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One of the main challenges in medicine is to guarantee an appropriate drug supply according to the real needs of patients. Closed-
loop strategies have been widely used to develop automatic solutions based on feedback variables. However, when the variable of
interest cannot be directly measured or there is a lack of knowledge behind the process, it turns into a difficult issue to solve. In
this research, a novel algorithm to approach this problem is presented. The main objective of this study is to provide a new general
algorithm capable of determining the influence of a certain clinical variable in the decision making process for drug supply and
then defining an automatic system able to guide the process considering this information. Thus, this new technique will provide
a way to validate a given physiological signal as a feedback variable for drug titration. In addition, the result of the algorithm
in terms of fuzzy rules and membership functions will define a fuzzy-based decision system for the drug delivery process. The
method proposed is based on a Fuzzy Inference System whose structure is obtained through a decision tree algorithm. A four-step
methodology is then developed: data collection, preprocessing, Fuzzy Inference System generation, and the validation of results.
To test this methodology, the analgesia control scenario was analysed. Specifically, the viability of the Analgesia Nociception Index
(ANI) as a guiding variable for the analgesic process during surgical interventions was studied. Real data was obtained from fifteen
patients undergoing cholecystectomy surgery.

1. Introduction

Artificial Intelligence (AI) plays an important role in science
and engineering.This methodology is able to make decisions
after a training process based on learning from a dataset
obtained through expertise. One of the possible definitions of
Artificial Intelligence refers to cognitive process and, specifi-
cally, to reasoning. Consequently, there is a natural relation-
ship between Artificial Intelligence and decision-making [1].
Great progress has been made in different fields as industrial
engineering [2, 3], tourist sector [4, 5], or energy field [6].

Specifically, inmedicine, AI techniques have been applied
with different aims. It includes the capability of learning
automatically from data to control the health management

systems, including an active guidance of clinicians in their
treatment decisions. For clinical decision support, the key
idea of the training process is extracting the expert knowledge
from the information concerning medical records and the
unstructured data including natural language [7]. E-health
systems have become popular as they automatically evaluate
the situation of patients without involvement from a physi-
cian [8]. Decision-making process in hospital management
for prioritization of risks and assessment of failures has
been also approached [9, 10]. Moreover, AI has been used
to automatic diagnosis and classification of illness [11, 12]
and also for medical sensors fault detection [13]. Specifically,
in medicine, the classifiers proposed to support a decision-
making process must be suitable for being understood and
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evaluated froma clinician point of view [14]. Fuzzy rule-based
systems have been widely used in medicine as they consist
of simple linguistic rules that relate concepts in a natural
manner [15, 16].

One of the main challenges in medicine is related to
personalising the drug dose according to the real needs of
patients. In most cases, the information obtained from the
variable of interest leads to an increment or decrement of
the drug infusion according to the medical criteria. AI has
been also applied to automate the administration of drugs
in medicine [17–20]. Important results have been reached in
vasopressor administration [21, 22] or control of anaesthesia
[23–26].Thekey idea of these systems is a closed-loop scheme
in which a controller decides the drug dose comparing the
information of the measured variable to the proposed target.
To design an appropriate control structure, it is necessary
to deal with a well-known process. As a result, it is difficult
to automate those processes in which the control variable
cannot be easily measured or the relationship between the
drug infusion and the effects on patient is notwell established.

Nowadays, different clinical monitors are being devel-
oped in order to propose new variables to improve the
decision-making process in medicine. However, trying to
establish a strict criterion to correlate the new information
with the physician’s action based on traditional clinical
variables is not an easy task. The main objective of this
researchwas defining a novel generalmethodology capable of
studying the feasibility of a new clinical variable (controlled
variable) to guide the drug delivery process and then design-
ing automatically a fuzzy-based decision system taking this
new information into account. Firstly, the accuracy of the
new monitor to guide the drug infusion should be analysed.
Then, the relationship between the newmeasurement and the
physician criteria based on their expertise can be automati-
cally proposed. The resulting Fuzzy Inference System based
on a set of rules and membership functions makes it possible
to obtain an easily interpretable drug delivery protocol for the
clinician. A four-step methodology was proposed.

(i) Data collection for training process
(ii) Preprocessing and analysis of data
(iii) Designing the Fuzzy Inference System through a

decision tree algorithm
(iv) Validation of the results obtained

There are different possible scenarios in which our algo-
rithm could be applied. Specifically, to test the methodology
above, the analgesia drug delivery process was analysed.
Although different commercial monitors have been pro-
posed, the main problem for the analgesia control is the
absence of a reliable monitor to measure pain in patients
undergoing surgery [27, 28]. In this research, the suitability
of the Analgesia Nociception Index (ANI) to guide the
analgesic process under surgery was analysed. Training data
were obtained from 15 patients undergoing cholecystectomy
surgery. The paper is organised in the following way. The
next section presents a detailed problem description as a
starting point for this research. Section 3 provides a detailed
explanation of the methodology proposed in this paper.

Section 4 presents the application of the methodology to
the analgesia control field. Section 5 presents the results of
the method. Section 6 includes the discussion of the results.
Finally, in Section 7 we conclude the paper.

2. Problem Description

Delivering an appropriate amount of drug according to the
real state of patient is such a hard task inmedicine. Generally,
physician evaluates the current state of the patient by means
of specific monitors or using different clinical signs. Then,
they decide whether it is necessary to change the drug
dose. It is important to use the appropriate concentrations
of medications to optimize clinical outcomes in patients
in various clinical situations [29, 30]. However, finding the
variable that can be directly related to the effect of drug is not
a trivial problem.

As a matter of fact, a new trend has been based on the
proposal and development of new variables, techniques, and
monitors capable of offering new information that may be
included in the decision-making process. However, are these
new measures directly related to the process involved? How
could we define a new drug supply protocol in order to
include this new information? These are the questions that
this research aims to answer. As a result, the main objectives
of this paper are as follows:

(1) Determining not only if the new controlled variable is
able to guide the drug supply process but also which
information should be specifically considered

(2) Defining a rule-based decision system in order to
guide the supply process taking the new information
into account.

Actually, there are a lot of fields in which the development of
this algorithm would result in a success: glucose monitoring
[31, 32], anaesthesia [33], or therapeutic drug monitoring
[34, 35]. In this research, we have focused on the control
of analgesia. Optimizing the dose of opioid may limit the
risk of overdosing and the risk of postoperative hyperalgesia
and may reduce the time of recovery after surgical procedure
[36]. However, the evaluation of analgesia and, therefore,
the nociception-antinociception balance during surgery is
a challenge to address due to the absence of an objective
measure for monitoring analgesia. Traditional methods for
supplying opioids use nonspecific and nonsensitive methods
based on simple changes in vital signs such as movement,
tachycardia, or lacrimation [28]. Recently, different monitors
have been developed for measuring analgesia during clinical
interventions proposing different information as nociception
measures: heart rate information [37], electromyogram [38],
electroencephalogram [39], or electrical skin conductance
[40]. Nevertheless, the reliability of these monitors has not
been deeply studied in clinical practice to assert that there
exists a variable directly related to analgesia [27, 41].

Analgesia Nociception Index is a measure based on heart
rate variability (HRV) analysis. HRV has been shown in
several studies to measure Autonomic Nervous System tone,
strongly influenced by anaesthetic drugs [42]. ANI has been
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employed in several research in order to validate it as a
device capable ofmeasuring the nociception balance [43–46].
ANI seems more sensitive than other traditional measures
based on hemodynamic response of patient under propofol
interventions to moderate nociceptive stimuli [47]. Using the
ANI monitor as a guidance variable for analgesic titration
may reduce the time recovery after the intervention, as well
as the consumption of the analgesic agent [48, 49]. Moreover,
ANI may enable consistent reflection of stimulation during
propofol-remifentanil anaesthesia, improving detection of
a possible inadequate nociception/antinociception balance
[50].

For conscious patient, the sympathetic-parasympathetic
balance is affected by psychological stress. Using ANI in
this case does not exclusively detect nociception but may be
modified by stress and emotion [51, 52]. In general, further
research is needed to evaluate whether ANI is a tool able to
provide beneficial effects to the patients during anaesthesia.
Traditional studies tend to compare ANI information with
postoperative patient’s painful experience to validate the
ANI monitor. Visual Analogue Scale (VAS) is a standard
measurement tool in pain research and clinical practice [53,
54]. It is supposed that changes in VAS score represent a
relative change in magnitude of pain sensation. However,
trying to establish a correlation between the ANI index
during surgery and the postoperative evaluation of pain
through VAN is influenced by pain subjective experience
of patients [55]. Another trend is studying the variation of
the monitor’s measure through the application of painful
stimuli to the patient [56], a clinical practice thatmay damage
the patient’s health. As a result, more research is needed to
find a feasible method to test the validity of the different
alternatives proposed. Although no analytical relationship
has been proposed between drug infusion and ANI index,
very promising results have been reached when using ANI
as guidance variable in analgesia [57, 58]. The algorithm
developed in this research will be applied to propose a new
solution to the analgesia problem from the AI point of view.

In light of the above, applying the novel algorithm
proposed in this research to the control of analgesia will result
in

(i) Determining whether the information displayed by
the Analgesia Nociception Index is suitable to guide
the analgesic process

(ii) Defining a Fuzzy Inference System considering the
information displayed by the ANI capable of predict-
ing the actions of the clinician.

3. Methods

In the present study, decision trees as well as fuzzy logic tech-
niques were used.The basis of these algorithms is introduced
in the following subsections. The main idea was using the
information of a decision tree to design a Fuzzy Inference
System (FIS). This structure will be capable of predicting the
expert’s decisions after a training step based on real data when
a newmonitor is involved in a drug supply process. Although
more recent machine learning techniques have emerged with

the purpose of the automation of data analysis, fuzzy logic has
been chosen in this study for several reasons. Firstly, most
of medical decisions when changing the drug dose cannot
be based on crisp values or strict predefined criteria. Thus,
fuzzy values due to the presence of ambiguous concepts in
the decision making process such us interpatient variability
or the existence of a lack of knowledge behind the process are
required. That is why using membership functions in order
to define the different categories for the decision variables
seems to be the most appropriate option for the decision-
making process. On the other hand, fuzzy logic is a well-
known method able to relate easily the heuristic knowledge
to a set of rules in a natural manner. What is more, no
complex mathematical modelling is needed as it is based on
a linguistic characterisation of the quality of the controlled
process. Obtaining a Fuzzy Inference System automatically
through the algorithm we propose will result not only in
the development of an automatic system for the drug supply
trained with real data, but also in the definition of the basis of
the process by means of a set of rules easily interpretable for
clinicians.

The general scheme of themethod proposed to design the
decision-making system is shown in Figure 1.

One of the key steps in this methodology is the data
collection. Data displayed by the new monitor must be
recorded in parallel to the traditional drug supply process.
It is important to note that the new monitor involved in this
process should compute a numerical index in order to be able
to apply the novel algorithm.To avoid conditioning the expert
decision, the new information displayed must be hidden.
Then, a preprocessing step is performed. Several proposals of
the input data including different characteristics of the new
measure must be considered. A decision tree algorithm is
trained using the data recorded. The rules obtained will be
the base to design the Fuzzy Inference System to predict the
dose changes. On the one hand, it is possible to study the
performance of the algorithm when trying to relate the new
measure to the physician’s actions. As a result, a first approach
of the reliability of the new measure to guide the drug supply
can be reached. Moreover, it is possible to determine which
input proposal fits better to the decision-making process. On
the other hand, the resulting Fuzzy Inference System consists
of a set of rules whose interpretability improve the “user-
friendliness” of the drug delivery protocol.

3.1. Decision Tree. Decision tree is a supervised machine
learning algorithm able to build a model that makes predic-
tions based on a known set of input data and known responses
(output). The goal is to assign a class (categorical variable)
from a finite set of classes to an observation. The decision
tree consists of tests nodes linked to two ormore subtrees and
leafs or decision nodes labelled with a class which means the
decision [59]. An instance is classified by starting at the root
node of the tree. If the node is a test, the process continues
with one of the subtrees. On the other hand, when a leaf
is reached, the instance is classified with the correspondent
label. An attribute node has exactly as many branches as
its number of different value classes. Different algorithms
to induce decision trees have been proposed [60, 61]. The
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Figure 1: General scheme of the algorithm proposed in this study.

main idea relies on using statistical calculation of information
gain from the attributes. As a result, attributes adding the
most information about the decision are selected first in the
decision tree construction.

For this research, a CART (Classification and Regression
Trees) algorithm was proposed. This method introduced by
Breiman et al. [62] is focused on minimising the relative sum
of squared errors in the two partitions resulting from a split.
Generally, a two-step process is developed: a preliminary
induction of the model through a training set under the
“divide and conquer” principle and a checking process of the
accuracy from a testing set. The search for splits in CART is
based on two main characteristics: the covariate to split on
and splitting point within that covariate [63]. Firstly, trees are

grown to a maximal size stopping when no further splits are
possible due to the lack of data [64]. Gini, similar to entropy
criterion, is used as the splitting rule for classification. For a
two-decision target the Gini measure of impurity of a node 𝑡
is given by the expression below.

𝐺 (𝑡) = 1 − 𝑝 (𝑡)2 − (1 − 𝑝 (𝑡))
2
, (1)

where 𝑝(𝑡) is the relative frequency of one of the label in the
node. Then, the tree is pruned back to the root based strictly
on the training data according to a cost-complexity measure
defined as

𝑅𝑎 (𝑇) = 𝑅 (𝑇) + 𝑎 |𝑇| , (2)
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Figure 2: General structure of a Fuzzy Inference System.

where 𝑅(𝑇) is the training sample cost of the tree, |𝑇| is the
number of terminal nodes, and 𝑎 is a penalty imposed on each
node increasing from 0 to a value sufficient to prune away all
splits. As a consequence, the next split to be pruned is the one
that decreases the total performance of the tree.

3.2. Fuzzy Inference System. Fuzzy Inference System (FIS) is
a fuzzy logic based structure capable of making decisions in
real time taking human expert knowledge into account. The
main idea is based on mapping the inputs and the outputs
through a set of predefined rules that involves the heuristic
knowledge. According to fuzzy sets theory, each variable
(input or output) is defined through a linguistic variable 𝑢̃𝑖
whose value can be described through linguistic values 𝐴𝑗𝑖
belonging to a universe of discourse 𝑈𝑖. Unlike crisp values,
the values of the universe of discourse “belong to” a linguistic
value in a certain degree [0, 1] described by a membership
function 𝜇(𝑢𝑖).

𝜇
𝐴
𝑗

𝑖

(𝑢𝑖) = 𝑋 󳨀→ [0, 1] . (3)

A value near 1 indicates that the value is almost fully in the set.
A fuzzification process is necessary to turn crisp values to a
fuzzy value.The singleton fuzzification is themost commonly
used method. Then, the mapping of the inputs to the output
is characterised by if-then rules. An inference step is needed
to obtain conclusions from inputs and rule base. In this study,
a Takagi-Sugeno inference system was developed.

IF 𝑢1 is 𝐴
1
𝑖, 𝑢2 is 𝐴

2
𝑖, . . . , 𝑢𝑛 is 𝐴

𝑛
𝑖,

THEN 𝑏𝑖 = 𝑔𝑖 (⋅) ,
(4)

where “⋅” represents the argument of 𝑔𝑖 function. As a result,
the consequence of a Takagi-Sugeno inference is a function
that may include the input terms 𝑢𝑖. Finally, a defuzzification
method is needed to obtain a crisp value of the output:

𝑦 =
∑𝑅𝑖=1 𝑏𝑖𝜇𝑖

∑𝑅𝑖=1 𝜇𝑖
. (5)

The general structure of a Fuzzy Inference System is shown in
Figure 2.

3.3. Fuzzification of the Decision Tree Rules. Generally, when
a decisionmust bemade inmedicine, there is not a predefined
universal criterion. It is mainly due to the different inter- and
intravariability characteristics that the process involves. As a
result, it does notmake any sense to consider a crisp value as a

strict limit tomake a decision.That is one of themain reasons
why a FIS was introduced in this research. Furthermore,
fuzzy logic is based on “categories” or membership functions
easier to interpret for clinicians as it groups information with
similar characteristics for the decision-making process.

One of the key steps when designing a FIS is related to
the definition of the membership functions and the rule base.
It is especially difficult when there is not a deep heuristic
knowledge behind the process. To avoid this problem, a
decision tree technique is proposed to obtain it automatically
from real data. The limits of the membership functions will
be defined through the conditions in the test nodes and
the rules will inherit from it. However, while the limits of
the decision tree are crisp values based on training data,
fuzzy values are required for Fuzzy Inference Systems. In
addition, when the number of training and testing data
is limited, it can turn into a harder problem. In order to
generalise our model and to take advantage of the fuzzy
techniques, triangular and trapezoidalmembership functions
were used for intermedia and edge partitions of the universe
of discourse, respectively. Moreover, we proposed to increase
the limits of each membership function in 10% to get an
overlap and avoid problems related to the limitation in the
amount of data in the training step. The new limits for each
membership function are calculated as shown below:

New lower limit = lower limit

−
upper limit − lower limit

2

⋅ 0.1

New upper limit = upper limit

+
upper limit − lower limit

2

⋅ 0.1.

(6)

The 2-step process for the fuzzification of the inputs is
described in Figure 3.

Finally, the number of output functions matches the
number of actions that the physician can handle. A constant
function will be proposed for each action. For a general
situation in which two decisions can be made (decreasing
or increasing drug), a constant value of 0 and 100 could be
associated with each action, respectively. In this case, the
Fuzzy Inference System will calculate a number within the
0–100 range that could be considered as a percentage of
action. A value of 50 could be regarded as the limit between
both decisions.

3.4. Evaluation of the FIS Decision Maker. In order to
evaluate the performance of the method proposed and the
capability of the resulting Fuzzy Inference System to predict
the decision-making process, a 𝑘-fold cross-validation must
be performed [65]. The original sample is randomly divided
into 𝑘 equal sized subsamples. A single subsample is consid-
ered as the validation data for testing the Fuzzy Inference
System, while the remaining 𝑘-1 subsamples are used as
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Figure 3: Graphic description of the Fuzzy Inference System definition process proposed in this research.

training data. The process is repeated 𝑘 times varying the
validation data and the results are averaged to obtain a single
estimation. Different measures are calculated to study the
performance of the classification [66].The accuracy indicates
the percentage of the dataset that are correctly classified by the
proposed classifier.The sensitivity and specificity calculate the
proportion of positive and negative records that are correctly
classified, respectively. Precision refers to the fraction of
relevant instances among the retrieved instances while recall
is the fraction of relevant instances that have been retrieved
over total relevant instances. The mathematical expressions
to calculate the different measures are shown below.

Accuracy = TP + TN
TP + TN + FN + TN

⋅ 100 (%)

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

Precision = TP
TP + FP

Recall = TP
TP + FN

.

(7)

Given two classes, TP (true positives) refer to the positive
records that have been correctly classified by the FIS, while
TN (true negatives) are the negative records that have been
correctly labelled by the classifier. On the other hand, FP
(false positives) are the negative records that have been
incorrectly labelled, while FN (false negatives) refers to
the positive records incorrectly classified by the FIS. The

Table 1: Confusion matrix for positive and negatives records.

Predicted
Positive Negative

Observed
Positive TP FN
Negative FP TN

confusion matrix to define the different measures is shown
in Table 1.

Different input proposals based on different information
from the new monitor are considered in the algorithm. In
order to choose the best input proposal for the decision
making process, the evaluation of the input variables resulting
in the highest accuracy, sensitivity, specificity, precision, and
recall will be considered for the final FIS. To determine
whether the information provided by a new monitor is
relevant for a specific decision-making process, the measures
of performance should be comparedwith the results obtained
in similar previous research based on traditional decision
methods or, if it was not possible, being evaluated by an
expert.

4. Analgesia Assessment Application

This study has been approved by the Ethics Committee for the
Clinical Research of the Hospital Universitario de Canarias
(2014-97 (760954923-54923-4-14)). After obtaining written
informed consent from patient, fifteen patients undergoing
cholecystectomy surgery were enrolled in this study. A total
intravenous anaesthesia (TIVA)with propofol (hypnotic) and
remifentanil (analgesic) was performed for induction and
maintenance of general anaesthesia. A Bispectral Index (BIS)
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monitor (Aspect Medical Systems Inc., Newton, MA, USA)
was used as guidance variable for propofol titration. The
propofol dose was changed during the surgery to maintain
BIS values between 40 and 60, with a target of 50. The target
dose of remifentanil was adjusted at the discretion of the
anaesthesiologist, according to clinical practice parameters,
anticipation to surgical stimuli, reactivity, or hemodynamic
events. The dose of remifentanil was adjusted in steps of
0.05–0.1mcg kg−1min−1.

4.1.TheAnalgesia Nociception Index. TheAnalgesia Nocicep-
tion Index (ANI), developed by Mdoloris Medical System, is
a noninvasive system that displays a continuous index related
to the Autonomic Nervous System (ANS) through the heart
rate variability. ANI is supposed to be a monitoring system of
the parasympathetic activity that displays information about
the level of pain or stress in patients undergoing surgery.
ANI index computation is based on a frequency domain
analysis of the ECG signal. The main idea leads to studying
the spectral content of RR waves series after a preprocessing
step focusing on the high frequency range only influenced
by the parasympathetic tone. Specific ECG electrodes are
placed on the chest or back of patient to collect the heart
rate variability. Every second twomeasures ranging from 0 to
100 are displayed: instant ANI and mean ANI. Instant ANI
is directly related to the reactions of the patient to painful
stimuli while mean ANI, computed after two minutes of
averaging instant ANI, is related to the effects of analgesia on
a patient. As a result, instant ANI may detect the actions of
the surgeon and mean ANI could be useful for the titration
of analgesia. Target values between 50 and 70 for mean ANI
have been proposed to avoid unwanted hemodynamic events.
Values under 50 increase the possibility of hypertension,
hypotension, tachycardia, or bradycardia events.

4.2. Data Collection and Preprocessing. According to the
process described in Methods, the data collection is the
first step of the proposed methodology. In this case, two
anaesthetists took part in each surgery. One of them was in
charge of the drug supply, while the second one supervised
the data recording process in a computer. A software in
Matlab was developed in order to collect the data auto-
matically. The scheme of the process is shown in Figure 4.
Information displayed by the ANI monitor was hidden
in order to avoid conditioning the decisions of the first
anaesthetist. Instant ANI, mean ANI, and remifentanil dose
changes (mcg kg−1min−1) were recorded every five seconds.
Predefined surgical stimuli were also registered: nasogastric
tube, laryngoscopy, incision, trocars, and the creation of
pneumoperitoneum.

A postoperative offline study was made to try to correlate
the rate changes of remifentanil with the ANI values. Before
the analysis, a data preprocessing was necessary. On the one
hand, zero-index value because of poor signal or external
disturbances was corrected through a linear interpolation
algorithm. On the other hand, only changes of remifentanil
due to the analgesic state of patients were considered in this
study. Changes of remifentanil rate during surgerywere based
on two criteria: the anticipation to predefined painful surgical
stimuli and the analgesic state of patient. As far as ANI is not
able to predict the changes based on the anticipation to sur-
gical stimuli, these values were not considered in this study.

4.3.DecisionVariables. Theaccuracy of the algorithmpredic-
tion will be directly related to the combination of the input-
output variables proposed. As a result, different information
obtained through the ANI index was tried to establish a
relationship with the action of the anaesthetist. Firstly, a cate-
gorical variable was considered for the output. Consequently,
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Table 2: Description of the input variables proposed for the study.

Variables Description
ANI𝑖20 Instant ANI of last 20 samples (100 s)
ANI𝑚 and ANI𝑖5 Last mean ANI and last 5 samples of instant ANI (25 s)
ANI𝑚5 and ANI𝑖10 Mean ANI of last 5 samples (25 s) and instant ANI of last 10 samples (50 s)
ANI𝑚10 and ANI𝑖20 Mean ANI of last 10 samples (50 s) and instant ANI of last 20 samples (100 s)
ANI𝑚10 and ANI𝑖30 Mean ANI of last 10 samples (50 s) and instant ANI of last 30 samples (150 s)
Average ANI𝑚5 and ANI𝑖5 Average of last 5 samples of Mean ANI (25 s) last 5 samples of instant ANI (25 s)
Average ANI𝑚5 and ANI𝑖20 Average of last 5 samples of Mean ANI (25 s) last 20 samples of instant ANI (100 s)
Average ANI𝑚5 and ΔANI𝑖5 Average of last 5 samples of Mean ANI (25 s) the increment of last 5 samples of instant ANI (25 s)
Average ANI𝑚5 and ΔANI𝑖20 Average of last 5 samples of Mean ANI (25 s) the increment of last 20 samples of instant ANI (100 s)

“increasing drug” or “decreasing drug” labels were defined
as it fully considers the anaesthetist’s actions. Moreover,
nonquantitative values of changes in remifentanil dose were
analysed as the rate changes were limited by the clinical
protocol (steps of 0.05–0.1mcg kg−1min−1).

For the input, different variables computed from instant
ANI and mean ANI were taken into account. In addition,
the effects of considering different time intervals for both
variables were also analysed. Finally, to study the evolution
of ANI, the increment of instant ANI was computed through
the slope of the regression line that best matched the last
values for a time interval. The variables proposed and their
description are shown in Table 2.

5. Results

The decision-making methodology proposed was applied to
the analgesic drug supply scenario. Fifteen patients under-
going cholecystectomy surgery were enrolled in this study.
An example of the data collected during the interventions is
shown in Figure 5. A total of 91 increasing/decreasing events
were registered during the 15 surgeries. After discarding the
changes due to the anticipation to painful stimuli, 53 events
were finally considered for this study (32 increasing versus 21
decreasing).

5.1. Evaluation of the Proposed Variables. The performance
of the resulting Fuzzy Inference Systems for both “increasing
drug” and “decreasing drug” actions considering the different
variables proposed in Section 4.3 is shown in Tables 3 and 4.
A 4-fold cross-validation was applied for each combination
according to the total number of training data.

In light of the results of the cross-validation, accuracy
was over 60% for all the inputs considered. Specifically, accu-
racy was over 70% in most of the combinations proposed.
Regarding the analgesia scenario, it was highly important
to note that a low value of analgesia in patients can lead
to complications and prolonged rehabilitation as well as the
development of chronic pain with reduction in quality of life
[67, 68]. Consequently, accurate increments of remifentanil
dose were desirable. That was why sensitivity and recall
measures in Table 3were specifically considered to choose the
appropriate FIS. In this sense, there were up to four input-
output combinations that resulted in sensitivity and recall
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Figure 5: Example of the data collected for a patient undergoing
cholecystectomy surgery. ANI registered (a) and remifentanil infu-
sion rate (b). ANIi: instant ANI. ANIm: mean ANI.

values over 0.8. Taking these four combinations into account
as well as specificity and precision values, it was concluded
that the best performance was reached when considering
the average of the last 5 samples of mean ANI and the
increment of the last 20 samples of instant ANI. Similar
results were reached when analysing Table 4, as this input-
output proposal resulted not only in the highest sensitivity-
specificity combination but also in the highest precision
value.

As a result, the last 5 samples of mean ANI and the
increment of the last 20 samples of instant ANI were chosen
for the input of our decision-making system. Regarding the
performance reached, it was possible to affirm that there
existed a relationship between the actions of the anaesthesiol-
ogist during surgery and the values displayed by theAnalgesia
Nociception Index.

5.2. Structure of the Fuzzy Inference System. Taking into
account the comparison of performances in Section 5.1, the
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Table 3: Comparison of performance for the different input combinations for when applying the proposed algorithm for increasing drug
action.

Input Accuracy
(%) Sensitivity Specificity Precision Recall

ANI𝑖20 71.57 0.83 0.65 0.80 0.83
ANI𝑚 and ANI𝑖5 71.57 0.77 0.74 0.83 0.77
ANI𝑚5 and ANI𝑖10 66.07 0.69 0.71 0.80 0.69
ANI𝑚10 and ANI𝑖20 69.64 0.81 0.62 0.80 0.81
ANI𝑚10 and ANI𝑖30 71.57 0.76 0.72 0.83 0.76
Average ANI𝑚5 and ANI𝑖5 71.57 0.77 0.72 0.81 0.77
Average ANI𝑚5 and ANI𝑖20 71.57 0.83 0.64 0.80 0.83
Average ANI𝑚5 and ΔANI𝑖5 62.09 0.71 0.56 0.73 0.71
Average ANI𝑚5 and ΔANI𝑖20 75.41 0.82 0.71 0.80 0.82

Table 4: Comparison of performance for the different input combinations for when applying the proposed algorithm for decreasing drug
action.

Input Accuracy
(%) Sensitivity Specificity Precision Recall

ANI𝑖20 71.57 0.65 0.83 0.5 0.65
ANI𝑚 and ANI𝑖5 71.57 0.74 0.77 0.72 0.74
ANI𝑚5 and ANI𝑖10 66.07 0.71 0.69 0.62 0.71
ANI𝑚10 and ANI𝑖20 69.64 0.62 0.81 0.46 0.63
ANI𝑚10 and ANI𝑖30 71.57 0.72 0.76 060 0.72
Average ANI𝑚5 and ANI𝑖5 71.57 0.72 0.77 0.70 0.72
Average ANI𝑚5 and ANI𝑖20 71.57 0.64 0.83 0.51 0.64
Average ANI𝑚5 and ΔANI𝑖5 62.09 0.56 0.71 0.62 0.56
Average ANI𝑚5 and ΔANI𝑖20 75.41 0.71 0.82 0.74 0.71

analysis and the result of the final FIS regarding the input-
output proposal with the highest prediction score (the last 5
samples ofmeanANI and the increment of the last 20 samples
of instant ANI) are studied in this section. On the one hand,
the decision tree obtained is shown in Figure 6. The value of
the input variables proposed for the 53 registered events are
shown in Figure 7.

Triangular as well as trapezoidal membership functions
were used for both inputs. The number of the membership
functions were defined by the total number of test nodes
associated to each input. The limits, inherited from the test
node conditions, were fuzzified according to the criteria in
Section 3.3. The results are shown in Figure 8. A number
of four and two membership functions were defined for the
average ANI𝑚5 and ΔANI𝑖20 inputs, respectively.

Finally, the output functions of the FIS were defined.
In this case, a two-decision system was needed: “increasing
drug” and “decreasing drug” actions. Two constant output
functions were proposed: “0” and “100” referred to the
decreasing and increasing actions, respectively. As a result,
the output of the FIS was a number within 0–100 range
which could be regarded as a percentage of action. In this
study, the results over 50 were considered as an “increasing
drug” prediction while the values under 50 were considered
as “decreasing drug” prediction. The fuzzy decision surface

obtained and the comparison with the nonfuzzified decision
tree surface are shown in Figure 9.

To evaluate the performance of the FIS, the decision sys-
temwas evaluated through a receiver-operating characteristic
(ROC) curve by plotting the sensitivity, or true positive rate as
a function of the false-positive rate.The ROC curves for both
increasing and decreasing predictions are shown in Figure 10.
An Area Under the Curve (AUC) of 0.8557 was reached for
the predictive model proposed.

Finally, the prediction of the Fuzzy Inference System
developed for the 53 training data is shown in Figure 11.

6. Discussion

A new algorithm for the design of a computer-based decision
system in medicine has been presented. Specifically, the
application of the proposedmethodology in this research has
resulted in the development of a Fuzzy Inference System as a
computer-assistedmedical decision-making for the analgesia
scenario. On the one hand, it was possible to determine
that there existed a relationship between the Analgesia Noci-
ception Index and the remifentanil supply during surgery.
Particularly, the average of last five samples of mean ANI and
the increment of last twenty samples of instant ANI reached
an accuracy of 75.41%. Moreover, sensitivity and recall values
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Figure 6: Decision tree obtained for the best input-output proposal (the last 5 samples of mean ANI and the increment of the last 20 samples
of instant ANI) when applying the algorithm.
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over 0.8 were reached when predicting the increments of
remifentanil. Similar performance has been reached when
applying different machine learning algorithms to optimize
drug supply in medicine. Specifically, an accuracy ranging
from 75% to 88% was obtained after a leave-one-out study
when predicting the discrepancies between planned and
delivered dose in proton therapy [69]. In [70], the overall
predictive accuracy of the presented models for prediction
of optimal cancer drug therapies was 80%. In the analgesia
field, the development of models to predict the postoperative
pain treatment reached an accuracy of 65% [71]. According
to previous research, a clinically acceptable accuracy level is
reachedwhen applying our proposal. A two-input one-output
FIS based on Takagi-Sugeno inference was developed. The
resultingmodel reached anAUCof 0.8557 for both increasing
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Figure 8: Input fuzzy partitions of the Fuzzy Inferences System. (a)
Membership functions for average ANI𝑚5 input. (b) Membership
functions for the ΔANI𝑖20 input.

and decreasing drug actions. As a result, the performance of
the model to predict the actions of the anaesthesiologist may
be classified as good [72].

From the Artificial Intelligence point of view, different
approaches have been also proposed to fuzzy rule extraction
from numerical data for classification [73–75]. However, the
main novelty of this research is the definition not only of an
automatic algorithm but also of the whole process in order to
evaluate the reliability of a monitor involved in a decision-
making system. As far as we know, this is the first study
that tries to establish a correlation between the information
displayed by a monitor and the expertise-based decision-
making process during surgical interventions. Consequently,
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Figure 9: Comparison of the response surface for the Fuzzy Inference System (a) and for the decision tree (b). Output ranging from 0
(decreasing action) to 100 (increasing action).
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Figure 10: ROC curve showing the relationship between sensitivity (true positive rate) and 1−specificity (true negative rate) determining the
performance of the FIS model proposed to predict the increments (a) and decrements (b) of remifentanil rate. AUC, Area Under the Curve.

it is possible to validate the accuracy of the device to drug
assessment as well as to define a new drug delivery protocol.
As a result, the knowledge behind the process is automatically
built as a set of rules and categories ormembership functions.
On the one hand, this structure makes it easy to translate
the knowledge into an interpretable language for clinicians.
What is more, the output expressed as a percentage gives
information about the decision and its reliability.

Merging decision trees with fuzzy logic has been previ-
ously proposed in order to handle uncertainty, ambiguity,
and indeterminacy in the store information. However, unlike
our method which results in a Fuzzy Inference System, the
previous research has been based on fuzzy decision trees
[76, 77]. They are mainly based on the use of decision tree
whose nodes are not crisp values but membership functions.
Bockstaller et al. proposed a new fuzzy decision tree for
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Figure 11: Prediction of the Fuzzy Inference System for increments (a) and decrements (b) of remifentanil rate.

sustainability assessment [78]. They developed CONTRA
tool to support the design of fuzzy decision tree. When
using CONTRA, the user has to define the threshold and the
limit values of each membership function in a previous step.
Moreover, the choice of a weight or rank must be assigned
to the different input variables in order to compute the
output. Unlike our proposal, a previous heuristic knowledge
is necessary in order to design the model. What is more,
CONTRA tool limited the input variables to be aggregated
between two and five in order to limit a maximum of thirty-
two-decision rules. However, our method was able to work
with an unlimited number of inputs.

One of the main limitations to this work is that the
presented algorithm has been only applied to a two-decision
system (increasing and decreasing drug) in analgesia. Further
studies should be considered when applying this algorithm to
another similar scenarios such as hypnosis, neuromuscular
blockade or glucose control. In addition, including this
information to an automatic control systemwould be the first
step in order to automate the analgesic process through a
closed-loop strategy.

7. Conclusion

This paper introduced a new methodology in order to
design a fuzzy-based decision system to improve the drug
delivery process when a new guiding variable is involved.
Furthermore, the capability of a new monitor to guide the
drug titration can be analysed. This methodology involved
the whole process: from the recording of numerical data
computed by the new monitor to the design of the Fuzzy

Inference System from real data. Fuzzy logic was used
as it provides a well-understood mechanism for inducing
classification rules from data and avoid possible problems
related to the limitation of the number of training data.
Rules as well as membership functions were extracted from
a decision tree algorithm in order to automate the process.
The algorithm proposed was tested in the analgesia scenario.
In light of the results, it can be concluded that ourmethod can
be used to develop a decision-making system from real data
in themedicine field although there exists a lack of knowledge
behind the process.
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