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Abstract

Goodsell [12] establishes the noncontingency of sentences of first-order

arithmetic, in a plausible higher-order modal logic. Here, the same result

is derived using significantly weaker assumptions. Most notably, the assump-

tion of rigid comprehension—that every property is coextensive with a modally

rigid one—is weakened to the assumption that the Boolean algebra of proper-

ties under necessitation is countably complete. The results are generalized to

extensions of the language of arithmetic, and are applied to answer a question

posed by Bacon and Dorr [5].
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2 Introduction

Recent literature1 has challenged the orthodox conception of pure logic and pure

mathematics as modally fixed.2 Goodsell [12] establishes a limitative result on spec-

ulation in this direction: given plausible connections between plural and modal rea-

soning, there is no contingency in pure arithmetic. For example, it is necessary one

way or the other whether the Goldbach conjecture holds, whether there are infinitely

many twin primes, and whether ZFC is consistent. More precisely, where I is the

claim that it is possible that zero is not a successor and that the successor function

is injective, Goodsell proves each instance of the following schema, where A ranges

over sentences of the language of Peano arithmetic:

2(I → A) ∨2(I → ¬A) (1)

Since I is a necessary precondition for even the possible truth of the axioms of arith-

metic, this schema shows that the only possibilities where an arithmetical sentence

gets a different truth-value to normal are those where the usual axioms of arithmetic

are necessarily false. (With the plausible assumption that I is necessarily true we

1Linnebo and Shapiro [19], Scambler [22], Brauer [7], Scambler [23], Builes and Wilson [8],
Hamkins and Linnebo [15], Linnebo and Shapiro [20], Bacon and Dorr [5], Bacon [3, 4]

2For countervailing considerations see [17, 24, 13].
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get the unqualified necessity schema with instances of the form 2A ∨2¬A).

This paper improves on Goodsell’s results in the following two respects. First,

Goodsell’s principle of Rigidity—here called Rigid Comprehension in accordance with

more recent literature [11, 5]—is weakened to a special case of Boolean Completeness.

Rigid Comprehension asserts that standard principles of modal plural logic (see,

e.g., Linnebo [18]) hold of a special class of properties known as rigid properties.

By contrast, Boolean Completeness asserts only that every collection of properties

has a least upper bound, a property which is an upper bound in the sense of being

necessitated by every member of that collection, but is also least in that it necessitates

every other upper bound. Boolean Completeness is known to be a consequence

of Rigid Comprehension, and is conjectured to be strictly weaker. Moreover, for

this paper it is possible to restrict Boolean Completeness to Countable Boolean

Completeness, which asserts only the existence of least upper bounds for countable

collections of properties.

Second, the background modal higher-order logic is weakened. Goodsell employs,

alternatively, a second-order logic with a Quantified KT modality, with extensional-

ity for second-order variables, and where the axioms of arithmetic are assumed to be

necessary, and then the higher-order logic of Classicism of [5], which identifies prov-

ably equivalent formulae, and in which a defined notion of necessity has a Quantified

S4 logic (see [2]), but where the necessity of the axioms of arithmetic may now be

derived rather than assumed. It is Goodsell’s second result, using higher-order logic,

which is improved upon in this paper. Here, we use the logic HKC, which includes

the following components (see Table 1):

• H, a minimal higher-order logic including classical propositional logic, classical
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quantificational logic at all types, and the standard βη rules for λ-abstracts.3

• A K logic for a primitive modality 2, which in addition to a rule of necessitation

asserts exactly that 2 distributes over material implication (the K axiom for

2). (Since necessitation applies to provable formulae of H, the resulting logic

includes the converse Barcan formula and the necessity of identity, but not

the Barcan formula or the necessity of distinctness). H + K, or HK, is strictly

weaker than Classicism if H is consistent.4

• The axiom of Countable Boolean Completeness (CBC).

The results are also modestly extended beyond the language of arithmetic, to

include, e.g., that every sentence that can be stated in the language of arithmetic

plus a truth-predicate for the language of arithmetic is either necessarily true or

necessarily false.

The necessity of arithmetic puts paid to the hypothesis that the necessarily true

sentences in a fundamental language that includes arithmetic are all consequences

of a consistent recursively axiomatizable theory.5 In light of this observation, the

results are applied to give a negative answer to an outstanding question of Bacon

3H is first axiomatized by Church [9, p. 61], with Axioms 1-6α (Church’s final system in that
paper includes axioms of infinity, function extensionality, and choice). It is also the system J of
Andrews [1] and is the theory of models of class Mβη as isolated by Benzmüller et al. [6]. Dorr
[10] and Bacon [2] give H its current name and have raised it to prominence in recent philosophical
literature.

4A notational variant of Classicism may be axiomatized by adding to HK the following schema:

Intensionalism Necessarily equivalent properties are identical.

∀XY σ⃗t � (2∀z⃗ �Xz ↔ Xy) → X = Y (2)

5A view of this sort is propounded by Ramsey [21, §12].
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PC Every propositional tautology
βη A → B, where A ∼βη B
UI ∀A → Ab
MP From Γ ⊢ A → B and Γ ⊢ A infer Γ ⊢ B
Gen From Γ ⊢ A infer Γ ⊢ ∀x �A, when x ̸∈ FV(Γ)
K ∀pq �2(p → q) → 2p → 2q

Nec From ⊢ A infer ⊢ 2A
CBC ∀X⟨σt⟩t � (CtblX → ∃(LUBX)) (see Definitions 1 and 6)

Table 1: Axiom schemata and rules (Footnote 6 lists some notational conventions).
H adds βη and UI axiom schemata to PC and closes under MP and Gen. HK adds K
to H and closes under MP, Gen, and Nec. HKC adds CBC to HK and closes under MP
and Gen (but not Nec, hence CBC is assumed without assuming it to be necessarily
true).

and Dorr [5]: that of whether Boolean Completeness is consistent with a theory they

call maximalized Classicism.
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3 Boolean Completeness of Properties

3.1 Motivation and Statement

Table 1 includes the axioms and rules of the system HKC.6 The system is unre-

markable except for the axiom schema of Countable Boolean Completeness, CBC,

which, by a theorem of Bacon and Dorr [5], is essential in deriving the necessity of

arithmetic (see Section 6). Countable Boolean Completeness is motivated by view-

ing the properties modulo necessary equivalence as forming a Boolean algebra under

necessitation. The ordering of this algebra is necessitation, i.e., the relation

λXY σt �2∀zσ �Xz → Y z. (3)

Necessitation is straightforwardly transitive and reflexive in HK. There is a necessitation-

maximal equivalence class of properties, namely those which necessarily everything

has, such as λzσ � z = z. Moreover, the union, intersection, and complements of

6Some notational conventions:

(a) Bold symbols are metavariables.

(b) Variable binders bind the variables immediately before �, and take greatest possible scope.

(c) ∀v ∈ A �B abbreviates A-restricted universal quantification, i.e., ∀v �Av → B. Analogously
for existential quantification.

(d) Boolean connectives may be written in infix notation, and take greater scope than prefix and
postfix applications, but lesser scope than variable binders. Moreover, → associates to the
right (so A → B → C is A → (B → C)).

(e) Type decorations are omitted where they can be inferred. ⟨στ⟩ is the simple functional type
from σ to τ , and omitted angle brackets associate to the right, so that eet is ⟨e⟨et⟩⟩.
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properties, defined by lifting Boolean propositional operators as follows,

∪ := λXY σtzσ �Xz ∨ Y z (4)

∩ := λXY σtzσ �Xz ∧ Y z (5)

− := λXσtzσ � ¬Xz, (6)

yield the least upper bound, greatest lower bound, and complement respectively in

the necessitation preordering. Therefore, modulo necessary equivalence, the proper-

ties form a Boolean algebra under necessitation.

It is natural to suppose that this Boolean algebra is complete: that for any

collection of properties, there is a least upper bound for that entire collection.

Definition 1 (Upper bound; UB/Least upper bound; LUB). For a property Y to

be an upper bound of a property of properties X is for Y to be necessitated by every

member of X.

UBσ := λX⟨σt⟩tY σt � ∀Z ∈ X �2∀xσ � Zx → Y x (7)

For Y to be a least upper bound of X is for it to be an upper bound of X that

necessitates every other upper bound thereof.

LUBσ := λXY � UBσ XY ∧ ∀Y ′ � UBXY ′ → 2∀z � Y z → Y ′z (8)

Least upper bounds need not be unique in HK, but are unique modulo necessary

equivalence.

The principle of Boolean Completeness is as follows:
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Boolean Completeness Every property of properties has a least upper bound.

∀X⟨σt⟩t � ∃(LUBX) (9)

For present purposes, we may restrict Boolean Completeness to countable properties

of properties, corresponding to the hypothesis that the properties form a countably

complete Boolean algebra modulo necessary equivalence:

Countable Boolean Completeness Every countable property of properties has a

least upper bound.

∀X⟨σt⟩t � CtblX → ∃(LUBX) (10)

where countability, or Ctbl, is defined in Section 4 as being injectible into the natural

numbers.

3.2 Comparison with Rigid Comprehension

Goodsell [12] uses the principle of Rigid Comprehension instead of Countable Boolean

Completeness.

Definition 2 (Rigid property). A rigid property is one such that quantification

restricted by that property obeys the Barcan and converse Barcan formulae:

Rigidσ := λXσt � ∀Y σt � (2(∀z ∈ X � Y z) → ∀z ∈ X �2Y z)

∧ ((∀z ∈ X �2Y z) → 2∀z ∈ X � Y z) (11)
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Rigid Comprehension Every property is coextensive with some rigid property.

∀Xσt � ∃Y σt � RigidY ∧ ∀z �Xz ↔ Y z (12)

As Goodsell points out, the Barcan and Converse Barcan Formualae are intuitively

very tempting principles for regimenting plural quantification. For example, it may

be a contingent matter who was a bandmate of Miles Davis, but for those very people

that were in fact bandmates of Miles Davis, it is not a contingent matter who was

one of them. Hence Rigid Comprehension is a tempting way of cashing out the idea

that for every property X, there is some plurality of things which are all and only

those which instantiate X.

Boolean Completeness is implied by Rigid Comprehension, by an argument of

Bacon and Dorr [5]. The intuitive idea is as follows. For a given property of properties

X, take the rigid propertyX ′ with which it is coextensive; then the least upper bound

of X will be

λz � ∃Y ∈ X ′ � Y z.7 (13)

Restated using the analogy between rigid properties and pluralities: to find the

least upper bound of X, take those very properties X ′ which are all and only the X

7Let U be the property

λz � ∃Y ∈ X ′ � Y z. (14)

To show that U is an upper bound of X, take Y in X. Then by the converse Barcan formula for
X ′-restricted quantification it is necessary that Y is in X ′, so it is necessary that, if Y z, then Uz.

To show that U is least, let Z be an arbitrary upper bound of X, which is to say

∀Y ∈ X �2∀z � Y z → Zz. (15)
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properties. Then the least upper bound of X is the property of being some z that

instantiates at least one of them, (i.e., at least one property that instantiates X ′).

Boolean Completeness is conjectured to be strictly weaker than Rigid Compre-

hension. This is because in HK, the least upper bound of X might have instances

which are not instances of any instance of X, if there is no rigid property X ′ coex-

tensive with X. (What is not known is whether this situation is compossible with

every property of properties having a least upper bound.)

Countable Boolean Completeness is used here to show that, as a result of the

inductive property of natural numbers, natural numberhood is a rigid property

(Lemma 8). This turns out to be sufficient in HK for the necessity of arithmetic.

4 Formalization of Arithmetic

In H, basic arithmetical concepts can be defined in terms of the concepts of zero, 0,

and the successor function, ·+ (written postfix superscript), of respectively of some

types of the forms ν and νν.

Since X ′ is coextensive with X this is equivalent to

∀Y ∈ X ′ �2∀z � Y z → Zz, (16)

which is equivalent by the Barcan formula for X ′-restricted quantification to

2∀Y ∈ X ′ � ∀z � Y z → Zz (17)

which implies

2∀z � (∃Y ∈ X ′ � Y z) → Zz (18)

which is the definition of U being less than Z on the necessitation preordering. So U is a least
upper bound of X as required.
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Definition 3 (Natural numberhood, N). To be a natural number is to be an instance

of every property that contains 0 and that is closed under successor.

N := λmν � ∀Xνt �X0 → (∀n �Xn → Xn+) → Xm (19)

Three-place relations of numbers Sum and Prod, which relate three numbers when

the first two add or multiply to make the third, may be given standard recursive

definitions as follows:8

Definition 4.

Sum := λmnoν � ∀Rννt �R0m → (∀ij ∈ N �Rij → Ri+j+) → Rno (20)

Prod :=

λmnoν � ∀Rννt �R00 → (∀ijk ∈ N �Rij → Summjk → Ri+k) → Rno (21)

In usual pure number theory the specific choice of 0 and ·+ is immaterial, so long

as the expected structural constraints hold. In HK, the only important structural

constraint can be stated as follows:

Definition 5 (I). I is the claim that possibly, zero is not a successor and successor

is injective on numbers.

I := 3∀mn ∈ N � 0 ̸= m+ ∧ (m+ = n+ → m = n) (22)

Whence we may derive Peano arithmetic, understood so that all quantification is

8HK does not include the resources for recursive definition of functions of numbers (as opposed
to relations).
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explicitly restricted to N, and so as to use relational predicates Sum and Prod rather

than the usual function symbols + and ×:9

Lemma 1. Where A is a theorem of Peano arithmetic with all quantification re-

stricted to N,

I → A (23)

is a theorem of HK (with the basic arithmetical concepts defined as in Definitions 3

and 4).

Proof. Routine given Lemma 5 (p. 15).

A particularly important way of understanding 0 and ·+ is as relevant to how

many things there can be. That is, 0 can be understood as being zero in number,

and ·+ as that many and then one more.

0 := λXet � ¬∃X (24)

·+ := λn⟨et⟩tXet � ∃y ∈ X � n(λz � y ̸= z ∧Xz) (25)

On this identification, I is strictly entailed by Goodsell’s hypothesis of Unbounded-

ness, which says that every number is possibly instantiated; ∀n � Nn → 3∃n (I and

Unboundedness are equivalent in Goodsell’s stronger logic).

9Typical set theories such as ZFC do not have complex function expressions, so Peano arithmetic
is generally understood in a similar way in reductions of Peano arithmetic to set theories. However,
this subtlety is usually ignored because typical set theories are extensional, so adding a function
symbol where there was provably functional relation does not affect anything important. HKC is not
extensional, or even intensional, so the replacement of a functional relation symbol by a function
symbol can make a difference in some contexts.
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At any rate, this identification will not be assumed. As Goodsell shows, estab-

lishing the necessity of arithmetic on any way of understanding 0 and ·+ for which I

is possibly true is as good as any other, since by necessitating Dedekind’s categoric-

ity theorem for arithmetic one can show that on any two such interpretations, it is

necessary that if I holds on both interpretations then the two understandings have

an isomorphic structure so make the same arithmetical sentences true.

Ctbl is defined as follows:

Definition 6 (Ctbl). To be (at most) countable is to stand in an injective relation

with N.

Ctblσ := λXσt � ∃Rσνt � ∀yz ∈ X � (∃n ∈ N �Ryn ∧Rzn) ↔ y = z (26)

If I is not assumed it is consistent that ·+ is identity, in which case Ctbl only

applies to properties with one instance and Countable Boolean Completeness will not

have the intuitively intended effect of asserting the existence of least upper bounds

for some properties with infinitely many instances. Be this as it may, Countable

Boolean Completeness will still suffice to establish the necessity schema. If I fails

then it necessarily fails,10 in which case the necessity schema is trivially true anyway.

10By necessitating Lemma 5 we have 2(3I∗ → I∗), where 3I∗ = I, hence 33I∗ → 3I∗, which
is equivalent to ¬I → 2¬I.
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5 Proof of Necessity of Arithmetic

5.1 Modal Rigidity of Natural Number

Lemma 2 (HK). Any property that zero has and which is closed under successor is

had by every number.

∀Xνt �X0 → (∀n �Xn → Xn+) → ∀n ∈ N �Xn (27)

Proof. Immediate from the definition.

Lemma 3 (HK). Every number is necessarily a number.

∀n ∈ N �2Nn (28)

Proof. By induction (Lemma 2). We have 2N0 by the rule of necessitation. For

the inductive step, first necessitate ∀n �Nn → Nn+, then apply the converse Barcan

formula and K to get

∀n �2Nn → 2Nn+ (29)

which completes the induction.

Lemmas 4 to 7 will make use of the following abbreviation.

Definition 7 (I∗). I∗ is I without the preceding 3.

I∗ := ∀mn ∈ N � 0 ̸= m+ ∧ (m+ = n+ → m = n) (30)
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(so I = 3I∗).

Lemma 4 (HK). For any two distinct numbers, it is necessary that, if I∗, then they

are distinct.

∀mn ∈ N �m ̸= n → 2(I∗ → m ̸= n) (31)

Proof. By induction on m and n. The case where m = n = 0 is trivial. Now consider

the case where m = 0 and n = i+ for some number i. In that case the result follows

from Lemma 3 and the definition of I∗.

Now suppose the result holds for all values of n when m takes the value k, and

consider the case where m = k+. We establish this case by induction on n. The case

with n = 0 is established in the previous paragraph (since m and n are symmetric).

So suppose n = j+ for some number j. Now suppose i+ ̸= j+. Then i ̸= j, and by

the inductive hypothesis we have

i ̸= j → 2(I∗ → i ̸= j) (32)

and by the definition of I∗ we have

2(I∗ → i ̸= j → i+ ̸= j+) (33)

hence 2(I∗ → i+ ̸= j+), so the result holds by induction.

We are now in a position to prove the non-routine part of Lemma 1

Lemma 5 (HK). If it is possible that zero is not a successor and successor is injective,
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then it is in fact the case.

I → I∗ (34)

Proof. Since I = 3I∗, the converse of the desired conclusion is

¬I∗ → 2¬I∗. (35)

which is

∃mn ∈ N � (m+ = 0 ∨ (m+ = n+ ∧m ̸= n))

→ 2∃mn ∈ N �m+ = 0 ∨ (m+ = n+ ∧m ̸= n). (36)

Suppose that m+ = 0 for some m ∈ N. Then by Lemma 3 (the necessity of

natural numberhood), we have the result.

Now suppose m+ = n+ ∧ m ̸= n for some m,n ∈ N. Then by the necessity of

identity and Lemma 4, we have

2(I∗ → (m+ = n+ ∧m ̸= n)), (37)

hence by Lemma 3 we have

2(I∗ → ∃mn ∈ N �m+ = n+ ∧m ̸= n) (38)

which implies 2¬I∗.
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The next two lemmas establish the necessity of distinctness, Sum, and Prod,

conditional on I.

Lemma 6 (HK). For any two distinct numbers, it is necessary that, if I, then they

are distinct.

∀mn ∈ N �m ̸= n → 2(I → m ̸= n) (39)

Proof. By necessitating Lemma 5 we have 2(I → I∗), so the result is immediate

from Lemma 4.

Lemma 7 (HK). For any three numbers, either I necessitates that the first two

add/multiply to make the third, or I necessitates this is not so.

∀mno ∈ N �2(I → Summno) ∨2(I → ¬ Summno) (40)

∀mno ∈ N �2(I → Prodmno) ∨2(I → ¬Prodmno) (41)

Proof. It suffices to show

∀mno ∈ N � Summno → 2 Summno (42)

∀mno ∈ N � Prodmno → 2Prodmno (43)

∀mno ∈ N � ¬ Summno → 2(I → ¬ Summno) (44)

∀mno ∈ N � ¬Prodmno → 2(I → ¬Prodmno) (45)

Eqs. (42) and (43) are established by a straightforward but tedious induction un-

packing the definition of Sum and Prod. Eqs. (44) and (45) then follow by Lemmas 1,
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5 and 6.

Countable Boolean Completeness is used essentially, and only, in the following

lemma (which in conjunction with Lemma 3 implies natural numberhood is a rigid

property in the sense of Definition 2):

Lemma 8 (HKC). Every property that every number has necessarily, is such that

necessarily, every number has it.

∀Xνt � (∀n ∈ N �2Xn) → 2∀n ∈ N �Xn (46)

Proof. Define

N{·} := λXνt � ∃n ∈ N �X = {n}, (47)

where {n} := λm � n = m.

Let B be a least upper bound of N{·}. Since B is an upper bound, we have

∀n ∈ N � 2∀m � {n}m → Bm, hence also ∀n ∈ N � 2Bn by the necessity of identity.

It immediately follows that ∀n ∈ N � 2Bn+. Thus λn � Bn+ is also an upper bound

of N{·}.

Since B is a least upper bound it necessitates λn �Bn+, which is to say

2∀n �Bn → Bn+, (48)
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and we also have 2B0, since {0} is an instance of N{·}. Thus by Lemma 2 we have

2∀n � Nn → Bn. (49)

Now, for an arbitrary X with ∀n ∈ N � 2Xn, X is an upper bound of N{·}, so

2∀n �Bn → Xn, and thus 2∀n ∈ N �Xn as required.

5.2 Proof of Necessity Schema

Definition 8 (Arithmetical formula/sentence). The numerical terms consist of vari-

ables of type ν, the symbol 0, and terms of the form n+, where n is a numerical term.

The arithmetical formulae are either atomic formulae of the forms

Nn Summno Prodmno (m = n) (50)

where m, n, o are numerical terms, or complex formulae of the forms

(¬A) (A ∨B) (A ∧B) (∀v ∈ N �A) (51)

where A and B are arithmetical formulae and v is a variable of type ν.

An arithmetical sentence is an arithmetical formula with no free variables.11

Theorem 9. Where A is an arithmetical formula and n⃗ is a sequence of variables

11Goodsell uses a definition of arithmetical formula where the only primitive relation is the
ordering of numbers. This definition is too restrictive, since arithmetical formulae so-defined will
not include anything about addition or multiplication, so will not include even the theorems of Peano
arithmetic. Goodsell’s more restrictive definition also does not immediately yield Theorem 11 in
Section 6 of this paper, since Presburger arithmetic, which is axiomatized by the axioms of Peano
arithmetic besides those concerning multiplication, is decidable.
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of type ν that includes the free variables of A, the sentence

∀n⃗ ∈ N �2(I → A) ∨2(I → ¬A) (52)

is a theorem of HKC.

Proof. By induction on the complexity ofA. The atomic formulae are predications of

N, Sum, Prod, and =. For these, we use use, respectively, Lemma 3, then Lemma 7,

then either the necessity of identity or Lemma 6.

Suppose formulaeA andB satisfy Eq. (52), then the same goes for (¬A), (A∨B),

and (A ∧B) by the inclusion of K for 2.

Finally, suppose A satisfies Eq. (52), and let m be a variable of type ν. Then we

have

∀n⃗ ∈ N � ∀m ∈ N �2(I → A) ∨2(I → ¬A) (53)

which implies

∀n⃗ ∈ N � (∀m ∈ N �2(I → A)) ∨ ∃m ∈ N �2(I → ¬A) (54)

By Lemma 8 we have

(∀m ∈ N �2(I → A)) → 2(I → ∀m ∈ N �A), (55)
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And Lemma 3 yields

(∃m ∈ N �2(I → ¬A)) → 2(I → ¬∀m ∈ N �A) (56)

hence

∀n⃗ ∈ N �2(I → ∀m ∈ N �A) ∨2(I → ¬∀m ∈ N �A) (57)

as required.

5.3 Extensions of the Language of Arithmetic

The necessity schema Eq. (1) on page 2 does not quite assert the necessity of arith-

metic tout court, since the necessity of arithmetic is naturally thought of as a quanti-

fied semantic claim: that every arithmetical sentence is necessarily true, or necessarily

false, given I. This would be formalized in the following form:

∀x ∈ Sent �2(I → Tx) ∨2(I → ¬Tx) (58)

We may understand the syntactic functions Sent and T as applying to Gödel numbers

of strings rather than of strings themselves, in which case Eq. (58) is in a broad

sense itself a claim about numbers. However, if these constants are given standard

definitions, Eq. (58) does not follow from the necessity schema in HK, because the

definition of T is not given in the language of arithmetic as given in Definition 3 (due

to Tarski’s theorem on the undefinability of truth).

Nevertheless, HKC does imply Eq. (58), on standard recursive definitions of Sent
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and T.12 The method of proof is an induction on formula-complexity exactly parallel

to Theorem 9, only where the metavariables ‘A’ and ‘B’ are replaced with object-

language variables of type ν. The proof is omitted because giving it precisely requires

notational conventions for quotation that will take too much space to describe.

It is also worth remarking on another straightforward generalization of Theo-

rem 9. Let an arithmetical signature be a finite list of terms of with the types of

either numerals (ν), numerical predicates (νt, ννt, . . . ), or numerical functions (νν,

ννν, . . . ). If the language of arithmetic is augmented by an arithmetical signature,

one may wonder whether now it is possible to assert something contingent. We have

the following result:

Definition 9 (Fixed). When a is a term of type ν, we write Fixed(a) as an abbre-

viation for

Na. (59)

When f is a term of the type of a k-adic function from numbers to numbers which

does not contain any free occurrences of the variables n1, . . . , nk, we write Fixed(f)

for

∀n1 . . . nk ∈ N � N(fn1 . . . nk). (60)

When R is a term of the type of a k-adic relation of numbers which does not contain

12See, e.g., Definition 8.1 of Halbach [14, p. 64].
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any free occurrences of the variables n1, . . . , nk, we write Fixed(R) for

∀n1 . . . nk ∈ N �2(I → Rn1 . . . nk) ∨2(I → ¬Rn1 . . . nk). (61)

When Σ is a signature, i.e., a finite list of terms (not necessarily constants) of the

above three categories of type, we write Fixed(Σ) for the conjunction of terms of the

form

Fixed(a), (62)

where a is a term in Σ.

The proof of Theorem 9 immediately generalizes as follows:

Theorem 10. Let A be any sentence of the language of arithmetic plus the signature

Σ, and let v⃗ be the union of free variables of terms in Σ and let n⃗ be a sequence of

type-ν variables disjoint from v⃗, including all those in A besides those in v⃗. Then

∀v⃗ � Fixed(Σ) → ∀n⃗ ∈ N �2(I → A) ∨2(I → ¬A) (63)

is a theorem of HKC.

Proof. As Theorem 9 but with additional base cases for the new signature, which

are all handled by the assumption of Fixed(Σ).

It follows, for example, that everything that can be said in the language of arith-

metic plus a truth predicate (given Eq. (58)) is either necessarily true if I or neces-

sarily false if I.
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6 Inconsistency of Boolean Completeness with Max-

imalized Systems

Various authors have been tempted by the idea that for some sufficiently rich ax-

iomatic system of arithmetic, the theorems of that system are exactly the neces-

sarily true sentences of arithmetic. The qualification to only a special class of true

sentences, in this case the necessarily true ones, is needed, since by Gödel’s first

incompleteness theorem the truths of arithmetic are not recursively axiomatizable.

Unsurprisingly, the necessity of arithmetic will spell trouble for this sort of picture.

Bacon and Dorr [5] make the picture more precise with the operation of maxi-

malizing a theory.

Definition 10 (Modal maximalization; Max). The (modal) maximalization of a set

of sentences Γ, Max(Γ), is the set of sentences which includes Γ as well as every

sentence of the form 3A, where A is a sentence such that ¬A is not included in Γ.13

They show that various interesting theories stated in the language of HK to have

consistent maximalizations (supposing that they are consistent to begin with). Of

particular interest to them is the system Classicism, which can be axiomatized by

adding to HK every instance of the schema stating that relations are individuated

by necessary coextensiveness:

∀XY σ1...σnt � (2∀z1 . . . zn �Xz1 . . . zn ↔ Y z1 . . . zn) → X = Y (64)

Bacon and Dorr isolate Boolean Completeness as a plausible and interesting extension

13Bacon [3] calls the property of having a consistent maximalization coherence.
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to Classicism, and pose the question of whether any extension of Classicism includes

Boolean Completeness and has a consistent maximalization. The foregoing results

answer this question in the negative, in light of the following general theorem about

maximalizations of axiomatizable theories which are consistent with I.14

Theorem 11. The maximalization of any recursively enumerable extension of HK

that is consistent with I is inconsistent with some instance of Eq. (1) in HK.

This theorem also shows that Rigid Comprehension, the principle Goodsell [12]

used to establish the necessity schema, is inconsistent with the maximalization of

any recursively enumerable extension of HK.

Proof of Theorem 11. Let Γ be a recursively enumerable set of sentences that does

not include ¬I. If Γ is consistent in HK then the set of arithmetical sentences A for

which I → A is provable from Γ in HK, is a consistent extension of Peano arithmetic.

By Gödel’s first incompleteness theorem it follows that if Γ is consistent in HK,

then there is an arithmetical sentence A such that both

I ∧A I ∧ ¬A (65)

are consistent with Γ in HK. Max(Γ) therefore includes

3(I ∧A) 3(I ∧ ¬A) (66)

14Assuming Classicism is consistent with I, i.e., that Classicism does not prove that there are
necessarily only finitely many things of any type. Classicism plus I has equal consistency strength
with higher-order logics which include axioms of infinity, e.g., those of Church [9] or Henkin [16],
which in turn have much lower consistency strength than ZF set theory. This can be confirmed by
inspecting Bacon and Dorr’s model theory for Classicism.
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which by basic modal logic yield

¬(2(I → A) ∧2(I → ¬A)), (67)

Which is the negation of an instance of the necessity schema.15
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