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1. Introduction

This article is a technical contribution to the theory and methodology of
axiomatizations and completeness proofs in (multi-) modal logics. It is a
belated and corrected [ull paper on the results announced in the abstract [9].

The paper deals with axiomatizations of modal logics by means of a par-
ticular type of rules (called here context rules) added to traditional Hilbert
style axiomatic systems. Context rules generalize the idea of Gabbay’s Ir-
reflexivity rule used in [4] to axiomatize temporal logics on irreflexive time
flows, the class of which is well known to be non-definable by means of tem-
poral formulae. Various modifications of the rule have since been successfully
applied to produce complete axiomatic systems in [16, 5, 25, 21, 22, 23, 17, 6,
20, 11}, etc. A scheme of context rules, called “non-{ rules” has been studied
in detail in [24] where a quite general completeness result about logics ax-
iomatized with such rules and Sahlqvist axioms in modal languages of tense
similarity type with additional “difference” modality has been proved.

The present work gives semantic sufficient conditions, expressed in terms
of r-persistent formulac, for the applicability of the method in arbitrary
(multi-)modal languages (possibly extended with a “universal” modality).
It therefore suggests a shift of emphasis in model theory of modal logic from
descriptive frames and d-persistent {i.e. canonical) logics to refined frames
and r-persistent logics and formulae. That shift has also been advocated in
[18] from another viewpoint: refined frames are sufficient to describe logical
consequence while descriptive ones are not. Again, from model-theoretic
perspective the class of refined frames seems more natural since it is closed
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under ultraproducts and, as a consequence, all r-persistent formulae are
elementary, while there are d-persistent non-elementary ones. However, not
much is known aboul r-persistent formulae and logics and they are still
awaiting a thorough study.

The paper is organized as follows. In the preliminary section 2 we intro-
duce the basic definitions and notions used in the main text, and we illustrate
with some facts and examples the notions which play a central role in the
paper, viz. refined frames and r-persistent formulae and logics. Section 3
introduces context rules. Section 4 is the main one, where we prove some
general completeness results about logics axiomatized with context rules.
Section 5 mentions some easy generalizations. Section 6 discusses the scope
and the limitations of the method. The last two short sections include some
open questions and concluding remarks.

2. Preliminaries

The reader is assumed to have a general background in modal logic regard-
ing syntax and Kripke semantics, incl. frames, general frames, and models;
truth, satisfiability, and validity in them; maximal consistent theories, canon-
ical frames and canonical general frames of & modal logic. Good sources are
e.g. [1, 7. 13).

An arbitrary multi-modal language £ with a set of (unary) box-modal-
ities {B;}ier is fixed hereafter. We use metavariables as follows: «, 8 for
first-order formulae, the other lowercase Greek letters for modal [ormulae;
[, A, % for sets of modal formulae.

Given a frame F = (W,{R;}ic;), we refer to the elements of W as
“states” (rather than the more traditional but somewhat restrictive “pos-
sible worlds”). Sometimes we write w € F instead of w € W. For any frame
F, valuation Vin F, w € F, and a. madal formula 4, {F, V) E $[w] means “¢
is true at w in the model (F,V)”; F F ¢[w] means “¢ is true at w in every
model (F,V)”; and likewise for validity (truth at all states) in a model and
a [rawe,

Given a general frame (W, {R;}icr, P}, for any w € W and i € T we
denote Rj(w) = {v € W | wRuw}, Py = {X € P | w € X}, and for any
XeP,BX={weW]|Rjw) C X}

By a frame property we mean a property (formalized or not) which ap-
plies to frames; by a local frame property we mean a property which applies
to states in a frame.

DEFINITION. (a) A modal formula ¢ defines the frame property P il [or every
frame F', F'F ¢ iff F satisfies P.
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(b) A modal formula ¢ locally defines the local frame property P(x) if for
every frame F and w € F, F E ¢{w] iff P(w) holds in F.

There is an extensive literature on modally definable properties of frames,

see e.g. [2, 1], as well as [14, 15] on the more intimate relationships between
definability and completeness.

Clearly, if ¢ locally defines P(z) then ¢ defines VzP(z). The question
whether there are modally definable H?l frame properties which are not lo-
cally modally definable seems to be open (see [1], ch. 3).

NErINITION. ([19, 3, 7]) A general frame F = (W, {R; }ic1, P) is:
(a) refined (natural, in [3]) if the following two conditions hold for all
z,y € W:
(i) Pr =Py implies z =y,
(ii) For any i € I, if for all X € P, z € B;X implies y € X, then zR;y.
(b) descriptive, if it is refined and satisfies the additional condition:

(iii) every ultrafilter on P is P,, for some w € W. (Note that every Py,
is an ultrafilter on P).

SOME FACTS AND EXAMPLES (most of which can be found, unless indicated
otherwise, in [7]):

o Every full general frame (i.e., one which contains all subsets of the uni-
verse) is refined and every finite refined frame is full.

¢ Moreover, every discrete general frame (which contains all singletons) is
refined.

e Every finite full frame, but no infinite one, is descriptive.
e Every canonical general frame is descriptive.
e The class of refined frames is closed under ultraproducts.

The class of refined frames has also been studied in [18} from a topological
perspective and characterized in terms of topological spaces.

DEFINITION. ([7]) (a) A modal formula ¢ is r-persistent (resp. d-persistent)
if for every refined (resp. descriptive) general frame F = (F,P), if F E ¢
then F E ¢.

(b) Likewise, a modal logic L is r-persistent (resp. d-persistent) if for

every refined (resp. descriptive) general frame F = (F,P), if F & I, then
FEL.
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In [3] r-persistent formulae and logics are called natural.

DEFINITION. A modal formula ¢ is locally r-persistent if for every refined
general frame F = (F,P) and w € F, if F E ¢w] then F F ¢[w].

SOME FACTS AND EXAMPLES:
o Clearly, every pure formula (with no variables) is locally r-persistent.

e Many well-known formulae axiomatizing natural frame conditions like
reflexivity, symmetry, tranzitivity, linearity, etc. are locally r-persistent.

» Every locally r-persistent formula is r-persistent.
The converse does not hold, witness the example in Corollary. 6.3.

s Fine has proved in [3] that every natural logic is A-elementary; respec-
tively, every finitely axiomatizable one is elementary.

e Indcpendently, Coldblatt has proved (scc [7], scct. 18) that every r-
persistent formula is d-persistent and elementary and has given an ex-
ample showing that the converse is not true.

e Moreover, Fine has shown in [3] that there are elementary and complete
modal logics which are not r-persistent, witness the logic S4.1 = 84 +
O<p — < 0p inlroduced by McKinsey.

e An even simpler and stronger example is given in [24]: the formula
OOp — OOp defining Church-Rosser’s property is of Sahlgvist type but
it fails in the underlying frame of a certain discrete general frame,

e An example of a locally r-persistent formula which {most probably) is
not equivalent to a Sahlqvist one will be given in section 6.

DeFINITION. We define universal form of * in L (see [8]) recursively as
follows:

1. % is a universal form of *.

2. If u(*) is a universal form of %, ¢ is a formula in £ and B is a box-modality
in £, then ¢ — u(*) and Bu(*) are universal forms of * in £.

Every universal form of * can be represented (up to tautological equiva-
lence) in a uniform shape:

u(*) = ¢o = B¢ — ...B" (¢ = %)...)

where B1,..., B” are box modalities in £ and some of ¢1,...,¢, may be T
if necessary.
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For every universal form u(*) and a formula & we denote by u(f) the
result of substitution of & for * in u(*). Note that the result of substitution
applied to a universal form is again a universal form.

DEFINITION. Given a universal form u(*) and a model M = (F, {R;};c1, V)
we define reachability of a state v from a state w by o u-path in M recursively
as follows:

1. If u(*) = * then v is reachable from w by a u-path if v = w.

2. If u(x) = ¢ — u'(x) then v is reachable from w by a u-path if M F ¢[w]
and v is reachable from w by a u'-path.

3. If u(*) = Bju'(x) then v is reachable from w by a u-path if v is reachable
from w' by a w'-path for some w' such that Ryww’.

3. Context rules

In this paper we only consider finitary inference rules, which can therefore
be assumed to have only one premise (viz. the conjunction of all premises).
An inference rule
¢

Y

in propositional logics is traditionally interpreted as a schema with respect
to uniform substitutions: for every substitution o, if ¢(¢) is a theorem then
o(t)) is a theorem. Such rules are sometimes called structural.

Here we introduce a more general type of rule schemata with certain
restrictions on the allowed substitutions.

DEFINITION. 1. Let py,...,pr be propositional variables and ¢ a substitu-
tion. o is said to be indifferent to the variables p1,...,p i it neither affects
these variables, nor introduces any new occurrences of any of them.

2. Let {,n be formulae and p1,...,pi be propositional variables possibly
occurring in ¢ or 5. The rule

<

n
is sald to operate in the context of py,...,px if it is applied as follows: for
every substitution ¢ indifferent to py,...,p, if ¢(¢) is a theorem, then o{7)

is a theorem.

Such a rule will be called a context(-dependent) rule. {The analogy with
context-dependent rules in generating grammars is clear.)
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An example: the so called in [24] “non-£ rule”:

~£— ¢
¢

where £ shares no variables with ¢, is equivalent to the rule

~§ —p
P

where p is a variable not occurring in £, operating in the context of all
variables in £.

Henceforth we shall presume that all logics considered contain the rule
for uniform substitution.

A uniform substitution will be called a renaming if it substitutes different
variables for variables.

4. Axiomatizations with context rules

‘We have already noted Gabbay’s result on axiomatization of irreflexive
classes of frames and the other subsequent completeness results using context
rules.

In this section we present some axiomatization results for conditional
frame properties which have inspired the introduction of context rules. Here
we shall focus on modal logics axiomatized with one additional context rule.
Some easy generalizations will be mentioned in the next section.

THEOREM 4.1. Let L be an r-persistent modal logie and

1. ¢ be a modal formula which locally defines a(x),

2. 9 be a locally r-persistent modal formule which locally defines B(x);
Then L extended with the rule schema

Ry : L@s)

v u(y)

operating in the context of all variables of ¢, where U is any universal form
sharing no variables with ¢, completely aziomatizes the class of frames

€ = FR{L) N FR(Vz(a(z) — B(z))) .

PrROOF. SOUNDNESS: We only need to check that the context rule Ry/y
prescrves validity in the class €. In fact, we can show more: it preserves

validity in each frame from €. Indeed, suppose ¥ € C and F ¥ o(u(v))
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for some universal form u sharing no variables with ¢ and a substitution o
indifferent to the variables in ¢. Then (F, V) ¥ o(u(3)))[v] for some valuation
V and a state v, hence (£, V) F o(¢/)[w] for some state w reachable from v
by a o(u)-path. Therefore F ¥ t)[w], hence F ¥ B{w), so F ¥ a(w). Thus,
(F. V') E ¢lw] for some valuation V'. We can assume that V'’ agrees with
V on the variables in o(u). Therefore, going backwards from w to v along
the o(u)-path, it follows that (F, V') ¥ o(u)(¢)[v], ie. (F, V') ¥ a(u(¢))[v],
hence F ¥ o(u(¢)). Thus, every theorem is valid in C.

COoMPLETENESS: We first introduce the following infinitary version of R,, S

o . u(p(qﬁ)) for all substitutions P
$le u(7(2))) for any substitution 7

where u is any universal form.

We can show that Ry, and Rg}w are deductively equivalent, being
derivable from each other. Indeed,
* Ry/y is derivable from RS, : assume t o(u)(¢) for some substitution o
indifferent to the variables in ¢. Then, by the substitution rule, - o(u){p(#))
for any substitution p (which can be assumed not to atfect - o{u)). There-
fore, by wa, a{u)(¥).
s R o is derivable from Ry/,: assume b u(p(¢)) for all substitutions p,
in particular for a p being a renaming of the variables of ¢ such that p(¢)
shares no variables with ¢ or with u. Now let o be a renaming which on
p(¢p) agrees with p~! and such that o(u) shares no variables with ¢ or .
Then F o(u(p(4))), i.e. b o(u)(¢) therefore, by Ry/y, F o(u)(z), hence
Fo(u){7(¢))} for any substitution 7. [

DEFINITION. A set of formulae T is a theory in L+ Ry, if it is closed under
Modus Ponens; 7' is an R-theory if it is a theory in L + Ry, closed under
oQ
R
Note that for every set of formulae I there is a minimal R-theory R1h(1)
containing I, viz. the intersection of all R-theories containing I'.

DEFINITION. A theory, resp. R-theory, is consistent if it does not contain
L. A set of formulae A is R-consistent if RTh(A) is consistent.

In particular, an R-theory is R-consistent iff it is consistent.

LEMMA 4.2. (Deduction theorem for R-theories) If T is an R-theory and
¢.n are formulae then ¢ = n €T iff n € RTh{T'U {¢}).
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PrOOF. For the non-trivial part, suppose that € RTh(I'U{(}) and consider
the set of formulae

A—{§:¢—=5¢eT}.
A is an R-theory containing I' U {¢}. The proof of this goes as usual, with
one additional step: closedness under R?j, which follows form the fact that
I' is an R-theory, and { — u(*) is a universal form whenever u(x) is. ]

The following lemma essentially repeats Lemma 11 in [11].

LEMMA 4.3. If T is a set of formulae in which infinitely many propositional
variables have no occurrences then RTh(I') = Th(T').

As a corollary, every set of formulae which satisfies the condition of the
lemma is R-consistent iff it is consistent.

DEFINITION. An R-theory I' is mazimal if for every formula ¢, either ¢ € T
or ¢ € I but not both.

LEMMA 4.4. (Lindenbaum Lemma) Ewvery R-consistent set |’ can be ex-
tended to a mazimal R-theory.

Proor. First, note that RTh(I") is a consistent R-thecory. Let &,&5,...
be a list of all formulae, 71, 79,... a list of all substitutions of the variables
of 1, and u1,us,... a list of all universal forms. Then we can list (with
repetitions) all combinations {u;{7;(3))};5_; alternated with all formulae
£1,&2,... in a sequence 81,8,,.... Now we define a sequence of consistent
R-theories 7y € T3 C ... as follows: Th = RTh(T'); suppose that T}, is
defined and consider RTh(T}, U {6,}). If it is consistent, then this is T},
else Tp1y = Ty, in case By is not cne of {u;(7;())}£5_,; otherwise suppose
B = wi{7(%)). Then —uy(r;(3)) € T, by the deduction theorem. Therefore
u;(p(¢)) does not belong to T, for some substitution p. Then we put

Tav1 = RTh(T,, U {-~ui(p(¢))} -

Ty+1 1s R-~consistent.

Finally, put T = U2, T,. By virtue of the construction, T is a maximal
consistent R-theory. [ |

For any set of formulae A we define
BA={{ Bt e A}
for each modal box-operator B in the language.
LEMMA 4.5. If A is a mazimal R-theory then BA is an R-theory.

ProoF. It is well known that BA is a theory. It is closed under Rg‘}w since

A is closed and Bu(*) is a universal form whenever u(*) is. [ ]
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LEMMA 4.6. If A is e maximal R-theory and B—~8 & A then there is a
mazimal R-theory A' such that @ € A’ and BA C A'.

PROOF. By Lemma 4.5 BA is an R-theory and -8 € BA, hence RTh(BA U
{#}) is R-consistent by Lemma 4.2. Then, by Lemma 4.4 it can be extended
to a maximal R-theory A'. n

Now we can embark on the completeness proof. Let a formula y be con-
sistenul (and therefore, R-consistent, by Lemma 4.3) in L -+ Ry /y. Following
the standard canonical construction we shall define a model based on a stan-
dard frame for L+ Ry, (a standard model) which satisfies x. Moreover, we
shall prove the following lemma.

LEMMA 4.7. (Strong completeness theorem for R-consistent sets) Ewvery
R-consistent set L'y in L + Ry 15 satisfiable in a standard model of that
logic.

Proor. For technical convenience we do the proof for a monomodal lan-

guage; the generalization to a multimodal language is straightforward.
First, we extend T’y to a maximal R-theory I'. Then we define a thinned

out canonical model M = (F, V) accordingly:

¢ In the set of all maximal R-theories we define the canonical relation

RA Ay iff BA; C Ay,

e Then we define W to be the set of all maximal R-theories R-accessible
from I and F = (W, R).

® The valuation V is defined canonically: for any propositional variable p,
Vip)={AcW:pc A} =

The following ¢ruth lemma is proved as usual

LEMMA 4.8. For every formula 6 and A e W,
MEOA] iff e A.

In particular, I'y is satisfied at the state I of M.
Finally, we shall prove that F € C. Let us consider the general frame

F = (W,R,{V(8) |6 € FOR)).

Some facts:

o F is refined (but not descriptive!). The proof is the same as for any
canonical general frame (cf, [7]).

o« FEL.
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e Therefore F' = L since L is r-persistent.

o ' E Vz(a(zr) — B(z)). Indeed, let A € W and F E a(A). Then
F E ¢[A], therefore F E a(¢)[A], hence o(¢) € A, for any substitution
g. Since A is an R-theory it follows that 7(1) € A, hence M F 7(3)[4]
for any substitution 7. Therefore F k ¢[A], hence F E [A] since 2 is
locally r-persistent. So, F' E S(A).

Thus, F € . This completes the proofs of Lemma 4.7 and hence the
completeness theorem.

In particular, K + R/, axiomatizes the class FR{Vz-a(z)) — a gener-
alization of Gabbay’s irreflexivity lemma. While the rule Ry, is equivalent
to Venema’s “non-¢ rule”, the result is incomparable with Venema’s result
{see section 6).

REMARK. The completeness proof above amounts to proving a certain omit-
ting types theorem in respect of the types

Yur = {ST(u{p(¢))) | p is a substitution} U {u({r(y))}

and the first-order theory of FR(L) extended with the translations of the
formulae in the R-consistent theory for which a standard model is sought.
However, a direct attempt to apply the well-known omitting types theorem
for first-order logic fails: these types may be locally realized by a formula
which is not a translation of a modal formula. ]

Hereafter we assume that the language contains (definable) the universal
modelity which will be denoted by §.

THEOREM 4.9. Let L be an r-persistent modal logic and:
1. ¢ be a modal formula which defines a,

2. 1 be an r-persistent modal formula which locally defines B(x).
Then L extended with the rule schema

ufe)
Ry : e
v u(y)
operating in the context of all variables of ¢, where u 18 any unsversal form
sharing no variables with ¢, completely axiomatizes the class of frames

C = FR(L) NFR(a — Vz3(z)).

PROOF. SOUNDNESS: Again, we show that the rule Ry, /¢ preserves validity
in each frame from the class C. Suppuse F' € C and F ¥ o(u(y)) for some
universal form u sharing no variables with ¢ and a substitution ¢ indifferent
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to the variables in ¢. Then (F,V) ¥ o(u{y))[v] for some valuation V and
a state v, hence (F,V) ¥ o(¢)[w] for some state w, o(u)-accessible from
v. Therefore F' ¥ B(w), hence F ¥ VYzB(x). So, I' ¥ «, hence (F, V') ¥
¢ for some valuation V'. We can assume that V' agrees with ¥V on the
variables in o(u). Therefore, (F, V') ¥ ¢, so (F, V') ¢ §b[w], hence (F, V') &
o(u){#¢)[v]. Thus, F ¥ o(u(fe)).

COMPLETENESS: The proof essentially repeats the previous one. The final
step is to show for the thinned out canonical frame F that F F a — Va2 8(x).
Indeed, let F F . Then F E ¢, hence for any substitution o, F E a(¢), so
(F,V) F o(¢) for the canonical valuation V, hence o(¢) € A for each A € F.
Therefore 7(1) € A for each substitution 7 and A € F, so {F,V) k 7(¢)[A]
for each 7 and A, hence F F ¢[A], so F' E ¢)[A] for each A € F since 9 is
locally r-persistent. Therefore F' k= Vz((z). u

In particular, if ¢ defines o then the rule

u(f¢)

u(l)

axiomatizes the class of frames in which « is not valid.
Likewise, the following theorem holds.

THEOREM 4.10. Let L be an r-persistent modal logic and:
1. ¢ be a modal formula which defines «,

2. 1 be an r-persistent modal formule which defines 3.
Then L extended with the rule schema '

u(fe)

Ry —
v u(fy)
operating in the contezt of all variables of ¢, where u is any universal form
sharing no veriables with ¢, completely aziomatizes the class of frames

€ = FR(L) NFR{a — f).

5. Some generalizations

1. Context rules in temporal and other extended modal languages. While
the results of the previous section remain valid in various multi-modal logics,
the context rules used here are essentially simplified in temporal languages,
as noted in [5], and, more generally, in languages of wersatile typos, scc
[24], since universal forms are no more necessary there. In particular in a
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language of tense similarity type, where every modality has a counterpart
semantically corresponding to the inverse relation, the rule

u{¢)

u(n)

collapses to
8—¢
06—
from which the former one is derivable.
The other rules used in the previous section are likewise simplified.
A similar simplification can be obtained in case of expressive enough (e.g.
with definable difference modality) non-temporal types, as shown in {10].

2. Many rules together. With no essential complications, the completeness

proofs from the previous section apply to logics with more than one (even
countably many) additional context rules.

6. The scope and limitations of the method

We have proved some general completeness results united by the same proof
method. Variations of the idea can produce similar results for other schemata.
of context rules, thus extending the scope of applicability of the method. We
shall not pursue that further here, but shall rather discuss the scope of the
oblained resulis by taking a closer lovk al the basic notions involved in their
formulations.

6.1, Stronger languages

The completeness results presented here hold for arbitrary (multi-) modal
languages (if applicable, extended with a universal modality). This gener-
ality is at the expense of imposing demanding semantic conditions on the
underlying logic L and the formulae occurring in the additional context rules,
as well as the form of these rules. As already noted, in richer languages the
rules can be essentially simplified. Moreover, as shown in [24], in a language
with (definable) difference modality an appropriate additional rule makes
the canonical general frames discrete, and therefore in such languages the
present results can be strengthened in the spirit of [24] to apply to all log-
ics axiomatized with formulae persistent with respect to all discrete frames.
These (as pointed out by the referee) obviously include all r-persistent logics,
as well as all tense Sahlqvist logics, as proved by Venema. In arbitrary lan-
guages, however, canonical general frames need not be discrete, hence there
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is no obvious relaxation of the requirement for r-persistence, and therefore
the results in [24] are generally incomparable with the present results. (We
leave aside the fact that the rule schemata considered here are more gen-
eral than Venema’s non-¢ rules, since the latter results can be accordingly
extended to cover our schemata.)

6.2. R-persistent vs. Sahlqgvist logics

The semantic conditions imposed in the present results are sufficient but,
in general, unlikely to be necessary (and certainly not in strong enough
languages, as noted above). Alternatively, they can be possibly replaced by
appropriate syntactic conditions of the type of Sahlqvist formulae. In that
respect it is interesting to note that, at least in classical modal language,
the scts of r-persistent and Sahlqvist formulae are not comparable. To see
that, on one hand we have the formula ¢Op — OOp (defining Church-
Rosser’s property) which is of Sahlqvist type but not r-persistent. On the
other hand, there are r-persistent {even locally r-persistent) formulae which
are not (likely to be equivalent to ones) of Sahlqvist type. (Of course, since
Sahlgvist type formulae are defined purely syntactically and have no exact
semantic characterization, it is not quite clear how a negative result like that
can be proved.) As an example, let us consider the logic Ly ; determined by
the class of frames satisfying the following two properties: every state in the
frame

(i) has at most two successors;
(i) has at least one successor which has at most one successor.

That logic can be axiomatized by the (Sahlgvist) formula Alty: (Op1AOp2A
Ops3) = (Clp1 Ap2) V O(p1 Apa) V Ope Apz)) added to McKinsey’s formula
O<¢p — <Op (alternatively, the formula O(Cp; ACpy) = OO(p1Aps) can be
used; note that both alternatives are not of Sahlqvist type). It is a standard
exercise to show that these indeed characterize Lo;. Moreover, it is easy
to check that the conditions (i) and (ii) hold at every state in every refined
frame which satisfies both formulae at that state. Thus, Ly is locally r-
persistent without being of Sahlqvist type.

6.3. More on r-persistent formulae and logics

A better way to outline the scope of the obtained results is to look for more
precise description of the notions of refined frames, (locally} r-persistent
formulae, (locally) definable properties. Some results were mentioned in
the preliminary section, but no systematic study has been done so far. In
this paper we just initiate such a study by underlining its relevance to the
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completeness theory in modal logic and by mentioning below some easy
observations and (counter)examples following from results available in the
cxisting litcrature,

PROPOSITION 6.1. Let ¢ and v be (locally) r-persistent modal formulae.
Then:

1. ¢ A+ is (locally) r-persistent;
2. of ¢ and o) share no woriables then £V #p is repersistent (resp. ¢\ o
is locally r-persistent).

3. O¢ is (locally) r-persistent.

PROOF. The only less trivial case is to prove that O preserves r-persistence.
(For local r-persistence that is quite easy.) Let F = (F,P) be a refined
frame, 7 F [¢, u € F, and Ruw. We have to show that F F ¢[w]. Let
Fy be the general subframe of F generated by w. Then F,, is refined and
every state in F., is an R-successor, hence F,, F ¢. Therefore F, E ¢ where
F, is the underlying Kripke frame for F,,. In particular, F,, F ¢[w], hence
FF ¢w]. a

NOTE. It is easy to see that the negation and the implication do not preserve
(local) r-persistence. Neither does ©. Example: the formula ¢ = O~pV Cip
15 easily seen to be (locally) r-persistent, and <¢ is equivalent to McKin-
sey’s formula OCp — OOp which is not elementary, hence not (locally)
r-persistent. . ]

Of course, the proposition above is by no means an attempt to provide a
comprehensive syntactic description of (local) r-persistence. These notions
are still awaiting their “Sahlqvist theorem”.

PROPOSITION 6.2. Every locally rpersistent modal formula is locally first-
order definable.

Proor. Due to Theotem 8.7 from [1], it is sufficient to prove that ¢ is
locally preserved under ultrapowers, i.c. if F F ¢lw;] for all 4 € T and D
is an ultrafilter on I then [[p F k ¢[w/D], where w(i} = w;, for each
i & I. Indeed, the ultrapower [|;(#,2") of the full general frame (F,2")
is a discrete, hence refined general frame and [],(F,2%) E ¢[w/D] (sec
Theorem 4.12 in [1]}. =

Note that Church-Rosser formula ©Op — OOp is locally first-order de-
finable hy Yy¥z(Ray A Rxz — 3t(Ryt A Rzt)) but not locally r-persistent,
50 the converse of the previous statement does not hold.
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COROLLARY 6.3. Not every r-persistent modal formula is locally r-persistent.

ProOF. The formula v = O0COOp - O<COCOp has been proved in [1, The-
orem 7.1] to be first-order definable by the formula o = Vz3yRzy, but not
locally first-order definable, and hence, by Propoposition 6.2 not locally r-
persistent. Ilowever, y is r-persistent: if {W, I, V, P} E v where V{p) — W
then it easily follows that (W, R) F . ]

Finally, a semi-formal sufficient condition for r-persistence is described
below.

DEFINITION. A frame F = (Wpg, Rp) is isomorphically embeddable into
a frame G = (Wg, Rg) if there is an injective mapping h: Wp — Wg
satisfying the condition: for every =,y € Wr,

RF.’L‘y iff Rch(w)h(y) .

Many important modally definable frame conditions, such as reflexivity,
symmetry, transitivity, linearity, Alt,, etc., are expressible in terms of nen-
embeddability of certain finite frames into any frame satisfying the condition.
For instance, a frame G is linear if the frame ({z, ¥}, #) is not isomorphically
embeddable into G; G is transitive if the frame ({z,v, 2}, {{z,v), (v, 2)}) is
not embeddable into G, etc. For the related concept of sketch-omission and
logics determined in terms of it see [14].

Let us observe that if a modal formula € determines the “F non-embedda-
bility” property for some finite frame F then it is r-persistent. Indeed, if some
valuation V on a frame G falsifies the formula 8, i.e. enforces the existence of
a subframe F' (not necessarily generated) of G, isomorphic to F, then any
other valuation of the variables of & which coincides with V on ' would do
the same. Then, in every refined frame G hased on (7 an admissible valuation
with that property can be found , i.e. & would be refuted in G.

A similar criterion for local r-persistence can be formulated.

6.4. A note on frame conditions defined
and axiomatized by context rules

It is clear that context rules can axiomatize frame conditions which are
beyond the expressiveness of the modal language. Furthermore, it is easy to
give meaningful examples of frame conditions not expressible by Venema’s
non-£ rules but expressible by means of a context rule. For instance, the
property All reflexive states are end poinis, expressible by the first order
formula Vz(Rzxz — Vy(Razy — z = y)) which falls within the scope of
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Theorem 8, is axiomatizable above any r-persistent logic by means of the

rule
u(Cp — p)

u(p — Op)
operating in the context p where u is any universal form not containing p.

Furthermore, Theorem 19 gives a general method to axiomatize over any
r-persistent logic the complement of any class of frames definable by means
of a modal formula.

In the light of the completeness results discussed here, the following prob-
lem of characterizing modal definability by means of context rules naturally
arises. We say that the context rule = operating in the context of variables
P1s---,Pk 18 valid in a frame F if for every state s € F and every substitu-
tion o indifferent to p1,...,pk, if o(¢} is valid at the state s in F then a(n)
is valid at s in . The notion of a class of frames definable by a context
rule, or a set of context rules, is accordingly introduced. In the case of non-£
rules, this is the notion of negative definability introduced in [24]. A study of
negative definability has been initiated in [12] where some model-theoretic
characterizations in the spirit of Goldblatt and Thomason’s classical results
on modal definability of classes of frames have been obtained. The defin-
ability by means of context rules extends both the usual modal definability
and the negative definability. Note that the classes of frames axiomatized
in section 4 are precisely those defined by the respective rules relatively to
the class of frames of the underlying logic. Therefore, characterizations of
dcfinability with context rules could shed additional light on the scope of
applicability of the method of axiomatization with such rules.

7. Some open problems and avenues for further research

e The thinned out canonical frames constructed in the completencss proofs
above are special types of refined frames. Therefore, a further study of
(perhaps an appropriate refinement) of the notion of refined frame is
justified from the view point of completeness theory.

e The verification of (local) r-persistence is not always an easy task. There-
fore, mare precise descriptions and good sufficient conditions (syntactic,
as well as semantic) for (local) r-persistence are desirable. In particular,
which Sahlqvist formulae are (locally) r-persistent? And, is there and up-
per bound for the arithmetic hierarchy complexity of (locally) r-persistent
formulae? (A positive answer has been suggested by M. Kracht).

s Likewise, hefter descriptions of (locally) modally definable frame prop-
erties are desirable.
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e Finally, the idea of using semantically motivated additional rules of in-
ference for axiomatizations in non-classical logics has so far been only
marginally exploited. It is still awaiting systcmatic cxploration.

8. Concluding remarks

Based on the results in the paper we argue that context rules are useful
for the construction of complete axiomatizations in quite general situation.
What is largely unknown, however, is to what extent those rules are really
necessary. In some cases they are well-known to be redundant, i.e. Gabbay’s
irreflexivity rule added to K or K4 produces no new theorems. In other
cases they are not; examples are given e.g. in [6, 24]. However, these are
narrow margins surrounding the large grey area of logics axiomatized with
the help of context rules for the sake of proving completeness, while it is not
known if those rules can be omitted or replaced by finitely many additional
axioms. The only general results in that respeet scem to be that a context
rule can be replaced by a recursive set of axioms (due to its finitary nature).

Finally, contrary to a popular (though unjustified) belief, context rules
are tractable as derivation rules (see some examples of derivations in [11}).
However, (according to my knowledge) no successful attempts to develop
really convenient and efficient proof systems like semantic tableaux for sys-
tems involving context rules have been made so far, and this seems to be a
challenge worth exploring.
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