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This chapter offers an opinionated introduction to higher-order formal lan-
guages with an eye towards their applications in metaphysics. These languages
go beyond the first-order predicate calculus in two ways: they allow for predi-
cate abstraction and also for quantification into sentence and predicate positions.
Together these two innovations allow us to formulate deep questions about the
structure of reality using purely logical vocabulary.

Much of the literature on the interpretation of higher-order formal languages
focuses on how different they are from natural languages. While these differences
are real, focussing on them can give the misleading impression that the intelligi-
bility of higher-order languages is more vexed than it really is. For the first-order
predicate calculus also departs from natural language in many of the same ways,
and its intelligibility should not be in question. This chapter therefore proceeds
by explaining how readers fluent in first-order logic can leverage that fluency to
become comfortable theorizing in higher-order languages.

Section 1 explains the operative understanding of first-order languages, while
sections 2 and 3 advance interpretations of predicate abstraction and of higher-
order quantification as natural outgrowths of that understanding. Section 4
explains how these logical resources allow us to ask significant metaphysical
questions. Section 5 explores the metaphysical implication of the claims about
predicate abstraction advanced in section 2. I argue that we must reject the
popular idea that structural differences between sentences correspond to parallel
distinctions in the logical structure of extra-linguistic reality. But it may still
be possible to give a purely logical characterization of objectual aboutness and
related notions.

1 First-order preliminaries

The aim of this section is to make explicit a certain understanding of the first-
order predicate calculus. I will argue, first, that predicate letters are meaningful
expressions that can, and often are, introduced using explicit definitions. I will
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then argue that our ability to use first-order formal languages to theorize about
the world is not underwritten by any explicit or tacit translation of its formulas
into some independently understood natural language. These claims are not
intended to be particularly controversial or exciting on their own, but they will
take on new significance in the context of higher-order languages.

1.1 Defining predicates

When we argue, reason, and theorize using the first-order predicate calculus, we
are not typically using formulas as mere abbreviations or shorthand. Rather,
we are doing the same kind of thing that physicists do when they use symbolic
notation to argue, reason, and theorize about physical systems. The equations
bearing Maxwell’s and Einstein’s names aren’t mere abbreviations for sentences
of English or of German. They have an intended interpretation of their own.
The same is true when philosophers use the first-order predicate calculus. This
is true not only when metaphysicians engage in the kind of systematic the-
orizing that most closely resembles theoretical physics, but also in the more
common, pedestrian, ad hoc uses of logical formalism that one finds in all areas
of contemporary analytic philosophy.

When we so philosophize, the predicate letters we use are genuinely mean-
ingful expressions with intended interpretations. This raises the question: how
do these predicate letters get their meanings? Let’s consider three ways. (Our
focus will be on the third, but the first two provide a useful contrast.)

The first way is that we simply start using a new predicate symbol as part of
an inquiry or attempt to communicate. If our use is sufficiently systematic and
the world cooperates, this may be enough for the symbol (as we use it) to be
meaningful. How this happens is a very hard question, since our understanding
of ‘meta-semantics’ (i.e., that in virtue of which our words are meaningful and
have the meanings that they do) leaves much to be desired. Yet since our words
clearly have meanings, and largely as a result of how we use them, there is no
clear reason to doubt that predicate letters can come to be meaningful in the
very same way, through appropriately systematic use.

A second way that predicate letters might get their meanings is modeled on
how names can get their referents through reference-fixing descriptions. Since
we know that there was a unique person who first invented the zip, we might
stipulate that the name “Julius” refer to them.1 Similarly, we might introduce a
meaningful predicate letter “F” by stipulating that it express whatever condi-
tion uniquely plays a given theoretical role.2 That is, we uniquely characterize
what a predicate is to mean and then stipulate that this be what it means.

While these are both legitimate ways of introducing meaningful predicate
letters into our vocabulary, our focus will be on a third way: explicit definition.
This is what we often teach students to do in beginning logic classes. Here are
some examples (where “P” and “A” are for “parent” and “aunt”):

1The example is from Evans (1979), building on Kripke (1972).
2Lewis (1970) influentially explained how this might be done for many predicates simulta-

neously in terms of a theoretical role uniquely played by many conditions taken together.
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Pxy := y is a child of x

Fz := z is female

Mxy := x and y are married

Axy := Fx∧∃z1∃z2∃g((x = z1 ∨Mxz1)∧Pgz1 ∧Pgz2 ∧Pz2y ∧ z1 6= z2))

These definitions all have the form:

Rx1 . . . xn := ϕ

Here x1, . . . , xn are n distinct variables and ϕ is a formula in which x1, . . . , xn
are all and only the variables that occur free. The predicate being defined is R,
and it is an n-place predicate.3

These variables are ‘individual’ variables, in the sense that they occur in
syntactic positions that can be occupied by proper names and similar referen-
tial expressions like numerals and singular pronouns. For any such expressions
a1, . . . an, we let ϕ[ai/xi] be the sentence that results from simultaneously re-
placing each free occurrence of any xi in ϕ with an occurrence of the corre-
sponding ai (for all i ≤ n). For example, replacing “z” with the name “Zephyr”
in the right hand side of the definition of “F” above yields the sentence “z is
female”[“Zephyr”/“z”], which is simply “Zephyr is female”. In this case, the re-
placement yields a sentence of English. But in other cases it could be a sentence
of Loglish, a familiar chimera of English words and logical symbols. This is what
happens when we substitute “Anne” and “Will” for “x” and “y” in the right
hand side of the definition of “A”, yielding:

1. FAnne∧∃z1∃z2∃g((Anne = z1∨Mxz1)∧Pgz1∧Pgz2∧Pz2Will∧z1 6= z2))

This is a little hard to read, since it juxtaposes predicate letters with English
names. This is one reason why we typically introduce lowercase letters (‘indi-
vidual constants’) to refer to individuals, whose juxtaposition with predicate
letters is easier on the eyes. But this aesthetic shortcoming is no deep challenge
to the intelligibility of Loglish sentences. Consider, for example:

2. ∀x(Narcissus loves x↔ x = Narcissus).

This sentence is clearly intelligible, and sentences like it are commonplace in
contemporary philosophical writing.

I have claimed that predicate letters, used in a certain familiar way, are
meaningful symbols, and then described three ways in which predicates can
acquire their meanings. But in the case of the predicates introduced in the third
way, using explicit definitions, it is instructive to consider a natural alternative
hypothesis. Here is the idea. Consider:

3. PElizabethCharles

3“Definition” of course has broader uses too; for example, inductive definitions in mathe-
matics are (in the present terminology) cases of reference fixing rather than explicit definitions.
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Given our explicit definition of “P”, there is a way of understanding this sentence
without treating that predicate letter as a meaningful in itself. Instead, we can
treat its definition as a recipe for using the letter “P” to abbreviate sentences
that we already understand; in this case, the sentence:

4. Charles is a child of Elizabeth.

This idea is reminiscent of Russell (1905), who argued, roughly, that descrip-
tions are not meaningful on their own, but in any given context they provide a
convenient shorthand for sentences not containing any such descriptions.

This proposal gets something important right. There is an intimate connec-
tion between 3 and 4 owing to how “P” was explicitly defined. We will return
to this point shortly. Nevertheless, there is good reason to think that “P” is
a meaningful symbol and not a mere device for abbreviation. For our practice
of introducing predicate letters using explicit definitions is of a piece with our
practice of introducing new nouns, verbs, and adjectives into English using ex-
plicit definitions. In the case of English, such new words are clearly meaningful
– this is why they can later be acquired and used by other English speakers,
even if those speakers don’t know exactly how those words were initially defined.
And having already granted the existence of some meaningful predicate letters,
there is no good reason to deny that our stock of them can be extended using
definitions in the same way that our stock of meaningful words can be.4

What is special about definitionally introduced predicates is that, just like
definitionally introduced words, when we predicate them they are as good as
abbreviations. In particular, 3 and 4 are everywhere intersubstitutable.5 We can
express this general feature of explicit definitions schematically as follows:

Definitional Equivalence
From Rx1 . . . xn := ϕ, infer: Φ[Ra1 . . . an] if and only if Φ[ϕ[ai/xi]].

The notation Φ[A] stands for the formula that results from filling the gap “. . . ”
in Φ with the expression A. So if Φ is “Kurt plays . . . ”, then Φ[“guitar”] is “Kurt
plays guitar”. The schematic biconditional pΦ[A] if and only if Φ[B]q then says,
in effect, that A and B are everywhere intersubstitutable. For example, from
the definition of “P” above, we can infer:

4What would be an example of a non-meaningful predicate-like symbol? Imagine using V
so that, for any name a, pV aq abbreviates p“a” has five lettersq. So V Tully and not V Cicero.
But this doesn’t mark a difference between Tully and Cicero – there isn’t any, since Tully is
Cicero. Moreover, there is no sensible question “What is it to be V ?”, in the way that “What
is it to be round/good/human/interesting?” are sensible questions. “Representational” may
be better than “meaningful” for the intended status here. But that status, whatever we call
it, entails (i) that materially inequivalent predications of the same predicate mark a difference
between the entities of which it is predicated, and (ii) it is a sensible question what this
difference consists in. These informal ideas will be made precise in section 4.

5More precisely, 3 and 4 are as intersubstitutable as they would be if “P” were merely a
device for abbreviation. This qualification accommodates the fact that they are not substi-
tutable inside quotation marks. Whether they are substitutable in the complement clauses
of propositional attitude reports is a delicate question beyond the scope of this paper. For a
defense of an affirmative answer, see Goodman and Lederman (2021).
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5. (Charles is heir to the throne partly in virtue of the fact that PElizabethCharles)
if and only if (Charles is heir to the throne partly in virtue of the fact that
Charles is a child of Elizabeth).

We will see below how higher-order languages allow us to get a surprising amount
of metaphysical mileage out of the fact that we can introduce predicates that
are both meaningful and governed by Definitional Equivalence.

1.2 First-order logic as metaphysics

Let us now turn to the second claim I made at the beginning of this section:
that we have an understanding of sentences of first-order logic that does not go
by way of (and is not hostage to the existence of) any translation into English
or any other natural language. As Williamson (2003) puts it, we can make such
formal languages the ‘home language’ in which we theorize.6 I will now give a
simple example to illustrate what I mean by this, and use it to make two points
that will become important when we consider higher-order languages.

I assume that anyone reading this chapter can understand the following two
sentences with little effort:

6. ∃x∃y(x 6= y)

7. ∀x∀y(x = y)

What do they mean? If you’re like me, your first impulse is to say that the first
means that there are (at least) two things, while the latter means that there is
(at most) one thing. Or you might instead say that they respectively mean that
some things are distinct from each other and that all things are identical to one
another. And it isn’t hard to come up with further not unreasonable glosses.

The structural discrepancy between the above formulas and the English sen-
tences we naturally use to gloss them, reinforced by the diversity of these glosses,
is revealing. It illustrates that we do not understand 6 and 7 by exploiting any
mechanical translation of the symbolism of first-order logic into English. To the
contrary: it is because we understand what 6 and 7 mean, considered on their
own, that we can recognize that they mean the same as (or near enough) the
sentences that come to mind when asked to say in English what they mean.

It is important to distinguish the above use of English sentences to gloss
sentences of formal languages from another superficially similar practice of using
English words in connection to logical formulas. Consider:

8. There is an x such that there is a y such that x is distinct from y.

9. For all x and y, x is identical to y.

6I am not claiming that the human language faculty plays no role in how we intelligently
manipulate sentences of formal languages. See Pietroski (2018, chapter 3), which emphasizes
the differences between human language and artificial formalisms without casting doubt either
on the intelligibility of the latter or on the idea that the human language faculty plays an
important cognitive role when we deploy formal languages in intellectual projects.
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Philosophers frequently use ‘sentences’ like 8 and 9 as a way of writing and
pronouncing formulas like 6 and 7. This is especially important in speech, since
listing symbols would be intolerable.7 But not only are 8 and 9 clearly not
sentences of English, they are also quite unlike the Loglish sentences 1-3 above.
Those Loglish sentences involved extending the rules for well-formed formulas of
the predicate calculus to subsume a fragment of English: names can be replaced
by variables to form formulas; two formulas can be combined to form a third by
flanking “↔”; one formula can be enclosed in parentheses and prefixed by “∀x”
to form another formula; and so on. Nothing like this is going on in 8, in which
the initial occurrences of “x” and “y” take the place not of proper names but of
singular common nouns like “dog’; nor in 9, where they take the place of plural
common nouns like “cats”.

8 and 9, then, are much closer to abbreviations. Their interpretation is para-
sitic on the interpretation of the sentences 6 and 7 that they stand for. The best
way to think of 8, for example, is simply as a convenient way of pronouncing
6. This pronunciation scheme is useful owing to the many ways in which quan-
tification in first-order logic differs structurally from quantification in natural
languages. For example, English grammar gives rise to scope ambiguities that
are avoided in the predicate calculus through the use of distinct variables. Quan-
tifiers in English are also always syntactically restricted, in the sense that they
combine first with a noun before they combine with a verb phrase (as “dog”
restricts “every” in “every dog barks”), whereas quantifier prefixes in the pred-
icate calculus combine directly with open sentences.8 The convention of using
variables in the place of nouns that would restrict quantifiers is an ingenious
way of exploiting the grammar of English to smoothly pronounce formulas of
formal languages in which quantification works quite differently.

I am belaboring this point not because it is of great significance in the case
of first-order languages, where it is unlikely to cause any confusion, but be-
cause a parallel point is significant when we consider higher-order languages. To
preview: there are standard ways of using English words like “property”, “propo-
sition”, and “type” to pronounce formulas of higher-order logic. But, at least in
the higher-order metaphysics literature, this is typically merely a pronunciation
scheme, which we deploy out of convenience, and the utility of which is easily
understood by reflecting on the differences between the syntax of quantification
in higher-order formal languages and the syntax of quantification in English.
While there are substantive metaphysical questions about what properties and
propositions there are, no such questions are begged by merely using “property”
and “proposition” as part of a scheme for pronouncing formulas, just as it would
clearly be confused to think that the use of 8 commits one to two categories of
things, the xs and the ys.

A second important point illustrated by 6 and 7 is that sometimes logic is
metaphysics. That is to say: we can use the symbolism distinctive of formal logic

7I learned this from experience, when some friends had an unflattering impression of me
circa 2013 that involved saying “Box phi horseshoe psi”.

8Even in “everything exists” there are good reasons to think that, at the level of logical
form, there are distinct constituents corresponding, roughly, to “every” and “thing”.
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to formulate competing claims about the world, in the same way that physicists
use their proprietary notation to formulate competing claims about physical
reality. And debates over such claims belong to metaphysics (as opposed to
physics, history, ethics, or some other discipline). The competing claims that,
on the one hand, there are at least two things, and, on the other hand, that
there is at most one thing, have in fact been debated by metaphysicians. And
these claims can be articulated using only first-order quantification, identity,
and negation – that is, using only logical vocabulary.

The shortcoming of first-order logic as metaphysics isn’t any tension between
the sometimes supposed neutrality of logic and speculativeness of metaphysics.
If there is a sense of ‘logic’ in which it must be uncontroversial, or a sense of
‘metaphysics’ where its claims must be tendentious, it is not my sense here. The
problem with first-order logic as metaphysics is rather that it is boring. For 7
is clearly false, the illustrious pedigree of ontological monism notwithstanding.
(You and I are a counterexample.) There are at least two things, and indeed
arguably at least n things for every finite number n. And from these truths we
can derive every truth that can be formulated using only the logical resources
of first-order logic with identity; cf. Rayo and Williamson (2003).

By contrast, higher-order logic as metaphysics is not boring. In sections 4
and 5 we will see how higher-order languages allow us to ask a host of new
interesting and non-obvious questions, with the same starkness and precision
exhibited by purely logical formulas like 6 and 7.

Let me summarize what I have argued so far. I have argued that predicates
introduced by explicit definition satisfy Definitional Equivalence and are
meaningful expressions in their own right. I then argued that the symbolism of
first-order logic is a meaningful representational system, which we can directly
interpret without translating it into any natural language. In fact, some uses
of natural language that one might initially mistake for partial translations
of symbolism into English are in fact the reverse: we sometimes use English
words and syntactic structures to pronounce formulas, but when we do so their
interpretation is parasitic on that of the formulas in question, not the other
way around. That we do this is understandable given the syntactic differences
between first-order logic and English, especially when it comes to quantification.

The reason for being explicit about these points is to preempt doubts about
the intelligibility of higher-order formal languages based on the extent to which
they depart from natural language. Some proponents of higher-order meta-
physics have responded to such misgivings by trying to minimize the extent
of these departures, most heroically Prior (1971); cf. Boolos (1984) and Rayo
and Yablo (2001). Here I have adopted a different strategy. The departures be-
tween higher-order logic and natural language are many, and if there were no
precedent of understanding similarly alien notational systems, then that would
indeed be grounds for caution. But there are many such precedents, one of
which is first-order logic. We have become so used to it that we easily forget
how innovative it is from the perspective of natural language. It is no accident
that contemporary quantification theory had to wait over two millennia from
Aristotle to Frege. The question of how it is that we can manage to use and
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understand artificial symbolisms like first-order logic is a deep question in cog-
nitive psychology, but we know that it has an answer because understand them
we do.

Of course, higher-order logic does involve some innovations beyond first-order
logic. Let us now turn to these.

2 Predicate abstraction

This section explains the first innovation of higher-order languages: predicate
abstraction. Section 2.1 explains how predicate abstraction can be understood
as an outgrowth of our practice of introducing predicate letters using explicit
definitions, discussed in section 1.1. Section 2.2 then explains two ways of using
predicate abstraction that extend beyond what can be done by defining predicate
letters in first-order languages, and introduces the type distinctions that are
central to theorizing in higher-order languages.

2.1 Abstraction as definition: motivating λ-conversion

Instead of introducing a new predicate letter R using an explicit definition
pRx1 . . . xn := ϕq, and then going on to use R, we can achieve the same ef-
fect in a single step, by using a complex predicate that wears its definition on
its sleeve: p(λx1 . . . xn.ϕ)q. This subsection makes precise the sense in which
these λ-terms are equivalent to explicitly defined predicates, and shows how
this equivalence motivates certain general principles governing such terms.

λ-terms are equivalent to corresponding explicitly defined predicates in the
sense that the two are everywhere intersubstitutable. More precisely:

Abstraction as Definition
From Rx1 . . . xn := ϕ, infer: Φ[R] if and only if Φ[(λx1 . . . xn.ϕ)].

This basic equivalence underpins the three central principle governing λ-terms:
β-conversion, α-conversion, and η-conversion. Let me explain.

First, consider what happens when we combine Abstraction as Definition
(linking λ-terms and defined predicates) with Definitional Equivalence (link-
ing predications of defined predicates with their definitions). Taken together,
these principles imply that, from an explicit definition pRx1 . . . xn := ϕq, we
may infer pΦ[(λx1 . . . xn.ϕ)a1 . . . an] ↔ Φ[ϕ[ai/xi]]q. Notice that the defined
predicate R does not occur in this schematic biconditional. And any schema
in which R does not occur clearly doesn’t depend for its acceptability on the
definition of R. So such biconditionals should be acceptable on their own. This
motivates the central logical principle governing λ-terms:9

β-conversion
Φ[(λx1 . . . xn.ϕ)a1 . . . an]↔ Φ[ϕ[ai/xi]], where each ai is free for xi in ϕ

9Earlier versions of this argument can be found in Dorr (2016) and Goodman (2016).
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In other words, every predication of a λ-term is eliminable in terms of the for-
mula that it immediately β-reduces to (in which that λ-term does not occur).10

For example, the following is instance of β-conversion:

10. ¬((λxy.y is a child of x)AliceBob) ↔ ¬(Bob is a child of Alice).

This is because the right-hand-side results from the left-hand-side by replacing
“(λxy.y is a child of x)AliceBob” with the sentence “Bob is a child of Alice”
that it immediately β-reduces to.

Notice that the above argument from Abstraction as Definition and
Definitional Equivalence only directly motivates β-conversion for λ-terms
p(λx1 . . . xn.ϕ)q that are of the right form to correspond to explicit definitions
of predicates in the first-order predicate calculus: x1, . . . , xn be distinct indi-
vidual variables, and they must be all and only the variables free in ϕ. The
next subsection argues that we can relax the requirements that x1, . . . , xn must
be individual variables and that they must include all variables free in ϕ; sec-
tion 5.2 considers the implications of relaxing the requirement that x1, . . . , xn
must include only variables free in ϕ.

The connection between predicate abstraction and explicit definition moti-
vates a second logical principle governing λ-terms:

α-conversion
Φ[(λx1 . . . xn.ϕ)]↔ Φ[(λy1 . . . yn.ϕ[yi/xi])], where no yi are free in ϕ

Intuitively, this says that all that matters in λ-terms is the pattern of free
variables in the prefix (part before the “.”) and matrix (part after the “.”).
λ-terms agreeing on this pattern but using different variables are everywhere
intersubstitutable. For example, the following is an instance of α-conversion:

11. Definitely (λx.x is guilty)Holmes ↔ definitely (λy.y is guilty)Holmes.

Just as Abstraction as Definition motivates β-conversion via Defini-
tional Equivalence, it also motivates α-conversion via a parallel principle
about explicit definitions, namely:

Alphabetic Irrelevance
From Rx1 . . . xn := ϕ and Sy1 . . . yn := ϕ[yi/xi], infer: Φ[R]↔ Φ[S].

This principle is hopefully obvious. It can also be motivated by noting the
equivalence of our practice of explicitly defining predicate letters using arbi-
trarily chosen variables and other ways of defining predicate letters in which
variables play no role. Consider, for example, the numeral-based notation in

10The proviso that each ai is free for xi in ϕ means that, if ai is a variable, then it doesn’t
become bound when it is substituted for any free occurrence of xi in ϕ. (Recall that ϕ[ai/xi]
is the result of simultaneously replacing each free occurrence of any xi in ϕ with an occurrence
of the corresponding ai.) For example, x is not free for y in p∀x(x = y)q; so the (false) sentence
p∃x∀x(x = x) ↔ ∃x(λy.∀x(x = y))xq is not an instance of β-conversion. Wherever I write
(or have written) ϕ[ai/xi], the proviso that each ai is free for xi in ϕ should be taken as read.
Where ai is a complex term containing free variables, this means that none of those variables
become bound when it is substituted for any free occurrence of xi in ϕ.
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Goldfarb (2003), where instead of writing pPxy := y is a child of xq we would

write pP := 2 is a child of 1 q – clearly both definitions are equivalent.
A different way of motivating α-conversion is as a consequence of β-

conversion together with the following schema:

η-conversion
Φ[R]↔ Φ[(λx1 . . . xn.Rx1 . . . xn)], where no xi are free in R

To establish a given instance of α-conversion, note that p(λx1 . . . xn.ϕ)q is
intersubstitutable with p(λy1 . . . yn.(λx1 . . . xn.ϕ)y1 . . . yn)q (by η-conversion),
which is then intersubstitutable with p(λy1 . . . yn.ϕ[yi/xi])q (by β-conversion).

Like β-conversion and α-conversion, η-conversion can be motivated by
Abstraction as Definition together with an independently plausible principle
about explicit definitions. The principle in this case is:

Defining Synonyms
From Sx1 . . . xn := Rx1 . . . xn, infer: Φ[S] if and only if Φ[R].

Here is how it motivates η-conversion. Having issued a definition pSx1 . . . xn :=
Rx1 . . . xnq, S is then intersubstitutable with R (by Defining Synonyms) and
also with p(λx1 . . . xn.Rx1 . . . xn)q (by Abstraction as Definition). Cutting
out the intermediary S, we have the relevant instance of η-conversion, licensing
the intersubsitution of R and p(λx1 . . . xn.Rx1 . . . xn)q.

Defining Synonyms can in turn be motivated as follows. We can clearly
introduce new words as synonyms for old ones. Sometimes we do this to guard
against equivocation, as when the original word is ambiguous or context-sensitive.
Other times we do so for expediency – for example, in introducing “T-Rex” as
a shorter synonym for “tyranosaurus rex”. These new words are meaningful in
their own right. That is why speakers can become competent with “T-Rex”
without even knowing the word “tyranosaurus rex”. And the introduction of
such words is of a piece with the practice of explicitly defining predicates. Given
this parallelism, and the fact that stipulated synonyms like “T-Rex” and “tyra-
nosaurus rex” are everywhere intersubstitutable, we should say the same about
explicitly defined predicates. And that is what Defining Synonyms ensures:
having explicitly defined S in terms of R, à la defining “T-Rex” in terms of
“tyranosaurus rex”, it says that S and R should be everywhere intersubsti-
tutable.11

11In first-order languages, β-conversion makes η-conversion (and hence α-conversion)
redundant, since every instance of η-conversion is also an instance of β-conversion. This
is because the only way that a predicate R can occur in a sentence of a first-order language
is as the main predicate of a subformula pRa1 . . . anq. In such contexts, intersubstituting R
and p(λx1 . . . xn.Rx1 . . . xn)q, as licensed by η-conversion, is tantamount to intersubstitut-
ing pRa1 . . . anq and p(λx1 . . . xn.Rx1 . . . xn)a1 . . . anq, as already licensed by β-conversion.
But η-conversion is not redundant in higher-order languages, because in such languages
predicates can occur in other syntactic positions. In particular, they can occur as arguments
to higher-level predicates, as explained below.
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2.2 Higher-order abstraction and open λ-terms

I will now consider two ways in which we can extend the use of predicate ab-
straction beyond what we already do in the predicate calculus. The first is to
allow abstraction using non-individual variables. The second is to allow λ-terms
in which not all variables free in the matrix clause are bound in the prefix.
Anyone who is comfortable with the foregoing account of predicate abstraction
should, I believe, have little trouble extending the practice in either of these
ways.

Let’s begin with an example. It is common to define the material conditional
in terms of negation and conjunction. While sometimes pϕ ⊃ ψq is said to
be mere shorthand for p¬(ϕ ∧ ¬ψ)q, often ⊃ is introduced as a meaningful
connective in its own right, defined in terms of ¬ and ∧ but no less a genuinely
meaningful expression for that. Similarly we might define possibility as the dual
of necessity. We can do so using explicit definitions of the same general shape
as in the predicate calculus (using infix notation where convenient):

p ⊃ q := ¬(p ∧ ¬q)

♦p := ¬�¬p

The only difference is that the variables occurring in these definitions are not
individual variables (those taking the place of names), but rather sentential
variables (those taking the place of sentences).

The point generalizes. For example, we can use variables occupying the posi-
tion of binary predicate letters to explicitly define higher-order predicates that
take binary predicate letters as arguments, as below:

SR := ∀x∀y(Rxy ↔ Ryx)

CRS := ∀x∀y(Rxy ↔ Syx)

Here “S” and “C” (for having “symmetric” and “converse” extensions) are the
defined predicates, and “R” and “S” are variables in the syntactic position of
binary first-order predicates (like “P” and “A” above).

The same considerations given in the last section with respect to first-order
predicates apply here: so defined, “⊃”, “♦”, “S”, and “C” are meaningful sym-
bols governed by Definitional Equivalence, Alphabetic Irrelevance, and
Defining Synonyms. So by Abstraction as Definition, the corresponding
λ-terms – “(λpq.¬(p ∧ ¬q))”, and so on – obey β-, α-, and η-conversion.

So far I have been using some standard typographical conventions to signal
the syntactic category of various symbols: “p” and “q” for sentential variables,
“a” and “b” and “x” and “y” for individual constants and variables, “R” and
“S” for variables in the position of binary first-order predicates, and fancier
typefaces for terms taking such expressions as arguments. It is time to introduce
a more systematic way of marking these syntactic categories.

We do so using the system of simple relational types. These types allow us to
classify symbols according to how they can be grammatically combined. There
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are two basic types: the type of proper names, individual constants, and indi-
vidual variables, which we call e, and the type of sentences and formulas, which
we call t. Every non-empty sequence of types 〈τ1, . . . , τn〉 is also a type.12 An
expression of type 〈τ1, . . . , τn〉 can be thought of as an n-place predicate, which
requires exactly n arguments respectively of types τ1, . . . , τn. So the predicate
“F” defined in the last section has type 〈e〉, since predicating it consists in ap-
plying it to a single argument of type e; “=” has type 〈e, e〉, since it combines
with two expressions of type e to form a formula; “S” has type 〈〈e, e〉〉; “C” has
type 〈〈e, e〉, 〈e, e〉〉; “♦” has type 〈t〉; “∧” has type 〈t, t〉; and so on. In general,
the type of an expression introduced by explicit definition is the sequence of the
types of the variables occurring in the definition.13

So understood, type distinctions are both innocuous and familiar. When in
first-order logic we distinguish the syntactic behavior of individual constants
and predicates, or unary and binary predicates, or binary predicates and binary
sentential connectives, we are already displaying a sensitivity to the distinctions
between expressions of types e, 〈e〉, 〈e, e〉, and 〈t, t〉. Making these distinctions
explicit obviates the need for conventions like using “p” for variables in sentence
position and“x” for variable in name position. We instead indicate the type of a
symbol with a superscript on its first occurrence, when it matters and it is not
otherwise clear from context.

The second way in which predicate abstraction goes beyond our practice
of explicitly defining predicates in first-order logic is allowing open λ-terms in
which not all variables occurring free in the matrix are bound in the prefix, as
in the following instance of β-conversion:

12. ∀xRxx↔ ∀x(λy.Rxy)x

Unlike the use of non-individual variables, allowing open λ-terms isn’t easily
motivated by pointing to a natural corresponding extension in our practice of
explicit definition.14 We allow such terms instead on the grounds that, once one
gets used to the notation, they seem perfectly intelligible. Although open λ-
terms are not essential to the topic of this chapter, as many of the metaphysical

12Most work in higher-order logic operates instead with a system of functional types. In
such systems, the relational type 〈e, e〉 corresponds to the functional type (e→ (e→ t)), 〈〈t〉〉
corresponds to ((t→ t)→ t), and so on; see Fritz and Jones (this volume) for the details. The
syntax of functionally typed languages is different from relationally typed languages in that
polyadic application and abstraction happen one argument or variable at a time rather than
all at once. Fortunately, this difference doesn’t matter for present purposes. This is because
we can treat one-argument-at-a-time application and one-variable-at-a-time abstraction as
shorthand for the sequential formation of certain complex λ-terms; given β-conversion and
α-conversion, the result of doing this is everywhere intersubstitutable with application and
abstraction as defined here; see Dorr (2016, appendices 1 and 2) for the technical details.

13It may be a useful exercise to show that, by iterating such definitions, we can introduce
predicates of any type 〈τ1, . . . , τn〉 using only the logical constants ∧ and =.

14This is because doing so would require issuing definitions like pGx := x = yq. If we main-
tained Definitional Equivalence for G, then pGaq should be everywhere intersubstitutable
with pa = yq, even within the scope of ∀y. Such substitutivity would be as if y was covertly
free in the atomic symbol G, despite not occurring in it. There is no parallel awkwardness
with λ-terms and β-conversion.
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questions discussed in sections 4 and 5 can be posed without them, we allow
such terms because forbidding them is awkward and unnatural.15 Below I will
assume that open λ-terms are in as good standing as closed ones, and similarly
obey β-, α-, and η-conversion.

We can now be more precise and systematic about how terms can be com-
bined to form more complex ones:

Application: IfR and a1, . . . , an are respectively terms of types 〈τ1, . . . , τn〉
and τ1, . . . , τn, then pRa1 . . . , anq is a term of type t.

Abstraction: If ϕ is a term of type t and x1, . . . , xn are n distinct variables
free in ϕ respectively of types τ1, . . . , τn, then p(λx1 . . . xn.ϕ)q is a term
of type 〈τ1, . . . , τn〉 in which none of x1, . . . , xn is free.

I have explained this use of λ-abstraction as an outgrowth of our familiar
practice of explicit definition in order to explain how such λ-terms can be un-
derstood and why they should be governed by β-, α-, and η-conversion. But
nothing I have said so far has suggested any point in introducing λ-terms. In-
deed, the kinship with definitions might make one suspicious that they could
serve any purpose. Applying defined predicates is always in principle eliminable
in favor of those predicates’ definitions. When this is impossible in practice, it
is because a hierarchy of definitions has allowed for the compact expression of
something that would be too cumbersome to write down were all the definitions
unpacked. Yet since λ-terms are longer than their matrix clauses, they seem to
sacrifice the main benefit of definitions – namely, economy of symbolism.

λ-terms are indeed rather pointless as an addition to first-order languages.
But the situation is different in higher-order languages, in which we can quantify
into predicate positions, and hence both instantiate generalizations with λ-terms
and have λ-terms occur as arguments to bound higher-order variables. This is
the topic of the next section.

3 Higher-order quantification

This section first introduces higher-order quantification. It then considers how
higher-order quantification is related to the existence of such abstract objects
as propositions, properties, and relations. I argue, first, that the intelligibility
of higher-order quantification does not presuppose the existence of abstract ob-
jects; second, that such quantification is not equivalent to claims about abstract
objects; and, third, that higher-order quantification gives us some reason to
doubt the existence of such abstract objects.

15Such terms are needed for a Fregean treatment of quantifiers as higher-order predicates
(explained in section 3.4) in order to handle nested quantification. But if we instead opt for an
orthodox treatment of quantification using variable-binding operators, then the most impor-
tant arguments in higher-order metaphysics, even those such as the Russell-Myhill argument
that essentially involve λ-terms, do not feature open λ-terms; see Goodman (2017).
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3.1 Universal Instantiation and Comprehension

In first-order logic, the orthodox notation for expressing generality involves two
infinite sets of expressions: individual variables x1, x2, . . . , and a stock of cor-
responding quantifier prefixes ∀x1,∀x2, etc. If ϕ is a formula, then p∀xiϕq is
another formula, in which all free occurrence of xi in ϕ are bound by ∀xi.

The central principle of quantificational logic is the following axiom schema
(which corresponds to the rule of ∀-elimination in natural deduction systems):

Universal Instantiation
∀xϕ→ ϕ[a/x]

While what counts as an instance of this schema depends on what formulas, vari-
ables, and terms are included in our language, a commitment to such schemas
is typically taken to be open ended, in the sense that we do not need to revisit it
when new vocabulary is introduced into our language and the schema acquires
new instances as a result; see McGee (1997).

Let us now move from first-order to higher-order languages. In introducing
predicate abstraction in the last section, we have already tacitly helped ourselves
to an infinite stock of variables xτ1 , x

τ
2 , . . . for every type τ . As in first-order logic,

let us now extend our language with corresponding quantifier prefixes ∀xτ1 ,∀xτ2 ,
etc. Universal Instantiation thereby gains new instances, not only because
the language now contains new formulas which can be substituted for ϕ, but
also because variables and terms of types other than e can now be substituted
for x and a. Here are two examples:

13. ∀pt(p→ p)→ (Rab→ Rab)

14. ∀R〈e,e〉(CR(λxy.Ryx)↔ SR)→
(C(λxy.Zyyx)(λxy.(λxy.Zyyx)yx)↔ S(λxy.Zyyx))

Crucially, higher-order variables can be instantiated with complex terms, both
sentences and λ-terms.

To readers new to higher-order quantification and wondering how to under-
stand it, my advice is to leverage your antecedent understanding of first-order
quantification. Formally, higher-order quantification is of a piece with first-order
quantification – e.g., in the centrality of Universal Instantiation to quantifi-
cational reasoning. It is no accident that modern quantification theory, as first
developed by Frege (1879) and as deployed by many of his contemporaries, was
as part of a higher-order formal language. It is also no accident that we have
to explicitly instruct beginning logic students not to quantify into sentence and
predicate positions – the impulse to do so comes very naturally once one has
understood first-order quantification.

I will not give any direct argument for the intelligibility of higher-order
quantification – not because I have any doubts about its good standing, but
because intelligibility is, in general, a hard thing to be convinced of by direct
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argument.16 To readers who feel unsure whether higher-order quantification
makes sense, I suggest simply trying it on for size. (Later I will explain why
some common reservations about its good standing are misguided when higher-
order languages are understood in the way I have motivated here.)

We can define existential quantification to be the dual of universal quan-
tification, so that p∃Xϕq abbreviates p¬∀X¬ϕq. Universal Instantiation is
then equivalent to:

Existential Generalization
ϕ[a/x]→ ∃xϕ

Together with β-conversion, we can then derive:

Higher-Order Comprehension
∃Z∀x1 . . . ∀xn(Zx1 . . . xn ↔ ϕ), where x1, . . . , xn but not Z are free in ϕ

The derivation is simple, and highlights the importance of being able to instan-
tiate higher-order generalizations with λ-terms:

1. ∀x1 . . . ∀xn(ϕ↔ ϕ) [uncontroversial quantification theory]

2. ∀x1 . . . ∀xn((λx1 . . . xn.ϕ)x1 . . . xn ↔ ϕ) [1, by β-conversion]

3. ∃Z∀x1 . . . ∀xn(Zx1 . . . xn ↔ ϕ) [2, Existential Generalization]

Comprehension plays a starring role in many presentations of higher-order
logic.17 In fact, many systems of higher-order logic omit λ-terms altogether in
favor of comprehension principles. We will see in the next two sections that
this is sufficient for some applications and insufficient for others. But even in
applications where we can get by with only Higher-Order Comprehension,
λ-terms are still important. That is because the above argument provides the
firmest justification for accepting Higher-Order Comprehension to begin
with, and λ-terms feature essentially in that derivation.

The next two subsections addressed the question of how higher-order quan-
tification is related to first-order quantification over propositions, properties,
and relations. Section 3.2 shows that the most obvious reason to think the for-
mer somehow involves the latter in fact shows nothing of the kind. Section 3.3
argues that, whatever connections there may be between higher-order quantifi-
cation and the existence of properties, those connections in no way call into
question the good standing of higher-order quantification on the understanding
advanced above; if anything, higher-order quantification undermines the pri-
mary consideration in favor of positing any such abstract objects to begin with.

16“We must learn to use higher-order languages as our home language. [. . . But w]hat we
are willing to take as our home language is partly a matter of what we feel comfortable with;
unfortunately, it can be hard to argue someone into feeling comfortable.” (Williamson, 2003)

17This is usually in the form of the stronger principle:

Full Higher-Order Comprehension
∀y1 . . . ym∃Z∀x1 . . . ∀xn(Zx1 . . . xn ↔ ϕ), where Z is not free in ϕ

To derive this one needs the other standard axioms of quantification theory, such as the
distribution of universal quantification over material implication and the closure of one’s
axioms under the rule of universal generalization.
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3.2 “Propositions”, “properties”, and pronunciation

As explained in section 2.2, type distinctions are nothing new to higher-order
languages. Already in first-order logic we need to distinguish expressions on the
basis of both the number of terms they take as arguments and the syntactic
categories of those arguments. What is new in higher-order languages is simply
that it becomes more urgent to keep track of these type distinctions explicitly,
especially once we start deploying higher-order quantification. We have seen
how types can be indicated in formulas by superscripts. But in speech and
prose, something else is called for.

We can take our cue from quantification in first order languages, where we
use glosses like 8 and 9 to fluently but unambiguously pronounce formulas. We
can extend this pronunciation scheme to type distinctions as follows. We will
continue to pronounce quantifier prefixes using “for all . . . such that”/“there is
a . . . such that”, but rather than pronouncing the variable in the position of a
noun restricting the determiners “all” and “some”, as in 8 and 9, it will instead
accompany a noun indicating the variable’s type: the case of type e, “individual”;
in the case of type t, “proposition”; in the case of type 〈〈e〉〉, “property of
properties of individuals”; in the case of type 〈e, t〉, “relation between individuals
and propositions”; and so on. Here are some examples:

15. There is a proposition p such that necessarily p.

∃p�p

16. For all individuals x there is a binary relation between individuals R such
that Rxx.

∀xe∃R(Rxx)

We can extend this pronunciation strategy to variables bound by λ-terms. This
is best illustrated by example:

17. a is an individual x such that x is identical to x.

(λx.x = x)a

18. Being a proposition p such that p and possibly not-p is a property of
propositions O such that some proposition q is such that Oq.

(λO.∃qOq)(λpt.p ∧ ♦¬p)

19. There is an entity y of type τ such that y and P are an x and F such that
Fx.

∃yτ ((λxF.Fx)yP )

Where λ-terms occur in predicate position – that is, as the main predicate of a
(sub)formula – we use “is(/are) an . . . (and . . . ) such that”, where the gaps are
filled by the relevant variables accompanied by the nouns indicating their types.
If the type of an expression is unspecified, we may simply speak of “entities”
of that type, as in 19. Where λ-terms occur in argument position – that is, as
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arguments to predicates of higher types, as in 18 – we use “being” rather than
“is(/are)”. Just as we may refrain from writing type annotations when they can
be inferred from context, we do the same in these pronunciations, as in 19.

This strategy for articulating formulas in speech and prose should be sharply
distinguished from postulating an ontology of properties, propositions, relations,
and other (presumably abstract) individuals of different kinds. The aforemen-
tioned pronunciations carry no such commitment for the same reason that 8
and 9 carry no commitment to special kinds of things, the xs and the ys.

3.3 Properties and paradox

Quine (1970) influentially disparaged second-order quantification (and, by ex-
tension, higher-order quantification) as at best “set theory in sheep’s clothing”.
If he had believed in properties, he would have called it property theory in
sheep’s clothing. What could he have meant by this?

The most natural way of understanding his suggestion is that formulas of
the form p∃X〈e〉Φ[Xa]q are equivalent to corresponding formulas of the form
p∃xe(x is a property ∧ Φ[ai instantiates x]q. The main problem with this idea
has to do with Russell’s paradox: there are obvious truths involving quan-
tification into predicate position which would be equivalent to contradictions
if higher-order quantification were equivalent to first-order quantification over
properties in the aforementioned way. It is worth rehearsing this argument, since
it allows us to see many of the principles mentioned above in action.

Ixy := y instantiates x

Px := x is a property

1. ∀xe(¬Ixx↔ ¬Ixx) [first-order logic]

2. ∀x(¬Ixx↔ (λy.¬Iyy)x) [1, β-conversion]

3. ∃F 〈e〉∀x(¬Ixx↔ Fx) [2, Existential Generalization]

4. ∃fe(Pf ∧ ∀x(¬Ixx↔ Ifx)) [3, Quinean ‘sheep’s clothing’ thesis]

5. ¬∃fe∀x(¬Ixx↔ Ifx) [first-order logic (Russell’s theorem)]

6. ⊥ [4,5]

So higher-order quantification cannot be disguised first-order quantification
over properties, on pain of inconsistency. If there were powerful arguments for
Quine’s sheep’s clothing thesis, then we might consider giving up Universal
Instantiation, β-conversion, or even classical first-order logic in order to ac-
commodate it. But in the absence of such arguments, we should simply see the
inconsistency as a reductio of Quine’s contention.

Let us now consider some further connections between higher-order logic and
Russell’s paradox. Russell showed that the following schema is inconsistent:
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Näıve Comprehension
∃x∀y(Ixy ↔ ϕ), where y is not free in ϕ

Now consider the following argument against the existence of properties:

P1 If there are properties, then every instance of Näıve Comprehension is
true.

P2 p∃x∀y(Ixy ↔ ¬Ixx)q is not true, since it is classically inconsistent.

C Therefore, there are no properties.

This is one of the strongest arguments against the existence of properties. It is
much stronger than the parallel argument against the existence of sets. For we
have a highly developed, extremely fruitful, and presumably consistent theory
of sets, namely Zermelo-Frankel set theory. This theory can in turn be moti-
vated by the iterative conception of sets, which provides a principled basis for
denying that sets are ever members of themselves, and hence that there is a
set of all sets, and hence against accepting the set-theoretic analogue of Näıve
Comprehension (with ∈ in place of I); cf. Boolos (1971). The situation with
properties is completely different. No analogue of Zermelo-Frankel set theory
has even achieved widespread attention, let alone consensus. This is in part be-
cause we seem to lack any intuitive conception of properties that either prohibits
them from instantiating themselves or restricts self-application in a principled
yet consistent way.

This point is important because higher-order quantification arguably allows
us to accomplish most of the work that first-order quantification over properties
is typically invoked to do in philosophy, but without an explicit commitment to
any such ontology; cf. Prior (1971) and Bacon (this volume). This is turn gives
us reason to take the above argument against the existence of properties more
seriously, since Higher-Order Comprehension, unlike Näıve Comprehen-
sion, is perfectly consistent and is not threatened by Russell-style reasoning.18

To be clear, I am not claiming that type distinctions are motivated by the
paradoxes of self-application. Many writers on higher-order logic (both its pro-
ponents and detractors) have claimed this, and I think it is a mistake. The
canonical case is Russell (1908), who proposed syntactically stratifying expres-
sions standing for properties in such a way that claims of self-instantiation are
deemed ungrammatical. The inconsistency of Näıve Comprehension would
then be avoided by rendering its problematic instances ill-formed.19 Like many
others, including Button and Trueman (this volume, §2.2), I find this purported
resolution to the paradoxes rather galling: when faced with an argument from

18There remain hard questions about how English nominalizing devices like “the property
of being” and generalizations of the form “for every property . . . ” are related to λ-terms and
higher-order quantification; see Button and Trueman (this volume). But the intelligibility of
the latter is not hostage to an account of how they are related to the former. For λ-terms and
higher-order quantification have been explained here as an extension of our understanding of
first-order logic, and not in terms of English constructions using the word “property”.

19Formulas and complex predicates are also stratified into levels to block related ‘intensional’
paradoxes such as the Russell-Myhill argument; see Klement (this volume) for discussion.
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plausible premises to a contradiction, we don’t normally think that one available
response is to conclude that some of the argument’s premises are ungrammatical.

Fortunately, we needn’t settle this issue here. For whatever we think about
the legitimacy of Russell’s type-theoretic response to the paradoxes, it has no
bearing on the status of type distinctions as we have been deploying them.
Our type distinctions were motivated independently of the paradoxes, simply to
keep track of syntactic distinctions that arise organically and inevitably from the
predicate calculus if we allow ourselves to iteratively introduce new expressions
using explicit definitions. Russell’s type distinctions, by contrast, amount to
inventing syntactic distinctions and prohibitions that we have no antecedent
reason to believe in.

The independence of type distinctions from the paradoxes, and more gen-
erally the independence of higher-order quantification from Platonist ontology,
is also reflected in the historical development of higher-order logic. For Frege
(1879, §11) was already sensitive to the importance of type distinctions (al-
though he didn’t discuss them as explicitly as we have here), decades before the
paradoxes were even discovered. And his quantification theory was higher-order
from the start; only later, especially in Frege (1951), did he wrestle in earnest
with how it related to his preferred Platonist ontology.

3.4 Separating variable binding and generalization

This subsection describes two other ways of formalizing quantification in higher-
order languages, which are common in the literature and which illuminate some
of what can be done with λ-terms. It can be skipped without loss of continuity.

While the notation of quantifier prefixes may be the most readily intelligible,
at least for those of us raised on first-order logic, more elegant options are
available in languages with predicate abstraction. Here is one: rather than having
infinitely many symbols ∀xτi that can combine with formulas, we can instead
have a single symbol ∀ that combines with monadic predicates. The canonical
case will be predicates formed by predicate abstraction. So instead of p∀xτi ϕq,
we first form the λ-term p(λxτi .ϕ)q, which is a term of type 〈τ〉, and then
prefix it with ∀ to form the formula p∀(λxτi .ϕ)q. Since this is more cumbersome
to read (especially because embedded quantification proliferates parentheses),
it is convenient to maintain the notation of quantifier prefixes as convenient
shorthand, even if we officially adopt the notation just described.

There are a few ways in which this new notation is more elegant. One is that
it involves only one primitive quantifier symbol, where before (even in first-order
logic) we had infinitely many. A second inelegance of quantifier prefixes is that,
although they have similar syntactic behavior to terms like ¬ of type 〈t〉, they
cannot be classified as terms. This is because doing would lead to violations of
Universal Instantiation, as the following false sentence illustrates:

20. ∀Z〈t〉∀x∀y(x = y → Z(x = x)→ Z(x = y))→
∀x∀y(x = y → ∀x(x = x)→ ∀x(x = y))
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In the new notation, there is less temptation to treat ∀ as a term, since there is no
type that it could be a term of. Its syntactic behavior is more promiscuous than
that of any term, since it can combine with terms of infinitely many different
types to form a formula (i.e., with terms of type 〈τ〉 for every type τ).

A third advantage of the new notation is that it symbolically separates what
are naturally seen, already by Frege (1879, §§10-11), as distinct ideas: variable
binding, in the form of the formation of complex predicates, and generalization,
in the sense of forming formulas using quantifiers.20 This separation allow us to
replace Universal Instantiation with a simpler axiom schema:

UI: ∀F → Fa

Universal Instantiation follows from UI given β-conversion: p∀xϕq ab-
breviates p∀(λx.ϕ)q, which together with the relevant instance of UI yields
p(λx.ϕ)aq (by modus ponens), which is materially equivalent to ϕ[a/x], given
the relevant instance of β-conversion, provided a is free for x in ϕ.

Let us now consider a third notation for higher-order quantification. Like
the one just introduced, it hives off the role of variable binding to predicate
abstraction. But it is also impressed by the idea that generalization is not a sui
generis syntactic operation for making formulas from predicates, but is rather a
kind of predication. This idea, too, goes back to Frege (2013, §31) – in particular,
to his claim that quantifiers are higher-order predicates.

Formally, the proposal introduces a typed family of quantifiers: for every
type τ , there is a universal quantifier ∀τ of type 〈〈τ〉〉. UI must then be modified
accordingly, so that the relevant quantifier is schematic on the type of F :

UI: ∀τF 〈τ〉 → Fa

This allows us to have a language with quantification in which all formulas are
built from basic terms using only Application and Abstraction.

We can compare the three notations as follows:

Quantifier prefixes: ∀xτ∀yσϕ

Syncategorematic quantifier : ∀(λxτ .∀(λyσ.ϕ))

Categorematic quantifiers: ∀τ (λxτ .∀σ(λyσ.ϕ))

It is fairly straightforward to move back and forth between these notations,
and the differences between them won’t matter in what follows.21 While I will
use the notation of quantifier prefixes below, in doing so I remain neutral on
whether that notation is basic or abbreviates a quantifier combining (either
syncategorematically or by Application) with a λ-term.

20On the evolution of Frege’s conception of this separation, see Heck and May (2013).
21For example, we can simulate the third approach within the second by defining ∀τ as

(λX〈τ〉.∀X). Two small differences between the first approach and the second and third are
worth noting: (i) we have required that x occur free in ϕ for any λ-term p(λx.ϕ)q (a point
we will return to in section 5.2); but it it not standardly required that a quantifier prefix
attach only to formulas in which the corresponding variable is free (although Frege (1879,
§11) did require this); (ii) while non-vacuous generalization using quantifier prefixes always
requires binding free variables, as in p∀xFxq, on the second and third proposals quantifiers
can combine directly with monadic predicate constants and variables, as in p∀τF 〈τ〉q.
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4 Grain science

Higher-order quantification both allows us to ask interesting new metaphysi-
cal questions and to ask old questions better than before. Many of these new
questions can be asked in pure higher-order logic, using only negation, conjunc-
tion, quantification, and predicate abstraction. In this way pure higher-order
logic is unlike first-order logic with identity (since, as discussed in section 1,
the questions that can be asked using only negation, conjunction, first-order
quantification, and identity are limited and boring).

This is true already in the second-order fragment of pure higher-order logic,
in which we only use variables of types e, 〈e〉, 〈e, e〉, 〈e, e, e〉, etc. For example,
we can ask whether any binary relation among individuals well-orders all indi-
viduals, whether analogues of the generalized continuum hypothesis are true,
and similar questions; cf. Shapiro (1991).

Higher-order quantification is also invaluable in metaphysics more broadly.
To take one example, many questions about modal ontology are best adjudi-
cated in a higher-order setting, as in Fine (1977), Williamson (2013), Fritz and
Goodman (2016), Bacon (2018), Dorr et al. (2021), and Fairchild (this volume).

The aim of this section is to introduce a family of questions in pure higher-
order logic that illustrate the fruitfulness of higher-order quantification at all
types, and not merely the second-order fragment. These are questions about the
granularity of reality – for short, questions in grain science.

Here is one way of explaining grain science, largely following Dorr (2016).
Recall that the identity predicate of first-order logic is closely related to certain
uses of “is” in English, as in “Mark Twain is Samuel Clemens”. Now consider
the related use of “is” where it combines with infinitival verb phrases rather
than with proper names, as in “to be a bachelor is to be an unmarried man”,
“to be made of water is to be made of H2O molecules”, and “to walk is to stride
while keeping one foot on the ground”. Following Dorr (2016), I will call these
sentences identifications. The “is” in these identifications feels a lot like the “is”
of ascriptions of numerical identity. But the fact that it combines with a pair of
verb phrases rather than with a pair of names, and verb phrases are naturally
regimented as terms of type 〈e〉, means that it is better regimented as a term
of type 〈〈e〉, 〈e〉〉, and so not as the identity sign “=”, which has type 〈e, e〉.

We can also make sense of identifications involving expressions of other types.
In “for one thing to be a subset of another is for it to be a set all of whose mem-
bers are members of the other”, the part before the “is” is naturally regimented
as the symbol ⊆, which has type 〈e, e〉. And in “for it to be not not raining is
for it to be raining”, the part before the “is” is naturally regimented as “it is
not not raining”, which has type t. So regimenting these sentences seems to call
for identification predicates respectively of types 〈〈e, e〉, 〈e, e〉〉 and 〈t, t〉.

While it is not clear how far we can stretch English to extend this practice, it
is natural, reflecting on these examples, to posit a typed family of identification
predicates ≡τ of type 〈τ, τ〉, one for each type τ . Dorr argues that we can under-
stand this family of predicates well enough to be confident that each is governed
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by principles analogous to those governing numerical identity, namely:22

Reflexivity≡: a ≡τ a

Substitution≡: a ≡τ b→ (ϕ↔ ϕ[b/a])

Grain science is the study of further principles governing identifications: what
can we say in general about which identifications hold and which do not?

Here is a second, complementary way into the topic of grain science, which
shows both how it can be understood by anyone who accepts Higher-Order
Comprehension and that it should not be conflated with a Platonist investiga-
tion into the individuation of propositions, properties, and relations, understood
as a kind of abstract individuals. Rather than positing a family of identifica-
tion predicates ≡τ whose interpretation is anchored in part by identifications in
English and in part by a formal analogy with the identity sign from first-order
logic, we can use pure higher-order logic to explicitly define a typed family of
‘Leibniz equivalence’ predicates ≈τ as follows:

x ≈τ y := ∀Z〈τ〉(Zx↔ Zy)

Informally, x ≈ y just in case there is no difference between x and y – i.e., there
is no Z that differentiates them.

So defined, ≈ provably has the logical behavior of identity:

Reflexivity: a ≈τ a

Substitution: a ≈τ b→ (ϕ↔ ϕ[b/a])

Reflexivity should be obvious, and is derivable in any higher-order quantifi-
cation theory that includes classical logic and is closed under the standard rule
of universal generalization (if ` ϕ[a/x], then ` ∀xϕ, where a is free for x in ϕ).
Substitution is derivable from Higher-Order Comprehension and Uni-
versal Instantiation.23

Grain science can then be understood as the study of Leibniz equivalence:
what can we say in general about which Leibniz equivalences hold and which do
not? This is not to say that identification and Leibniz’s equivalence are the same
thing, in the sense of the following principle from Bacon and Russell (2019):

The Identity Identity: ≡τ≡〈τ,τ〉≈τ
22He also argues, convincingly in my view, that many central questions about the nature or

analysis of notions of interest in philosophy and beyond (goodness, causation, meaning, etc.)
are best understood as questions whose candidate answers are identifications.

23Proof sketch:

1. ∃Z∀x(Zx↔ ϕ) [Higher-Order Comprehension]

2. ∀x∀y(∀Z(Zx↔ Zy)→ (ϕ↔ ϕ[y/x])) [1, uncontroversial quantificational reasoning]

3. a ≈ b→ (ϕ↔ ϕ[b/a]) [2, Universal Instantiation, definition of ≈]
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It is sufficient that ≈ and ≡ be coextensive, since the point of grain science, as
conceived by Dorr and others, is to generalize about what identifications/Leibniz
equivalences are true, not about the nature of identification itself.24 I will use ≈
hereafter simply to highlight the power of pure higher-order logic as metaphysics.

Given Reflexivity and Substitution, the logical behavior of ≈τ is suffi-
ciently identity-like that those working in grain science typically pronounce it
“is”, or even “is the same . . . as” (with the gap filled by a noun indicating the
type τ). But this innocent use of “is” among the cognoscenti simply to pro-
nounce ≈ can lead to unfortunate misunderstandings. Consider, for illustration,
the following controversial principle about reality’s granularity:

Involution: ∀p(p ≈t ¬¬p)

Someone who overhears “Every proposition p is such that p is not not p” or
“For all p, p is the same proposition as not not p” would be forgiven for thinking
that what was at issue was a question about the individuation of propositions,
understood as a certain kind of abstract object. But they would be mistaken.
As discussed in the last section, this use of “proposition” is not to specify a
kind of abstract individuals, but merely to fluently convey type distinctions in
English rather than in symbols (in this case, the fact that “p” has type t).

Here is one reason why it matters that questions in grain science aren’t
questions of how certain kinds of abstract individuals are individuated. A natural
reaction to the question “How are propositions individuated?” is that it depends
what we mean by “proposition”. For a common view among Platonists is that
there are different families of abstract objects one might call “propositions”,
each individuated in different ways, and that what kind of “proposition” (or, if
understood in one of the coarser ways, “states of affairs”, “intensions”, or even
“truth values”) is worth theorizing about is largely a pragmatic matter, which
will differ depending on one’s projects.

Once we distinguish grain science, in the sense of questions formulated in
terms of ≈, from similar sounding Platonist investigations, the apparent option
of pluralism owing to an ambiguity in “proposition” evaporates. For the oper-
ative use of “proposition” is, in effect, a parenthetical clarification about the
syntactic category of a variable in a sentence of a formal language. Such sen-
tences contain neither the word “proposition” nor any analogue thereof, since
they are sentences of pure higher-order logic.25

To give a sense of grain science’s potentially widespread metaphysical impli-
cations, here is a simple example. In the last decade there has been an explosion
of work on the idea that some truths are true in virtue of others. Following
Fine (2012), it is common to formalize this notion of ‘grounding’ using a binary
sentential connective “≺”, and to endorse the following two principles:

24Moreover, even if Substitution≡ is rejected, this does not threaten the interest or im-
plications of grain science understood in terms of Leibniz equivalence; see Caie et al. (2020).

25See Dorr (2014) for discussion of whether grain scientific questions might be ambiguous in
a different way, owing to different possible interpretations of higher-order quantification. For
more on how to isolate the intended ‘unrestricted’ reading of both first-order and higher-order
quantification, see Williamson (2003) and Goodman (2016, §5).
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21. ϕ→ (ϕ ≺ ¬¬ϕ)

22. ¬(ϕ ≺ ϕ)

Informally: every truth is something in virtue of which its double negation is
true, and nothing is true in virtue of itself. Taken together, these two principles
are inconsistent with Involution: if p ≺ ¬¬p but ¬(p ≺ p), then there is not
no difference between p and ¬¬p, because being a q such that p grounds q
differentiates ¬¬p from p. So if Involution is accepted, grounding orthodoxy
must be rejected.26

5 λ-terms in higher-order metaphysics

This section explores the implications of β-conversion for questions in grain
science. I begin by arguing that we must reject the most natural higher-order
articulation of the widely held doctrine that propositions have something like
syntactic structure. I then argue, more constructively, that doing makes room
for an attractive account of the idea that propositions are nevertheless singular,
in the sense of having certain individuals and not others as essential ingredients.
However, the tenability of this account turns on subtle questions to do with the
logic and interpretation of vacuous λ-terms, such as p(λx.p)q, if we enrich our
language with such terms.

5.1 Against Structure

Many philosophers are attracted to the view that propositions are structured in
the image of the sentences that express them. We can understand this structured
picture as a kind of grain science, so that its implications can be formulated in
pure higher-order logic. In particular, consider:

Structure
∀R∀S∀x1 . . . ∀xn∀y1 . . . ∀yn(Rx1 . . . xn ≈ Sy1 . . . yn →

R ≈ S ∧ x1 ≈ y1 ∧ · · · ∧ xn ≈ yn)

The idea is that, just as the terms R, a1, . . . , an can be recovered by decomposing
the sentence pRa1 . . . anq into its immediate constituents, reality has a kind of
‘logical structure’ whereby ‘propositions’ have similarly unique decompositions.

Despite its considerable appeal, Structure is inconsistent. In particular, an
argument essentially due to Russell (1903) shows that the instance of Structure
where R and S have type 〈t〉 is inconsistent given classical propositional logic,
Universal Instantiation, and the following weakening of β-conversion:27

26Dorr (2016) argues that even defenders of otherwise ‘fine-grained’ views should accept
Involution. Fritz (forthcoming) explores other tensions between grounding orthodoxy and
granularity considerations.

27This discovery is sometimes called the ‘Russell-Myhill paradox’, due to its independent
discovery by Myhill (1958). Although Russell was thinking of propositions as abstract individ-
uals, his argument is easily transposed to a higher-order setting (unlike ‘Russell’s paradox’,
establishing the inconsistency of Näıve Comprehension, which dissolves when reformulated
in higher-order terms); see Uzquiano (2015), Dorr (2016), and Goodman (2017) for discussion.
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β-equivalence (λx1 . . . xn.ϕ)a1 . . . an ↔ ϕ[ai/xi]

This argument is dialectically important because many philosophers attracted
to Structure are skeptical of β-conversion but not of β-equivalence.

But given β-conversion, there are simpler and stronger arguments against
Structure. Here is one: for a to be identical-to-a is for a to be self-identical, but
it is not the case that to be identical to a is to be self-identical. More formally:

1. a = a ≈ a = a [Reflexivity]

2. (λx.x = x)a ≈ (λx.a = x)a [1, β-conversion]

3. b = b ∧ ¬(a = b) [premise – a and b may be any distinct individuals]

4. (λF.Fb)(λx.x = x) ∧ ¬(λF.Fb)(λx.a = x) [3, β-conversion]

5. ¬((λx.x = x) ≈ (λx.a = x)) [4, Existential Generalization, def. ≈]

6. ∃R∃S∃xe(Rx ≈ Sx ∧ ¬(R ≈ S)) [2, 5, Existential Generalization]

7. ¬∀R∀S∀xe∀y(Rx ≈ Sx→ R ≈ S ∧ x ≈ y) [6]

The conclusion of this argument is the negation of the instance of Structure
where R and S have type 〈e〉: one and the same proposition can be decomposed
into the application of a property to an individual in more than one way.28

Assuming the earlier case for β-conversion and Universal Instantiation was
successful, this argument is sound and we must reject Structure.

This doesn’t mean that reality cannot have language-like logical structure
in any sense. After all, there are formal languages in which sentences can be
decomposed into applications of predicates to arguments in more than one way.29

That being said, the above mode of argument is quite general. It remains to be
seen whether a consistent and principled articulation of a structured vision that
respects β-conversion can be developed.

5.2 Objectual aboutness: singularity without structure

This section considers the prospects of using pure higher-order logic to make
sense of the idea that propositions have particular ingredients or constituents.

While this idea is intuitive, it also tends to be lumped together with the kind
of structured picture discussed in the last section. So the question is whether,

28This argument generalizes to all instances of Structure. By contrast, the Russell-Myhill
argument only generalizes to certain types, since the instances of Structure where the type of
R and S nowhere involves t are consistent with β-equivalence and Universal Instantiation
in the absence of β-conversion; see Goodman (forthcoming).

29These include Pierce’s (1931-1958) graphical notation for first-order logic, the Lambek
(1958) calculus, and the ‘structural calculus’ of Bacon (forthcoming). Inspired by the latter,
Bacon argues that the best strategy for defending a structured picture of reality is to accept
Structure, β-conversion and Universal Instantiation but reject as meaningless a wide
swath of λ-terms, including p(λF.Fa)q and p(λx.x = x)q. In my view, the strongest consider-
ation against this strategy is that, given Definitional Equivalence, it requires positing an
implausible parallel barrier to introducing meaningful predicates by explicit definition.
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having rejected Structure, we can still make sense of a discriminating and
useful notion of logical constituents/ingredients.

The answer isn’t obvious. At a purely metaphorical level, there are all sorts
of ways of talking about constituents and ingredients that don’t involve quasi-
syntactic structure: these nails but not those screws are constituents of this
table; eggs are ingredients of challah but not of sorbet; etc. Moreover, the bearing
of β-conversion on the tenability of a robust notion of constituents/ingredients
turns out to be subtler than in the case of the structure. On the one hand,
it suggests a natural account of those notions in purely logical terms, which
wouldn’t be available on a more ‘structured’ picture; on the other hand, a natural
extension of β-conversion threatens to trivialize that account.

I will begin by motivating a simple, grain-theoretic necessary and sufficient
condition for a given individual to be a constituent of a given proposition. I will
then explain how the non-triviality of this account depends on accepting as much
β-conversion as we have so far accepted and no more. In particular, the account
presupposes the illegitimacy of both enriching our higher-order language with
vacuous λ-terms and accepting β-conversion for such terms. I will argue finally
that this intermediate amount of β-conversion is not unprincipled, because it
is all that is clearly motivated by Abstraction as Definition.

To start, here is a familiar and popular idea, advocated most influentially by
Russell. Although some propositions are purely ‘general’ or ‘qualitative’, others
are ‘singular’, ‘haecceitistic’, or ‘object-involving’, by having certain particular
individuals as ‘constituents’. In short, propositions are about some individuals
but not others.

An implication of this idea, as it is usually understood, is that the proposition
expressed by a sentence is at least about every individual referred to by some
name in that sentence. We can regiment this claim schematically as follows:

Named Aboutness: A(ϕ, a), where a is an individual constant in ϕ

Here A (“is about”) is a constant of of type 〈t, e〉; we write pA(p, x)q instead of
pApxq for readability. Now, the thought behind Named Aboutness is meant
to apply generally, to all individuals, whether or nor we have names for them.
This motivates the following more general schema:

De re Aboutness: ∀xA(ϕ, x), where x is free in ϕ

Given β-conversion, this is equivalent to: ∀xA((λx.ϕ)x, x), with x free in ϕ.
This fact suggests the following purely logical account of aboutness:

Aboutness: ∀p∀x(A(p, x)↔ ∃F e(p ≈ Fx))

Informally, p is about an individual x just in case, for some property of indi-
viduals F , p is Fx (i.e., there is no difference whatsoever between p and Fx).
As with Structure, heuristic talk of ‘propositions’ and ‘properties’ has been
replaced with quantification into sentence and predicate positions.

If this simple and economical account succeeds in capturing a robust notion
of aboutness that can be put to work where metaphysicans have wanted to
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deploy such a notion, that would be a strong advertisement for higher-order
logic as metaphysics. Defending the claim that it does capture such a notion is
far beyond the scope of this paper.30 My goal here is simply to argue that the
account is at least worth exploring and is not obviously untenable.

Although the idea of singular propositions is often run together with the
structured picture discussed in the last section, note that Aboutness is only
tenable if that picture is rejected. For example, Named Aboutness requires
that A((λx.a = x)b, a); Aboutness then entails ∃F (Fa ≈ (λx.a = x)b),
which is inconsistent with Structure for a 6= b. This is the sense in which
β-conversion makes available a simple, purely logical theory of aboutness. If
β-conversion were rejected in favor of a more structured picture, it is unclear
how any such account could be given.

Another attraction of Aboutness is that it easily generalizes to other types,
both in the sense that entities of types other than t can have ingredients, and
in the sense that entities of types other than e can be ingredients.31 The details
are in a footnote, since they are orthogonal to most pressing challenge for all
such accounts. As with structure, the challenge turns on β-conversion.

Up to this point we have required that every variable in the prefix of a λ-term
occur free in the matrix of that λ-term. So, in particular, p(λxe.ϕ)q is not well-
formed if x does not occur free in ϕ. This makes our language what is known as
a λI-language, as in the original presentation of the simply typed λ-calculus in
Church (1940), rather than a λK-language, which has become more standard,
in which there is no prohibition on vacuous predicate abstraction.

Anyone who understands the λI-language should agree that there are some
perfectly intelligible ways of understanding the vacuous λ-terms of λK-languages.
For example, one could treat p(λxe.ϕ)q as an abbreviation for the λI-term
p(λx.ϕ ∧ x ≈ x)q when x is not free in ϕ. The extent to which this is a princi-
pled interpretation depends on background granularity-theoretic issues, as dis-
cussed in Dorr (2016). But since such interpretations are not impossible, it is
best to not ask whether vacuous λ-terms are ‘intelligible’ or ‘legitimate’, but
rather whether there is an interpretation of such terms on which they are both
meaningful and obey β-conversion.

The reason this question matters is that, if there is such an interpretation
of vacuous λ-terms, then Aboutness trivializes A, since every proposition will
be about every individual. This is because β-conversion for vacuous λ-terms
implies that ∀p∀x(p ≈ (λy.p)x), and hence ∀p∀x∃F (p ≈ Fx).

30In unpublished work I show how Aboutness can form the core of a simple and strong
theory in pure higher-order logic of how individuals figure in propositions, properties, and
relations, extending the view of propositional granularity outlined in Goodman (2019, §7.2).

31The former kind of generalization is helpful to capture distinctions among properties and
relations – for example, to characterize those that are qualitative as those not about any
individuals. The second kind of generalization has been suggested by Dorr (2016) to develop
a notion of ‘metaphysical priority’, the idea being, for example, that blue and green are both
metaphysically prior to Goodman’s (1955) grue and bleen (and not vice versa). Here is the
general definition. For convenience, we identify t with 〈〉 (as is commonly done) and let p(λ.ϕ)q
abbreviate ϕ. We can then define a typed family of “is an ingredient of” predicates as follows:
I〈τ1,〈τ2,...,τn〉〉(x, F ) := ∃G〈τ1,...,τn〉(F ≈ (λx2 . . . xn.Gx1 . . . xn)).
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As someone attracted to Aboutness, I am inclined to deny that there is
any use of predicate abstraction on which vacuous λ-terms are both meaningful
(in any sense that would license existentially generalizing on them) and gov-
erned by β-conversion. This denial is tenable, in my view, because vacuous
β-conversion cannot be directly motivated by Abstraction as Definition.
Our preexisting practice of introducing predicates by explicit definition does not
involve anything like vacuous abstraction: vacuous definition is not something
we do in the wild. Indeed, a particularly elegant regimentation of our practice
of explicit definition – the numeral-based notation mentioned in section 2, used
by Goldfarb (2003), Smith (2020), and others – is incapable of even formulating
vacuous definitions of monadic predicates.

To be clear, I am not claiming that it is unprincipled to hold that there is a
way of understanding vacuous predicate abstraction that obeys β-conversion.
Formally, it is not an unnatural generalization of the use of λI-terms. More
importantly, the existence of an interpretation of vacuous λ-terms on which they
are meaningful and obey β-conversion turns out to be a consequence of views
in grain science that we should take very seriously. For example, Classicism, as
developed by Bacon and Dorr (this volume), entails that β-conversion holds on
the above interpretation of vacuous λ-terms as short for non-vacuous λI-terms
with extra px ≈ xq conjuncts in their matrix clauses. This pits Aboutness
against Classicism and other similarly coarse-grained views. It thereby demands
an intermediate theory of granularity that involves rejecting Structure without
collapsing all distinctions among logical equivalents; see Goodman (2019).

6 Conclusion

The aim of this chapter has been to advance a particular interpretation of a
simply relationally typed higher-order language. This was done in four stages:
starting with first-order logic, adding first-order predicate abstraction, gener-
alizing to higher-order predicate abstraction, and finally adding higher-order
quantification. I argued that β-conversion and Universal Instantiation are
valid on this interpretation. I then explained how this fact allows us to use pure
higher-order logic to ask, and begin to answer, questions about the logical struc-
ture of reality, and gestured at some of these questions’ non-trivial implications.
I hope this incremental approach helps to persuade those new to higher-order
languages that the formalism makes sense, and also helps to advance the debate
by challenging those skeptical of higher-order metaphysics to say at what stage
they think it falls into disrepute.
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