Skip to main content
Log in

Why molecular structure cannot be strictly reduced to quantum mechanics

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Perhaps the hottest topic in the philosophy of chemistry is that of the relationship between chemistry and physics. The problem finds one of its main manifestations in the debate about the nature of molecular structure, given by the spatial arrangement of the nuclei in a molecule. The traditional strategy to address the problem is to consider chemical cases that challenge the definition of molecular structure in quantum–mechanical terms. Instead of taking that top-down strategy, in this paper we face the problem of the reduction of molecular structure to quantum mechanics from a bottom-up perspective: our aim is to show how the theoretical peculiarities of quantum mechanics stand against the possibility of molecular structure, defined in terms of the spatial relations of the nuclei conceived as individual localized objects. We will argue that, according to the theory, quantum “particles” are not individuals that can be identified as different from others and that can be reidentified through time; therefore, they do not have the ontological stability necessary to maintain the relations that can lead to a spatially definite system with an identifiable shape. On the other hand, although quantum chemists use the resources supplied by quantum mechanics with successful results, this does no mean reduction: their “approximations” add certain assumptions that are not justified in the context of quantum mechanics or are even inconsistent with the very formal structure of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, A.: Must a molecule have a shape? S. Afr. J. Chem. 45, 29–38 (1992)

    Google Scholar 

  • Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)

    Article  Google Scholar 

  • Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2010)

    Google Scholar 

  • Bader, R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Ballentine, L.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Berlin, Y.A., Burin, A.L., Goldanskii, V.V.: The Hund paradox and stabilization of molecular chiral states. Zeitschrift für Physik D 37, 333–339 (1996)

    Article  Google Scholar 

  • Bernoulli, J.: Ars Conjectandi, Opus Posthumum. Accedit Tractatus de Seriebus Infinitis, et Epistola Gallice Scripta de Ludo Pilae Reticularis. Thurneysen, Basel (1713)

    Google Scholar 

  • Bishop, R.: Patching physics and chemistry together. Philos. Sci. 72, 716–722 (2005)

    Article  Google Scholar 

  • Bishop, R., Atmanspacher, H.: Contextual emergence in the description of properties. Found. Phys. 36, 1753–1777 (2006)

    Article  Google Scholar 

  • Brading, K., Castellani, E.: Symmetries and invariances in classical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics. Part B. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Bruer, J.T.: The classical limit of quantum theory. Synthese 50, 167–212 (1982)

    Article  Google Scholar 

  • Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1930)

    Google Scholar 

  • Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  Google Scholar 

  • French, S., Krause, D.: Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  • Heisenberg, W.: The Physical Principles of the Quantum Theory. University of Chicago Press, Chicago (1930)

    Google Scholar 

  • Hendry, R.F.: Models and approximations in quantum chemistry. In: Shanks, N. (ed.) Idealization in contemporary physics. Amsterdam-Atlanta, Rodopi (1998)

    Google Scholar 

  • Hendry, R.F.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)

    Article  Google Scholar 

  • Hendry, R.F.: Is there downward causation in chemistry? In: Baird, D., McIntyre, L., Scerri, E. (eds.) Philosophy of Chemistry: Synthesis of a New Discipline. Springer, Berlin (2006)

    Google Scholar 

  • Hendry, R.F.: Two conceptions of the chemical bond. Philos. Sci. 75, 909–920 (2008)

    Article  Google Scholar 

  • Hendry, R.F.: Ontological reduction and molecular structure. Stud. Hist. Philos. Modern Phys. 41, 183–191 (2010)

    Article  Google Scholar 

  • Hettema, H.: Reducing Chemistry to Physics. Limits, Models, Consecuences. University of Groningen, Groningen (2012)

    Google Scholar 

  • Hund, F.: Zur Deutung der Molekelspektren. III. Zeitschrift für Physik 43, 805–826 (1927)

    Article  Google Scholar 

  • Kant, I.: Gesammelte Schriften. Berlin: Herausgegeben von der Preußischen Akademie der Wissenschaften (Bde. 1–22), der Deutschen Akademie der Wissenschaften zu Berlin (Bd. 23), und der Akademie der Wissenschaften zu Göttingen (Bde. 24, 25, 27–29) (1902)

  • Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    Google Scholar 

  • Lévy-Leblond, J.M.: Galilei group and nonrelativistic quantum mechanics. J. Math. Phys. 4, 776–788 (1963)

    Article  Google Scholar 

  • Lombardi, O.: The ontological autonomy of the chemical world: facing the criticisms. In: Scerri, E., McIntyre, L. (eds.) Philosophy of Chemistry: Growth of a New Discipline (Boston Studies in the Philosophy and History of Science). Springer, Dordrecht (2014)

    Google Scholar 

  • Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)

    Article  Google Scholar 

  • Lombardi, O., Labarca, M.: The ontological autonomy of the chemical world. Found. Chem. 7, 125–148 (2005)

    Article  Google Scholar 

  • Lombardi, O., Labarca, M.: The ontological autonomy of the chemical world: a response to Needham. Found. Chem. 8, 81–92 (2006)

    Article  Google Scholar 

  • Nozick, R.: Invariances: The Structure of the Objective World. Harvard University Press, Harvard (2001)

    Google Scholar 

  • Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)

    Book  Google Scholar 

  • Primas, H.: Hierarchic quantum descriptions and their associated ontologies. In: Laurikainen, K.V., Montonen, C., Sunnarborg, K. (eds.) Symposium on the Foundations of Modern Physics 1994. Editions Frontières, Gif-sur-Yvette (1994)

    Google Scholar 

  • Primas, H.: Emergence in exact natural sciences. Acta Polytech. Scand. 91, 83–98 (1998)

    Google Scholar 

  • Rohrlich, F.: The logic of reduction: the case of gravitation. Found. Phys. 19, 1151–1170 (1989)

    Article  Google Scholar 

  • Scerri, E.R.: Editorial 37. Found. Chem. 13, 1–7 (2011)

    Article  Google Scholar 

  • Scerri, E.R.: Philosophy of chemistry: where has it been and where is it going. In: Llored, J.-P. (ed.) The Philosophy of Chemistry: Practices, Methodologies, and Concepts. Cambridge Scholars Publishing, Newcastle (2013)

    Google Scholar 

  • Sutcliffe, B.T., Wolley, R.G.: A comment on Editorial 37. Found. Chem. 13, 93–95 (2011)

    Article  Google Scholar 

  • Sutcliffe, B.T., Wolley, R.G.: Atoms and molecules in classical chemistry and quantum mechanics. In: Hendry, R.F., Woody, A. (eds.) Handbook of Philosophy of Science. Philosophy of Chemistry, vol. 6. Elsevier, Oxford (2012)

    Google Scholar 

  • Trost, J., Hornberger, K.: Hund’s paradox and the collisional stabilization of chiral molecules. Phys. Rev. Lett. 103, 023202 (2009)

    Article  Google Scholar 

  • Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Heidelberg (1932)

    Google Scholar 

  • Wolff, Ch. (1728). Philosophia Rationalis Sive Logica. Reprint of the 1740 edition with introduction, notes and index by École, J. (ed.). New York: Georg Olms (1980)

  • Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)

    Article  Google Scholar 

  • Woolley, R.G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)

    Article  Google Scholar 

  • Wolley, R.G.: Is there a quantum definition of a molecule? J. Math. Chem. 23, 3–12 (1998)

    Article  Google Scholar 

  • Woolley, R.G., Sutcliffe, B.T.: Molecular structure and the Born–Oppenheimer approximation. Chem. Phys. Lett. 45, 393–398 (1977)

    Article  Google Scholar 

  • Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

  • Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Templeton Foundation (Grant No. ID-57919), Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT-2812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, J.C.M., Fortin, S. & Lombardi, O. Why molecular structure cannot be strictly reduced to quantum mechanics. Found Chem 21, 31–45 (2019). https://doi.org/10.1007/s10698-018-9310-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-018-9310-2

Keywords

Navigation