Skip to main content
Log in

Time: The Biggest Pattern in Natural History Research

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

We distinguish between four cosmological transitions in the history of Western intellectual thought, and focus on how these cosmologies differentially define matter, space and time. We demonstrate that how time is conceptualized significantly impacts a cosmology’s notion on causality, and hone in on how time is conceptualized differentially in modern physics and evolutionary biology. The former conflates time with space into a single space–time continuum and focuses instead on the movement of matter, while the evolutionary sciences have a tradition to understand time as a given when they cartography how organisms change across generations over or in time, thereby proving the phenomenon of evolution. The gap becomes more fundamental when we take into account that phenomena studied by chrono-biologists demonstrate that numerous organisms, including humans, have evolved a “sense” of time. And micro-evolutionary/genetic, meso-evolutionary/developmental and macro-evolutionary phenomena including speciation and extinction not only occur by different evolutionary modes and at different rates, they are also timely phenomena that follow different periodicities. This article focusses on delineating the problem by finding its historical roots. We conclude that though time might be an obsolete concept for the physical sciences, it is crucial for the evolutionary sciences where evolution is defined as the change that biological individuals undergo in/over or through time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott, B. P., LIGO Scientific Collaboration and Virgo Collaboration, et al. (2016). Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 061102.

    Article  CAS  PubMed  Google Scholar 

  • Aristotle. (2008/350 BCE). Physics (R. P. Hardie & R. K. Gaye, Trans.). MIT Classics. http://classics.mit.edu/Aristotle/physics.2.ii.html.

  • Aristotle. (2012/350 BCE). Metaphysics (R. B. Jones, Ed., W. D. Ross, Trans.). MIT Classics. http://classics.mit.edu/Aristotle/metaphysics.5.v.html.

  • Ashmand, J. M. (Ed.). (1822). Ptolemy’s Tetrabiblos. London: Davis and Dickson.

    Google Scholar 

  • Atance, C., & O’Neill, D. (2001). Episodic future thinking. Trends in Cognitive Science, 5, 533–539.

    Article  Google Scholar 

  • Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30(354), 441–451.

    Article  Google Scholar 

  • Barnes, J. (1984). The complete works of Aristotle. Princeton: Princeton University Press.

    Google Scholar 

  • Berge, C. (1958). Théorie des graphes et ses applications. Collection Universitaire de Mathématiques, II. Paris: Dunod.

    Google Scholar 

  • Biggs, N. L. (1974). Algebraic graph theory. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Braterman, P. S. (2013). Stumbling toward an understanding of geologic timescales. Scientific American, 17. http://dafix.uark.edu/~danielk/Darwin/AgeEarthReadings.pdf.

  • Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schlipp (Ed.), The philosophy of Karl Popper (Vol. I, pp. 413–459). New York, NY: LaSalle.

    Google Scholar 

  • Cavalli-Sforza, L. L. (2000). Genes, peoples, and languages. New York, NY: North Point Press.

    Google Scholar 

  • Champollion-Figeac, J.-J. (1832). Égypte ancienne. Paris: Typographie de Firmin Didot Frères.

    Google Scholar 

  • Chrisomalis, S. (2010). Numerical notation: A comparative history. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Conway Morris, S. (1998). The crucible of creation: The Burgess Shale and the rise of animals. Oxford: Oxford University Press.

    Google Scholar 

  • Copernicus, N. (1939). On the revolutions of the heavenly spheres, translated by C. G. Wallis. Annapolis: St John’s College Bookstore.

  • Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Science, 17(1), 5–6.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species. London: John Murrey.

    Google Scholar 

  • Dawkins, R. (1983). Universal Darwinism. In D. L. Hull & M. Ruse (Eds.), The philosophy of biology (pp. 15–35). New York, NY: Oxford University Press.

    Google Scholar 

  • De Libera, A. (1995). La philosophie médiévale. Paris: Presses Universitaires de France.

    Google Scholar 

  • Decaen, C. A. (2004). Aristotle’s ether and contemporary science. The Thomist, 68, 375–429.

    Google Scholar 

  • DePierris, G., & Friedman, M. (2013). Kant and Hume on causality. In Zalta, E. N. (Ed.), The stanford encyclopedia of philosophy (Winter 2013 Edition). http://plato.stanford.edu/archives/win2013/entries/kant-hume-causality/.

  • Derrida, J. J. (1981). Dissemination, translated by B. Johnson. Chicago, IL: University of Chicago Press.

  • Descartes, R. (1998). Discourse on method and Meditations on first philosophy, translated by D.A. Cress (4th ed.). Indianapolis: Hackett Publishing Company.

  • Dreyer, J. L. (1953). A history of astronomy from Thales to Kepler. New York, NY: Dover.

    Google Scholar 

  • Einstein, A. (1907). Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411–462.

    Google Scholar 

  • Einstein, A. (1920). Ether and the theory of relativity. In Barker, G. A., Perret, J. W. (Eds.), (1922). Sidelights on relativity (pp. 3–24). London: Methuen.

  • Eldredge, N. (1995). Reinventing Darwin: The great debate at the high table of evolutionary theory. New York: Wiley.

    Google Scholar 

  • Eldredge, N. (1999). The pattern of evolution. New York, NY: W. H. Freeman and Co.

    Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). New York, NY: Freeman, Cooper and Co.

    Google Scholar 

  • Eliade, M. (1954). Cosmos and history: The myth of the eternal return, translated by W. R. Trask. New York: Harper Torchbooks.

  • Ferretti, F. (2014). Travelling in time and space and the origins of language. Humana Mente, 27, 243–268.

    Google Scholar 

  • Galilei, G. (1974). Two new sciences, translated and annotated by D. Stillman. Wisconsin, MA: University of Wisconsin Press.

  • Gheverghese, J. (2011). The crest of the peacock: Non-European roots of mathematics (3rd ed.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gingerich, O. (1984). Astronomical scrapbook: The origin of the zodiac. Sky Telescope, 67, 218–220.

    Google Scholar 

  • Gontier, N. (2009). The origin of the social approach in language and cognitive research exemplified by studies into the origin of language. In H. Pishwa (Ed.), Language and social cognition: Expressions of the social mind (pp. 25–46). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Gontier, N. (2011). Depicting the tree of life: The philosophical and historical roots of evolutionary tree diagrams. Evolution, Education and Outreach, 4(3), 515–538.

    Article  Google Scholar 

  • Gontier, N. (2015). Uniting micro- with macroevolution into an extended synthesis: Reintegrating life’s natural history into evolution studies. In E. Serrelli & N. Gontier (Eds.), Macroevolution: Explanation, interpretation and evidence (pp. 227–278). Dordrecht: Springer.

    Google Scholar 

  • Gontier, N. (2016). Symbiosis, history of. In R. M. Kliman (Ed.), Encyclopedia of evolutionary biology (Vol. 4, pp. 272–281). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Belknap, Harvard Univrsity Press.

    Google Scholar 

  • Gould, S. J. (1987). Time’s arrow, time’s cycle. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gould, S. J. (1989). Wonderful life. London: Penguin.

    Google Scholar 

  • Griffith, R. T. (1896). The Rig Veda, Complete. Benares.

  • Haeckel, E. (1866). Generelle morphologie der organismen: allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von C. Darwin reformirte decendenz-theorie. Berlin: Georg Reimer.

    Book  Google Scholar 

  • Hallgrîmsson, B., & Hall, B. K. (2011). Epigenetics: The context of development. In B. Hallgrîmsson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution (pp. 424–438). Berkeley, CA.: University of California Press.

    Google Scholar 

  • Heidegger, M. (1915). Der Zeitbegriff in der Geschichtswissenschaft. Zeitschrift für Philosophie und Philosophische Kritik, 161, 173–188.

    Google Scholar 

  • Heidegger, M. (1915/2006). The concept of time in the science of history. In Kisiel, T., & Sheenan, T. (2006). Becoming Heidegger: On the trail of his early occasional writings, 1910–1927 (pp. 60–73). Evaston, IL: Northwestern University Press.

  • Hume, D. (1739). A treatise on human nature. In L. A. Selby-Bigge (Ed.), Oxford: Oxford University Press.

  • Husserl, E. (1964). The phenomenology of internal time-consciousness, translated by J. Churchill. The Hague: Martinus Nijhoff.

  • James, W. (1890). The principles of sychology. New York: Dover.

    Book  Google Scholar 

  • James, W. (1909). A pluralistic universe. London: Longmans.

    Google Scholar 

  • Janiak, A., Kant’s views on space and time, In Zalta, E. N. (Ed.), The Stanford encyclopedia of philosophy (Winter 2012 Edition). http://plato.stanford.edu/archives/win2012/entries/kant-spacetime.

  • Kant, I. (1998/1781). Critique of pure reason, translated by Paul Guyer and Allen Wood. Cambridge: Cambridge University Press.

  • Kaplan, R. (2000). The nothing that is: A natural history of zero. Oxford: Oxford University Press.

    Google Scholar 

  • King, L. W. (1902). Enuma Elish: The epic of creation, from the seven tablets of creation. London: Kings College.

    Google Scholar 

  • Kurzweil, F. (1956). Das Pentagondodekaeder des Museums Carnuntinum und Seine Zwechbestimmung (pp. 23–29). Carnuntus Jahrbuch.

  • Kuzmina, E. E. (2007). The origin of the Indo-Iranians. In J. P. Mallory (Ed.), Brill: Leiden Indo-European Etymological Dictionary Series.

  • Lewontin, R. (1970). The units of selection. Annual Review of Ecological Systems, 1, 1–18.

    Article  Google Scholar 

  • Livingstone, A. (2012). Hemerology and menology. The Encyclopedia of Ancient History. doi:10.1002/9781444338386.wbeah21163.

    Google Scholar 

  • Lochtefeld, J. (2002/1957). The illustrated encyclopedia of Hinduism (Vol. 1, pp. 744–745). New York: Rosen Pub Group.

  • Lyell, C. (1830, 1832, 1833). Principles of geology, being an attempt to explain the former changes of the Earth’s surface, by reference to causes now in operation (Vol. 1–3). London: John Murray.

  • Mabbott, J. D. (1955). The specious present. Mind A Quarterly Review of Psychology and Philosophy, 64(255), 376–383.

    Article  Google Scholar 

  • Macey, S. (1989). The dynamics of progress: Time, method, and measure. Athens, GA: University of Georgia.

    Google Scholar 

  • Mandelbrot, B. (1982). The fractal geometry of nature. New York: W. H. Freeman & Co.

    Google Scholar 

  • Mangabeira Unger, R., & Smolin, L. (2014). Singular universe and the reality of time. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Martineau, H. (1865). The positive philosophy of Auguste Comte (1853), 2 volumes. London: Chapman.

    Google Scholar 

  • McTaggart, J. E. (1908). The unreality of time. Mind A Quarterly Review of Psychology and Philosophy, 17, 457–484.

    Article  Google Scholar 

  • Mereaux-Tanguy, P. (1975). Le dodécaèdre: mesureur d’angle. Kadeth, 13, 28–31.

    Google Scholar 

  • Minkowski, H. (1908). Space and time. In J. C. C. Smart (Ed.), Problems in space and time (pp. 297–312). London: Macmillan.

    Google Scholar 

  • Moreva, A., Brida, G., Gramegna, M., et al. (2014). Time from quantum entanglement: An experimental illustration. Physical Reviews A, 89, 052122. doi:10.1103/PhysRevA.89.052122.

    Article  Google Scholar 

  • Neugebauer, O., Sachs, A. J., & Götze, A. (1945). Mathematical cuneiform texts. Boston, MA: American Oriental Society and the American Schools of Oriental Research.

    Google Scholar 

  • Newton, I. (1728). The chronology of Ancient Kingdoms Amended: To Which is Prefix’d, A Short Chronicle From the First Memory of Things in Europe, to the Conquest of Persia by Alexander the Great. London: J. Tonson, J. Osborn and T. Longman.

    Google Scholar 

  • Nolte, D. D. (2014). Introduction to modern dynamics: Chaos, networks, space and time. Oxford: Oxford University Press.

    Google Scholar 

  • Nouwen, R. (1993). De Romeinse pentagon-dodecaëder: mythe en enigma (p. 45). Hasselt: Publicaties van het Gallo-Romeins Museum te Tongeren, Limburg.

    Google Scholar 

  • Nouwen, R. (1994). Les dodécaèdres gallo-romains ajourés et bouletés. Histoire et problèmes. BIAL, 106, 85–108.

    Google Scholar 

  • Ôhashi, Y. (1993). Development of astronomical observations in Vedic and post-Vedic India. Indian Journal of History of Science, 28(3), 185–251.

    Google Scholar 

  • Ôhashi, Y. (2014). Astronomy of the Vedic age. In C. Ruggles (Ed.), Handbook of archaeoastronomy and ethnoastronomy (pp. 1949–1958). New York: Springer.

    Google Scholar 

  • Pinch, G. (2004). Egyptian mythology: A guide to the gods, goddesses, and traditions of ancient Egypt. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Pingree, D. (1973). The Mesopotamian origin of early Indian mathematical astronomy. Journal for the History of Astronomy, 4, 1–12.

    Article  Google Scholar 

  • Pingree, D. (1981). Jyotihśāstra: Astral and mathematical literature. Wiesbaden: Otto Harrassowitz.

    Google Scholar 

  • Plato. (1960). Plato: Timaeus, Critias, Cleitophon, Menexenus, Epistles, edited and translated by R. G. Bury. Cambridge, MA: Loeb Classical Library.

  • Plofker, K. (2009). Mathematics in India. Princeton, NY: Princeton University Press.

    Google Scholar 

  • Pöppel, E. (1985). Mindworks: Time and conscious experience. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Popper, K. (1957). The poverty of historicism. London: Routledge.

    Google Scholar 

  • Porceddu, S., Jetsu, L., Lyytinen, J., Kajatkari, P., Lehtinen, J., Markkanen, T., et al. (2008). Evidence of periodicity in ancient Egyptian calendars of lucky and unlucky days. Cambridge Archaeological Journal, 18(3), 327–339.

    Article  Google Scholar 

  • Pound, R. V., & Rebka, G. A., Jr. (1959). Gravitational red-shift in nuclear resonance. Physical Review Letters, 3(9), 439–441.

    Article  CAS  Google Scholar 

  • Rogers, J. H. (1998). Origins of the ancient constellations: I. The Mesopotamian traditions. Journal of the British Astronomical Association, 108, 9–28.

    Google Scholar 

  • Rosen, E. (1971). Three Copernican treatises: The Commentariolus of Copernicus; The letter against Werner; The Narratio Prima of Rheticus, translated with introduction and notes by Edward Rosen (3rd edn., revised with a biography of Copernicus and Copernicus bibliographies 1939-1958 and 1959–1970). New York, NY: Octagon Books.

  • Rudman, P. S. (2007). How mathematics happened: The first 50.000 years. Amherst, NY: Prometheus Books.

    Google Scholar 

  • Russell, B. (1913/1984), On the experience of time. In Ramsden Aemes, E. (Ed.). The collected papers of Bertrand Russell (Vol. 7). London: Allen and Unwin.

  • Samuel, A. E. (1972). Greek and Roman chronology: Calendars and years in classical antiquity. München: C.H. Beck Verlag.

    Google Scholar 

  • Sapp, J. (1994a). Evolution by association. New York: Oxford University Press.

    Google Scholar 

  • Sapp, J. (1994b). Evolution by association: A history of symbiosis. New York: Oxford University Press.

    Google Scholar 

  • Scaliger, J. J. (1583). Opus novum de emendatione temporum: In octo libros. CVM Privilegio. https://books.google.pt/books?id=R2xEAAAAcAAJ&hl=nl&pg=PP13#v=onepage&q&f=false.

  • Schaefer, B. E. (2002). The latitude and epoch for the formation of the southern Greek constellations. Journal for the History of Astronomy, 33, 313–350.

    Article  Google Scholar 

  • Schaefer, B. E. (2006). The origin of the Greek constellations. Scientific American, 295(5), 96–101.

    Article  PubMed  Google Scholar 

  • Schedel, H. (1493). The Nuremberg chronicle: A facsimile of Hartmann Schedel’s Buch der Chroniken, translated by Georg Alt. Brussel: Anton Koberger. https://books.google.pt/books?id=IeUOAQAAMAAJ&hl=nl&pg=PR9#v=onepage&q&f=false.

  • Schliesser, E. (2013). Newton’s philosophy of time. In H. Dyke & A. Bardon (Eds.), A companion to the philosophy of time (pp. 87–101). New York: Wiley.

    Chapter  Google Scholar 

  • Schwartz, J. (1999). Sudden origins. New York: Wiley.

    Google Scholar 

  • Sellars, J. (2007). The death of gods in ancient Egypt: A study of the threshold of myth and the frame of time, revised edition. Lulu.com.

  • Sinha, C., & Gärdenfors, P. (2014). Time, space, and events in language and cognition: A comparative view. Annals of the New York Academy of Sciences, 1326(1), 72–81.

    Article  PubMed  Google Scholar 

  • Stewart, I. (2001). What shape is a snowflake? Magical numbers in nature. New York: W. H Freedman.

    Google Scholar 

  • Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133–167.

    CAS  PubMed  Google Scholar 

  • The Bible. (1997). Authorized King James version with Apocrypha. Oxford: Oxford University Press.

    Google Scholar 

  • Thompson, D. W. (1917). On growth and form. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Vahnia, M. N., & Yadav, N. (2011). The origin and growth of astronomy as viewed from an Indian context. In W. Orchiston, et al. (Eds.), Highlighting the history of astronomy in the Asia-Pacific region: Astrophysics and space science proceedings (pp. 61–84). New York: Springer.

    Chapter  Google Scholar 

  • Varela, F. (1999). Present-time consciousness. Journal of Consciousness Studies, 6(2–3), 111–140.

    Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.

    Article  Google Scholar 

  • Zuckerkandl, E., & Pauling, L. (1965). Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Portuguese Fund for Science and Technology (Grant ID SFRH/BPD/89195/2012 and Project ID UID/FIL/00678/2013). Cordial thanks also go out to Michael Bradie, Francesco Ferretti, Bendedikt Hallgrímsson, Henrique Leitão, Kate Maschmeyer, Eric Schliesser and Chris Sinha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Gontier.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontier, N. Time: The Biggest Pattern in Natural History Research. Evol Biol 43, 604–637 (2016). https://doi.org/10.1007/s11692-016-9394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-016-9394-3

Keywords

Navigation