
Optimal Decision Procedures for Satisfiability in
Fragments of Alternating-time Temporal Logics

Valentin Gorankoa,b Steen Vestera 1

aDepartment of Applied Mathematics and Computer Science
Technical University of Denmark

bDepartment of Mathematics, University of Johannesburg

Abstract

We consider several natural fragments of the alternating-time temporal logics ATL*
and ATL with restrictions on the nesting between temporal operators and strate-
gic quantifiers. We develop optimal decision procedures for satisfiability in these
fragments, showing that they have much lower complexities than the full languages.
In particular, we prove that the satisfiability problem for state formulae in the full
‘strategically flat’ fragment of ATL* is PSPACE-complete, whereas the satisfiability
problems in the flat fragments of ATL and ATL+ are ΣP

3 -complete. We note that the
nesting hierarchies for fragments of ATL* collapse in terms of expressiveness above
nesting depth 1, hence our results cover all such fragments with lower complexities.

Keywords: satisfiability, decision procedures, alternating-time temporal logics, flat
fragments, complexity.

1 Introduction

The Alternating-time temporal logic ATL∗ was introduced and studied in [2] as
a multi-agent extension of the branching time temporal logic CTL∗, applied for
specification and verification of properties of open systems. The most natural
semantics for ATL∗ is defined in multi-agent transition systems, also known
as concurrent game models, in which all agents take simultaneous actions at
the current state and the resulting collective action effects the state transition.
The language of ATL∗ involves expressions of the type 〈〈C〉〉Φ meaning that the
coalition of agents C has a collective strategy to guarantee – no matter how the
other agents choose to act – achieving the goal Φ on all plays (computations)
enabled by that collective strategy. The logic ATL∗ and its fragment ATL
(analogous to CTL) have gradually become one of the most popular logical
formalisms for reasoning about multi-agent systems, studied extensively during
the past 10 years both from a logical and computational perspective.

While found to be quite useful and natural, however, the logic ATL∗, and
even its fragment ATL, turned out to have some problematic semantic features

1 Emails: vfgo@dtu.dk, stve@dtu.dk

Goranko and Vester 235

related to the nesting of strategic quantifiers 〈〈·〉〉, including:

• Conceptual difficulty in understanding the very meaning of nested expres-
sions of the type 〈〈A〉〉 . . . 〈〈B〉〉Φ, especially, when the coalitions A and B share
common agents. For instance, what exactly should 〈〈A〉〉¬〈〈A〉〉Φ mean?

• This problem is related to a technical problem built in the semantics of ATL∗,
where e.g., in the truth evaluation of a formula of the type 〈〈A〉〉 . . . 〈〈B〉〉Φ the
strategy for A adopted to guarantee the success of the goal . . . 〈〈B〉〉Φ does
not have any effect when evaluating the truth of the subgoal 〈〈B〉〉Φ, which,
arguably, goes against the intuitive understanding of what a strategy and its
execution mean. Such problems have lead to several proposals of alternative
semantics for ATL∗, with irrevocable commitment to strategies [1] or with
strategy contexts, explicitly controllable within the formulae [3]. The latter
comes at a high price, resulting in an undecidable satisfiability problem [15].

• The meaning of ATL∗ formulae with nested strategic quantifiers is sensitive
to the ability and capacity of the agents to use memory in their strategies,
leading to essential variations of the semantics [4].

• The complexity of the full ATL∗ is very high: 2EXPTIME-complete for both
the model checking [2] and the satisfiability testing [12] problems.

• These problems are amplified when incomplete information is assumed. Then
the basic temporal operators can no longer be naturally (if at all) character-
ized as fixed points of suitable operators, the semantics becomes truly non-
computational and even model checking of ATL becomes undecidable [2].

So, there are several good reasons to consider flat fragments of ATL∗, where
nesting of strategic quantifiers and temporal operators is restricted or com-
pletely disallowed, thus avoiding the problems listed above at the cost of re-
duced expressiveness. There are two natural kinds of ‘flatness’ in the language
of ATL∗: with respect to the temporal operators and with respect to strategic
quantifiers. The former comes naturally from purely temporal logics and has
been investigated before, see e.g., [9], [5], and [13] from a more general, coalge-
braic perspective. Here we will mainly consider the latter type of flatness.

The objective of the present paper is to develop optimal algorithmic meth-
ods for solving the satisfiability problem for the variety of naturally definable
flat fragments of ATL∗ and to analyze their computational complexity. Our
main results and the contributions of this paper are as follows:

(i) The algorithmic problem of satisfiability testing in the full fragment of
ATL∗ where nesting between strategic quantifiers is not allowed (but tem-
poral operators can be nested in strategic quantifiers and between each
other) is PSPACE-complete, in contrast to the 2EXPTIME-completeness
of satisfiability in the full ATL∗.

(ii) The algorithmic problem of satisfiability testing in the flat fragments of
ATL and ATL+, where only nesting of temporal operators in the scope
of strategic quantifiers is allowed, are ΣP3 -complete, in contrast to the

236 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

2EXPTIME-completeness of that problem in the full ATL+ (as subsuming
CTL+, see [10]) and its EXPTIME-completeness in the full ATL [8].

The structure of the paper is as follows: In Section 2 we summarize basics
of the logics LTL, CTL and CTL∗ as well as concurrent game models and the
alternating-time temporal logics ATL, ATL+ and ATL∗. In Section 3 we intro-
duce various flat fragments of ATL∗ and discuss their expressiveness. Section
4 contains the technical preparation for our algorithms, where we introduce
some kinds of normal forms for ATL∗ formulae and obtain some key technical
results. In Section 5 we provide sound and complete decision procedures as
well as matching lower bounds for the flat fragments of ATL∗ considered in the
paper. We end with brief concluding remarks in Section 6.

2 Preliminaries

2.1 Summary of LTL, CTL, CTL∗ and their flat fragments

We assume that the reader is familiar with the temporal logics LTL, CTL and
CTL∗. A standard reference is e.g., [6].

Given a set of atomic propositions Prop, the set of literals over Prop is
Prop∪{¬p | p ∈ Prop}. We assume that the primitive temporal operators in LTL
and CTL∗ are X (“at the next state”) and U (“Until”), whereas F (“sometime
in the future”), R (“Release”), and G (“always in the future”) are definable
as follows: Fϕ := >Uϕ, ψ Rϕ := ¬((¬ψ)U (¬ϕ)), Gϕ := ⊥Rϕ. Respectively,
the primitive temporal operators in CTL are AX , AU and AR , whereas the
rest are definable as follows: EXϕ := ¬AX¬ϕ, E(ψUϕ) := ¬A((¬ψ)R (¬ϕ)),
E(ψ Rϕ) := ¬A((¬ψ)U (¬ϕ)), AFϕ := A(>Uϕ), AGϕ := A(⊥Rϕ), EFϕ :=
E(>Uϕ), EGϕ := E(⊥Rϕ).

The following LTL-equivalences characterize U and R as fixed points, where
the formulae on the right hand side are called the fixed point unfoldings respec-
tively of θU η and θ R η (see e.g., [14], [6]):

θU η ≡ η ∨ (θ ∧ X (θU η)), θ R η ≡ η ∧ (θ ∨ X (θ R η)).

We define the flat fragments LTL1, CTL1 and CTL∗1 resp. as subsets of LTL,
CTL and CTL∗. In LTL1 no nesting of temporal operators is allowed, in CTL∗1
no nesting of path quantifiers is allowed and in CTL1 neither is allowed. They
are generating as follows, where β is a Boolean formula and θ is an LTL formula:

LTL1: θ ::= p | ¬θ | θ ∧ θ | Xβ | β Uβ;
CTL∗1 : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Aθ.
CTL1: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | AXβ | A(β Uβ) | A(β Rβ).

For instance:

• pU q ∧ X (r ∧ (q ∧ ¬p)) is in LTL1 but pU (X q) is not.

• A(¬pU (p ∧ ¬q)) ∧ ¬(EF (q ∧ ¬p) ∧ ¬AF¬(p ∧ q)) is in CTL1 (and in CTL∗1).

• AGF p is in CTL∗1 but not in CTL1; AGEF p is neither in CTL1 nor in CTL∗1 .

Goranko and Vester 237

2.2 Concurrent game models. The logic ATL* and fragments

A concurrent game model [2] (CGM) is a tuple
M = (A,St, {Acta}a∈A, {acta}a∈A, out,Prop, L) comprising:

• a finite, non-empty set of players (agents) A = {1, . . . , k}
• a set of actions Acta 6= ∅ for each a ∈ A. For any A ⊆ A we denote ActA :=∏

a∈A Acta and use αA to denote a tuple from ActA. In particular, ActA is
the set of all possible action profiles in M.

• a non-empty set of states St,
• for each a ∈ A, a map acta : St → P(Acta) \ {∅} setting for each state s the

actions available to a at s,
• a transition function out : St × ActA → St that assigns deterministically

a successor (outcome) state out(s,αA) to every state s and action profile
αA = 〈α1, . . . , αk〉, provided that αa ∈ acta(s) for every a ∈ A (i.e., every αa

that can be executed by player a in state s),
• a finite set of atomic propositions Prop and a labelling L : St→ P(Prop).

Concurrent game models represent multi-agent transition systems that func-
tion as follows: at any moment the system is in a given state, where each player
select an action from those available to him at that state. All players execute
their actions synchronously and the combination of these actions together with
the current state determine a transition to a unique successor state in the
model. A play in a CGM is an infinite sequence of such subsequent successor
states. More formally, a play is an infinite sequence s0s1... ∈ Stω of states such
that for each i ≥ 0 there exists an action profile αA = 〈α1, . . . , αk〉 such that
out(si,αA) = si+1. A history is a finite initial segment s0s1...s` of a play. We
denote by PlayM and HistM respectively the set of plays and set of histories
in M. For a state s ∈ St we define PlayM(s) and HistM(s) as the set of plays
and set of histories with initial state s. For a sequence ρ of states ρ0 is the
initial state, ρi is the (i+ 1)th state, ρ≤i is the prefix ρ0...ρi of ρ and ρ≥i is the
suffix ρiρi+1... of ρ. When ρ = ρ0...ρ` is finite, we say that it has length ` and
write |ρ| = `. Further, we let last(ρ) = ρ`.

A strategy for a player a inM is a mapping σa : HistM → Acta such that for
all h ∈ HistM we have σa(h) ∈ acta(last(h)). Intuitively, it assigns a legal action
for player a after any history h of the game. If that action depends only only on
the current state, the strategy is called memoryless. We denote by StratM(a)
the set of strategies of player a. A (collective) strategy of a coalition C ⊆ A is a
tuple (αa)a∈C of strategies, one for each player in C. When C = A this is called
a strategy profile. We denote by StratM(C) the set of collective strategies of
coalition C. A play ρ ∈ PlayM is consistent with a strategy σC ∈ StratM(C)
if for every i ≥ 0 there exists an action profile αA = 〈α1, . . . , αk〉 such that
out(ρi,αA) = ρi+1 and αa = σa(ρ≤i) for all a ∈ C. The set of plays with initial
state s that are consistent with σC is denoted PlayM(s, σC). In particular, we
define PlayM(s, σa) = PlayM(s, σ{a}) for any player a.

The Alternating-time temporal logic ATL∗, introduced in [2], is a logic,
suitable for specifying and verifying qualitative objectives of players and coali-

238 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

tions in concurrent game models. The main syntactic construct of ATL∗ is a
formula of type 〈〈C〉〉Φ, intuitively meaning: “The coalition C has a collective
strategy to guarantee the satisfaction of the objective Φ on every play enabled
by that strategy.” Formally, ATL∗ is a multi-agent extension of the branching
time logic CTL∗ with strategic quantifiers 〈〈C〉〉 indexed with sets (coalitions)
C of players. There are two types of formulae in ATL∗, state formulae, that are
evaluated at states, and path formulae, that are evaluated on plays. These are
defined by mutual recursion as follows, where C ⊆ A, p ∈ Prop:

State formulae of ATL∗: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈C〉〉Φ,
Path formulae of ATL∗: Φ ::= ϕ | ¬Φ | Φ ∧ Φ | XΦ | ΦUΦ | ΦRΦ.

All other Boolean connectives are defined as usual, and the temporal opera-
tors F and G are defined as in CTL∗, which can be regarded as the fragment of
ATL∗ only involving strategic quantifiers for the empty coalition 〈〈∅〉〉, identified
with universal path quantifier A, and for the “grand coalition” of all players
〈〈A〉〉, identified with existential path quantifier E. Equivalently, by identifying
all agents, CTL∗ can be regarded as the 1-agent fragment of ATL∗. To keep the
notation lighter, we will list the members of C in 〈〈C〉〉 without using {}.

The fragment ATL+ of ATL∗ is obtained when the temporal operators may
only be applied to state formulae, i.e. when path formulae are re-defined as

Path formulae of ATL+: Φ ::= ϕ | ¬Φ | Φ ∧ Φ | Xϕ | ϕUϕ | ϕRϕ

Another, technically simpler and computationally better behaved fragment
of ATL∗, is the logic ATL, which is the multi-agent analogue of CTL, only
involving state formulae defined as follows, for any C ⊆ A, p ∈ Prop:

Formulae of ATL: ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈〈C〉〉Xϕ | 〈〈C〉〉(ϕUϕ) | 〈〈C〉〉(ϕRϕ)

The combined operators 〈〈C〉〉Fϕ and 〈〈C〉〉Gϕ are defined respectively as
〈〈C〉〉>Uϕ and 〈〈C〉〉⊥Rϕ.

The semantics of ATL∗ is given with respect to a concurrent game model
M = (A,St, {Acta}a∈A, {acta}a∈A, out,Prop, L). The semantics of state formu-
lae is given in terms of truth at a state s in M, as follows, where p ∈ Prop, ϕ1

and ϕ2 are state formulae, Φ is a path formula and C ⊆ A:

M, s |= p if p ∈ L(s)
M, s |= ¬ϕ1 if M, s 6|= ϕ1

M, s |= ϕ1 ∧ ϕ2 if M, s |= ϕ1 and M, s |= ϕ2

M, s |= 〈〈C〉〉Φ if there exist a collective strategy σC ∈ StratM(C),
such that M, ρ |= Φ for all ρ ∈ PlayM(s, σC)

The semantics of path formulae is given just like in LTL, in terms of truth
on a path ρ in a CGM M, as follows, where ϕ is a state formula, Φ1 and Φ2

are path formulae and C ⊆ A:

Goranko and Vester 239

M, ρ |= ϕ if M, ρ0 |= ϕ
M, ρ |= ¬Φ1 if M, ρ 6|= Φ1

M, ρ |= Φ1 ∧ Φ2 if M, ρ |= Φ1 and M, ρ |= Φ2

M, ρ |= XΦ1 if M, ρ≥1 |= Φ1

M, ρ |= Φ1 UΦ2 if ∃k.M, ρ≥k |= Φ2 and ∀j < k.M, ρ≥j |= Φ1

M, ρ |= Φ1 RΦ2 if ∀k.M, ρ≥k |= Φ2 or
∃k.M, ρ≥k |= Φ1 and ∀j ≤ k.M, ρ≥j |= Φ1

We focus on the satisfiability problem for various fragments of ATL∗ in this
paper. We will distinguish between the state satisfiability and path satisfiability
problems which are defined on a given fragment L of ATL∗ as follows:

• Given a state formula ϕ in L, does there exist a CGM M and a state s in
M such that M, s |= ϕ?

• Given a path formula Φ in L, does there exist a CGMM and a play ρ inM
such that M, ρ |= Φ?

Note that there are two variants of the satisfiability problem for formulae of
ATL∗: tight, where it is assumed that all agents in the model are mentioned in
the formula, and loose, where additional agents, not mentioned in the formula,
are allowed in the model. It is easy to see that these variants are really different,
but the latter one is immediately reducible to the former, by adding just one
extra agent a to the language. Furthermore, this extra agent can be easily
added superfluously to the formula, e.g., by adding a conjunct 〈〈a〉〉X>, so we
hereafter only consider the tight satisfiability version. For further details and
discussion on this issue, see e.g., [7,17].

We recall some important complexity results for the satisfiability problem:
satisfiability in ATL is EXPTIME-complete [16,8], while satisfiability in ATL∗

is 2EXPTIME-complete [12]. Since ATL+ subsumes CTL+, the satisfiability
in which is also 2EXPTIME-complete [10], this is the optimal complexity for
the satisfiability in ATL+, too. All these results equally hold for satisfiability
in concurrent game models and in alternating transition systems [2], as both
semantics are equivalent (see e.g., [8]).

3 Flat fragments of ATL and ATL∗

Here we define some flat fragments of ATL∗ and ATL. Flatness generally means
no nesting of non-Boolean operators. There are two natural notions of flatness
in the languages of ATL and ATL∗: with respect to temporal operators and
with respect to strategic quantifiers. We will be mostly concerned with the
latter, but the former applies in the case of ATL, too.

We adopt the following notational conventions: we will typically denote
Boolean formulae by β, γ; LTL formulae by θ, η, ζ; ATL formulae by ϕ,ψ; and
ATL∗ formulae – both state and path – by Θ,Φ,Ψ; all possibly with indices.

3.1 A hierarchy of flat fragments of ATL∗

We will consider the following fragments of ATL∗, where p is any atomic propo-
sition, C ⊆ A, β is any Boolean formula and θ is any LTL formula:

240 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

(i) Separated ATL∗, denoted ATL∗Sep, consists of those formulae of ATL∗ in
which there is no nesting of strategic quantifiers in the scope of temporal
operators (but, any nesting of temporal operators within strategic quanti-
fiers or temporal operators is allowed), so the (external) strategic and the
(internal) temporal layers are separated. More precisely, the formulae of
ATL∗Sep are generated as follows:

Φ ::= θ | ¬Φ | (Φ ∧ Φ) | 〈〈C〉〉Φ

(ii) Full (strategically) flat ATL∗, denoted ATL∗1 , consists of those formulae
of ATL∗ in which there is no nesting of strategic quantifiers within strategic
quantifiers (but, nesting of strategic quantifiers and temporal operators in
temporal operators is allowed), formally generated as follows:

Φ ::= p | ¬Φ | (Φ ∧ Φ) | 〈〈C〉〉θ | XΦ | ΦUΦ | ΦRΦ

If the restriction C 6= ∅ is imposed, we denote the resulting fragment ÂTL∗1 .

(iii) State fragment of ATL∗1, denoted St(ATL∗1), consists of the state formu-
lae of ATL∗1 , i.e. those formulae of ATL∗ in which there is no nesting of
strategic quantifiers in either temporal operators or strategic quantifiers
(but, nesting between temporal operators is allowed). The formulae of
St(ATL∗1) are explicitly generated as follows:

Φ ::= p | ¬Φ | (Φ ∧ Φ) | 〈〈C〉〉θ.

(iv) Flat ATL+ (or, double-flat ATL∗), denoted ATL+
1 , consists of those for-

mulae of ATL+ which are also in St(ATL∗1), e.g., with no nesting of either
strategic quantifiers or temporal operators within temporal operators. The
formulae of ATL+

1 are generated as follows, where θ ∈ LTL1:

Φ ::= p | ¬Φ | (Φ ∧ Φ) | 〈〈C〉〉θ

(v) Flat ATL, denoted ATL1, consists of those formulae of ATL+
1 which are

in ATL, i.e., in which strategic quantifiers are followed immediately by
temporal operators. The formulae of ATL1 are generated as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉Xβ | 〈〈C〉〉(β Uβ) | 〈〈C〉〉(β Rβ)

Inclusions between the different flat fragments are illustrated in Figure 1.
All inclusions shown in the figure are strict and there are no inclusions except
the ones shown (where transitive closure is implicit). For example:

• (〈〈1〉〉G¬p ∧ ¬〈〈2〉〉X (p ∨ ¬q)) ∨ 〈〈1, 2〉〉(pU¬q) is in ATL1;

• 〈〈1〉〉(G¬p ∧ F q), ¬〈〈1, 2〉〉((pR¬q) ∨ (¬pU q)) are in ATL+
1 but not in ATL1;

• 〈〈1〉〉(GF¬p ∨ X¬(pU¬q)) is in St(ATL∗1) but not ATL+
1 ;

• G 〈〈1, 2〉〉F (¬p ∨ q) is in ÂTL∗1 but not in St(ATL∗1);

Goranko and Vester 241

CTL1

ATL1

CTL+
1

LTL1

ATL+
1 ÂTL∗1

CTL∗1

St(ATL∗1) ATL∗1 ATL∗Sep

Fig. 1. Inclusions between flat fragments. An arrow from L1 to L2 means that every
L1 formula is an L2 formula.

• 〈〈∅〉〉G p ∧ G 〈〈1, 2〉〉GF¬p is in ATL∗1 but not in ÂTL∗1 ;

• 〈〈2〉〉〈〈1〉〉¬(pU¬q) is in ATL∗Sep but not in ATL∗1 .

Even though ATL∗1 is included in ATL∗Sep they have the same expressive
power and there is an efficient translation from ATL∗Sep to ATL∗1 .

Proposition 3.1 Every formula of ATL∗Sep is logically equivalent to a formula
of ATL∗Sep which is at most as long and has no nesting of strategic quantifiers.
Such a formula is effectively computable in linear time.

Proof. Because 〈〈C〉〉Φ ≡ Φ for every state formula Φ and coalition C. 2

Thus, deciding satisfiablity in ATL∗Sep is reducible with no cost to satisfiablity
in St(ATL∗1), so we will not discuss ATL∗Sep hereafter. On the other hand, due
to the equivalence above, the fragment ATL∗1 can be extended even further by
allowing nesting of strategic quantifiers, as long as there are no occurrences of
temporal operators in between them. The equivalence of 〈〈C〉〉Φ and Φ for state
formulae Φ is an example of why nesting of strategic quantifiers in ATL∗ can
be considered unnatural. We note that this phenomenon is avoided in ATL∗

with strategy context [3].
Between the full logics and their flat fragments, it is natural to consider the

hierarchies of fragments with a bounded nesting depth of strategic quantifiers.
However, the next result shows that the fragments with nesting depth 2 are
essentially as expressive and computationally hard as the full logics.

Proposition 3.2 For any logic L ∈ {LTL,CTL,CTL+,CTL∗,ATL,ATL+,ATL∗}
and formula Φ of L there is an equi-satisfiable formula Φ′ in L with nesting
depth 2 of strategic quantifiers (resp., temporal operators for LTL) and length
|Φ′| = O(|Φ|) that can be computed in linear time.

Proof. In each of the cases, the flattening is done by repeated renaming of
state subformulae with fresh atomic propositions. We illustrate the technique
on ATL∗. Let Φ be an ATL∗ formula. For any innermost subformula Ψ of
Φ beginning with a strategic quantifier we introduce a fresh atomic proposi-
tion pΨ. Then Φ and Φ′ = Φ[pΨ/Ψ] ∧ AG (pΨ ↔ Ψ) are equi-satisfiable. By
repeated application of such renaming of strategically quantified subformu-
lae we obtain an equi-satisfiable formula of nesting depth 2 that is linear in

242 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

the size of Φ. Since AG (pΨ ↔ Ψ) is a CTL formula, this works for each logic
L ∈ {CTL,CTL+,CTL∗,ATL,ATL+,ATL∗}, while for LTL we use G (pΨ ↔ Ψ).2

Thus, the only complexity gain in restricting syntactic fragments of these
logics with respect to nesting can occur when flat fragments are considered.

3.2 Some remarks on the expressiveness of the flat ATL∗-fragments

The lower complexity of the satisfiability in the flat fragments of ATL∗ comes
with a price, namely that various properties that require nesting of strate-
gic quantifiers cannot be expressed anymore. However, many interesting and
important properties of systems are still expressibe. For instance:

• 〈〈ctrl〉〉G¬break in ATL1 specifies that a controller can make sure the system
does not break no matter how the environment behaves,

•
∧n
i=1〈〈proci〉〉GF db accessi expresses that each process can ensure database

access infinitely often,

• 〈〈A〉〉(θfair → θ) means that coalition A can make sure that the LTL property
θ is satisfied on all fair paths (where fairness is defined by LTL formula θfair).

The semantics of ATL∗ is based on unbounded memory strategies, but it can
be restricted and parameterized with the amount of memory that the proponent
agents’ strategies can use. The extreme case is the memoryless semantics,
where the proponents may only use memoryless strategies. It turns out that
satisfiability in ATL, is unaffected by such restrictions, but differences occur in
ATL∗ and even in ATL+. For discussion on these see e.g., [4]. In contrast, using
our satisfiability decision procedures developed in Section 5, we will show that
all semantics based on different memory restrictions yield the same satisfiable
(resp., the same valid) formulae in the flat fragment ATL∗1 .

4 Normal forms and satisfiability of special sets in ATL∗

4.1 Negation normal form of ATL∗ formulae

Definition 4.1 An ATL∗ formula Φ is in a negation normal form (NNF) if
negations in Φ may only occur immediately in front of atomic propositions.

We now define the dual [[·]] to the strategic quantifier 〈〈·〉〉 as usual:
[[C]] ::= ¬〈〈C〉〉¬. If we consider [[·]] as a primitive operator in ATL∗, then
every ATL∗ formula can be transformed to an equivalent formula in NNF
by driving all negations inwards, using the self-duality of X and the duality
between U and R . However, using [[·]] formally breaks the syntax of the
fragments ATL and ATL1 because of inserting a ¬ between 〈〈·〉〉 and the tem-
poral operator. Yet, this can be easily fixed by equivalently re-defining the
applications of [[·]], using the following equivalences: [[C]]Xϕ ≡ ¬〈〈C〉〉X¬ϕ,
[[C]](ϕUψ) ≡ ¬〈〈C〉〉((¬ϕ)R (¬ψ)), [[C]](ϕRψ) ≡ ¬〈〈C〉〉((¬ϕ)U (¬ψ)).

Hereafter we assume that the language ATL∗ and each of its fragments
introduced above are formally extended with the operator [[·]] applied just like
〈〈·〉〉 in the respective fragments. Due to the equivalences above, the resulting
extensions preserve the expressiveness of these fragments. Formally:

Goranko and Vester 243

Lemma 4.2 Every formula of ATL∗ extended with the operator [[·]] can be
transformed to an equivalent formula in NNF. Furthermore, each of the frag-
ments ATL, ATL1, ATL+

1 , St(ATL∗1) and ATL∗1, extended with [[·]], is closed
under this transformation, i.e. if a formula is in any of these fragments then
its NNF-equivalent formula is in that fragment, too.

4.2 Successor normal forms

Definition 4.3 [Successor formulae] An ATL∗ formula is a successor formula
(SF) if it is of the type 〈〈C〉〉XΦ or [[C]]XΦ.

Definition 4.4 [Components] With every set of ATL∗ successor formulae

Γ = {〈〈A0〉〉XΦ0, . . . , 〈〈Am−1〉〉XΦm−1, [[B0]]XΨ0, . . . , [[Bn−1]]XΨn−1}
we associate the set of its

• 〈〈·〉〉X -components: 〈〈·〉〉X (Γ) = {Φ0, . . . ,Φm−1},
• [[·]]X -components: [[·]]X (Γ) = {Ψ0, . . . ,Ψn−1},
• successor components: SC(Γ) = 〈〈·〉〉X (Γ) ∪ [[·]]X (Γ).

Definition 4.5 [Successor normal form]

(i) An LTL formula is in a LTL successor normal form (LSNF) if it is in NNF
and is a Boolean combination of literals and successor formulae, i.e., LTL
formulae beginning with X .

(ii) An ATL∗ formula is in a successor normal form (SNF) if it is in NNF and
is a Boolean combination of literals and ATL∗ successor formulae.

Lemma 4.6 Every LTL-formula ζ can be effectively transformed to an equiv-
alent formula in LTL successor normal form LSNF (ζ), of length at most 6|ζ|.
Proof. We can assume that ζ is already transformed to NNF (of length less
than twice the original length). Consider all maximal subformulae of ζ of the
types (θU η) and (θ R η). Replace each of them with its LTL-equivalent fixpoint
unfolding, respectively η∨ (θ∧X (θU η)) and η∧ (θ∨X (θ R η)). Then, the same
procedure is applied recursively to all respective subformulae θ, η occurring
above and not in the scope of X , until all occurrences of U and R get in the
scope of X . This procedure at most triples the length of the starting formula
and the result is clearly a formula in LSNF. 2

Definition 4.7 [Conjunctive formulae in SNF] An ATL∗ formula in SNF is
conjunctive if it is of the form

Θ = Φ∧〈〈A0〉〉XΦ0∧ . . .∧〈〈Am−1〉〉XΦm−1∧ [[B0]]XΨ0∧ . . .∧ [[Bn−1]]XΨn−1

With every such formula Θ we associate the set of its successor conjuncts:

C(Θ) = {〈〈A0〉〉XΦ0, . . . , 〈〈Am−1〉〉XΦm−1, [[B0]]XΨ0, . . . , [[Bn−1]]XΨn−1}

4.3 Sets of distributed control of ATL∗ formulae

Definition 4.8 [Set of distributed control] A set of ATL∗ formulae ∆ is a set
of distributed control if ∆ = {〈〈A0〉〉Φ0, . . . , 〈〈Am−1〉〉Φl−1, [[B]]Ψ} where the

244 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

coalitions A0, . . . , Al−1 are pairwise disjoint, and A0 ∪ . . . ∪Al−1 ⊆ B.

Lemma 4.9 A set of ATL∗ successor formulae

Γ = {〈〈A0〉〉XΦ0, . . . , 〈〈Am−1〉〉XΦm−1, [[B0]]XΨ0, . . . , [[Bn−1]]XΨn−1, [[A]]X>}

is satisfiable if and only if every subset of distributed control ∆ of Γ has a
satisfiable set of successor components.

Proof. First, note that the formula [[A]]X> is valid, so it plays no role in the
satisfiability of Γ; it is only added there in order to enable sufficiently many
subsets of distributed control.

Now, suppose Γ is true at a state s of a CGMM. Then for every subset of
distributed control ∆ = {〈〈A0〉〉XΦ0, . . . , 〈〈Al−1〉〉XΦl−1, [[B]]XΨ} consider col-
lective actions for the coalitions A0, . . . , Al−1 at s that guarantee satisfaction
of their respective nexttime objectives in ∆ in any of the resulting successor
states. Add arbitrarily fixed actions of the remaining agents in B and a re-
spective collective action for A \ B dependent on the so fixed actions of the
agents in B, that brings about satisfaction of Ψ in the resulting successor state
s′. Then all successor components of ∆ are true at s′.

Conversely, suppose that ∆1, . . . ,∆d are all subsets of Γ of distributed con-
trol and they are all satisfiable. For each ∆i we fix a CGM Mi and a state
si in it that satisfies SC(∆i). We can assume, w.l.o.g., that Mi is generated
from si, i.e. consists only of states reachable by plays starting at si.

We will construct a CGM satisfying Γ by using a construction from [8].
The idea is to first create a root state s and supply all agents with sufficiently
many actions at s in order to ensure the existence of all collective actions and
respective successor states necessary for satisfying the successor components of
Γ. We will show that it suffices to take care of the sets of successor components
of each subset of distributed control Γ and then will use the CGMs satisfying
these to complete the construction of the model satisfying Γ.

Now, the construction. Recall that |A| = k and let r = m+n (the numbers
of 〈〈·〉〉- and [[·]]-components in Γ). Each agent will have r available actions
{0, . . . , r − 1} at the root state s, hence {0, . . . , r − 1}k is the set of all possible
action profiles at s. The intuition is that every agent’s action at s is a choice of
that agent of a formula from Γ for the satisfaction of which the agent chooses
to act. For every such action profile σ we denote by N(σ) the set of agents
{i | σi ≥ m} and then we define the number neg(σ) to be the remainder of
[
∑
i∈N(σ)(σi−m)] modulo n. (The idea of this definition is that, once all agents

in any given proper subset of N(σ) choose their actions, the remaining agents
in N(σ) can act accordingly to yield any value of neg(σ) between 0 and n− 1
they wish, i.e., to set the ”collective action” of all agents in neg(σ) on any
[[·]]X -formula in Γ they choose.) Now, we consider the set

∆σ = {〈〈Aj〉〉XΦj | j < m and σi = j for all i ∈ Aj} ∪
{[[Bl]]XΨl | neg(σ) = l and A \Bl ⊆ N(σ)}

Note that ∆σ is a subset of Γ of distributed control if it contains a formula

Goranko and Vester 245

[[Bj]]XΨ, or else can be made a set of distributed control by adding [[A]]X>
to it. Indeed, all agents in a Aj choose j, so all coalitions Aj must be pairwise
disjoint. Besides, if [[Bl]]XΨl ∈ ∆σ then it is clearly a unique [[·]]-formula in
∆σ and no agents from any Aj ∈ ∆σ are in N(σ), hence Aj ⊆ Bl for each
〈〈Aj〉〉XΦj ∈ ∆σ. Thus, ∆σ is one of ∆1, . . . ,∆d, say ∆i. Then, we determine
the successor state out(s, σ) to be si. To complete the definition of the CGM,
at each successor state si of s we graft a copy of Mi.

We will show that the resulting CGM M satisfies Γ at s. Indeed, for every
〈〈Aj〉〉XΦj ∈ Γ a collective strategy for Aj that guarantees the satisfaction of
that formula at s consists in all agents from Aj acting j at s, following their
strategy that guarantees in Mi the satisfaction of the objective Φj if the play
enters the copy of Mi, and acting in an arbitrarily fixed manner at all other
states of M. (Note that, if the strategy for Aj in Mi is positional, then the
above described strategy is positional, too.) Lastly, every [[Bl]]XΨl ∈ Γ is
true at s, too, because if Bl 6= A then for every collective action of all agents
from [[Bl]]X there is a suitable complementary action of A\Bl, where all agents
choose actions greater than m and such that neg(σ) adds up to l modulo n. (In
fact, this can be guaranteed by any agent in A \Bl after all others have chosen
their actions.) In the case when Bl = A, every subset {〈〈Aj〉〉XΦj , [[Bl]]XΨl}
for j < m is of distributed control, hence Ψl is true at the root si of Mi for
each i = 1, ..., d. Thus, M, s |= Γ, which completes the proof. 2

A consequence of the proof above is that memoryless and memory-based
semantics yield the same satisfiable state formulae in the flat fragments.

Corollary 4.10 A St(ATL∗1) formula Φ is satisfiable in the memoryless se-
mantics if and only if it is satisfiable in the memory-based semantics.

Proof. Lemma 4.9 can be proved for memoryless semantics in the same way,
but only for St(ATL∗1) formulae. This is because the successor components
are LTL formulae which have the same semantics with and without memory.
Further, for both semantics each subformula 〈〈A〉〉θ or [[A]]θ of Φ with a strategic
quantifier as main connective can be converted to SNF by converting θ to LSNF
using Lemma 4.6. Then, we can use the memoryless and memory-based version
of Lemma 4.9 and obtain that Φ is satisfiable in the memory-based semantics
if and only if it is satisfiable in the memoryless semantics since the satisfiable
sets of successor components are the same for the two types of semantics. 2

5 Optimal decision procedures for satisfiability in
fragments of ATL∗1

5.1 Centipede models. Satisfiability in LTL1, CTL1 and CTL+
1

Satisfiability of LTL1 is analyzed in [5]. In particular, it is shown that if an LTL1
formula θ is satisfiable then it is satisfiable in a model of the form s0s1...s

ω
`

where ` = |θ|. Consequently, it is shown that satisfiability of LTL1 is NP-
complete. We provide similar results for CTL+

1 and CTL1 here.

246 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

Proposition 5.1 If a CTL+
1 formula ϕ has a model, then it has a model with

at most O(|ϕ|2) states.

Proof. SupposeM, s0 |= ϕ for a CTL+
1 formula ϕ, a modelM and a state s0.

Assume w.l.o.g. that ϕ is in NNF. We generate another modelM′ with O(|ϕ|2)
states and a state s′0 such that M′, s′0 |= ϕ. Let ∆Q be the set of subformulae
of ϕ that has Q as main connective for Q ∈ {E,A} and let ∆B be the set of
maximal Boolean subformulae of ϕ that do not occur in the scope of a path
quantifier. For each Z ∈ {E,A,B} let ∆>Z ⊆ ∆Z be the subsets satisfied in

M, s0. Now, for each Eψ ∈ ∆>E let ρψ = ρψ0 ρ
ψ
1 ... be a path in M starting in s0

such that ρψ |= ψ. SinceM, s0 |= ϕ we have for every Aψ′ ∈ ∆>A that ρψ |= ψ′

because ψ′ is satisfied along all paths from s0. Further, ρψ0 = s0 implies that
ρψ |= ψ ∧

∧
ψ′∈∆>

A
ψ′ ∧

∧
β∈∆>

B
β. Since this is an LTL1 formula of size at most

|ϕ| it has a model πψ of the form πψ0 ...(π
ψ
|ϕ|)

ω where πψ0 is labelled as s0. Now,

by gluing together each path πψ (which is made finite by adding a self-loop to

the state πψ|ϕ|) in the initial state s′0 we obtain a transition system M′ such

that M′, s′0 |= ϕ. Since |∆>E | ≤ |ϕ| there are at most O(|ϕ|2) states in M′. 2

Further, we will see that for satisfiable formulae of CTL∗1 , ATL1 and St(ATL∗1)
there are models that can be obtained by gluing together ultimately periodic
paths as in the proof of Proposition 5.1. We call such models centipede models,
illustrated in Figure 2. Note that these models only branch in the initial state.

•

• • . . . • •
• • • •
• • • •
• • • •
•••

•
• • •

•••
•
• • •

•••
•
• • •

•••
•
• • •

Fig. 2. A centipede model

However, for the flat fragments CTL∗1 , ATL1, St(ATL
∗
1) models of polynomial

size are not guaranteed to exist as for CTL+
1 . First, the length of the period

and the prefix of the ultimately periodic paths can be exponential due to LTL
subformulae in the case of CTL∗1 and St(ATL∗1). Second, in the cases of ATL1
and St(ATL∗1) (but not for CTL∗1) an exponential branching factor in the initial
state may be forced by a formula. Indeed, consider the following ATL1 formula

ϕ =

n∧
i=1

〈〈i〉〉X pi ∧ 〈〈i〉〉X¬pi

over the propositions {p1, ..., pn} and players {1, ..., n}. For a state s0 to satisfy
this formula there has to be a successor state for each possible truth assignment

Goranko and Vester 247

to the propositions {p1, ..., pn}, of which there are 2n. This phenomenon does
not occur in the branching-time logic CTL∗1 .

Proposition 5.2 Satisfiability in CTL+
1 is NP-complete.

Proof. NP-hardness follows directly from Boolean satisfiability. An NP-
algorithm for CTL+

1 works as follows. It takes as input a CTL+
1 formula ϕ

in NNF, hence a positive Boolean combination of flat CTL+
1 state formulae,

and guesses non-deterministically a centipede model M, s0 of size O(|ϕ|2) for
ϕ, as well as the disjuncts in ϕ that evaluate to true at s0. (According to Propo-
sition 5.1, if ϕ has a model then it has a model of this form and size.) After

guessing, it checks whether the resulting formula of the form ϕ′ = β ∧
∧`
i=0 ϕ

′
i

is true in the guessed model where β is a Boolean formula and each ϕ′i is of
the form Aθi or Eθi for an LTL1 formula θi. First, the model-checking of β
can be done in linear time. Next, for each of the O(|ϕ|) formulae θi it can
checked whether it is true in each of the O(|ϕ|) paths of the centipede model
in polynomial time since LTL model-checking of an ultimately periodic path of
length O(|ϕ|) can be done in polynomial time in |ϕ| [11]. Thus, the guess can
be verified in polynomial time due to the small model property of Proposition
5.1 and the centipede shape of the model. 2

Corollary 5.3 Satisfiability in CTL1 is NP-complete.

5.2 Lower bound for satisfiability in ATL1

Proposition 5.4 ATL1-SAT is ΣP3 -hard.

Proof. The proof is by reduction from the ΣP3 -SAT problem, which is ΣP3 -
complete. This problem takes as input a quantified Boolean sentence

γ = ∃x1, ..., xm∀xm+1, ..., xk∃xk+1, ..., xn.γ
′

where γ′ is a Boolean formula over the Boolean variables x1, ..., xn. The output
is true if and only if γ is true. Given γ, we construct an ATL1 formula ψ(γ)
over the set Prop = {x1, ..., xn} of proposition symbols as follows

ψ =

m∧
j=1

(AXxj∨AX¬xj)∧
n∧

i=m+1

(〈〈{i}〉〉Xxi ∧ 〈〈{i}〉〉X¬xi)∧¬〈〈{m+1, . . . , k}〉〉X¬γ′

We now claim that γ is true if and only if ψ(γ) is satisfiable.
First, suppose that γ is true. Then we construct a CGM M =

(A,St, {Acta}a∈A, {acta}a∈A, out,Prop, L) and a state s0 ∈ St, such thatM, s0 |=
ψ(γ), as follows. Let A = {m + 1, ..., n}, St = {s0} ∪ {svm+1,...,vn | vi ∈
{0, 1} for m + 1 ≤ i ≤ n}, Acta = {0, 1} for all a ∈ A. Then, for every agent
a ∈ A define acta(s0) = {0, 1} and acta(s) = {0} for all s 6= s0. The tran-
sitions are defined by out(s0, 〈vm+1, . . . vn〉) = svm+1,...vn and out(s, αA) = s
for all s 6= s0 and all action profiles αA. The set of proposition symbols
is Prop = {x1, . . . , xn}. The labelling is given by L(s0) = ∅ and for every

248 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

i ∈ {m + 1, . . . , n} we have xi ∈ L(svm+1,...,vn) if and only if vi = 1 when
svm+1,...,vn ∈ St \ {s0}. Finally, let x′1, ..., x

′
m be particular values such that

∀xm+1, . . . , xk∃xk+1, ..., xn.γ
′[x1 7→ x′1, . . . , xm 7→ x′m] is true. Such values

exist since γ is true. For 1 ≤ i ≤ m and every svm+1,...,vn ∈ St \ {s0}, let
xi ∈ L(svm+1,...,vn) if and only if x′i = 1.

Intuitively, for all i such that m+ 1 ≤ i ≤ n player i chooses the value of xi
in the successor state and then the play stays in that state forever. The value of
xi for 1 ≤ i ≤ m in the successor state is defined by the values x′1, ..., x

′
m. The

subformula
∧n
i=m+1 (〈〈{i}〉〉Xxi ∧ 〈〈{i}〉〉X¬xi) is clearly true at s0. The same

is the case for
∧m
j=1(AXxj ∨ AX¬xj). Next, since γ is true when xi takes the

values x′i for 1 ≤ i ≤ m, then no matter which values of xi are chosen by players
in {m+ 1, ..., k} there exists values of xi for players in {k + 1, ..., n} such that
γ′ is true in the successor state. Thus, coalition {m+ 1, ..., k} does not have a
strategy to ensure that γ′ is false in the successor state. Thus, M, s0 |= ψ(γ).

For the converse direction, suppose that ψ(γ) is satisfied by some model
M, s0. For contradiction, suppose that γ is false. Then for all x1, ..., xm there
exists xm+1, ..., xk such that γ′ is false for all xk+1, ..., xn. In particular, this
must be the case when xi take the unique values x′i for 1 ≤ i ≤ m that are true
in all successors of s0. These are unique since s0 satisfies

∧m
j=1(AXxj∨AX¬xj).

In this case there exists particular values x′i for m + 1 ≤ i ≤ k such that γ′

is false for all xk+1, ..., xn when xi take the values x′i for m + 1 ≤ i ≤ k.
Consider the strategy for coalition {m+ 1, ..., k} that chooses these values for
xi in the successor state for m + 1 ≤ i ≤ k. This strategy ensures that γ′ is
false in the successor state. However, this contradicts the fact that M, s0 |=
¬〈〈{m+ 1, . . . , k}〉〉X¬γ′. Thus, γ must be true. This completes the proof. 2

Note that the hardness result only requires the use of the temporal operator
X and neither U nor R . This is interesting since this lower bound will be shown
to be an upper bound for the full ATL+

1 in the following section. Thus, the 〈〈·〉〉X
fragment of ATL1 is as hard as the full ATL+

1 .

5.3 Deciding satisfiability in St(ATL∗1) and ATL+

Lemma 5.5 Let Φ = 〈〈C〉〉Ψ be an ATL∗ formula and let Prop(Φ) = {p1, . . . pr}
be the set of atomic propositions occurring in Φ. Consider any mapping v :
Prop(Φ) → {>,⊥} and let v[Φ] be the result of substitution of all occurrences
of pi in Φ which are not in the scope of a temporal operator by v(pi), for each
p1, . . . pr. Further, let

δ(v) :=
∧

v(pi)=>

pi ∧
∧

v(pi)=⊥

¬pi

Then, δ(v) ∧ Φ ≡ δ(v) ∧ v[Φ].

Proof. Consider any CGM M and a state s in it. If δ(v) is false at s then
both sides are false. Suppose M, s |= δ(v). Then M, s |= v(pi) ↔ pi for each
p1, . . . pr. Then, Φ and v[Φ] are equally true or false at s, as they only differ in
the occurrences of atomic propositions that are evaluated at s. 2

Goranko and Vester 249

Proposition 5.6 (i) The satisfiability testing for St(ATL∗1) is in PSPACE.

(ii) The satisfiability testing for ATL+
1 (and ATL1) is in ΣP3 .

Proof. The decision procedures for both St(ATL∗1) and ATL+
1 will be essentially

the same, but in their last phases they work in different computational com-
plexities. First, consider an St(ATL∗1) formula Φ and let Prop(Φ) = {p1, . . . pr}.
The formula Φ is a Boolean combination of atomic propositions and subformu-
lae of the type 〈〈C〉〉θ where θ ∈ LTL. By Lemma 4.6, we can assume that each
such θ is in a LSNF of linearly increased length, i.e., is a Boolean combination
of atomic propositions and X -formulae (formulae beginning with X) of LTL.
The algorithm now works as follows:

1. Guess a truth assignment τ for the atomic propositions in Prop(Φ) at a
state s of a CGM satisfying Φ, if any. Consider the unique map v : Prop(Φ)→
{>,⊥} for which δ(v) is true under τ . By Lemma 5.5, each maximal subformula
〈〈C〉〉θ in Φ can be equivalently replaced by v[〈〈C〉〉θ], which is 〈〈C〉〉v[θ].

2. After elementary Boolean simplifications (of the type >∧A ≡ A,⊥∧A ≡
⊥, etc.) each v[θ] is transformed to a Boolean combination of X -formulae only.
Using the LTL validities X η ∧ X ζ ≡ X (η ∧ ζ) and X η ∨ X ζ ≡ X (η ∨ ζ), it is
further equivalently transformed into an X -formula which is at most as long.

The original formula is now (non-deterministically) transformed to an equi-
satisfiable Boolean combination of ATL∗ formulae of type 〈〈C〉〉X θ and [[C]]X θ.

3. Now, assuming that the resulting formula is satisfiable, we further guess
the true disjuncts in every ∨-subformula in a satisfying CGM and reduce the
problem to checking satisfiability of a conjunctive formula of the type

Θ = 〈〈A0〉〉X θ0 ∧ . . . ∧ 〈〈Am−1〉〉X θm−1 ∧ [[B0]]X η0 ∧ . . . ∧ [[Bn−1]]X ηn−1

Let D(Θ) be the union of the set C(Θ) of conjuncts of Θ and {[[A]]X>}, i.e.

D(Θ)={〈〈A0〉〉X θ0, . . . , 〈〈Am−1〉〉X θm−1, [[B0]]X η0, . . . , [[Bn−1]]X ηn−1, [[A]]X>}

4. By Lemma 4.9, the set D(Θ) is satisfiable iff every subset of distributed
control of it has a satisfiable set of successor components. Since each of them
is a set of LTL formulae, these checks can be done using standard techniques.

Each check in step 4. of the algorithm can be done in PSPACE when Φ
is a St(ATL∗1) formula, since each successor component is an LTL formula. In
the case of ATL+

1 the checks can be done in NP according to [5], as in this case
each successor component is an LTL1 formula. Hence, checking that each of the
(possibly exponentially many) subsets of distributed control is satisfiable can
be done in coNPPSPACE = PSPACE for St(ATL∗1) and in coNPNP for ATL+

1 .
Thus, the whole procedure can be done respectively in NPPSPACE = PSPACE

for St(ATL∗1) and in NPcoNPNP

for ATL+
1 , by guessing the true propositions in

the initial state and the true disjuncts in Φ, and then applying resp. a PSPACE-

oracle and coNPNP-oracle. Since NPcoNPNP

= ΣP3 the proof is completed. 2

250 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

This result, combined with Proposition 5.4 and the PSPACE-hardness of
LTL satisfiability, yields the following.

Theorem 5.7 The satisfiability problem of

(i) St(ATL∗1) is PSPACE-complete

(ii) CTL∗1 is PSPACE-complete

(iii) ATL+
1 is ΣP3 -complete

(iv) ATL1 is ΣP3 -complete

Here is another consequence of the proof of Proposition 5.6:

Corollary 5.8 Every satisfiable St(ATL∗1) formula Φ has a centipede model
M with branching factor O(2|Φ|) in the root. Further, every ultimately periodic
path in M has a prefix of length O(2|Φ|) and a period of length O(|Φ| · 2|Φ|).

5.4 PSPACE decision procedure for the satisfiability in ATL∗1
The decision procedure for St(ATL∗1) can be extended to a PSPACE-complete
decision procedure for the whole ATL∗1 , by combining it with a PSPACE decision
procedure for LTL and showing that every path-satisfiable ATL∗1 formula can be
satisfied in a special type of CGMs described below. The proof of the latter is
rather lengthy (see brief discussion further), so we only state and prove here the

easier case of the slightly smaller fragment ÂTL∗1 ,where no strategic quantifiers
〈〈∅〉〉 (i.e, fully universal path quantifiers) are allowed. We only note that the
procedure for the full ATL∗1 is essentially the same.

First, recall that every satisfiable LTL formula has an ultimately period
linear model with prefix and period that both have length exponential in the
size of the formula [14]. Further, according to Corollary 5.8, every satisfiable
St(ATL∗1) formula can be satisfied at the root state of a centipede model of
exponentially bounded number and length of legs. Combining these results
leads to a new type of CGMs which we call Lasso of Centipedes (LoC) models.
Such models consist of an ultimately periodic path (the lasso) where each state
is the root of a centipede model. An illustration of a model like this is shown
in Figure 3.

Proposition 5.9 Every satisfiable ÂTL∗1 formula Φ is satisfied in a LoC model
with size bounded exponentially in |Φ|.

Proof. Given an ÂTL∗1 formula Φ we define its LTL skeleton SkLTL(Φ) as fol-
lows: Let the state subformulae of Φ of type 〈〈C〉〉θ or [[C]]θ be Ψ1, . . . ,Ψn.
For each of them Ψ we introduce a new (not in Prop) atomic proposition pΨ.

Then we produce the LTL formula Φ̂ by replacing every occurrence of such a
subformula Ψ in Φ by pΨ. Now, define

SkLTL(Φ) ::= Φ̂ ∧
n∧
i

G (pΨi
→ Ψi)

Goranko and Vester 251

• • • •

•

•
•

•

•

•
•
•

. . .

..
.

Fig. 3. A Lasso of Centipedes (LoC) model

We claim that any CGM M and a path π in it on which Φ is true can be
expanded to a CGM M̂ and a path π̂ in it satisfying SkLTL(Φ), by evaluating
each new atomic proposition pΨ to be true at exactly those states of π at
which Ψ is true inM. Conversely, for any CGMM and a path π in it on which
SkLTL(Φ) is true, the formula Φ is true on π, too, because all atomic propositions

pΨi
occur only positively in Φ̂, so replacing them with the respective Ψi’s will

preserve the truth.
Thus, it suffices to show that if SkLTL(Φ) is path-satisfiable then it can be

satisfied on the lasso path in some LoC model of size bounded exponentially
in |Φ|. Indeed, take any CGM M and a path π in it on which SkLTL(Φ) is

true. Then, in particular, the path π alone is a linear model for Φ̂. Now, take
an ultimately periodic linear model π̂ of length bounded exponentially in |Φ̂|,
hence in |Φ|. Such a model can be obtained from π by cutting its tail off at
a suitable position and looping back to a suitable previous state. Thus, every
state in π̂ has the label of a prototype state in π. Now, for every state ŝ on π̂,
let s be its prototype in π. We do the following.

• Consider the set Γ(s) of state subformulae Ψ of Φ such that pΨ is in the label
of s in π. Since SkLTL(Φ) is true on π, every formula in Γ(s) is true at s in
M. Thus, Γ(s) is satisfiable, hence by Corollary 5.8, it can be satisfied at
the root state of a centipede modelM(Γ(s)) of exponentially bounded in |Φ|
number and length of legs.

• Now, we graft a copy of M(Γ(s)) at the state ŝ in π̂ by identifying its root
with ŝ and keeping all other states disjoint from π̂.

• Next, we add a special new action for every agent at the state ŝ and define
the successor of the resulting action profile to be the successor of ŝ on the
path π̂, while every other action profile involving some (but not all) of these
special new actions leads to a successor of ŝ in the grafted copy ofM(Γ(s)),
chosen so as not to affect the truth of any of the formulae from Γ(s) at ŝ.
We omit the easy but tedious details of this construction.

After completing this procedure for each state of π̂, the result is a LoC
model M̃ which, by construction, satisfies the formula Φ̂ on π̂ and satisfies at
each state ŝ on π̂ the set Γ(s). Therefore, M̃, π̃ |= SkLTL(Φ), hence M̃, π̃ |= Φ.2

252 Optimal Decision Procedures in Fragments of Alternating-time Temporal Logics

For lack of space we only briefly indicate the additional complication in
extending this result to ATL∗1 : if a subformula Ψ = 〈〈∅〉〉θ is true at some state
of the path π in the CGM satisfying Φ, its effect cannot be constrained only
on the centipede model grafted at the respective state of M̃, as done above,
but it propagates through the path π̃ to all centipede models grafted at all
further states on π̃. So, additional description in LTL is needed to describe and
preserve this effect when converting π into the lasso π̃. That is why we state
the next result relativized to only what we have proved here.

Proposition 5.10 The path-satisfiability problem in LoC models of size
bounded exponentially in the length of input ATL∗1 formulae is in PSPACE.

Proof. The algorithm begins like the PSPACE decision procedure for LTL
satisfiability that guesses the lasso on the fly for an LTL input formula θ [14].
First, the length of the prefix and the length of the period are guessed. At each
step around the lasso, the subformulae that are true from the current state are
guessed non-deterministically and a local consistency check as well as a one-
step consistency check are performed. Further, a set ∆ (of at most polynomial
size) of eventuality formulae is kept to make sure that all eventualities that are
needed for θ to be true are actually true further on the lasso.

The algorithm for ATL∗1 works in the same way on an ATL∗1 formula Φ, but
treats strategically quantified subformulae of Φ as atomic propositions and,
at each step of the procedure, the local consistency check includes verifying
these subformulae that have to be true at the current state. This amounts to
checking satisfiability of an St(ATL∗1) formula and can be done in PSPACE,
by Theorem 5.7. For the formulae of the form 〈〈A〉〉θ where A 6= ∅ this can
be done independently of the rest of the lasso, by ensuring that when agents
in A commit to satisfying θ then the play goes into the centipede (and stays
there). But, when A = ∅ then θ has to be true on all paths from the current
state. This includes both the path around the lasso and those that enter one of
the centipedes at some point. Note that the original set ∆ of formulae we are
keeping only needs to be satisfied around the lasso. To keep track of this we
keep, in addition to ∆, an extra set of formulae Γ which must be satisfied both
around the lasso and on paths that exits to a centipede. Thus, the formulae in
Γ must be included in the St(ATL∗1) satisfiability check at each step. But since Γ
is polynomial in size at each step, this check can still be performed in PSPACE.
This means that the entire procedure can be performed in PSPACE. 2

Corollary 5.11 Satisfiability of ÂTL∗1 is PSPACE-complete.

6 Concluding remarks and summary of results

We have developed optimal decision procedures for the satisfiability problems
in flat fragments of ATL∗, and in particular CTL∗ and have obtained exact com-
plexity results for them. A summary of the main complexity results obtained
in this paper is provided in the table in Fig. 4. It shows that these complexities
are much lower than those for the full languages while, in view of Proposition
3.2, they are very tight with respect to syntactic extensions in terms of nesting

Goranko and Vester 253

depth of formulae.

L SAT(L) SAT(L1)

LTL PSPACE [14] NP [5]
CTL EXPTIME [6] NP (Cor. 5.3)
CTL+ 2EXPTIME [10] NP (Prop. 5.2)
CTL∗ 2EXPTIME [6] PSPACE (Theo. 5.7)
ATL EXPTIME [16] ΣP3 (Theo. 5.7)
ATL+ 2EXPTIME [12][10] ΣP3 (Theo. 5.7)
ATL∗ 2EXPTIME [12] PSPACE (Theo. 5.7, Cor. 5.11)

Fig. 4. Complexity of satisfiability. All results are completeness results. In the case

of ATL∗ the results refer to St(ATL∗
1) and ÂTL∗

1 .

References

[1] Ågotnes, T., V. Goranko and W. Jamroga, Alternating-time temporal logics with
irrevocable strategies, in: D. Samet, editor, Proc. of TARK XI (2007), pp. 15–24.

[2] Alur, R., T. A. Henzinger and O. Kuperman, Alternating-time temporal logic, Journal
of the ACM 49 (2002), pp. 672–713.

[3] Brihaye, T., A. Da Costa, F. Laroussinie and N. Markey, ATL with strategy contexts and
bounded memory, in: Proc. of LFCS’2009, Springer LNCS 5407, 2009, pp. 92–106.

[4] Bulling, N. and W. Jamroga, Comparing variants of strategic ability: how uncertainty
and memory influence general properties of games, J. of AAMAS (2013), pp. 1–45.

[5] Demri, S. and P. Schnoebelen, The complexity of propositional linear temporal logics in
simple cases, Inf. Comput. 174 (2002), pp. 84–103.

[6] Emerson, E. A., Temporal and modal logic, in: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), 1990 pp. 995–1072.

[7] Goranko, V. and D. Shkatov, Tableau-based decision procedures for logics of strategic
ability in multiagent systems, ACM Trans. Comput. Log. 11 (2009).

[8] Goranko, V. and G. van Drimmelen, Complete axiomatization and decidablity of
Alternating-time temporal logic, Theor. Comp. Sci. 353 (2006), pp. 93–117.

[9] Halpern, J. Y., The effect of bounding the number of primitive propositions and the
depth of nesting on the complexity of modal logic, Artif. Intell. 75 (1995), pp. 361–372.

[10] Johannsen, J. and M. Lange, CTL+ is Complete for Double Exponential Time, in: Proc.
ICALP’03 (2003), pp. 767–775.

[11] Markey, N. and P. Schnoebelen, Model checking a path, in: CONCUR, 2003, pp. 248–262.
[12] Schewe, S., ATL* satisfiability is 2EXPTIME-complete, in: Proc. of ICALP (2), 2008,

pp. 373–385.
[13] Schröder, L. and Y. Venema, Flat coalgebraic fixed point logics, in: Proc. of

CONCUR’2010 (2010), pp. 524–538.
[14] Sistla, A. P. and E. M. Clarke, The complexity of propositional linear temporal logics, J.

ACM 32 (1985), pp. 733–749.
[15] Troquard, N. and D. Walther, On satisfiability of ATL with strategy contexts, in: Proc.

of JELIA’12, LNAI 7519 (2012), pp. 398–410.
[16] van Drimmelen, G., Satisfiability in alternating-time temporal logic, in: Proc. of LICS’03,

2003, pp. 208–217.
[17] Walther, D., C. Lutz, F. Wolter and M. Wooldridge, ATL satisfiability is indeed

ExpTime-complete, Journal of Logic and Computation 16 (2006), pp. 765–787.

	Introduction
	Preliminaries
	Summary of LTL, CTL, CTL* and their flat fragments
	Concurrent game models. The logic ATL* and fragments

	Flat fragments of ATL and ATL*
	A hierarchy of flat fragments of ATL*
	Some remarks on the expressiveness of the flat ATL*-fragments

	Normal forms and satisfiability of special sets in ATL*
	Negation normal form of ATL* formulae
	Successor normal forms
	Sets of distributed control of ATL* formulae

	Optimal decision procedures for satisfiability in fragments of ATL1*
	Centipede models. Satisfiability in LTL1, CTL1 and CTL1+
	Lower bound for satisfiability in ATL1
	Deciding satisfiability in St(ATL1*) and ATL+
	PSPACE decision procedure for the satisfiability in ATL1*

	Concluding remarks and summary of results
	References

