [21] simplified this analysis by introducing a propositional constant .,
which he called ‘the sanction’, with the same intended meaning as &# A O~ L.
Defining ‘it is obligatory that p’ as O(—p — %), he observed that if the alethic
logic includes the system KT, then only the axiom ({—.% (‘it is possible to
escape the sanction’) is needed to derive the standard deontic principles about
obligation.!

IFurther philosphical discussion of this topic is given in [19].



Example 1.2. The propositional dynamic logic of programs [12] can be ex-
tended by assigning to each program « a constant proposition repeat o which
asserts that a can be repeatedly executed infinitely many times, and which is
true at a given state when there is an infinite sequence of states emanating
from the given one, with each being obtained from the previous one by an «-
action. The resulting logic was shown to be decidable by Streett [25], using
automata-theoretic methods.

This type of propositional constant was investigated by Goldblatt [10], study-
ing modal algebras that have a distinguished element A that is a greatest fixed
point of the operator interpreting the modality ¢. These algebras were shown
to form a quasi-variety with a decidable equational theory, and to be generated
by the algebras of subsets of (finite) Kripke frames (W, R) in which A denotes
the set of points x for which there exists an infinite sequence tRz1RxoR---- - - .

Example 1.3. The notion of a monadic bounded algebra (MBA) was intro-
duced by Akishev and Goldblatt [1] as a Boolean algebra with a unary operator
3 and an individual constant FE, satisfying certain equations. This generalizes
Halmos’s notion of a monadic algebra [11], and is intended to capture properties
of the existential quantifier in free logic, i.e. logic without existence assumptions,
in which E represents an existence assertion. Alternatively an MBA may be
viewed as capturing properties of the bounded quantifier ‘for some member of
E.

A classification was given in [1] of all the equationally definable classes of
MBA'’s. These correspond exactly to normal modal logics that extend the logic
K452 in a language with a propositional constant E, and contain the axioms
pAE — Op and Op — O(p A E). There are denumerably many such logics; all
are finitely axiomatizable and have the finite model property.

Example 1.4. A modal logic is reqular for O if it is closed under the derivation
of JAANOB — OC from AANB — C. A O-regular logic is normal if it contains
OT, where T is a constant universally true formula. Given a [J-normal logic in
a language that has an additional constant .#", we introduce a new modality
by defining HHA to be the formula .4 A JA. Then the logic is H-regular, but
need not be HB-normal because HT is A4 AOT, so by O-normality we get only
that

BT < A4 (1.1)

is derivable. To see if [ can be recovered from H, we use H to define another
modality [0’ by putting (’A = .4 — HA. The logic is then ['-normal, with
O'T being the derivable .#° — HT. In general we have that

OA + (N — OA) (1.2)

is derivable. Now if the formula .4 vV OL is derivable, then since J1 — OA
is derivable by [-regularity, we can derive (4 — OA) — OA, and from that,

2With proper axioms Op — O0p and OCp — Op. Also known as KE4.



(AN — OA) +» OA. Hence by (1.2), 'A +» A is derivable, and in this sense
O is recovered from H.

In the converse direction, starting with a language having only a modality
B, (1.1) and the definition of [ suggest that J and .4 could be introduced by
defining (JA to be A4 — HA, where .4 is defined to be EHT. A logic that is B-
regular will then be [J-normal for [J thus defined, with OT being the tautology
BT — HT.

H can now be recovered from [0 and .4, because if we put H' A = 4 ATA,
then A = BT A (BT — HA), which is equivalent to EHA as HA — HT is
derivable by H-regularity. Thus B’ A <> HA is derivable. Moreover 4"V 1 is
derivable, since it is the tautology BT vV (HT — HL).

These constructions lead to a bijective correspondence between regular logics
in a language with B and normal logics, in a language with [J and a propositional
constant .4, that contain .4V L. The relationships are reflected in Kripke’s
semantics for non-normal logics [16], which uses models based on frames of the
form (W, R, N) with N C W. Members of N are thought of as ‘normal’ worlds.
Such a model interprets a normal modality (0 by making [JA true at a point x
of W iff A is true throughout {y € W : zRy}. It interprets a regular modality B
by making HA true at z iff z € N and A is true throughout {y € W : zRy}. If
A is interpreted as the set N, it follows that the model verifies HA «+» A4 ALA
and BT + 4. Also OA + (A — BA) is verified if the model verifies .4 VL.

|

We turn now from examples to generalities. A great deal is known about
the metatheory of logics that are monomodal (have O but no constant) or are
bimodal (have two one-place modalities), and there are considerable differences
in behaviour between the two kinds. For instance, the first discovered example
[26] of a normal logic that is incomplete for Kripke semantics was a bimodal
one, in fact a linear tense logic, with the property that it is not valid in any
Kripke frame at all. This cannot happen for monomodal logics, due to results of
Makinson [18] implying that any consistent normal monomodal logic is valid in a
one-element frame. There are two such frames: the reflexive one determining the
‘trivial’ logic Triv with proper axiom Up <> p, and the irreflexive one determining
the ‘verum’ logic Ver with axiom [p. So any consistent normal logic is a sublogic
either of Triv or Ver, and these two are the only mazimally normal monomodal
logics. They are also the only monomodal logics that both include the smallest
normal logic K (i.e. are quasi-normal) and are Post complete in the sense of
having no consistent extensions at all.

By contrast, Williamson [28] showed that there are continuum many (2%°)
bimodal logics that are maximally normal, each of which has infinitely many
Post complete extensions. Kowalski [14] proved a similar result for tense logics.
Recently, French [9] defined denumerably many (Rg) maximally normal logics
in the language with a single modality and an additional constant x, each being
the logic determined by some Kripke frame. He asked if there are in fact non-
denumerably many maximally normal logics in this language.

We give a positive answer to this question here. After developing some



general theory in Section 2, we use the constant s to construct in Section 3
a continuum of maximally normal logics, all of which are ‘anti-complete’ for
Kripke semantics, in that they are not valid in any Kripke frames. From these
we then obtain continuum many quasi-normal Post complete logics that are not
normal. All of these logics include the reflexivity axiom Cp — p.

If instead we consider logics with the transitivity axiom 4 : 0Op — Op, the
situation is completely different. In Section 4 we show that are exactly five
maximally normal extensions of K4 in the language with k, three of which are
the only maximally normal extensions of S4. Relaxing axiom 4 to the weaker
4* : OOp — p V Op admits an additional three, giving altogether exactly eight
maximally normal extensions of K4*. Each is defined as the logic determined
by some Kripke frame with either one or two elements. Four of them are Post
complete (the ones determined by the singleton frames).

The final Section 5 examines logics extending S4.3, and shows that none
of the ‘tame’ properties discovered by Bull [4], Fine [7] and Segerberg [24] for
monomodal extensions of S4.3 survive in the presence of k. We use the constant
to construct continuum many normal extensions of S4.3, and continuum many
non-normal ones, all of which lack the finite model property.

2 Frames and Logics

Fix a language whose atomic formulas consist of a set of propositional variables
D,4q, ... and the propositional constants L (falsity) and x. Formulas A, B, ...
are constructed from these by the implication connective — and the one-place
modality (. The truth-functional connectives =, A, V, <+ and the dual modality
¢ are introduced in the usual way, and we write T for —1L. Formulas O0"A
are defined by induction on the natural number n by putting (0°4 = A4 and
0"+ A = O(0O"A). Formulas " A are defined likewise by iterating ¢. A formula
with no occurrence of k will be called monomodal, or k-free. A formula with no
variables will be called closed.

A substitution is a function o assigning to each variable p a formula op. It is
a closed substitution if op is a closed formula for all p. Any substitution extends
uniquely by induction on formation to a map A — ¢ A on all formulas that has
ok = k and commutes with the connectives. gA will be called a substitution
instance of A.

A Kripke frame is a structure F = (W, R, |k|), comprising a binary relation
R on a non-empty set W, and subset || of W that will be the interpretation of
the constant k. A general frame F = (W, R, ||, P) has in addition a non-empty
collection P of subsets of W that contains |«| and is closed under the Boolean
set operations and under the operation [R] that interprets [, i.e.

[R]X = {z € W: xRy implies y € X }.

Then P is closed under the operation (R) that interprets ¢, having (R)X =
{r e W:3y e X(zRy)}.



The members of P are the admissible propositions of F. A Kripke frame
(W, R, |k|) will be identified with the general frame (W, R, ||, o), where pW is
the powerset of W, in which all subsets of W are admissible. We use the relations
R™ on W, where RO is the identity relation, and R"*! is the composition of R
with R™.

A model M on a general frame is given by a function |—|™ that assigns
to each variable p a subset [p|™ of W. This is extended inductively to assign
a truth set |AI™ to each formula A by putting | LM = 0, |s|™ = |&], |[A —
BM = (—|AM) U |BIM, and [OAM = [R]|AM. If 2 € |AM we may say
that A is true in M at z, and write M,z |= A, or even z = A if the model is
understood. A is true in model M, written M |= A, if |[AM = W, ie. if A is
true in M at every member of W.

Formula A is valid in frame F, written F | A, if it is true in every model
on F. We also say that A is valid at x in F, written F,x = A, if it is true at x
in every model on F. If A is closed, then its truth at « is model-independent, so
that A is valid at = in F iff it is true at = in at least one model on F. Another
way to capture this is to observe that each closed formula A defines a subset |A|”
of W inductively by putting | L|” = 0, |s|" = ||, |A — B|" = (—|A|")u|B|”,
and |JA|" = [R]|A|”. Then |A]7 = |A|M for every model M on F, and
Al = {z € W : F,z | A}. We may write |A|” just as |A] if the frame is
understood. F will be called a definable frame if each member of its set P of
admissible propositions is equal to |A| for some closed formula A.3

Lemma 2.1. If F is a definable frame, and F [~ A, then F [~ cA for some
closed substitution o.

Proof. If F [~ A, then there is a model M on F with |[A|M # W. If F is
definable, then for each variable p there is a closed formula op with |p|™ = |op|.
This gives a closed substitution ¢ for which a straightforward induction shows
that |B|™ = |oB]| for all formulas B. Hence |0 A| # W, and so F = o A. |

We will need the notion of a a function f : W — W' being a bounded
morphism from a frame F = (W, R, |k|, P) to a frame F' = (W', R, |s|, P’).
This means that

e X € P’ implies f~1X € P (reflection of admissibility);
e xRy implies fzR'fy (forth condition);

e fxR'z implies Jy(zRy & fy = z) (back condition);

o |5| = f7Yk|, iex € |k| iff fz € || (k-invariance).

Validity is preserved by surjective bounded morphisms. Thus if there is a sur-
jective bounded morphism from F onto F', and F = A, then F' = A.

3This means that each member of the modal algebra based on P is the denotation of a
constant term. Equivalently, it means that this algebra is generated by its empty subset, so
is “zero-generated”.
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Table 1: The four singleton frames

We will also use the notion of a point-generated subframe. If z is a point
of frame F = (W, R, ||, P), the subframe of F generated by x is the structure
F* = (W?* R* |k|*, P*), where W* = {y € W : zR*y} with R* the reflexive-
transitive closure of R; R” is the restriction of R to W?%; |k|* = |k| N W*; and
P*={XNW?*: X e P}. Validity is preserved by this construction: if F |= A,
then F* |= A.

A logic is any set L of formulas that contains all truth-functional tautologies
and is closed under modus ponens and under substitution for variables, i.e. if
A € L then 0 A € L for every substitution . We may write -7, A when A € L,
and say that A is an L-theorem. A logic L is consistent if | ¢ L, and is normal
if contains the formula O(p — ¢) — (Op — Og) and is closed under the rule of
necessitation, i.e. if A € L then (JA € L. We use standard names for normal
logics, but add k as a subscript to indicate that we mean a logic in the language
with k. For example, a name like “K4,” refers to the set of formulas in the
language with  that is generated by the usual axiom schema and rules for K4;
whereas “K4” refers to this logic in the language without x, which we may also
emphasize by calling it “monomodal K4”.

For each frame F, the set L(F) = {A : F = A} of all formulas valid in
F is a consistent normal logic?, called the logic determined by F. A logic is
quasi-normal if it includes the smallest normal logic K. Quasi-normal logics are
characterized by Kripke models and frames with a set of distinguished elements
that determine when a formula is true in a model or valid in a frame (see [22,
Section II1.2]). In particular, for each point = of F, the set L(F,z) = {4 :
F,z |= A} of all formulas valid at « in F is a consistent quasi-normal logic
including L(F). Often L(F,z) is not normal.

A logic L is Post complete if it is maximally consistent, i.e. it is consistent
but has no consistent logic properly extending it. A Post complete L has the
property that for each closed formula A, either F;, A or - = A . More generally,
that property is equivalent to the requirement that a logic L have exactly one
Post complete extension [23, Lemma A]. In Table 1 we display some Kripke
frames that determine Post complete normal logics. These are the four different
one-element Kripke frames that there are, with a name for each in the first row,
a graphic representation in the second row, and some formulas they validate in
the third (where A is arbitrary). We can take these frames to be based on the
set W = {0}, and we use the common convention that the symbol o denotes a

4Whereas the set {A : M |= A} of all formulas true in a particular model need not be
closed under substitution, so may not be a logic.



reflexive point (here 0R0), while e denotes an irreflexive one (not 0R0). In F¥
and F¥ we have || = W, while in the other two frames |k| = (. Each of these
frames is definable: its only subsets are | L| and |T|. Since each has one element,
Post completeness of its logic is then an instance of the following result.

Theorem 2.2. If F is a definable frame, then for each point x of F, the logic
L(F,x) is Post complete.

Proof. If L is any logic properly extending L(F,z), then there is a formula
A e L with F,z = A. Hence M,z [~ A for some model M on F. Since F
is definable, by the proof of Lemma 2.1 there is a closed substitution o with
|AM = |0 A|. Hence F,z [ 0A. Then F,z = —0A, so ~dA€ L. ButcAe L
by closure under substitution, so L is inconsistent. This proves that L(F) has
no consistent proper extension. |

Remark 2.3. Post’s doctoral dissertation [20] established that the proposi-
tional system of Principia Mathematica is semantically complete: every tautol-
ogy is provable in the system. From this he deduced the result that became
known as Post completeness, namely that any formula not provable in the sys-
tem is inconsistent with it. His argument was that from a non-provable A we
can obtain a substitution instance 0 A whose negation —o A is provable. This
proof-strategy is essentially that of Theorem 2.2, and indicates the relevance of
Lemma 2.1 to Post completeness. Indeed, in Post’s case we have that A is not
a tautology, so has a falsifying truth-value assignment. Putting op = T if p is
true under this assignment, and op = | otherwise, defines a closed o for which
-0 A is a tautology, hence provable. |

A logic will be called mazimally normal if it is consistent and normal but has
no consistent normal logic properly extending it. Williamson [28] gave a proof-
theoretic characterization of maximal normality for logics that are bimodal (i.e.
have two one-place modalities). For the present language, this characterization
takes the following slightly simpler form:

Theorem 2.4. A consistent normal logic L is maximally normal iff, for all
formulas A,

(1) if ¥ A, then ¥ oA for some closed substitution o; and

(2) if A is closed and ¥, A, then b (O AA--- AO"% A) for some natural
numbers j,ni, ..., n;.

Proof. This proceeds essentially as in [28, Proposition 6], but we give the main
points. Assuming (1) and (2) hold, let L’ be any normal proper extension of
L. Then there is some A € L’ — L. By (1), ¥ oA for some closed o. Then
by (2) for oA, there are numbers j,n1,...n; such that the formula =(O0"'c A A
-« A0"%cgA) is in L, hence in I’. But as A € L' and L’ is a normal logic,
Frr O™MgAA--- ANO%gA, so then L’ is inconsistent. This proves that L is
maximally normal.



Conversely, assume L maximally normal. Let
L' = {A:t oA for every closed substitution o}.

Then L' can be shown to be a normal logic extending L, and it is consistent
because L is. Hence L = L' by maximality. Thus if ¥ A, then A ¢ L', implying
that (1) holds.

For (2), let A be closed and put

L'={B:+,O"AA---NO%A — B for some j,ni,...n;}.

Then L’ is a normal extension of L (the proof that L’ is closed under substitution
depends on A being a closed formula). Moreover A € L’. Thus if ¥, A, then L’
is a proper normal extension of L, hence is inconsistent, so L. € L’. This implies
(2). |

Note that condition (1) of this Theorem always holds when L is the logic
L(F) determined by a definable frame F, as shown in Lemma 2.1 (see Remark
2.3).

3 Kripke-Incomplete Maximal Normality

French [9] exhibited denumerably many maximally normal logics in the present
language, each being defined as the logic determined by some Kripke frame. He
asked if there are non-denumerably many maximally normal logics. In this sec-
tion we give a positive answer by constructing a continuum (2%¢) of maximally
normal logics, and moreover show that none of them is determined by any class
of Kripke frames. In fact our examples are ‘anti-complete’ in the sense that
none of them is validated by any Kripke frame whatsoever.

Let N = {0,1,...} be the set of natural numbers. The letters n, m will be
reserved for members of N. Put W = NU {w, k}, with {w, x} disjoint from N.
If S is any nonempty subset of N, define a relation Rg C W x W by putting
Rs =1UR;URsU R3U Ry, where:

e [ is the identity relation on W.

e R; C N? is the immediate predecessor relation {(n + 1,n) : n € N}.
e Ry ={(n,k),(k,n):n €N}

o Ry = {(r,), (0,)}

e Ry ={(w,n):neS}.

(W, Rg) is depicted graphically in Figure 1.

Let Py be the Boolean set algebra of all finite or cofinite subsets of W. Then
Py is closed under the operation [Rg] induced by Rg. For we have [Rg]X C X
since Rg is reflexive, so [Rg| X is finite if X is. Alsoif k ¢ X, then [Rg]X C {w}.



Figure 1: (W, Rg) with 3 € S

And if K € X and X is cofinite, then [Rg]X includes {m : n < m} for some
n € N. Thus we may define a general frame by putting Fs = (W, Rg, |k|, Pw),
with |k| = {x}.

FEach point x € W is definable in Fg in the sense that there is a closed formula
x such that in general, y | z iff y = . For these we can take w = Ok, kK = K,
0 = QwA—(wV k), and inductively, foreachn € Nyn+1=0nA-(wVEVn). It
follows that each finite or cofinite subset of W is definable by a closed formula
(a Boolean combination of z’s), and so Fg is a definable frame.

Lemma 3.1. (1) zRJ3y for all z,y € W.
(2) If A is a closed formula and Fs £ A, then Fg = —[PA.

Proof. (1) Since Rg is reflexive, it suffices to show that either zRsy or zRJy
or zRJy.
For the case x = w, let m be a member of S (which was assumed non-
empty). Then wRsw, wRsmRgsk, and wRsmRskRgn for all n € N. For
the case x = m € N we have mRgsk, mRskRsw, and mRgxRgn for all
n € N. For the case x = k, we have kRgy in general.

(2) If Fs £ A, then y = A for some y in Fg. So for any = we get z £ [°A
as xR%y, hence z = —=[1?A. The argument is model-independent as A is

closed.
[ |

Corollary 3.2. The logic L(Fgs) determined by Fs is mazimally normal.

Proof. Tt suffices to show that L(Fg) satisfies the two conditions of Theorem
2.4. But condition (1) is given by Lemma 2.1 as Fg is a definable frame, and
condition (2) is given by part (2) of the Lemma just proved, with j = 1 and
ny = 3. ||

Next we show that the logics L(Fs) provide 2% examples of maximal nor-
mality, by showing that if S and S’ are distinct non-empty subsets of N, then
L(Fs) # L(Fs/). In Fg, for all n € N we have wRgn iff n € S, and so
Fs Ew—Oniff n € S. Thus if S # S’, then there is some n in one of S and
S” but not in the other, so w — On belongs to one of L(Fg) and L(Fg ) but
not the other, hence L(Fg) # L(Fg).



Notice also that in general Fg,w = On iff n € S, and so if S # S’, then
L(Fs,w) # L(Fgr,w). Each logic L(Fg,w) is non-normal, since it contains w
but not [w, and is Post complete by Theorem 2.2, since Fg is definable. Thus
the L(Fs,w)’s are a family of 2% quasi-normal Post complete logics that are
not normal. This phenomenon does not occur in monomodal logic, where there
are just the two quasi-normal Post complete logics Triv and Ver, and they are
both normal.

We turn now to showing that each logic L(Fg) is Kripke frame incomplete.
In fact we show the stronger fact that there no Kripke frames at all that validate
L(Fg). This cannot happen in monomodal logic, where each consistent normal
logic is valid in one of the singleton frames.

Define a one-place operation ¢* on the powerset of any frame F by putting

t7X = (R)X — (X U |w|” U|x|7). (3.1)

We will just write ¢ for this term function, allowing the context to indicate what
frame F is intended. In the case that F is Fg we get that

tX = (Rg)X — (X U{w,k})
={ne(N-X):3Jye X(nRsy)}

Then tX C N for any X C W.

Lemma 3.3. In the frame Fg:

(1) If X CN, thenn € tX impliesn>1 andn—1¢€ X.

(2) If t(tX)U {0} = X, then X is the set {2n : n € N} of all even numbers.

Proof. (1) If n € tX, then n ¢ X and there is some y with nRgsy € X C N.
Then n # y € N so this can only mean that n=y+1landn—-1=y € X.

(2) Assume t(tX) U {0} = X. Then as ¢(tX) C N we get X C N. Now every
member of X must be even, for otherwise there would be a smallest odd
number 7 in X. But then n € ¢(¢tX) so applying (1) twice we get n—1 € tX
and then n — 2 € X, contradicting the definition of n.

Thus every member of X is even. Hence for any n we have 2n 4+ 1 ¢ X,
so 2n+ 2 ¢ tX by (1). Since (2n + 2)Rg(2n + 1)Rg2n, it follows that if
2n € X then 2n 4+ 1 € tX and then 2n + 2 € ¢(tX) C X. This shows that
2n € X implies 2n + 2 € X. Since 0 € X by assumption, we get that every
even number is in X by induction.

|

Let T'(p) be the formula Op A =(pV w V k), corresponding to the form of the
term function ¢. In any model M on Fg, |T'(p)|™ = t[p|™. If T(T) is the result
of substituting T for p in T, then |T(T)|M = t(t|p|™).

10



Theorem 3.4. The formula
-O3(T(T) v 0 < p) (3.2)
s valid in Fg.

Proof. Let M be any model on Fg. Put X = |p|* € Pyy,. Then X is either finite
or cofinite, so by Lemma 3.3(2), t(tX) U {0} # X. Thus |T(T) Vv 0™ # [p|™,
so there is a point y at which T'(T) V 0 < p is false in M. But for any © € W,
we have xRJy by Lemma 3.1(1), so =3(T(T) V 0 ¢ p) is true at z in M. W

Now let F = (V, R, |x|”) be any Kripke frame. We are going to show that
the formula (3.2) is not valid in F, provided that F preserves the distinction
between the ‘numerals’ n by validating —(n A m) whenever n # m. The proof
uses the following two subsets of V:

E =U{2n]” : n € N},

0= U{l2n+1/" :n e N},
We also need the operation ¢ on the powerset of F defined as in (3.1).
Lemma 3.5. Suppose that F = —(n Am) for all distinct n,m € N. Then
(1) tE =0.
(2) tOU|0]F =E.
(3) F = -D¥(T(T) VO + p).

Proof. For (1), if € tE, then x € (R)E, so there is a y with Ry € E, hence
y = 2n for some n. Also x ¢ EU |w|” U |k|7, so = ¢ |2n|” and altogether the
formula 02nA—(wVkV2n) is true at 2. But this formula is 2n + 1 by definition,
sox €2n+ 17 CO.

This proves that tE C Q. For the converse inclusion, if z € |2n + 1|7 for
some n, then z = 02n A =(w V £V 2n), so x € (R)E — (lw|” U|s|”). It remains
to show that x ¢ E to conclude that = € tE. But z |= 2n + 1, while F validates
=(2n.4+ 1 A 2m) in general by assumption, so x ¢ [2m|” for any m € N as
required.

That completes the proof of (1). The proof of (2) is similar.

For (3), let M be a model on F with [p|™ = E. From (1) and (2) we
have t(tE) U [0]7 = E, giving |T(T) v 0|™ = |p|™. It follows that M verifies
O3(T(T) V 0 + p) rather than its negation, so F invalidates this negation. W

Theorem 3.6. If S is any non-empty subset of N, then the logic L(Fg) is not
valid in any Kripke frame.

Proof. Let F be any Kripke frame. Suppose, for the sake of contradiction, that
F validated L(Fg). Then since —(n A m) is valid in Fg it would be valid in F,
for all distinct n,m. Hence by Lemma 3.5(3) the formula (3.2) would not be
valid in F. But this formula belongs to L(Fg) by Theorem 3.4, so would be
valid in F, a contradiction. |
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The Kripke frame incompleteness of L(Fg) can now be formulated as the
observation that there are many non-theorems of L(Fg) (including L), but none
of them can be falsified by a model on a Kripke frame for L(Fg), since there
are no such frames.

In passing we note that this ‘anti-completeness’ can be strengthened in the
context of algebraic semantics for the present language. This uses a type of
algebra A comprising a Boolean algebra with an operation interpreting [J and a
distinguished element interpreting x. Each formula B with n variables induces
an n-ary operation B4 on A, with B# being a distinguished element (nullary
operation) in the case that B is closed. A validates B when it satisfies the
equation BA = 1. A logic L gives rise to the variety (equational class) V(L) of
algebras validating all L-theorems.

An algebra A is complete if each of its subsets has a join (least upper bound).
Litak [17] exhibited a tense logic whose associated variety contains no non-trivial
complete algebra. The powerset algebra of a Kripke frame F is a complete
algebra of this kind in which O is interpreted as the operation [R] and k is
interpreted as |k|”7. This algebra is also atomic, and is completely additive,
i.e. the operation interpreting ¢ preserves all joins. Conversely, every complete
atomic and completely additive algebra is isomorphic to the powerset algebra of
a Kripke frame.® Moreover, it can be shown from work of Kowalski and Kracht
[15, Proposition 6] that every algebra in the variety V(L(Fg)) is completely ad-
ditive. Therefore, Theorem 3.6 is equivalent to the statement that the variety
V(L(Fs)) contains no non-trivial complete and atomic algebras. The strength-
ening is that, by adapting the above arguments, we can show that V(L(Fg))
contains no non-trivial complete algebras, not even non-atomic ones. A com-
plete algebra A has the elements \/{|2n|* : n € N} and \/{|2n + 1|A : n € N},
where \/ denotes the join operation in A, and these elements play a role par-
allel to E and O in showing that if A were a non-trivial complete member of
V(L(Fs)) it would invalidate formula (3.2).

4 Weak Transitivity

Which logics have continuum many maximally normal extensions? One imme-
diate answer is that each frame Fg has reflexive Rg and so validates the axiom
T: Op — p. Thus all of the maximally normal logics L(Fg) are extensions of
KT,.

Another answer concerns the axiom 42 : ¢3p — O2p, which corresponds to
the 2-transitivity frame condition that xR3y implies zR?%y.

Lemma 4.1. If S contains all even numbers, then Fg is 2-transitive and so
validates 42.

Proof. Let S contain all even numbers. Then we show that zRZy for all z,y
in Fg, implying 2-transitivity. From the proof of Lemma 3.1(1), the only case

5A fact that ultimately goes back to [13].
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Foo | Fee | Feo | Foe

O 4> O o> e ® <> 0O Ot e
Ok | Ok & -k Or Ok < kK
Ok | Ok k| Ok K Ok

Table 2: Four weakly transitive doubleton frames

where ;vRszy might fail is when = = w and y = n for some n. But now we have
wRgn if n is even, and wRg(n + 1)Rgn otherwise. | |

Since there are continuum many subsets of N that contain all even numbers,
it follows that there are continuum many maximally normal logics of the form
L(Fs) that extend K42 .

For logics containing the transitivity axiom 4 : O2p — Op, the situation
differs rather dramatically. There are exactly five maximally normal extensions
of K4,;, namely the logics determined by the four Kripke frames of Table 1 and
the frame F,, of the first column of Table 2. In this new table, all four frames
have two elements, and we can take them all to be based on W = {0, 1}, with
0 on the left and 1 on the right in the graphic representations in the second
row. All have OR1 and 1R0, with the rest of R determined by whether or not 0
and 1 are reflexive, as indicated by the symbols o and e in the diagrams and in
the names of the frames. In each frame we define |k| = {1}, i.e. k is true just
at the right-hand point. The logics of these frames are all maximally normal
by Theorem 2.4. Condition (1) of that Theorem holds for each logic as these
frames are all definable, and condition (2) holds because, in each case, if a closed
formula A is not valid on the frame, then —(A A OA) is valid. But unlike the
singleton frames, the logics of these doubletons are not Post complete, since
they include neither xk nor =k as a theorem.

S4, (=KT4,) has exactly three maximally normal extensions: the logics of
the frames F[', F, and Foo. In Table 2, F,, is transitive, while Fqq , Foo and Foe
are not. But all four are weakly transitive, which means that if xR?y and x # ¥,
then xRy. This frame condition corresponds to the axiom 4% : {?p — p V Op.
The monomodal logic K4" is the modal logic resulting from the interpretation
of ¢ as the topological derivative (set of limit points). This has been extensively
studied under the name wK4 by researchers associated with the Georgian school
[6, 3]. There are exactly eight maximally normal extensions of K4%.  namely
the logics determined by the eight frames of Tables 1 and 2.

To prove these claims requires a proof-theoretic analysis. First we give a
result that will provide characterizations of the five maximally normal transitive
logics.

Theorem 4.2. Let L be a consistent normal logic.
(1) If ¥ OT, then L is a sublogic of either L(FY) or L(F).
(2) If b OT, then:
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(i) If FL K, then L is a sublogic of L(FF);
(ii) If b1 -k, then L is a sublogic of L(F,);

(i) If ¥ k and ¥, —k, while -, Ok and Fp, Ok, then L is a sublogic of
L(Foo).

Proof. Let Fr, = (Wy, Ry, |k|L, Pr) be the canonical general frame of L, based
on the set Wy of maximally L-consistent sets of formulas, with the relation
Ry, having zRpy iff {A : OA € z} C y, and P, being the set of all subsets
of the form |A|, = {x € Wi : A € z} for all formulas A. We assume the
standard theory of Fp, including the fact that it validates L, and that - A iff
|Al, = Wp.

For (1), if ¥z OT, then there is an z € Wy with 0T ¢ x. Therefore
{y : xRy} = 0, so the subframe F¥ of F generated by z is an irreflexive
frame based on the singleton {z}. Both subsets are admissible, so F7 can be
viewed as a Kripke frame. If z € ||, then |k|] = {z} and F7 is an isomorphic
copy of F{. Since validity of formulas is preserved in passing from Fj, to F7,
this implies that L C L(F}). If however = ¢ |s|r, then F7 is a copy of F,, and
so L C L(F,).

For case (2)(i), let -, OT and k1, x. Then Ry, is a serial relation on W, i.e.
Vady(xRry), and |k|, = Wr. This ensures that the unique map fo : W — {0}
is a bounded morphism from Fj, onto F5. Since surjective bounded morphisms
preserve validity, fo thus ensures that L is valid in F¥, showing that L C L(F%).

For case (2)(ii), if Fz, OT and 1, =, then ||, =0 = f5 '|x|7°, where f; is
as in case 2(i), and fp becomes a bounded morphism from Fj, onto F,, leading
to L C L(F,).

For case (2)(iii), it suffices to show that there is a surjective bounded mor-
phism from F; onto Fo.. For this we define f, : W, — {0,1} to be the
characteristic function of |k|y. Thus f.1|k|7°c = f-1{1} = |k|L; while f-1{0}
is equal to the complement —|k|;. This implies that f,; is k-invariant, and also
that it reflects admissibility.

Now if ¥, k and ¥}, -k, then both —|k|; and |k|L are non-empty, so f, is
surjective. If further - Ok and b, O—k, then in Fr, (Rp)| k| = (Rp)(—|k|L) =
Wi, so every x € Wy, is Ry-related to a point in |k|g, and to a point in —|k|,.
Since R is universal in F,o, this is enough to ensure that f, satisfies the back
and forth conditions, and so is a bounded morphism onto F,, as required. H

Corollary 4.3.
1) L(FE) is the unique mazimally normal logic containing x but not OT.

L(F,

2 o)
(FE¥) is the unique mazimally normal logic containing OT and k.
)

(
(2) 18 the unique mazximally normal logic containing —x but not OT.
() L

(4) L(Fo) is the unique mazimally normal logic containing OT and —k.
(5) L(F.

(Foo) is the unique maximally normal logic containing Ok and O—k but
not Kk or —K. ]
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Lemma 4.4. Let L be a mazimally normal extension of K4*. and A any closed
formula.

(1) ¥#1 A implies Fr, A — O—A.
(2) ¥ —A implies by, A — QOA.
(3) If ¥ A and ¥ —A, then

(i) ¥ OA implies Fr, OA < —A, and
(ii) ¥ O—A implies b, 0—A + A.

Proof. Using axiom 4% we can obtain -y O(BV ¢B) — BV OB, for any B.
This is then used to show by induction that

Fr O"B — BV OB foralln > 0. (4.1)
For (1), if ¥, A then by Theorem 2.4(2) there are j,ni,...,n; such that
Frp O™M—AV.--- VO™ =A.

But Fp 0"—=A — - AV O—A for all ¢ by (4.1), so this leads by Boolean logic to
Fr AV O—-A, hence b, A — O—A.

(2) follows from (1) by replacing A by —A.

For (3)(i), suppose first that ¥, 0A — = A. Then ¥ —-(Q0AA A) so replacing
Aby OAANAin (2) gives Fr, ~(0ANA) = O(OANA). But ~0A — —~(0ANA)
is a tautology, and O(OA A A) — OA belongs to any normal logic, so from all
these we obtain 7, =0A — QA, hence -7, OA.

Contrapositively then, if ¥, QOA, then F;, 0A — —A. But if also ¥ —A,
then -, =A — QA by (2), and altogether -, 0 A <> =A. So 3(i) holds.

(3)(ii) follows from 3(i), replacing A by —A. |

Theorem 4.5. If L is a mazimally normal extension of K4%., then L is the
logic determined by one of the frames Ff, Fo, F&, Fey Foo; Fee, Feos Foe-

Proof. Suppose that L is not determined by any of the first five frames on the
list. Then by Theorem 4.2 and the maximality of L we must have -y 0T, ¥ &
and ¥y, -k, but not both F;, Ok and 5 $—~x. This leaves three cases:

Case 1: ¥, Ok and ¥ O—k. Then putting A = k in Lemma 4.4(3) gives
Fr Ok < —kand Fr O—k < k. Thus (RL)|k|L = —|&| and (Ry) —|&|L = |K|L,
so the points in W, that are Ry -related to a point of |k|y, are precisely those in
the complement —|x|z,, and vice versa with ||, and —|x|;, interchanged. This
implies that the map f; of the proof of case (2)(iii) of Theorem 4.2 has the back
and forth properties from F, to Fee, and so is a bounded morphism onto Fe,-
This is enough to make L C L(F,), hence L = L(F,,) by maximality.

Case 2: b1, Ox and ¥, O—k. Then b1, O—k <> k by Lemma 4.4(3)(ii). Then
every x € Wy, is Ry-related to a point in |k|r, while the points Ry -related to a
point of —|k|y, are precisely those in |k|y. This makes f, a bounded morphism
onto Feo, leading to L = L(Feo).

Case 3: ¥ Ok and Fp O—k. Then F; Ok < -k and f, is a bounded
morphism onto Fo,, yielding L = L(Fo,)- [ |
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Corollary 4.6. If L is a mazimally normal extension of K4., then L is the
logic determined by one of the frames FY, Fo, Fs, Fe, Foo-

If L is a mazimally normal extension of S4., then L is the logic determined
by one of the frames F., Fo, Foo- |

5 Extensions of S4.3,

In the realm of monomodal logics, Bull [4] proved the famous result that every
normal extension of S4.3 has the finite model property. Fine [7] gave a complete
description of these extensions, showing that there are only Ny of them, and
that there is no infinite strictly increasing sequence of them, so they are all
finitely axiomatizable and decidable. Segerberg [24] later proved that every
logic extending S4.3 is normal.

In this section we show that in the presence of a constant x, none of these
properties hold. First we use x to construct a continuum of normal extensions of
S4.3, that lack the finite model property. Related constructions for monomodal
extensions of K4 and K4.3 can found in [5, Section 6.1].

Consider the linearly ordered Kripke frame (N, >,{2n : n € N}) in which
each point is related to all smaller points and k is true at all even numbers
and false at all odd ones. Each point n of this frame is definable by a constant
formula n. The first few in this sequence of formulas are

Il
Ol
=

Ok —0)A—0
OF-k—=1)A-0A-1
(
(

Ok = 0V2)A—0A-1A—2
O(-k > 1V3)A=0A-1A-2A-3

N TN )
I

To define n inductively, write > n for the conjunction A{—-m : n > m}. Put
0 =0k. For n > 0, if n is odd let n be

Ok - 0V2V---Vn—1)A(=n),
and if n is even let n be
O(-xk —1V3V---Vn—1)A(=n).
In this frame one can show by induction on n that, for all m € N,
mE=n iff m=n. (5.1)

Now let X = {«, S}, with a, 8 distinct entities not in N, and extend the
above frame to the frame

G=(XUN,R,{2n:n e N}),
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where R = (X x (XUN))U{(m,n) € N> : m > n}. Thus o and 3 are R-related
to everything, including each other, and so X forms a two-element cluster placed
‘to the left’ of the ordering >, i.e. R looks like

o n 2 1 0
8 i ——0——> - ——0——0—0

No m € N is R-related to o or 8, so statement (5.1) continues to hold in G.
Moreover, as « and § are related to all members of N, no formula n is true at
« or 3. Hence n defines n uniquely in G.

We make use of Grz, the well-known axiom O(O(p — Op) — p) — p. This
cannot be falsified at any n € N in G. It can be false at most at « and 3, so
for each n € N the formula —~Grz — On is valid in G. (Grz is falsifiable at o by
taking p false at o and true everywhere else; and is likewise falsifiable at 8 by
taking p false only at £.)

Let Ly be the smallest logic that extends S4.3,, and contains all the formulas
{=Grz — On : n € N}. As before, let L(G) be the (normal) logic determined by
the frame G. Then Lo C L(G), and Grz ¢ L(G).

Theorem 5.1. If L is any logic extending Lo and having Grz ¢ L, then L does
not have the finite model property.

Proof. Let M be any model of L. If Grz is not true in M, then —~Grz is true
at some (distinguished) point x, and so as Ly C L, for each n € N we get On
true at x, hence there is a point z, in M such that z,, = n. Then z, # z,,
whenever n # m; for either n > m and so —m is a conjunct of > n, hence a
conjunct of n, implying z,, E —m while z,, = m; or else m > n and likewise
Zm |E —n while z, = n. Hence M has infinitely many points.

It follows that every finite model of L must verify Grz. But Grz ¢ L. R

Next, we show that there are continuum many normal logics between Ly and
L(G). For each n € N, let A,, be the formula

O(n — p) vO(n — —p).

Since n is true at exactly one point of G, A,, belongs to L(G).

Let G™ be the modification of G obtained by inserting a new point n’ between
n+ 1 and n that will also satisfy n. For this we define x to be true at n’ iff n is
even (so n and n’ are indistinguishable by x). The relation R is extended to G”
by requiring zRn' iff zRn, and n’ Rz iff nRx, for each x # n in G, and adding
n'Rn' Rn. Thus G" looks like

a n+1 n/ n 2 1 0

B

The point of this is that the formula n is now true at both n and n’, so A, is
falsified in G™ (at every x such that xRn’) whenever p is true at one of n and

17



n' and false at the other. On the other hand, if m # n, then m is still true in
G™ exactly at m, and hence G" = A,,.

Now for each S C N, define Lg to be the smallest normal extension of Lg
containing {4, : n € S}. Then Ly C Lg C L(G), and so Grz ¢ Lg. Moreover,
if n ¢ S, then as the frame G" validates A,, for every m # n, it validates A,,
for every m € S, but falsifies A,,, showing that A, ¢ Lg. So for any n € N,

A,eLs iff nebS. (5.2)

Therefore if S, S’ C N with S # 5’, it follows that Ls # Ls/. The Lg’s are thus
a family of 2% normal extensions of S4.3, that lack the finite model property
by Theorem 5.1. Since there are only R decidable logics, this also implies that
there are undecidable normal extensions of S4.3,.. Indeed, (5.2) implies that Lg
is undecidable whenever S is.

Now taking any infinite strictly increasing sequence S; C Se C ... of subsets
of N yields an infinite strictly increasing sequence Lg, C Lg, C ... of normal
logics between Lo and L(G). The union (J;° Lg, is then a normal logic between
Lo and L(G) that is not finitely axiomatizable. More concretely, L is itself a
normal extension of S4.3,; that is not finitely axiomatizable. To see this, let L,
be the smallest normal extension of S4.3,; to include {—~Grz — Om : m < n}.
Define a finite frame by deleting the points of {m € N: m > n} from G, leaving
only a, 8,n,m —1,...,0. This frame validates L/, but falsifies ~Grz — On + 1,
showing that L;, C L} ;. The L’s form a strictly increasing sequence whose
union is Lg. If Ly were finitely axiomatizable it would be equal to some L,,
contradicting that fact that ~Grz — On+1 ¢ L,,.

The G" construction can be strengthened. Instead of duplicating the one
point n, we can duplicate many points at once, defining a frame Gg by inserting
a suitable new point n’ in G between n + 1 and n and satisfying n, for each
n ¢ S. This allows falsification of A,, for all n ¢ S while preserving validity of
A,, when n € S. Therefore

GsE A, it nesb.

There is a natural bounded morphism fg from Gg onto G: put fs(n') = n for
all n ¢ S, and otherwise fg(x) = x. The existence of fg implies that the logic
L(Gs) determined by Gg is included in L(G), and so does not contain Grz. It
follows that the L(Gg)’s form another family of 2% normal extensions of S4.3,
that lack the finite model property.

Now consider the (quasi-normal) logic L(Gg, «), consisting of all formulas
that are valid at « in Gg. We have Grz ¢ L(Gg,«), and since a |= =k but
a = 0-k in Gg, L(Gs, @) is not a normal logic. Moreover, since aRn for all n
we get that

Gs,aEA, iff nes.

Thus the L(Gs,a)’s are a family of 2% non-normal extensions of S4.3, that
lack the finite model property.

Finally we note that if G4 is the frame obtained by deleting 8 from Gg, then
G validates Grz. The logics L(Gg ) are a family of 2% normal extensions of
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S4.3Grz,, and the logics L(Gg, ) are a family of 2% non-normal extensions of
S4.3Grz,.

6 Conclusion

We have given a positive answer to the open question from [9] as to whether
there are uncountably many maximally normal logics in the language with the
modality [0 and the constant k. The examples we constructed turned out to
be logics that are not validated by any Kripke frame, and more strongly are
not validated by any non-trivial complete algebra. We then showed that in the
presence of weak transitivity, the number of maximally normal logics is finite,
exhibiting eight such extensions of K4v., five of K4, and three of S4,.

In addition we gave some results indicating that the set of logics in the
language with s exhibits properties more like that of the the set of bimodal
logics than the set of monomodal ones. These properties include that there
are (continuum many) quasi-modal Post complete logics that are not normal;
and that the extensions of S4.3, include continuum many normal ones, and
continuum many non-normal ones, none of which have the finite model property,
as well as normal logics that are not finitely axiomatizable and ones that are
undecidable.

A reviewer has noted that, apart from in the work on extensions of S4.3,,
the logics we introduced were defined by frames in which « is a nominal, i.e.
is interpreted as a singleton set of worlds. So many of the results hold also
for hybrid logic with a single nominal. One can ask whether the results about
extensions of S4.3,; also hold for this hybrid logic.

Finally, it might be asked whether the presence of s allows the construction
of extensions of S4.3,; that are incomplete for Kripke semantics (which cannot
happen in the monomodal case). Here the answer would appear to be nega-
tive. Fine [8] showed that Kripke completeness is possessed by any monomodal
finite width logic, i.e. any normal monomodal extension of K4 that, for some
n, includes an axiom expressing that there are at most n incomparable points
R-related to a given point. His arguments involve working with languages that
have a finite number of atomic formulas. It seems that by treating x as an
additional atomic formula, these arguments still go through to show that in
the presence of k, every finite width logic, including every normal extension of
S4.3,, is complete for Kripke semantics. We leave it to interested readers to
assess that for themselves.
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