Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-14T03:00:09.562Z Has data issue: false hasContentIssue false

Polygenic risk scores cannot make their mark on psychiatry without considering epigenetics

Published online by Cambridge University Press:  11 September 2023

Diane C. Gooding
Affiliation:
Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA dgooding@wisc.edu; https://drdianecgooding.com apauger@wisc.edu; https://augerlab.labs.wisc.edu Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
Anthony P. Auger
Affiliation:
Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA dgooding@wisc.edu; https://drdianecgooding.com apauger@wisc.edu; https://augerlab.labs.wisc.edu Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA Department of Endocrinology and Reproductive, University of Wisconsin-Madison, Madison, WI, USA Physiology, and Department of Cellular and Molecular Pharmacology, University of Wisconsin-Madison, Madison, WI, USA

Abstract

We generally agree with Burt's thesis. However, we note that the author did not discuss epigenetics, the study of how the environment can alter gene structure and function. Given epigenetic mechanisms, the utility of polygenic risk scores (PRS) is limited in studies of development and mental illness. Finally, in this commentary we expand upon the risks of reliance upon PRSs.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auger, A. P., & Auger, C. J. (2011). Epigenetic turn ons and turn offs: Chromatin reorganization and brain differentiation. Endocrinology 152, 349353. https://doi.org/10.1210/en.2010-0793CrossRefGoogle ScholarPubMed
Auger, A. P., & Auger, C. J. (2017). Epigenetic mechanisms shaping the brain: Implications for psychological science. In Call, J. (Ed.), APA handbook of comparative psychology, Vol. 1. Basic concepts: Methods, neural substrates, and behavior (pp. 449471). American Psychological Association. https://doi.org/10.1037/0000011-022CrossRefGoogle Scholar
Auger, C. J., & Auger, A. P. (2013). Permanent and plastic epigenesis in neuroendocrine systems. Frontiers in Neuroendocrinology, 34, 190197. https://doi.org/10.1016/j.yfrne.2013.05.003CrossRefGoogle ScholarPubMed
Bedrosian, T. A., Quayle, C., Novaresi, N., & Gage, F. H. (2018). Early life experience drives structural variation of neural genomes in mice. Science (New York, N.Y.), 359, 13951399.CrossRefGoogle ScholarPubMed
Cuarenta, A., Kigar, S. L., Henlon, I. C., Chang, L., Bakshi, V. P., & Auger, A. P. (2021). Early life stress during the neonatal period alters social play and LINE 1 during the juvenile stage of development. Scientific Reports, 11, 3549. https://doi.org/10.1038/s41598-021-82953-3CrossRefGoogle ScholarPubMed
Doyle, G. A., Crist, R. C., Karatas, E. T., Hammond, M. J., Ewing, A. D., Ferraro, T. N., … Berrettini, W. H. (2017). Analysis of LINE-1 elements in DNA from postmortem brains of individuals with schizophrenia. Neuropsychopharmacology, 42, 26022611. https://doi:10.1038/npp.2017.115CrossRefGoogle ScholarPubMed
Dworkin, R. H., Lewis, J. A., Cornblatt, B. A., & Erlenmeyer-Kimling, L. (1994). Social competence deficits in adolescents at risk for schizophrenia. The Journal of Nervous and Mental Disease, 182(2), 103108.CrossRefGoogle ScholarPubMed
Glatt, S. J., Stone, W. S., Faraone, S. V., Seidan, L. J., & Tsuang, M. T. (2006). Psychopathology, personality traits and social development of young first-degree relatives of patients with schizophrenia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 35, 573588.Google Scholar
Gooding, D. C. (2022). Brave new world: Harnessing the promise of biomarkers to help solve the epigenetic puzzle. Schizophrenia Research, 242, 3541. https://doi.org/10.1016/j.schres.2022.01.020CrossRefGoogle ScholarPubMed
Gooding, D. C., & Iacono, W. G. (1995). Schizophrenia through the lens of a developmental psychopathology perspective. In Cicchetti, D. & Cohen, D. J. (Eds.), Manual of developmental psychopathology, Vol. II. Risk, disorder, and adaptation (pp. 535580). Wiley.Google Scholar
Gooding, D. C., Zahn-Waxler, C., Light, S. N., Kestenbaum, C. J., & Erlenmeyer-Kimling, L. (2018). Childhood affective indicators of risk for adulthood psychopathology: The New York high-risk project findings. Journal of Psychiatry and Brain Science, 3(3), 4. https://doi.org/10.20900/jpbs.20180004Google ScholarPubMed
Gottesman, I. I. (1991). Schizophrenia genesis: The origins of madness. W.H. Freeman.Google Scholar
Gottesman, I. I., Shields, J., & Hanson, D. R. (1982). Schizophrenia: The epigenetic puzzle. Cambridge University Press.Google Scholar
Jahangir, M., Li, L., Zhou, J.-S., Lang, B., & Wang, X.-P. (2022). L1 retrotransposons: A potential endogeneous regulator for schizophrenia. Frontiers in Genetics, 13, 878508. https://doi:10.3389/fgene.2022.878508CrossRefGoogle ScholarPubMed
Li, S., Yang, Q., Hou, Y., Jiang, T., Zong, L., Wang, Z., … Zhao, C. (2018). Hypomethylation of LINE-1 elements in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 107, 6872. https://doi.org/10.1016/j.jpsychires.2018.10.009CrossRefGoogle ScholarPubMed
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51, 584591. https://doi.org/10.1038/s41588-019-0379-xCrossRefGoogle ScholarPubMed
Palk, A. C., Dalvie, S., de Vries, J., Martin, A. R., & Stein, D. J. (2019). Potential use of clinical polygenic risk scores in psychiatry – Ethical implications and communicating high polygenic risk. Philosophy, Ethics, and Humanities in Medicine, 14, 4. doi: doi.org/10.1186/s13010-019-0073-8CrossRefGoogle ScholarPubMed
Sandstrom, A., Sahiti, O., Pavlova, B., & Uher, R. (2019). Offspring of parents with schizophrenia, bipolar disorder, and depression: A review of familial high-risk and molecular genetics studies. Psychiatric Genetics, 29, 160169. https://doi.or/10.1097/YPG.000000000000240CrossRefGoogle ScholarPubMed
Schiffman, S., Walker, E., Ekstrom, M., Schulsinger, F., Sorensen, H., & Mednick, S. (2004). Childhood videotaped social and neuromotor precursors of schizophrenia: A prospective investigation. American Journal of Psychiatry, 161, 20212027.CrossRefGoogle ScholarPubMed
Tandon, R., Nasrallah, H. A., & Keshavan, M. S. (2009). Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophrenia Research, 110, 123. https://doi.10.1016/j.schres.2009.03.005CrossRefGoogle Scholar
Torkamani, A., Wineinger, N. E., & Topol, E. J. (2018). The personal and clinical utility of polygenic risk scores. Nature Reviews, 19, 581590. https://doi.org/10.1038/s41576-018-0018-xCrossRefGoogle ScholarPubMed
Yehuda, R., & Lehrner, A. (2018). Intergenerational transmission of trauma effects: Putative role of epigenetic mechanisms. World Psychiatry, 17, 243257.CrossRefGoogle ScholarPubMed