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abstract Under the assumptions of the standard Condorcet Jury Theorem, majority
verdicts are virtually certain to be correct if the competence of voters is
greater than one-half, and virtually certain to be incorrect if voter competence
is less than one-half. But which is the case? Here we turn the Jury Theorem
on its head, to provide one way of addressing that question. The same logic
implies that, if the outcome saw 60 percent of voters supporting one
proposition and 40 percent the other, then average voter competence must
either be 0.60 or 0.40. We still have to decide which, but limiting the choice
to those two values is a considerable aid in that.
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The sting in Condorcet’s tail

At first blush, the Condorcet Jury Theorem (CJT) seems to be very good news
for democracy. That Theorem assures us that, among large electorates, demo-
cratic outcomes are virtually certain of tracking the truth, just so long as voters
vote independently and are better than random at choosing true propositions, and
just so long as there are any ‘true propositions’ to be found politically.1
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There is, however, a sting in that Theorem’s tail: the converse is also true. The
same mathematics prove that democratic procedures are virtually certain to yield
the wrong results, if voters are less adept than random. That fact has long made
democratic theorists wary of embracing epistemic arguments for democracy with
the CJT at their heart.2

Here we suggest a way of using a previously neglected feature of the CJT as
an aid in deciding what to make of democratic majorities, whether we should
regard them as persuasive or as the very opposite. We offer no conclusions on
that larger question itself. We offer merely a framework for simplifying how to
go about addressing it.

The logic of the Jury Theorem

The logic of the CJT is underwritten by the law of large numbers. Given suffi-
ciently large numbers of trials, the law of large numbers tells us that relative 
frequencies ex post will closely approximate probabilities ex ante. In the electoral
application, given a large number of independent voters, the proportion of 
people Vi that votes for a proposition øi will be very near to the probability pi of
each person independently voting for øi. Thus, if each person is independently 
62 percent likely to vote for øi, then (among a large number of such voters) øi will
win something very close to a 62 percent majority of the votes; if each person is 
57 percent likely to vote for øi, then øi will win by a 57 percent majority; and so on. 

The CJT focuses on øc, the ‘correct, true proposition’, and probability pc

(which for convenience is usually assumed to be identical for all voters) that each
voter will independently vote for that correct proposition. We know from the law
of large numbers that, in any large electorate, Vc will closely approximate pc. So,
in the standard two-option majority-rule case, true proposition øc is virtually 
certain of winning (Vc > 0.5) just so long as the electorate is sufficiently large 
and provided the probability of each voter independently voting for the true
proposition is pc > 0.5. Conversely, by the same logic, øc is virtually certain to
lose (Vc < 0.5) if each voter is independently less likely to be right than wrong 
(pc < 0.5). 

The CJT tells us that the probability that the majority will support the correct
option tends toward certainty as the number of voters approaches infinity. The
underlying mathematics further reveal that the probability of the majority 
supporting the correct option is a rapidly increasing function of the number of
voters, making the CJT strongly applicable to real-sized electorates. Suppose
there are two options, and suppose each voter is independently 51 percent likely
to choose the correct option (and 49 percent likely to choose the incorrect
option): then among a group of 1000 voters, the probability that the majority will
vote for the correct option is something very close to 69 percent. If the number
of voters is increased to 10,000, then that probability rises to virtual certainty:
99.97 percent.3 Thus, among electorates of even just moderate-sized towns, much
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less large nations, the majority is almost certain to choose the right option, just
so long as each voter is independently more than half-likely to be right in a two-
option choice (but conversely of course if each voter is less than half-likely to be
right).

Those results were initially developed, and are most simply stated, for the two-
option case. But an analogous result has been proven for the many-option case.
Similarly, although the CJT proofs initially assumed voters with identical com-
petence, they have since been extended to voters of varying (but symmetrically
distributed) competences. We will say more about both of those issues later.
Initially, though, we will discuss these issues in terms of the simpler two-option,
identical-competence case. 

Assessing voter competence head-on

The CJT seems to be a strong, robust result. The problem is merely in deciding
what to make of it — whether to regard it as blessing democratic outcomes or as
damning them. In terms of the CJT, that depends purely on whether people on
average are better than random, or not, in making political decisions involving
matters of fact.

It is difficult to address that question head-on, because there is much to be said
on both sides of that question: 

• Most of the propositions that are put to a vote do not admit of any easy, objec-
tive test of truth. The fact that there is a good case to be made on both sides is
precisely why we put the issue to a vote in the first place. 

• Survey research shows that the electorate is woefully ill-informed about most
matters of public affairs. How much to make of that is unclear, however. There
may be mechanisms of ‘low-information rationality’ that can guide even ill-
informed voters to rational choices.4 Besides, some might say, it is hard to
imagine how people could do systematically worse than random at picking the
right answers, even if they were totally uninformed. 

• If, however, voters all cued on the same sources of information, and those
sources were misleading, then there might be a ‘common mode failure’ that
could well lead voters individually and hence collectively to perform system-
atically worse than random. 

In short, the question of whether voters are on average better than random is not
easily decidable when approached head-on. 

Inferring voter competencies from electoral outcomes

Our suggestion is to go roundabout. Instead of trying to decide whether or not
voters are better than random, in general, let us use the outcome of the election
to help us reflect on judgements about average voter competence, and hence on
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the decision of whether to place positive or negative faith in the outcome of the
democratic election.

The CJT uses the law of large numbers to pass from assumptions about pc

(voter competence) to conclusions about Vc (the share of the vote won by the 
correct outcome). Here we propose to work in the reverse direction, deriving
inferences about voter competence (pc) from the actual distributions of votes (Vi).

The law of large numbers works in both directions. Given a value for pc and a
large electorate, it allows us to predict the value of Vc. That is the key to the CJT
story as it is ordinarily told. By the same token, however, once an election has
been held and we know the distribution of votes, Vi, we can infer from the distri-
bution of values of Vi two alternate possible values for pc. 

The law of large numbers says that, among a large number of independent 
voters each equally likely to vote for the ith proposition øi, the probability of each
voting for øi is the same as the proportion of them who did vote for øi, or pi = Vi. 

Suppose, for convenience, that each voter has the same probability as each
other of voting for the correct outcome, and each votes independently of every
other. And suppose, again purely for expository convenience, that we are dealing
with a standard two-option majority-rule situation. (We discuss applications to 
k-option cases below.)

What we can infer from the distribution of a large number of votes is a pair of
possible values of voter competence, pc. One of two possible conclusions about
voter competence we can infer from a distribution of Vi concerns the case where
voters are more likely to vote for the correct option than any other. In the two-
option case, this amounts to saying pc > 0.5. From the law of large numbers, we
know that if pc > 0.5 then the correct outcome is virtually certain to win. Also
from the law of large numbers, we know that the probability of voters voting for
the correct outcome (pc) is, in this first case, the same as the proportion of voters
voting for that winning outcome w, Vw. Thus, one possible value of pc is Vw.

The other possible value of pc is associated with the case where voters are more
likely to be wrong than right. In the two-option case, that amounts to saying that
pc < 0.5. By the law of large numbers we know that, in the two-option case, if 
pc < 0.5 then the correct outcome is virtually certain to lose. Furthermore, the law
of large numbers allows us to infer the probability of voters voting for the correct
outcome (which is in this case the losing outcome). That is the same as the 
proportion of voters voting for the losing outcome, which in the two-option case
is (1 – Vw). The second possible value of pc is, thus, pc = 1 – Vw.

Suppose for example 60 percent of a large electorate votes for one option and
40 percent for the other. From that distribution of votes, together with standard
CJT assumptions about uniform competence and independent voters, we can
infer that the probability of each voter voting for the correct outcome (pc) must
be either around 60 percent or around 40 percent. 

That simplifies things nicely, when it comes to trying to decide what to make
of the outcome of that election — whether to conclude that the majority verdict
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is almost certainly right or almost certainly wrong. We have merely to decide
which of those two alternative possible values of voter competence we believe 
to be more likely, in the case at hand. Is it more credible that, on this subject, 
voters on average are 60 percent likely to be right? Or is it more credible that 
voters on average are only 40 percent likely to be right?

Different competences on different issues

The CJT typically works with simplifying assumptions of uniform voter compe-
tence in two dimensions. First, it is typically assumed that each voter is as com-
petent as each other voter; and second, these discussions typically proceed as if
voters were equally competent across all subjects.

Neither assumption is strictly necessary. The first assumption can be relaxed,
as we have already said. Voters need not have identical competence; the CJT can
be re-proven using the mean competence of voters of varying competence, just
so long as the distribution of voter competences is symmetrical around the mean.5

The second assumption is formally even more dispensable, of course. The
CJT’s basic conclusion — that democracy is a good truth-tracker — holds just so
long as the mean voter is ‘better than random’ on each topic. There is no need for
them to be equally competent across all topics.

Nevertheless, here is a clear and interesting implication of our way of using 
the law of large numbers in the reverse direction to ordinary CJT derivations.
From the simple fact that different elections are decided by different margins, it
immediately follows that voter competences must differ across different subject 
matters (insofar as voters vote purely on the basis of perceived truths). 

Letting landslides matter

In the standard CJT, we do not need to know exactly what average voter compe-
tence actually is. All we really need to know is whether it is greater than or less
than 0.5. In the former case, the majority is almost certain to be correct, in a 
sufficiently large electorate.6 In the latter case, it is almost certain to be incorrect. 

That is certainly a strong result. There is, however, a certain embarrassment
surrounding it. The embarrassment is that that result is utterly impervious to the
proportion of the electorate voting for or against the proposition. Given a large
number of electors (which the CJT requires to work at all), there is no material
difference between a 51 percent victory and a 70 percent victory. Given a very
large number of voters, the first is (very, very nearly) as certain to be correct as
the latter. That seems an odd conclusion.

The reason for that conclusion is that what drives the CJT is the absolute
majority in favour of one option rather than the other, not the relative majority.
If there are 10,000 more voters for proposition ø1 than ø2 then the CJT question
is, in effect, ‘How can 10,000 people be wrong?’ And on standard CJT models,
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the question remains equally pressing whether it is 10,000 voters out of 100,000
or 10,000 out of 100,000,000,000. That is just the way that the mathematics of
the CJT work.7

Working within the standard CJT framework, the only way to avoid the 
conclusion that ø1 (with its extra 10,000 supporters) is virtually certainly correct
is to say that pc < 0.5 — in which case the CJT insists with equal confidence that
not-ø1 (which is to say, ø2) is virtually certain to be correct instead. There is 
simply no scope, within standard CJT models applied to very large electorates,
for regarding a 51 to 49 percent outcome as appreciably less conclusive than a 70
to 30 outcome.

The standard CJT model presses us to decide in advance of the vote (or any-
way independently of the vote) whether voters on average are more or less 
likely to be right than random. Everything else follows from that, together with
the law of large numbers. Our alternative approach is to start with the outcome
of the vote and work back (via the law of large numbers) to a pointed choice
between alternative hypotheses about average voter competence on the sort of
issue at hand. 

Whereas the CJT forces us to accept either one strong conclusion (the majority
is almost certainly right) or another (the majority is almost certainly wrong), our
approach allows a more balanced assessment, taking account of the proportion of
the electorate voting each way. Suppose that we know the electorate has split 70
percent to 30 percent on this issue. We know that the electorate is large enough
for those figures to track the probability that each (or the average) voter has of
being right on this issue. We just have to decide whether the average voter is
more likely to be 70 percent reliable on this subject or 30 percent. 

Some might suppose that, as a sort of extension and generalization of the ‘prin-
ciple of charity’, we ought (unless we have some special story to tell about how
this case is unusual) ordinarily suppose that our fellow citizens are more likely to
be right than wrong, and therefore that the winning outcome is quite probably the
correct one.8

Those who charitably trust the veracity of others’ reports will ordinarily be a
lot more confident in a proposition where the proportion of equally trustworthy
voters siding with the majority is large rather than small. If the vote is 50.1 
percent to 49.9 percent, and they have to choose between that pair of possible
voter competences, even the charitably inclined must be less confident that the
winning proposition is the right one. The charitable may regard it as incredible
(absent some special reasons for being suspicious of the majority, more of which
below) that average voter competence is only 0.30, in the 70:30 breakdown of
the vote. But when it comes to interpreting the 49.9:50.1 percentage breakdown
of the vote, even the charitable may suppose it is not all that incredible that peo-
ple on average are more likely to be 0.499 as opposed to 0.501 reliable.

Of course, either way you run the story — the standard CJT way, or ours —
the fact remains that, in a large electorate, a majority of better-than-random truth-
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trackers is virtually certain to be correct in their judgement. If voters are pc > 0.5,
no matter by how much or little pc exceeds 0.5, then in any very large electorate
the correct outcome is very, very likely to win. 

Our way of running the story, however, might give those inclined toward a
principle of charity some principled rationale for attaching varying degrees of
confidence to the proposition that voters are indeed, on average, better-than-
random truth-trackers. The issue we pose is, what ‘degree of confidence’ do we
have in the proposition, ‘pc > 0.5’? Those inclined toward a principle of charity
would respond by saying that, ceteris paribus, we ought ordinarily have more
confidence in that proposition where the choice of alternative possible voter com-
petences is between a very high and a very low one. They would respond that
they have much less confidence in that proposition where the choice is between
two alternative values for pc that are very close to one another. And remember,
those alternative possible values of pc are derived, on our approach, from the pro-
portions of people actually voting for each option. So that amounts to saying that,
ceteris paribus, larger proportional majorities will seem more persuasive for
those inclined to apply a principle of charity in the case at hand.

Being suspicious of majorities

Whether or not we ought to apply a principle of charity, either in general or 
especially in any particular case, is however an open question. Sometimes we
might have good grounds for not doing so, that is to say, for being suspicious of
the majority (and all the more suspicious of larger majorities than smaller ones). 

Majorities might reflect nothing more than systematic biases within the elec-
torate, and bias ought epistemically be discounted. Our approach provides some
scope for detecting bias, and for discounting the results of majority votes accord-
ingly. Bias would show up in these analytics as ‘bloc voting’: a failure of the
assumption, crucial to all CJT-style results, that every voter’s vote be statistically
independent of every other’s. 

As we have already remarked, different elections are won by different majori-
ties. On our approach, that implies that voter competences vary from issue to
issue (insofar as voters are trying to track the truth at all when voting on those
issues). Sometimes, however, inspecting the distribution of the vote will suggest
an alternative explanation than that voters are more (or less) competent than usual
on this issue. 

Suppose we are dealing with some racially charged issue; suppose that 90 
percent of voters back option ø1 and 10 percent back option ø2 (i.e. not-ø1); and
suppose demographic breakdown of the electorate is 90 percent white and 10 
percent black. One’s suspicions would certainly be aroused. One would certainly
require a lot of reassurance (by looking at district-by-district breakdowns of the
vote, etc.) that voters were 90 percent accurate at tracking the truth, rather than
just 100 percent accurate at tracking race.
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There are of course plenty of other ways for one’s suspicions to be aroused in
these and cognate cases. But looking at the proportional breakdown of the vote,
and asking ourselves whether that is more plausibly a reflection of voter compe-
tence or voter interests and biases, is a useful supplement to the ordinary battery
of bias-detectors.

Our approach also provides similar scope for detecting breakdowns in the
‘independence’ assumption so crucial to CJT derivations. Suppose the vote is 98
to 2, as it was in the US Senate vote on the Gulf of Tonkin resolution. It hardly
seems credible that, on virtually any subject that comes before politicians for a
vote, people are pc > 0.98 likely to be right. It seems just as incredible to suppose
that they are only pc > 0.02 likely to be right. The most plausible interpretation,
in a case like that, is that the voters were not judging the matter independently of
one another but that they were, instead, all basing their votes on the same biased
source, President Johnson’s fabrications.

Beyond two options

So far we have, for simplicity, been following the CJT tradition of talking in
terms of majority voting over two options. But, as has been proven, the CJT can
be extended to plurality voting over multiple options.9 In the two-option case,
each voter has to be pc > 0.5 likely to vote for the right outcome, in order for the
law of large numbers to assure us that the outcome winning the majority is 
virtually certain to be right. The corresponding requirement in the k-option case
is that each voter be more likely to vote for the correct option than any other
option.10

Whereas the standard CJT analysis, in that case as in the other, infers the 
likelihood of democratic pluralities being correct from assumptions about voter
competence, we once again would infer alternative voter competences from the
distribution of the votes. 

Here, as before, there are two cases to consider. One is that on average voters
are more likely to vote for the right option than any other among the k-options,
and hence the plurality winner is the correct outcome. In that case, from the 
law of large numbers, average voter competence is once again just equal to the
proportion of the votes the plurality winner secured (pc = Vw).

The second case to consider is that on average voters are more likely to vote
for a wrong option than the right one. Then one of the (k-1) defeated options is
actually the right outcome, and average voter competence is equal to the propor-
tion of the votes that that option secured. The difficulty, in the k-option case, lies
in knowing which of the (k-1) defeated options is the correct one. All we can
know in the k-option case is that the alternative voter competence pc associated
with the possibility that voters are more likely wrong than right corresponds to
the vote share Vi of one or other of the (k-1) defeated options.

For practical purposes, perhaps the most useful way of framing that is to say
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that we are faced with the following choice: either we can conclude that average
voter competence equals the vote share of the plurality winner; or else we can
conclude that average voter competence is no greater than the vote share of the
most popular of the defeated alternatives. Thus, in a 4-option election with a large
number of voters, with a distribution of the votes in the ratios 40:30:15:15, we
can say that average voter competence must either be 40 percent or not greater
than 30 percent. It might be as low as 15 percent, of course. But just forcing us
to think of it as ‘not greater than 30 percent’ might help focus our thinking.

Reconceptualizing voter competence over many options

Where votes are split among many options, the option that wins the plurality of
such votes might nonetheless attract a relatively small proportion of the total
vote. The CJT tells us with almost complete confidence that it is the right out-
come nonetheless, just so long as each voter is more likely to vote for the correct
option than any other. 

The implication for inferences about voter competence might nonetheless
seem awkward. Imagine an 11-option case, in which the vote shares won were 12
percent for one option and (just to make things simple) 8 percent for each of the
other options. Then our approach would lead us to conclude that average voter
competence is either 12 percent or 8 percent. Neither seems very impressively
high. 

Of course, one way to console ourselves would be to recall (as we have already
remarked) that voter competences must be contextualized to issues and choice
situations. And if voters were 12 percent likely to choose the correct option in
that particular 11-option case, and no more likely to choose any other option, then
that is enough to guarantee in CJT fashion that a large number of such voters are
almost certainly right in their plurality verdict. So contextualizing to cases is one
way to make the result seem more impressive, despite pc = 0.12 seeming to be
such a low number.

Here is another way of looking at that situation. Suppose we were conducting
a run-off style election, with the option winning fewest votes being eliminated in
each successive round. (And in cases of a tie, as in our 11-option case above,
which of the equally unpopular options is eliminated is then decided randomly.)
Let us continue to assume, for convenience, that voters are all equally competent.
So the voters who in the first round had voted for the option which has now been
eliminated in the second round will distribute themselves among the correct
option and each of the remaining nine incorrect options in the same proportions;
and so on, as low-vote options are successively eliminated in subsequent rounds
of the run-off. By the time we get down to the final round of this run-off, voters
will be distributed 60:40 between the two remaining options.

In that way, 12:8 in the 11-option case we described can be regarded as equiv-
alent to 60:40 in the sort of 2-option case with which we are more familiar.
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Thinking of it that way, the numbers are much more impressive, in both respects.
First, saying that average voter competence is either pc = 0.60 or pc = 0.40 is to
say that it might be really pretty high (pc = 0.60 certainly looks a lot better than 
pc = 0.12, even though as we have shown it can be regarded as its 2-option equiv-
alent). Second, to say that average voter competence is either pc = 0.60 or 
pc = 0.40 is to say it is either pretty high or pretty low, making it a starker choice
than it seemed at first brush when we began thinking of it as either pc = 0.12 or 
pc = 0.08.

Conclusion

How much in the end has all this really simplified the problem of deciding what
to make, epistemically, of a democratic verdict? After all, in the standard CJT we
only have to decide whether or not voters on average are more likely to be right
than random. If they are, and the other assumptions of the CJT are met, then the
verdict of a large electorate is epistemically compelling; if they are not, then their
verdict is almost certain to be epistemically in error. To decide which interpreta-
tion is correct, in the standard CJT case, we need only decide which side of 
‘random’ the average voter is on.

Of course, average voter competence may well be right around ‘random’.
Some of the considerations suggest that it might be a little better than random.
Others suggest that it might be a little worse than random. Where exactly the 
balance falls is an open question. But that, of course, is the key question we have
to resolve in deciding what to make, epistemically, of the democratic verdict.

In our reframing of the CJT results, the question can sometimes be posed in a
more stark way. Knowing that the democratic outcome was 60:40, we have then
to decide which possibility is more credible. Is it more credible that in this sort
of case the average voter is 60 percent likely to choose correctly (in which case
the verdict of the majority is almost certain to be epistemically correct)? Or is it
more credible that the average voter is in this sort of case only 40 percent likely
to choose correctly (in which case the majority verdict is almost certain to be
epistemically incorrect)?

In the case of close elections (51:49, for example) the same problem as with
the standard CJT re-emerges, of course. There we have to decide whether it is
more credible that the average voter is 51 percent likely to choose correctly, or
whether it is more credible that average voter competence is 49 percent. For 
reasons given at the outset, that is a hard one to call. And because we are uncer-
tain on that issue, we are uncertain also just how much epistemic credence to
place in the verdict of such a slim majority, even if the size of the electorate is
very large.

But that seems right. Narrow electoral victories should pack less of a punch,
epistemically and perhaps democratically as well, than should massive majori-
ties. It is an unpleasantly counter-intuitive feature of the CJT, as ordinarily con-
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strued, that a 51:49 majority is very, very nearly as likely to be correct as is the
majority in a 70:30 landslide, just so long as the electorate is large. It is one of
the great benefits of our approach that it avoids that counter-intuitive result 
and leaves room for being more skeptical of slim proportional majorities than
massive ones.
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