Temporal Logics with Reference Pointers and
Computation Tree Logics

Valentin Goranko
Department of Mathematics, Rand Afrikaans University
PO Box 524, Auckland Park 2006, Johannesburg, South Africa

e-mail: vfg@na.rau.ac.za

ABSTRACT. A complete axiomatic system CTL,,, is introduced for a tempo-
ral logic for finitely branching w7 -trees in a language extended with so called
reference pointers. Syntactic and semantic interpretations are constructed for
the branching time computation tree logic CTL* into CTL,,. In particular,
that yields a complete axiomatization for the translations of all valid CTL*-
formulae. Thus, the temporal logic with reference pointers is brought forward
as a simpler (with no path quantifiers), but in a way more expressive medium
for reasoning about branching time.

KEYWORDS: Computation tree logics, temporal logics, reference pointers, ax-
iomatic system, completeness.

Introduction

The article deals with branching time temporal logics for computation trees of
non-deterministic or concurrent programs. This area of research in theoreti-
cal computer science has been vigorously developing in the past twenty years,
particularly since the seminal paper of [Pnu 77] which proposes the use of tem-
poral logics for formal specification, analysis and verification of programs, in
particular for reasoning about non-deterministic, concurrent and reactive pro-
grams. Since then, a number of linear and branching time temporal logical
systems have been put forward with this purpose, some of the most popular
ones of the latter type being UB, CTL, CTL* and variations of them (see
[ES 89, Eme 90], [Pen 95], and [Sti 92] for surveys on these). The logic CTL*
will be in the focus of this paper, though the results will accordingly apply to
all others subsumed by it, as well. Besides the computational interpretation,
branching time logics have important philosophical and purely logical aspects,
in particular those related to decidability and decision procedures generated
by automata-theoretic methods, complexity, model checking and axiomatiza-
tions. For some important results and further discussion on these the reader is

referred to [GuS 85, Tho 88, Wol 95, ZaC 93, Zan 96] in addition to the above



mentioned surveys. Of course, [Pri 67] should be added as a classical reference
to philosophical aspects of time.

Here we propose syntactic and semantic interpretations of CTL* into the
temporal logic with reference pointers (TL,,) introduced in [Gor 94] and [Gor 96]
where expressiveness and (un)decidability are discussed and a complete ax-
iomatic system is constructed. The language of TL,, is a kind of hybrid lan-
guage, see [BS 95, BT 98, BT 99|, combining features of both propositional
modal and classical first-order languages. It has a great expressive power, in

3

particular admitting translation of CTL* therein, after an appropriate modifi-
cation of its semantics into extended computation trees. Moreover, TL,, enables
formalization of properties beyond the expressiveness of CTL*, like talking
about the past and expressing various looping and non-looping conditions.

Of course, CTL* is known to be embeddable in another very expressive
logical system, viz. Kozen’s u-calculus (see [Dam 94]), so the natural question
arises about the relationship, advantages and disadvantages of the temporal
logic with reference pointers proposed here as compared to the p-calculus. We
defer that discussion to the concluding remarks.

The main result in the paper is the construction of a complete axiomatic
system (though involving an infinitary rule) CTL,, for extended computation
trees, which is furthermore decidable, due to the general result in [GuS 85]. In

particular we have obtained a complete axiomatization of the translations of
all valid CTL*-formulae.

The paper begins with a preliminary section 2 which briefly describes the
syntax and semantics of temporal logics with reference pointers and of the
computation tree logic CTL*. In section 3 we introduce syntactic and semantic
interpretations of CTL* into the temporal logic with reference pointers for
extended computation trees. Section 4 presents a complete axiomatic system
and completeness theorem for the temporal logics with reference pointers for
extended trees CTL,,. Finally, we discuss some open problems and directions
for further research.

The reader is assumed to have some background in propositional temporal
logics (syntax, semantics, deductive systems and completeness theorem) within

either of [Ben 91], [Bur 84], [Gol 87].

1 Preliminaries

1.1 Temporal logic with reference pointers.

We consider a propositional temporal language with
e a set of atomic propositions {py,pa,...};

e propositional connectives —, —, and respectively definable A,V, <, T

(true) and L (false);



e temporal operators A (always) with dual E (sometime), G (always in
the future) with dual F (eventually), and X (at all immediate time-
successors), with dual N (at some immediate time-successor).

As we shall see further, the other traditional temporal operators U (until),
H (always in the past), and its dual P (sometime in the past) are definable
in terms of A and G using reference pointers. The operator X is definable,
too, but we shall retain it in the language in order to preserve the notion of a

CTL*-model.

The idea of reference pointers (see [Gor 94] or [Gor 96]) in brief is as follows.
One or more pairs of new symbols (|, 1) are added to the temporal language;
the point of reference | is a unary connective, and the reference pointer 1y,
is an atomic symbol like a propositional variable. In a sense, these reference
pairs play a role of variables on states (instants, possible worlds, etc.) and
quantifiers, or rather binders over these variables. It is therefore natural that
some first-order style notions have their natural analogues in the language with
reference pointers, viz.:

e The first occurrence of the binder |; in the formula |; ¢ has a scope .

e An occurrence of 1; in a formula ¢ is bound if it is in the scope of an
occurrence of |;; otherwise it is free.

e If ¢ and ¢ are formulae, p(1p/ 1;) denotes the result of simultaneous
substitution of all free occurrences of 1; in ¢ by .

e A formula ¢ is closed if there are no free occurrences of 1’s in ¢.

Here is the intuitive semantics of the new symbols: when a formula | ¢
is being evaluated in a model, | marks the state of evaluation s, and all free
occurrences of 1 in ¢ are rendered true at the state s and only there, thus
enabling references to that state throughout .

The formal semantics follows below.

Let £F be a temporal language as above, extended with k pairs of reference
pointers. The models of £]¥ are the same as the models for the classical
temporal logic: (T, R, <, V), where T is a time flow, i.e. set of moments (states),
< is the successor relation , R is the immediate successor relation, and V is
a valuation of the atomic propositions in T'. In order to define truth of a
formula from £3¥ at a point of a model we extend the well-known standard
translation ST (see [Ben 91]) as follows. Let L; be the first-order language
containing binary predicates R and <, and a countable set of unary predicates
{P,, Ps,...}. For technical convenience we split the set of individual variables
of L into two disjoint subsets: W = {z,wy,...,wi} and Y = {yo,y1,y2,...},

where each of 2 and w’s plays a special role, viz.:

e z will represent the actual point in time (the current "now”);



e w; will represent the point of reference for the pointer 1; ("then;”) for

i=1,...,k.
We now define the standard translation ST of £]F into L; recursively as
follows:
1. ST(p;) = P;x,

2. ST

Xyp) = Vy(zRy — ST(p)(y/z)),
Gy) = Vy(z<y = ST(p)(y/)),
Ap) =Vy(ST(¢)(y/=)),

ST(i @) = ST(p)(x/w;).

In 5, 6, and 7 above y is the first variable from Y, not occurring in ST (p);
u/v means uniform substitution of u for all free occurrences of v.
Note that if o is in £JF then z and wy, . .., wy, can only have free occurrences

ST
ST

® N o ook W

in ST(p), where they are the only possibly free variables. Furthermore, ¢ is
closed if and only if no w; occurs in ST ().

The model M = (T, R, <,V) can be regarded as an L;-model where R is
interpreted by R, < by <, and P; by V(p;),7i = 0,1,2,.... In order to distinguish
validity in M as an Lj-model from validity in M as a temporal model we shall
use the symbol |F for the former and = for the latter. Now, we define truth at
a point for any closed formula ¢:

M= ¢ls] if M |FST(p)(s/x),
and then validity in a model:
MEp if M=ft] foreveryt €T, ie. if M |FVeST(p).

Finally, ¢ is valid in a temporal structure if it is valid in every model on the
structure, and ¢ is (universally) valid if it is valid in every temporal structure.

Here we have only defined validity for closed formulae since only these for-
mulae have a determined meaning, and we shall not be interested in non-closed
formulae on their own.

The reference pointers considerably increase the expressiveness of the lan-
guage, as numerous examples in [Gor 96] testify. The basic temporal logic with
reference pointers outlined here was introduced and axiomatized in [Gor 94].
Languages with reference pointers have been further studied in [BT 98, BT 99]
where, inter alia, some weaker languages with pointers (binders) without uni-
versal modality have been axiomatized.



1.2 Computation Tree Logics

The full branching time computation tree logic CTL* was introduced in [EmH 83].
Here we offer a very brief summary of the syntax and semantics of CTL*, re-
ferring the reader to [ES 89], [Eme 90], or [Pen 95] for more detail.

3 3

1.2.1 Syntax

The language of CTL* is a propositional language with a set of atomic propo-
sitions (propositional variables) AP, temporal operators X (nezttime) and U
(until), and path quantifiers, ¥ meaning ”for all paths”, and its dual 3, meaning
”for some path”, which will be regarded as an abbreviation of =V-.

Two types of formulae are traditionally introduced for CTL*, state formu-
lae and path formulae. This distinction is essential for some of its restricted
versions like CTL, but is also convenient for the truth definition: the former
are evaluated at states and the latter — at paths in the model. Here is the
joint recursive definition of state and path formulae:

e every atomic proposition is a state formula;
o if ¢, 1) are state formulae then so are —¢ and ¢ — ;

e if ¢ is a path formula then V¢ is a state formula;

e every state formula is a path formula;
e if ¢, 9 are path formulae then so are —¢, ¢ — ¥, X¢ and ¢U;

These definitions can be combined into a uniform definition of a formula of
CTL*, the Backus-Naur form (BNF) of which is:

p:=p|d|d1 = 2| X | p1 U | Vo,

where p is an atomic proposition.
Two of the most popular predecessors of CTL* are:

e UB (introduced in [BMP 81]), the language of which contains the tem-
poral operators X, G (always in the future), with dual F (eventually)
but not U. The BNF definition of formulae of UB is:

¢p:=p| ¢ | ¢ = ¢2 | IX¢ | IG¢ | VG;

¢ CTL (introduced in [CE 81]), with the same language as CTL* and BNF

definition of formulae:

¢:=p|=d|d1 = ¢a| IX¢ | 1 Ugs) | V(¢1Ud2).

These will not be discussed further but, being subsystems of CTL*, the
interpretations of CTL* introduced here will apply for them, too.



1.2.2 Semantics of CTL*

Intuitively, models for CTL* are computation trees generated by executions of
non-deterministic or concurrent programs. They consist of all possible com-
putation paths of such a program (i.e. sequences of consecutive states in an
execution of the program).

Remark: In fact, computation paths may loop or meet, hence a typical model
for CTL* should rather be a directed graph. Every such a model, however,
is indistinguishable in the language of CTL* from a rooted tree-like model
obtained from the former by unwinding (see [Eme 90]). Therefore the class of
rooted tree-like models 7T is adequate for CTL* and we restrict our attention
to that class.

The models from 7T are formalized as triples (S, R, V'), where S is a nonemp-
ty set of states, R is the immediate successor relationin S, and V: AP — P(S)
is a wvaluation assigning to each atomic proposition the set of states at which
it is true. We shall impose the additional assumption (which is quite natural
in view of the interpretation of the models as computation trees) that every
R-path (i.e. maximal linearly ordered set of states) is isomorphic to w. Trees
satisfying this condition will be called w-trees.

The basic semantic notion for CTL* is truth at a state s of a model M
defined by simultaneous induction on state and path formulae as follows:

S1) M=sp if seV(p);

(S1)

(S2) M s —¢ if not M =, ¢;

(S3) MEs;¢d = if ME, ¢ implies M =, ¢;
(54)

S4) M |=4 V¢, where ¢ is a path formula, if for every path p beginning from
s, M |=p ¢ holds.

In the following clauses p is a path {po, p1,. ..}, and p' is the suffix path
{Pi: Pit+1;-- }

P1) M =, ¢, where ¢ is a state formula, if M =5, &;
P2) M Ep —¢ if not M =, ¢;

(P1)
(P2)
(P3) Ml=p ¢ = o if M [=p ¢ implies M [=p 1);
(P4) M Ep X, if M =pi1 ¢;
(P5)

P5) M |=p ¢U%, if there is i > 0 such that M |=,: b and for every j, such
that 0 <j <i, M =5 ¢ holds.

A state formula ¢ is wvalid in a model M, denoted M = ¢, if ¢ is true
at every state of M. A state formula ¢ is CTL*-valid if it is valid in every
CTL*-model.



According to my knowledge, no finite complete axiomatization for CTL*
with respect to the class of standard models has been published yet (but some
completeness results for more general semantics are presented in [Sti 92]).

The validity in CTL* was proved decidable in deterministic double expo-
nential time in [EmS 84].

2 Interpretation of CTL" into the Temporal Logic with Reference
Pointers

2.1 Extended Computation Trees for CTL*-models.

In this section we transform the CTL*-models from 7 into a form suitable for
the language with reference pointers.

For any model T' = (S, R, V) from T we define an extended computation
tree of T T° = (S¢, R®, <, V*®) as follows. Let

F = {s, : x is a maximal path in S}

be a set disjoint from S. Then we put:

S =SUF, R°=R,

< =R"YU/{(t,s,) : t € S and = is a maximal path in S containing ¢},
where RT is the transitive closure of R;

Finally, V¢ coincides with V over S and is arbitrarily extended over all
states from F, e.g. by declaring all atomic propositions false at every s € F.

Intuitively, T¢ extends T by adding a ”frontier” F of transfinite ”terminal
ends” for all maximal paths, each terminal end <-seen from all states of the
corresponding path and only from them. Thus, every maximal path in an
extended w-tree will be of ordinal type w*
wT -trees.

, so we shall refer to such trees as

The class of extended computation trees for CTL*-models will be denoted
by ECT.

A (extended) computation tree is called finitely branching if every node has
finitely many immediate successors. The class of finitely branching extended
computation trees will be denoted by FECT.

Let us note that every formula from £J¥ can be translated into a IT! formula
of the monadic second-order language L, obtained from L; by treating the
unary predicates as variables. The following result implies that every such a
formula is valid in ECT iff it is valid in FECT, and therefore ECT and FECT

provide equivalent semantics for any temporal logic with reference pointers.

Theorem 1 If a I} formula of Ly is falsifiable in an w™ -tree then it is falsi-
fiable in a finitely branching w™ -tree.

This theorem follows from the fact that for every positive integer n, every
wt-tree T is m-equivalent to a finitely branching one. The proof of this result
is rather long and technically involved. It goes through 3 major steps. First,



using Ehrenfeucht games it can be shown that T is n-equivalent to an wT-tree
finitely branching at the first &k levels, which in turn is proved n-equivalent to
an "almost wt-tree” which is finitely branching at all finite levels, and every
state has a successor which is a terminal state. Finally, every such a tree is
n-equivalent to a finitely branching w*-tree. For a detailed proof see [Gor 99].

2.2 Syntactic Translation of CTL* into the Temporal Logic with
Reference Pointers.

We define a translation 7 of the formulae of CTL* into the temporal logic with
reference pointers, assuming that both languages share the same set of atomic
propositions, inductively as follows. (Note that the states without successors
(the terminal ends) in an extended computation tree are precisely the added
states s, ; the pointer |1 will be used to indicate the current state of evaluation,
while |5 indicates the terminal end of the path on which the evaluation is being
done.)

e 7(p) = p;

o 7(-0) = ~7(4);

o (6= ¢) =1(¢) = 7(¢);

o 7(V¢) =11 Gla(GL — A(ti— 7()));

o 7(X¢) = X(F =1 7(4));

o 7(0UY) =L 7(¥) VF(FE M AT(¢) AH(PT1—117(4))).

The translation 7 is faithful in the following sense:

Theorem 2 For any state formula ¢ in the language of CTL* the following
are equivalent:

(i) ¢ is CTL*-valid;

(i) (FT — 7(¢)) is valid in the class ECT ;

(i1i) (FT — 7(¢)) is valid in the class FECT;

Proof:

(ii) < (iii) follows from directly from theorem 1 or, using the equivalence
between (i) and (ii), from the fact (see [Wol 95], Lemma 3.5) that every satis-
fiable CTL*-formula is satisfiable in a finitely branching tree.

Recall that every CTL*-formula ¢ can be regarded as a path formula. A
state formula regarded as a path formula is valid in a model if and only if it is
true on every path of the model.

It can be proved by induction on ¢ that for every CTL*-model M and a
path p in it,

M =p ¢ it M |FJy(z <y) = ST(7(¢))(x, 2)

where the beginning of p (the current state) is assigned to = and the terminal
end of p is assigned to z.
For that purpose it suffices to note that:



e ST(1(¥9))(x, z) is logically equivalent to Vw (Vu(—~w < u) = ST (7(¢))(z,w/z));
e ST(1(X¢))(x, z) is logically equivalent to Vy((zRy Ay < z) = ST (7(9))(y/x, 2));

e ST(1(¢Un))(x, 2) is logically equivalent to ST (7(¢))(z, z)) VIy(z < y A
y < zAST(t(Y))(y/z,z) AVu((z < u Au <y) = ST(7(4))(u/x, 2)).

Note that other important versions of temporal logic of programs can be
accordingly translated into the temporal logic with reference pointers, e.g. the
anchored version proposed in [MaP 89].

Furthermore, the temporal logic with reference pointers is in a way more
expressive than CTL*. For instance, the fact that no execution path of the
program will ever loop can be simply expressed by

i G= 1y,

while this fact is not expressible in CTL*, and therefore the language with
reference pointers can distinguish unwound structures from general ones.

3 Temporal Logic with Reference Pointers for ECT

3.1 Syntax and Semantics.

We fix a propositional temporal language with (at least) four pairs of reference
pointers £J;.

The temporal operators H (with dual P), X, and U are defined in terms
of G and A as follows:

H¢ =|3 A(F 13— ¢),

U = ¢V (oA L4 F(p AH(P 14— ¢))),

X =|s G(HH- 1, 9).

where the formulae ¢, 1) have no free occurrences of 13, 14. Actually, these two
pointers will only be used for the purpose of expressing the operators H, X,
and U. (Alternatively, a language with only two reference pointers and these
operators added to the basic ones can be considered, and axioms corresponding
to the above definitions should be included in the deductive system.) We shall,
however, retain X in the language in order to comply with the notion of a
model introduced earlier. The dual operator = X— will be denoted by N.

Note that every extended computation tree (5S¢, R¢, <,V¢) can be regarded
as a model for £J; in terms of the previous section.



3.2 Axiomatic System: CTL,,

We now propose a complete axiomatization of the class £CT in the language
L] thus introducing the logic CTL,.,.

AXIOMS:

0. A recursive set of axioms for the classical propositional logic.
I. Axioms for the temporal operators:
In all axioms and rules below j, k range over all indices for reference pointers.

1.1 The K-axiom for G.

1.2 The S5-axioms for A.

1.3 Ap— Gp.

L4 |y XL AT (F1s AGGT)).

II. Axioms for the reference pointers:

L1 g te,
1.2 | A(the p) = (¢ = Alp — q))

I1.3 Lk A(tee p) = (i & ¥(p/1;)), for any closed formula | ;)

where p, g are propositional variables.

III. Axioms for the model structures:
1.1 | G=1%  (irreflezivity);
1M1.2 |, A(FFT,— F1y)  (transitivity);
1.3 E({r A(Te VP t) A FT)  (there is a root and a non-root);
M4 1 HI2AFT1— (12 VP12 VF12))  (every state has a linear past);

M5 FT - (FGLANTAXFT) (every state which is not a terminal end
sees one, has an immediate successor, and no immediate successor is a
terminal end);

II1.6 | A((GLAHF1,) =1%) (every path has at most one terminal end).

RULES:

1. MP:
o, p >

10



2. NECa:
Ay’
3. CLSUB:

B
clsub(p)’

where clsub(y) is a result of uniform substitution of closed formulae for
propositional variables in .

4. WITNESS:

Ik A(Tee> p) = ¢ for some propositional variable p not occurring in ¢
(,0 3

5. PATH:
o = N"Hvy for every m =0,1,2,...

¢ = F(GLAHY).

The last two rules deserve some comments.

The rule WITNESS is similar by idea to some quantifier rules in first-order
logic (e.g.: if F A(c) for some constant ¢ not occurring in A(z) then - VzA(z))
and especially to a type of rules discussed in detail in [Ven 93], originating from
Gabbay’s "irreflexivity rule”, see [Ga 81]. In the presence of the substitution
rule WITNESS is deductively equivalent to

kAt p) = p for every propositional variable p
» .

The effect of WITNESS is this: if a formula ¢ is not valid, i.e. it is falsified
at a point t of a model in which validity is preserved under WITNESS, then
there will be a propositional variable p which is a witness of the failure ¢ by

being a "name” for the falsifying state ¢, i.e. being true at that state only. In
temporal setting the variable p says: ”it is t o’clock now (when ¢ is false)”. For
analogues and further discussion of WITNESS see [PaT 91, GaG 93, Gor 94].

The rule PATH will ensure that in the canonical model every path is of type
w, and it either has a terminal end or can be extended with one.

While the rule WITNESS plays a very important role in the derivations
in CTL,p, the main reason (so far) for the introduction of PATH is the proof
of completeness, though, it is used for derivations too, e.g. of the induction
scheme ¢ A N A G(¢p - N¢) —» F(GL AHg).

Some related open problems are formulated at the end of the paper.

Theorem 3 The logic CTL,, is sound and complete with respect to the class
of extended computation trees ECT .

11



Proof:

I. SOUNDNESS.

The validity of the first two groups of axioms (except for 1.4) and all rules
except for PATH is shown in [Gor 96]. As for 1.4 and the third group of axioms,
it is a routine task to check that their ST translations are respectively equivalent
to the following first-order conditions:

i4) Vy(zRy < (z <y A-3z(z < zAz<Y)));

iii.1) —x < x;

iii.2) VyVz((z < y Ay < z) = z < z);

iii.3) Jy(Vz(y =2Vy < 2z) A3dz(y < 2));

iid) VyVz((y<zAhz<z) > (y=2zVy<zVz<y));

)
)
)
)
)
)

ii.5) Jy(r <y) = Fylz < yA-3Fz(y < 2))AFy(lz < yA-Fz(z < 2Nz <

Y)AVy((z < yA-Fz(z < zA2<y)) = Jz(y < 2)));
iii.6) Vy((-3z(y < 2) AVz(z <y = 2z < x)) > y =x);

which are valid in every extended computation tree.

Finally, the rule PATH preserves validity, too. Indeed, if the conclusion of
PATH is falsifiable in some w™-tree then it is falsified at a state s in a model
M over a finitely branching one, by theorem 1. If all premises are valid there,
then there are arbitrarily long finite paths starting from s, along which the
formula v is true, hence by Ko6nig’s lemma there is an infinite path starting
from s along which 1 is true, and therefore there is a terminal end of such a
path  a contradiction.

II. COMPLETENESS.

The proof of completeness consists of two major parts: in the first part,
given a consistent formula ¢ we construct a model satisfying ¢, which is almost
an extended computation tree. In the second part, we modify this model into a
proper extended computation tree in such a way that the resulting model will
still satisfy ¢.

Part I1.1. This part closely follows, mutatis mutandis, the proof of com-
pleteness for the basic temporal logic with reference pointers presented in
[Gor 94] (for the logic with one pair of reference pointers) and [Gor 96] (for
logics with more pairs of pointers). Nevertheless, it will be outlined here in
some detail in order to make the paper more self-contained and to demonstrate
that the infinitary rule PATH presents no additional complications.

II.1.i. We first introduce the syntactic notion of universal forms of x in
L7 (originating from the admissible forms in [Gol 82], see also [GaG 93])
recursively as follows:

3

12



e x is a universal form of *.

e If u(x) is a universal form of x, ¢ is a closed formula in £{;, and L is
a box-modality in LJ; (i.e. A, G, X) then ¢ — u(x) and Lu(x) are
universal forms of * in £J;.

Every universal form of * in £J; can be represented (up to tautological
equivalence) in a uniform way:

u(x) =g = Li(p1 = ... Ly(p, = %) ...)

where Ly, ..., L, are box-modalities in £J; and some of 1,..., ¢, may be T
if necessary.

For every universal form u(*) and a formula 6 we denote by u(f) the result
of substitution of 6 for % in u(x). Obviously, if 6 is a closed formula then u(f)
is a closed formula, too.

II.1.ii. Now we introduce the rules

u(lr A(Tre p) = @) for every propositional variable p

WITNESSy : ®
u(p

)

and
u(N™Hy) for every m =0,1,2,...

u(F(GL AHY))
where u is an arbitrarily fixed universal form.
Although the new rules WITNESS;; and PATH;; seem much stronger

than WITNESS and PATH, in fact they are respectively derivable from the
latter in CTL,, (cf. [Gor 96]), and therefore deductively equivalent to them.

PATHy :

II.1.iii. We now introduce and prove some necessary facts about an appro-
priately strengthened notion of a maximal theory, which will eventually serve
as a building block of the canonical model for ¢.

Definition 1 A theory in L3; is a set of closed formulae of L£3;, which
contains all theorems of CTL,, and is closed with respect to MP.

A good theory is a theory in L3, which is closed with respect to WITNESS,
and PATHy .

Note that for every set of closed formulae I" there is a minimal good theory
GTh(T") /resp. a minimal theory Th(I')/ containing I'. Indeed, the set of all
closed formulae is a good theory. Furthermore, the intersection of every family
of good theories is a good theory. Then GTh(T") is the intersection of all good
theories containing I'. Likewise for theories.

Definition 2 A theory (resp. good theory) is consistent if it does not con-
tain the falsity L. A set of closed formulae A is well-consistent if GTh(A) is
consistent.

13



Lemma 4 (Deduction theorem for good theories (cf. [Gor 96])) IfT is
a good theory and @, are closed formulae then p — ¢ € T iff v € GTh(TU{y})

Proof: The proof follows the standard lines of an inductive proof of deduction
theorem in modal logic, using in addition the fact that ¢ — wu(*) is an universal
form whenever u(x) is. For more detail, see [Gor 94]). [ |

As a corollary to the Deduction theorem, note that for every consistent
formula ¢, the set {¢} is well-consistent.

Definition 3 A (good) theory T' is maximal if for every closed formula ¢,
either p € I or mp € T'.

Every maximal theory is consistent and cannot be extended to another con-
sistent theory. The most important property of a maximal good theory I' is that
it contains a ”witness” | A(Tr<¢> q) for some propositional variable g. Indeed,
otherwise all = |, A(Tr+> p) would be in I, and hence, by WITNESS;, |
would belong to T'.

Lemma 5 (Lindenbaum lemma) Every well-consistent set Tq can be ex-
tended to a maximal good theory.

Proof: First, note that I' = GTh(Tg) is a consistent good theory. Let 1,2, . ..
be a list of all closed formulae of £J; and uq,us,... be a list of all universal
forms in £J;. Then we can list all combinations {u;(¢;)}$5_, in a sequence
01,05, .... (obviously, with repetitions, but that does not matter). We define
a sequence of consistent good theories Ty, C T C ... as follows: Ty = T}
suppose that T}, is defined and consider GTh(T,, U {6,}). If it is consistent,
this is Tp41. Otherwise let 6, = u;(¢;). Then —wu;(v;) € T,, by the Deduction
theorem. Therefore u;({r A(Tr¢> p) = ;) does not belong to T, for some
propositional variable p and some k (and therefore, due to Ax. I1.3, for all k).

Then we put

Sp+1 = GTh(T, U {~u;({r A(Te> p) = ¥;)}).

By the Deduction theorem, S, 41 is a consistent good theory.

Now, if 4; is not of the form F(G_L A Hy) then T, 41 = Sp41. Otherwise,
let ; = F(GL A Hy). Then, by closedness of S,,4; under PATH, u;(N™Hz))
does not belong to S,,;; for some m € N and we put

Tn+1 = GTh(Sn+1 @] {_"U,Z(NmH’lb))
Again, by the Deduction theorem, T}, is a consistent good theory.

Finally, we put T' = (J°_, T,,. By construction, T' is a maximal good theory.

Now, for any set of formulae A we define

GA={p:Gpe A}, XA={p:Xpe A} and AA={p: Ap € A}

14



Lemma 6 If A is a maximal good theory then GA, XA and AA are good
theories.

Proof: The proof hinges on the fact that Lu(*) is a universal form whenever
u(*) is, where L € {G, X, A}. [ ]

Lemma 7 If A is a mazimal good theory and FO € A (resp. N6 € A/Ef € A)
then there is a mazimal good theory A' such that 8 € A’ and GA C A’ (resp.
HA C A, AA C A').

Proof: By Lemma 6 GA is a good theory. Moreover, G0 ¢ A since A is
consistent. Therefore =6 ¢ GA, hence GTh(GA U {6}) is consistent. Then,
by Lemma 5 it can be extended to a maximal good theory A’. The other cases
are analogous. [ |

I1.1.iv We are now prepared to construct a ” canonical” model for any well-
consistent set of formulae, in particular for the consistent formula ¢.

Definition 4 A model (S, R,<,V) is called clock-model if for every t € S
there is a ”t o’clock-variable” py such that V(p;) = {t}.

Lemma 8 Every well-consistent set I'y in CTL,, is satisfiable in a clock-
model.

Proof:

The proof follows, mutatis mutandis, the standard canonical model con-
struction. First, we extend 'y to a maximal good theory I'. Then we define a
good canonical model M = (S, R, <,V as follows:

e S={A: A is amaximal good theory and AT C A};

e For any A;,A, € S: RA{A, if XA; C Ay, and Ay < Ay if
GA; C Ay;

e For any propositional variable p, V(p) = {A € S:p € A}.

M is a clock model since every maximal good theory contains a ”witness”.
This completes the proof of the lemma. [ |

Note that for any A;, A, from the canonical model M constructed above,
AA; C As.

The model M satisfies the following truth lemma, the proof of which essen-
tially repeats the one in [Gor 96] and crucially depends on the fact that M is
a clock-model:

Lemma 9 For every closed formula 6 and A € T,

M E 0[A] iff 6 € A.

15



In particular, T'g is satisfied at the point I' of the model M.

It also follows from the truth lemma that M is a model for all theorems of
CTL,,. In particular, all axioms for the structure, hence their corresponding
first-order conditions listed in the proof of soundness, are valid in M. Also, the
axiom [.4 guarantees that the relations R and < in M are related accordingly.
Indeed, that axiom, being a pure formula (with no atomic propositions) , can
be easily seen to be ”canonical” i.e. to hold in M and to impose there the
condition for R to be the immediate successor relation associated with the
partial ordering <.

Therefore, M is a rooted tree where every path is of type w or w*. Indeed,
every path will have an initial segment of type w; suppose there is a state
s beyond that initial segment which is not a terminal end and let p be the
variable which is true at s and only s. Then N™HFYp is true at the root for
every natural m, hence, by closedness under PATH, F(G_L A HFp) is true at
the root, so HFp is true at some terminal end, implying (by axiom III.6 and
WITNESS) that s is the terminal end itself  a contradiction.

Thus M is almost an extended computation tree, since not (necessarily)
every path in that tree has a terminal end.

It now remains to note that, since {¢} is well-consistent, ¢ is satisfied in a
good canonical model M.

Part I1.2. Given a good canonical model M = (S, R, <, V) satisfying the
formula ¢ we shall modify it into an extended computation tree by adding the
missing terminal ends to all maximal paths in such a way that the resulting
model will still satisfy ¢.

I1.2.i. Let py,...,pr be the atomic propositions occurring in ¢. We restrict
the temporal language by omitting all other atomic propositions, and let Ly be
the corresponding first order language with unary predicates Py,..., P,. We

now regard M as a model for the restricted languages.

I1.2.ii. For every state I' from M and a natural number n we define a
modal description of depth n of I' inductively on n as follows:

do(T) =}1 X211 ALt G= 11 AP, A A D,
where p; = p; if ' € V(p;), otherwise p; = —p;;

Ay (F) =
d,(T)A
/\Agér ~L1 E(_‘ Tl /\dn(A))/\
Arca Fdn(A) A Apga Ndn(A)A
Na<r Pda(A) A Apgr 1 E(IN 11 Ady (A))A
G (\/F<A dn(A)) ANX(Viga dn(A))A
H(Vacrdn(A)A L1 AN 112 VA gr dn(A))A
A== Vagr da(A))

16



Intuitively, d,(T") describes the part of the model M consisting of those
states which can be reached from T' within n steps (forward or backward)
along the relations R and <.

Note that for every n € A there are finitely many different formulae d,, (T')
for I' € M. For n = 0 we denote them by 4y, ...,J;.

Now, for every n € N we denote

o= N\ Ed.(D)AA ( \/ dn(F)>

rem rem

IT.2.iii. A standard induction on n shows that ST(®7 ) is equivalent to the
formula ¢%; as introduced in the proof of Fraissé’s theorem in [EFT 94], p.253,
and therefore the following lemma holds (see Th. 3.10, p.255 in [EFT 94]). (By
=,, we denote n-equivalence of structures.)

Lemma 10 For any Ls-model A and n € N,

A=, M iff AJFST(®7,)

I1.2.iv. Let {I';};co be a maximal path in M without a terminal end. We
add to the model a new state I'° in such a way that it is a terminal end for
that path. In order to define the truth of p{,...,pr at I'® we construct chains
of sets DY D D! D ... fori=1,...,j as follows.

Let, for every n € N, 77, ... ,7j., be all formulae d,(T;), i € N and v, =
(V' V ...V} ). Then Hy, is true at every I';,i € I, hence N™Hy,, are true
at every I'; for all m € N. Let ¢ € N be large enough so that for every
r>gq, 0, =Py A...APy; €T,. By the truth lemma and the rule PATH,
F(GL AHv,) is true at T',., hence there is a terminal end A such that T', < A
and Hvy,, A P8,,, hence Hy,, A 8, is true at A. Since A is not a terminal end
for {T';}ien, for large enough r; > r, T',, £ A. Repeating the same argument
for I';, we find a terminal end A; such that I',;, < A; and Hy,, A6, is true at
Ay, etc.

Now, for every i = 1,...,j we define D} to be the set of those (infinitely
many) terminal ends A in M such that §; A Hy, A 6, is true at A.

Note that for every n:

i) at least one D is infinite, and

ii) D;H'l C D? because 9,41 implies ¢, and 0,41 implies 6,, since (by an
easy induction on n) for any A, d,,11(A) implies d,(A).

Therefore, there is an index 4 such that D? is infinite for every n € N.

We then extend the valuation V' of the atomic propositions pq,...,pg to I'®
according to d;.

I1.2.v. Let M*¢ = (S¢, R,<¢,V*¢) be the extension of the model M by
adding terminal ends, as described above, to all maximal paths which do not
have them, i.e.:

17



e S° extends S by adding all newly constructed terminal ends;

e < extends < with I'; <® I'* for each maximal path {T';},c; with a newly
constructed terminal end T'¢;

e V¢ extends V as described above.

Note that for every n € N and I' € M, d,,(') in M* is the same as d,,(I') in
M (straightforward induction on n) and d,,(I'*) = d,,(A) for every A € D?(T'°).
Therefore &%, = ®% ..

II.2.vi. We now prove that M® is elementarily equivalent in Ly to M,
and therefore M°¢ |- J2ST(¢). By lemma 10 it is sufficient to show that
M | ST(®7R,), or equivalently, M* = ®%,, which follows from the fact that
o =D ..

This completes the proof of the main theorem. [ |

Theorem 11 The logic CTL,, is decidable.

Proof: This follows from the more general result in [GuS 85] about decidabil-
ity of the monadic second order theory of trees with path quantifiers. [ |

We can now extend Th 2 as follows.

Theorem 12 For any state formula ¢ in the language of CTL* the following
are equivalent:

(i) ¢ is CTL*-valid.

(i1) ¢ is valid in the class of finitely branching computation trees.

(i1i) (FT — 7(¢)) is valid in the class ECT.

(iv) (FT — 7(¢)) is valid in the class FECT.

(v) (FT — 7(¢)) is a theorem of CTL,,.

4 Some concluding remarks and open problems.

As mentioned in the introduction, the logic CTL,, can be considered as an
alternative to the p-calculus strongly expressive logical system in which CTL*
can be embedded, and for which an explicit complete axiomatization is pro-
vided. The p-calculus is well-studied and known to have many virtues which
make it a very interesting and attractive logical system: elegant axiomatization,
decidability, well-developed model-checking systems etc. On the other hand,
the idea and technicalities of reference pointers on which the temporal logic
proposed here is based are still little known. It is therefore difficult to offer
an objective comparison at this stage, yet a few remarks can be made. The
two languages, although both quite expressive, are formally incomparable in

18



their expressiveness (which is not yet known precisely for either language) and
quite different in style. While the semantics of p-calculus is mathematically
quite clear, it is a rather non-trivial task to determine explicitly the semantic
meaning of a formula from that language. In that respect, the language of
CTL,, seems easier to use as it comes closer to the style of first-order logic.
That feature, however, comes as a trade-off for the elegance and succinctness
of the expression. As for the axiomatization, the one proposed here being a
typical Hilbert-style deductive system is of a little practical use and the logics
with reference pointers are awaiting the development of efficient proof systems,
although a significant step forward is made in [Bl 99]. Until that time the use-
fulness of the CTL,,, will admittedly remain mainly theoretical. Finally, unlike
p-calculus, the complexity of the latter logic has not been studied yet, though
some related results for logics with reference pointers are known (see [BT 99]).

Now, some more questions and directions for further research.

Due to the decidability of CTL,,, the infinitary rule PATH can be replaced
by a recursive set of axioms. It is an open question if it can be eliminated at
the expense of adding finitely many new axioms.

An important question is whether the axiomatic system for CTL,, and its
completeness proof can be ”translated backwards” into CTL* and thus provide
a solution of the long-standing problem for an explicit axiomatization of that
logic.

The expressiveness of the TL,,, still awaits precise characterization, though
some related results are included in [Gor 96] and [BT 99]. A related question
is if there is a natural notion of bisimulation which would correspond to TL,.,-
equivalence of models.

Finally, some topics for further work, related to the practical utilization of
temporal logics with reference pointers for specification, analysis and verifica-
tion of programs are:

e investigation of practically important properties of computation trees
which are expressible in these logics but not in CTL*.

e construction of efficient deductive systems for CTL,,, in particular se-
mantic tableaux, and development of efficient decision procedures and
systems for automated deduction for that logic.

e development and implementation of real systems for specification and
verification of programs based on temporal logics with reference pointers.

5 Acknowledgements

This work was supported by research grant GUN 2034353 of the Foundation
for Research Development of South Africa. The paper has benefited from the
referees’ suggestions and critical comments.

19



References

[BRV95] Backofen R., J. Rogers, & K. Vijay-Shanker, A First-order Axiom-
atization of the Theory of Finite Trees, Journal of Logic, Language and
Information, 4, 1995, 5-39.

[BMP 81] Ben-Ari M., Z. Manna, & A. Pnueli, The Temporal Logic of Branch-
ing Time, Proc. 8th ACM Symp. on Princ. of Prog. Lang. Wiliiamsburg, VA,
1981, 164-176; also in: Acta Informatica, 20(3), 1983, 207-226.

[Ben 91] van Benthem J.F.AK., The Logic of Time, Reidel, Dordrecht, 2nd
ed., 1991.

[BS 95] Blackburn P. & J. Seligman, Hybrid Languages, Journal of Logic, Lan-
guage and Information, 4, 1995, 251-272.

[BT 98] Blackburn, Patrick and Miroslava Tzakova. Hybrid Completeness,
Logic Journal of the TJPL, 4 (1998), 625-650.

[BT 99] Blackburn, Patrick and Miroslava Tzakova. Hybrid Languages and
Temporal logic, J. of Logic, Language and Information, to appear.

[Bl 99] Blackburn, Patrick. Internalizing Labelled Deduction, to appear.

[Bur 84] Burgess J., Basic Tense Logic, in: Handbook of Philosophical Logic,
D. Gabbay and F. Guenthner (eds.), Reidel, Dordrecht, vol.IT, 1984, 89-133.

[CE 81] Clarke E.M. & E.A. Emerson, Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic, in: Proc. Workshop on
Logics of Programs, LNCS 131, Springer-Verlag, 1981, 52-71.

[Dam 94] Dam M., CTL* and ECTL* as Fragments of the modal mu-calculus,
Theoretical Computer Science, 126 (1994), pp77-96.

[EFT 94] Ebbinghaus H.-D., J. Flum, W. Thomas, Mathematical Logic,
Springer-Verlag, 2nd ed., 1994.

[Eme 90] Emerson, E.A., Temporal and Modal Logic, in: Handbook of Theo-
retical Computer Science, vol. B, J. van Leeuwen (ed.), Elsevier, 1990, pp.
995-1072.

[EmH 83] Emerson, E.A., & J.Y. Halpern, ”Sometimes” and ”"Not Never” re-
visited: on Branching versus Linear Time Temporal Logic, in:Proc. of the

10th Annual Symp. on Principles of Programming Languages, 1983, 127-140;
also in Journal of the ACM, 33(1), 151-178.

[EmS 84] Emerson, E.A.; & A.P. Sistla, Deciding full Branching Time Logic,
Information and Control, 61(3), 1984, 175-201.

20



[ES 89] Emerson E.A. & J. Srinivasan, Branching Time Temporal Logic, in:
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, J de Bakker, W.-P. de Roever, G. Rosenberg (eds.), LNCS
354, Springer-Verlag, 1989, 123-172.

[Ga 81] Gabbay, D., An Irreflexivity Lemma with Applications to Axiomatiza-
tions of Conditions on Tense Frames. in: Aspects of Philosophical Logic, U.

Monnich (ed.). Reidel, Dordrecht, 1981, 67-89.

[GaG 93] Gargov G. & V. Goranko, Modal Logic with Names, Journal of Philo-
sophical Logic, 22(6), 1993, 607-636.

[Gol 82] Goldblatt R.I., Aziomatizing the Logic of Computer Programming,
Springer LNCS 130, 1982.

[Gol 87] Goldblatt R.1., Logic of Time and Computation, CSLI Lecture Notes,
No. 7., 1987.

[Gor 94] Goranko V., Temporal Logic with Reference pointers, in: Temporal
Logic, D. Gabbay, H.-J. Ohlbach (eds.), Lecture Notes in Artificial Intelli-
gence 827, Springer-Verlag, 1994, pp. 133-148.

[Gor 96] Goranko, V., Hierarchies of Modal and Temporal Logics with Refer-
ence Pointers, Journal of Logic, Language and Information, 5, 1996, 1-24.

[Gor 99] Goranko, V., Trees and Finite Branching, 1999, submitted.

[GuS 85] Gurevich Y. & S. Shelah, The Decision Problem for Branching Time
Logic, Journal of Symbolic Logic, 50(3), 1985, 668-681.

[MaP 89] Manna Z., & A. Pnueli, The Anchored Version of the Temporal
Framework, in: Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, J. de Bakker, W.-P. de Roever, G. Rosenberg
(eds.), LNCS 354, Springer-Verlag, 1989, 201-284.

[PaT 91] Passy S. & T. Tinchev, An Essay in Combinatory Dynamic Logic,
Information and Computation, 93(2), 1991, 263-332.

[Pen 95] Penczek W., Branching Time and Partial Order in Temporal Logics,
in: Time and Logic: a Computational Approach, Univ. College of London,
1995, 179-228.

[Pnu 77] Pnueli A., The Temporal Logic of Programs, in: Proc. 18th Ann.
IEEE Symp. on Foundations of Computer Science (1977), 46-57.

[Pri 67] Prior A., Past, Present, and Future, Clarendon Press, Oxford, 1967.

[Sti 92] Stirling C., Modal and Temporal Logics, in: Handbook of Logic in Com-
puter Science, vol. 2: Computational Structures, S. Abramski, D. Gabbay,
T. Maibaum (eds.), Clarendon Press, Oxford, 1992, 478-563.

21



[Tho 88] Thomas W., Computation Tree Logic and Regular w-languages, in:
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, J de Bakker, W.-P. de Roever, G. Rosenberg (eds.), LNCS
354, Springer-Verlag, 1989, 690-713.

[Ven 93] Venema Y., Derivation Rules as Anti-axioms in Modal Logic, Journal
of Symbolic Logic, 58(3), 1993, 1003-1034.

[Wol 95] Wolper P., On the Relation of Programs and Computations to Models
of Temporal Logic, in: Time and Logic: a Computational Approach, Univ.
College of London, 1995, 131-178.

[ZaC 93] Zanardo A., J. Carmo, Ockhamist Computational Logic: Past-
Sensitive Necessitation in CTL*, J. of Logic and Computation, 3 (3), 1993,
249-268.

[Zan 96] Zanardo A., Branching-time Logic with Quantification Over Branch-
es: The Point of View of Modal Logic, J. of Symbolic Logic, 61 (1), 1996,
1-39.

22



