
Temporal Logics with Reference Pointers andComputation Tree LogicsValentin GorankoDepartment of Mathematics, Rand Afrikaans UniversityPO Box 524, Auckland Park 2006, Johannesburg, South Africae-mail: vfg@na.rau.ac.zaABSTRACT. A complete axiomatic system CTLrp is introduced for a tempo-ral logic for �nitely branching !+-trees in a language extended with so calledreference pointers. Syntactic and semantic interpretations are constructed forthe branching time computation tree logic CTL� into CTLrp. In particular,that yields a complete axiomatization for the translations of all valid CTL�-formulae. Thus, the temporal logic with reference pointers is brought forwardas a simpler (with no path quanti�ers), but in a way more expressive mediumfor reasoning about branching time.KEYWORDS: Computation tree logics, temporal logics, reference pointers, ax-iomatic system, completeness.IntroductionThe article deals with branching time temporal logics for computation trees ofnon-deterministic or concurrent programs. This area of research in theoreti-cal computer science has been vigorously developing in the past twenty years,particularly since the seminal paper of [Pnu 77] which proposes the use of tem-poral logics for formal speci�cation, analysis and veri�cation of programs, inparticular for reasoning about non-deterministic, concurrent and reactive pro-grams. Since then, a number of linear and branching time temporal logicalsystems have been put forward with this purpose, some of the most popularones of the latter type being UB, CTL, CTL� and variations of them (see[ES 89, Eme 90], [Pen 95], and [Sti 92] for surveys on these). The logic CTL�will be in the focus of this paper, though the results will accordingly apply toall others subsumed by it, as well. Besides the computational interpretation,branching time logics have important philosophical and purely logical aspects,in particular those related to decidability and decision procedures generatedby automata-theoretic methods, complexity, model checking and axiomatiza-tions. For some important results and further discussion on these the reader isreferred to [GuS 85, Tho 88, Wol 95, ZaC 93, Zan 96] in addition to the above

mentioned surveys. Of course, [Pri 67] should be added as a classical referenceto philosophical aspects of time.Here we propose syntactic and semantic interpretations of CTL� into thetemporal logic with reference pointers (TLrp) introduced in [Gor 94] and [Gor 96],where expressiveness and (un)decidability are discussed and a complete ax-iomatic system is constructed. The language of TLrp is a kind of hybrid lan-guage, see [BS 95, BT 98, BT 99], combining features of both propositionalmodal and classical �rst-order languages. It has a great expressive power, inparticular admitting translation of CTL� therein, after an appropriate modi�-cation of its semantics into extended computation trees. Moreover, TLrp enablesformalization of properties beyond the expressiveness of CTL�, like talkingabout the past and expressing various looping and non-looping conditions.Of course, CTL� is known to be embeddable in another very expressivelogical system, viz. Kozen's �-calculus (see [Dam 94]), so the natural questionarises about the relationship, advantages and disadvantages of the temporallogic with reference pointers proposed here as compared to the �-calculus. Wedefer that discussion to the concluding remarks.The main result in the paper is the construction of a complete axiomaticsystem (though involving an in�nitary rule) CTLrp for extended computationtrees, which is furthermore decidable, due to the general result in [GuS 85]. Inparticular we have obtained a complete axiomatization of the translations ofall valid CTL�-formulae.The paper begins with a preliminary section 2 which briey describes thesyntax and semantics of temporal logics with reference pointers and of thecomputation tree logic CTL�. In section 3 we introduce syntactic and semanticinterpretations of CTL� into the temporal logic with reference pointers forextended computation trees. Section 4 presents a complete axiomatic systemand completeness theorem for the temporal logics with reference pointers forextended trees CTLrp. Finally, we discuss some open problems and directionsfor further research.The reader is assumed to have some background in propositional temporallogics (syntax, semantics, deductive systems and completeness theorem) withineither of [Ben 91], [Bur 84], [Gol 87].1 Preliminaries1.1 Temporal logic with reference pointers.We consider a propositional temporal language with� a set of atomic propositions fp1; p2; : : :g;� propositional connectives :;!, and respectively de�nable ^;_;$, >(true) and ? (false); 2

� temporal operators A (always) with dual E (sometime), G (always inthe future) with dual F (eventually), and X (at all immediate time-successors), with dual N (at some immediate time-successor).As we shall see further, the other traditional temporal operators U (until),H (always in the past), and its dual P (sometime in the past) are de�nablein terms of A and G using reference pointers. The operator X is de�nable,too, but we shall retain it in the language in order to preserve the notion of aCTL�-model.The idea of reference pointers (see [Gor 94] or [Gor 96]) in brief is as follows.One or more pairs of new symbols (#k; "k) are added to the temporal language;the point of reference #k is a unary connective, and the reference pointer "kis an atomic symbol like a propositional variable. In a sense, these referencepairs play a rôle of variables on states (instants, possible worlds, etc.) andquanti�ers, or rather binders over these variables. It is therefore natural thatsome �rst-order style notions have their natural analogues in the language withreference pointers, viz.:� The �rst occurrence of the binder #i in the formula #i' has a scope '.� An occurrence of "i in a formula ' is bound if it is in the scope of anoccurrence of #i; otherwise it is free.� If ' and are formulae, '(= "i) denotes the result of simultaneoussubstitution of all free occurrences of "i in ' by .� A formula ' is closed if there are no free occurrences of "'s in '.Here is the intuitive semantics of the new symbols: when a formula #'is being evaluated in a model, # marks the state of evaluation s, and all freeoccurrences of " in ' are rendered true at the state s and only there, thusenabling references to that state throughout '.The formal semantics follows below.Let Llkt be a temporal language as above, extended with k pairs of referencepointers. The models of L lkt are the same as the models for the classicaltemporal logic: hT;R;<; V i, where T is a time ow, i.e. set of moments (states),< is the successor relation , R is the immediate successor relation, and V isa valuation of the atomic propositions in T . In order to de�ne truth of aformula from Llkt at a point of a model we extend the well-known standardtranslation ST (see [Ben 91]) as follows. Let L1 be the �rst-order languagecontaining binary predicates R and <, and a countable set of unary predicatesfP1; P2; : : :g. For technical convenience we split the set of individual variablesof L1 into two disjoint subsets: W = fx;w1; : : : ; wkg and Y = fy0; y1; y2; : : :g,where each of x and w's plays a special rôle, viz.:� x will represent the actual point in time (the current "now");3

� wi will represent the point of reference for the pointer "i ("theni") fori = 1; : : : ; k.We now de�ne the standard translation ST of Llkt into L1 recursively asfollows:1. ST (pi) = Pix,2. ST ("i) = (x = wi),3. ST (:') = :ST ('),4. ST (' ^) = ST (') ^ ST (),5. ST (X') = 8y(xRy ! ST (')(y=x)),6. ST (G') = 8y(x<y ! ST (')(y=x)),7. ST (A') = 8y(ST (')(y=x)),8. ST (#i ') = ST (')(x=wi).In 5, 6, and 7 above y is the �rst variable from Y, not occurring in ST (');u=v means uniform substitution of u for all free occurrences of v.Note that if ' is in Llkt then x and w1; : : : ; wk can only have free occurrencesin ST ('), where they are the only possibly free variables. Furthermore, ' isclosed if and only if no wi occurs in ST (').The model M = hT;R;<; V i can be regarded as an L1-model where R isinterpreted by R, < by<, and Pi by V (pi); i = 0; 1; 2; : : :. In order to distinguishvalidity inM as an L1-model from validity inM as a temporal model we shalluse the symbol j` for the former and j= for the latter. Now, we de�ne truth ata point for any closed formula ':M j= '[s] if M j` ST (')(s=x);and then validity in a model:M j= ' if M j= '[t] for every t 2 T; i.e. if M j` 8xST ('):Finally, ' is valid in a temporal structure if it is valid in every model on thestructure, and ' is (universally) valid if it is valid in every temporal structure.Here we have only de�ned validity for closed formulae since only these for-mulae have a determined meaning, and we shall not be interested in non-closedformulae on their own.The reference pointers considerably increase the expressiveness of the lan-guage, as numerous examples in [Gor 96] testify. The basic temporal logic withreference pointers outlined here was introduced and axiomatized in [Gor 94].Languages with reference pointers have been further studied in [BT 98, BT 99]where, inter alia, some weaker languages with pointers (binders) without uni-versal modality have been axiomatized.4

1.2 Computation Tree LogicsThe full branching time computation tree logic CTL� was introduced in [EmH 83].Here we o�er a very brief summary of the syntax and semantics of CTL�, re-ferring the reader to [ES 89], [Eme 90], or [Pen 95] for more detail.1.2.1 SyntaxThe language of CTL� is a propositional language with a set of atomic propo-sitions (propositional variables) AP, temporal operators X (nexttime) and U(until), and path quanti�ers, 8 meaning "for all paths", and its dual 9, meaning"for some path", which will be regarded as an abbreviation of :8:.Two types of formulae are traditionally introduced for CTL�, state formu-lae and path formulae. This distinction is essential for some of its restrictedversions like CTL, but is also convenient for the truth de�nition: the formerare evaluated at states and the latter | at paths in the model. Here is thejoint recursive de�nition of state and path formulae:� every atomic proposition is a state formula;� if �; are state formulae then so are :� and �! ;� if � is a path formula then 8� is a state formula;� every state formula is a path formula;� if �; are path formulae then so are :�, �! , X� and �U ;These de�nitions can be combined into a uniform de�nition of a formula ofCTL�, the Backus-Naur form (BNF) of which is:� := p j :� j �1 ! �2 j X� j �1U�2 j 8�;where p is an atomic proposition.Two of the most popular predecessors of CTL� are:� UB (introduced in [BMP 81]), the language of which contains the tem-poral operators X, G (always in the future), with dual F (eventually)but not U. The BNF de�nition of formulae of UB is:� := p j :� j �1 ! �2 j 9X� j 9G� j 8G�;� CTL (introduced in [CE 81]), with the same language as CTL� and BNFde�nition of formulae:� := p j :� j �1 ! �2 j 9X� j 9(�1U�2) j 8(�1U�2):These will not be discussed further but, being subsystems of CTL�, theinterpretations of CTL� introduced here will apply for them, too.5

1.2.2 Semantics of CTL�Intuitively, models for CTL� are computation trees generated by executions ofnon-deterministic or concurrent programs. They consist of all possible com-putation paths of such a program (i.e. sequences of consecutive states in anexecution of the program).Remark: In fact, computation paths may loop or meet, hence a typical modelfor CTL� should rather be a directed graph. Every such a model, however,is indistinguishable in the language of CTL� from a rooted tree-like modelobtained from the former by unwinding (see [Eme 90]). Therefore the class ofrooted tree-like models T is adequate for CTL� and we restrict our attentionto that class.The models from T are formalized as triples hS;R; V i, where S is a nonemp-ty set of states, R is the immediate successor relation in S, and V : AP ! P(S)is a valuation assigning to each atomic proposition the set of states at whichit is true. We shall impose the additional assumption (which is quite naturalin view of the interpretation of the models as computation trees) that everyR-path (i.e. maximal linearly ordered set of states) is isomorphic to !. Treessatisfying this condition will be called !-trees.The basic semantic notion for CTL� is truth at a state s of a model Mde�ned by simultaneous induction on state and path formulae as follows:(S1) M j=s p if s 2 V (p);(S2) M j=s :� if not M j=s �;(S3) M j=s �! if M j=s � implies M j=s ;(S4) M j=s 8�, where � is a path formula, if for every path p beginning froms, M j=p � holds.In the following clauses p is a path fp0;p1; : : :g, and pi is the su�x pathfpi;pi+1; : : :g(P1) M j=p �, where � is a state formula, if M j=p0 �;(P2) M j=p :� if not M j=p �;(P3) M j=p �! if M j=p � implies M j=p ;(P4) M j=p X�, if M j=p1 �;(P5) M j=p �U , if there is i � 0 such that M j=pi and for every j, suchthat 0 � j < i; M j=pj � holds.A state formula � is valid in a model M, denoted M j= �, if � is trueat every state of M. A state formula � is CTL�-valid if it is valid in everyCTL�-model. 6

According to my knowledge, no �nite complete axiomatization for CTL�with respect to the class of standard models has been published yet (but somecompleteness results for more general semantics are presented in [Sti 92]).The validity in CTL� was proved decidable in deterministic double expo-nential time in [EmS 84].2 Interpretation of CTL� into the Temporal Logic with ReferencePointers2.1 Extended Computation Trees for CTL�-models.In this section we transform the CTL�-models from T into a form suitable forthe language with reference pointers.For any model T = hS;R; V i from T we de�ne an extended computationtree of T: T e = hSe; Re; <; V ei as follows. LetF = fsx : x is a maximal path in Sgbe a set disjoint from S. Then we put:Se = S [F ; Re = R;< = R+ [f(t; sx) : t 2 S and x is a maximal path in S containing tg,where R+ is the transitive closure of R;Finally, V e coincides with V over S and is arbitrarily extended over allstates from F , e.g. by declaring all atomic propositions false at every s 2 F .Intuitively, T e extends T by adding a "frontier" F of trans�nite "terminalends" for all maximal paths, each terminal end <-seen from all states of thecorresponding path and only from them. Thus, every maximal path in anextended !-tree will be of ordinal type !+, so we shall refer to such trees as!+-trees.The class of extended computation trees for CTL�-models will be denotedby ECT .A (extended) computation tree is called �nitely branching if every node has�nitely many immediate successors. The class of �nitely branching extendedcomputation trees will be denoted by FECT .Let us note that every formula from Llkt can be translated into a �11 formulaof the monadic second-order language L2 obtained from L1 by treating theunary predicates as variables. The following result implies that every such aformula is valid in ECT i� it is valid in FECT , and therefore ECT and FECTprovide equivalent semantics for any temporal logic with reference pointers.Theorem 1 If a �11 formula of L2 is falsi�able in an !+-tree then it is falsi-�able in a �nitely branching !+-tree.This theorem follows from the fact that for every positive integer n, every!+-tree T is n-equivalent to a �nitely branching one. The proof of this resultis rather long and technically involved. It goes through 3 major steps. First,7

using Ehrenfeucht games it can be shown that T is n-equivalent to an !+-tree�nitely branching at the �rst k levels, which in turn is proved n-equivalent toan "almost !+-tree" which is �nitely branching at all �nite levels, and everystate has a successor which is a terminal state. Finally, every such a tree isn-equivalent to a �nitely branching !+-tree. For a detailed proof see [Gor 99].2.2 Syntactic Translation of CTL� into the Temporal Logic withReference Pointers.We de�ne a translation � of the formulae of CTL� into the temporal logic withreference pointers, assuming that both languages share the same set of atomicpropositions, inductively as follows. (Note that the states without successors(the terminal ends) in an extended computation tree are precisely the addedstates sx; the pointer #1 will be used to indicate the current state of evaluation,while #2 indicates the terminal end of the path on which the evaluation is beingdone.)� �(p) = p;� �(:�) = :�(�);� �(�!) = �(�) ! �();� �(8�) =#1G#2 (G? ! A("1! �(�)));� �(X�) = X(F"2!#1 �(�));� �(�U) =#1 �() _ F(F"2 ^�() ^H(P"1!#1 �(�))).The translation � is faithful in the following sense:Theorem 2 For any state formula � in the language of CTL� the followingare equivalent:(i) � is CTL�-valid;(ii) (F> ! �(�)) is valid in the class ECT ;(iii) (F> ! �(�)) is valid in the class FECT ;Proof:(ii) , (iii) follows from directly from theorem 1 or, using the equivalencebetween (i) and (ii), from the fact (see [Wol 95], Lemma 3.5) that every satis-�able CTL�-formula is satis�able in a �nitely branching tree.(i) , (ii):Recall that every CTL�-formula � can be regarded as a path formula. Astate formula regarded as a path formula is valid in a model if and only if it istrue on every path of the model.It can be proved by induction on � that for every CTL�-model M and apath p in it, M j=p � i� Me j` 9y(x < y)! ST (�(�))(x; z)where the beginning of p (the current state) is assigned to x and the terminalend of p is assigned to z.For that purpose it su�ces to note that:8

� ST (�(8�))(x; z) is logically equivalent to 8w(8u(:w < u)! ST (�(�))(x;w=z));� ST (�(X�))(x; z) is logically equivalent to 8y((xRy ^ y < z)! ST (�(�))(y=x; z));� ST (�(�U))(x; z) is logically equivalent to ST (�())(x; z))_9y(x < y^y < z ^ ST (�())(y=x; z) ^ 8u((x < u ^ u < y)! ST (�(�))(u=x; z)).Note that other important versions of temporal logic of programs can beaccordingly translated into the temporal logic with reference pointers, e.g. theanchored version proposed in [MaP 89].Furthermore, the temporal logic with reference pointers is in a way moreexpressive than CTL�. For instance, the fact that no execution path of theprogram will ever loop can be simply expressed by#i G: "i;while this fact is not expressible in CTL�, and therefore the language withreference pointers can distinguish unwound structures from general ones.3 Temporal Logic with Reference Pointers for ECT3.1 Syntax and Semantics.We �x a propositional temporal language with (at least) four pairs of referencepointers Llt.The temporal operators H (with dual P), X, and U are de�ned in termsof G and A as follows: H� =#3 A(F "3! �);�U = _ (�^ #4 F(^H(P "4! �)));X� =#4 G(HH: "4! �):where the formulae �; have no free occurrences of "3; "4. Actually, these twopointers will only be used for the purpose of expressing the operators H, X,and U. (Alternatively, a language with only two reference pointers and theseoperators added to the basic ones can be considered, and axioms correspondingto the above de�nitions should be included in the deductive system.) We shall,however, retain X in the language in order to comply with the notion of amodel introduced earlier. The dual operator : X: will be denoted by N.Note that every extended computation tree (Se; Re; <; V e) can be regardedas a model for Llt in terms of the previous section.9

3.2 Axiomatic System: CTLrpWe now propose a complete axiomatization of the class ECT in the languageLlt thus introducing the logic CTLrp.AXIOMS:0. A recursive set of axioms for the classical propositional logic.I. Axioms for the temporal operators:In all axioms and rules below j; k range over all indices for reference pointers.I.1 The K-axiom for G.I.2 The S5-axioms for A.I.3 Ap! Gp.I.4 #k X#iA("k$ (F"i ^GG:"i)).II. Axioms for the reference pointers:II.1 #k"k,II.2 #kA("k$ p)! (q ! A(p! q))II.3 #kA("k$ p)! (#j $ (p="j)), for any closed formula #j where p; q are propositional variables.III. Axioms for the model structures:III.1 #k G:"k (irreexivity);III.2 #k A(FF"k! F"k) (transitivity);III.3 E(#k A("k _P "k) ^ F>) (there is a root and a non-root);III.4 #1H#2A(F"1! ("2 _P"2 _F"2)) (every state has a linear past);III.5 F> ! (FG?^N>^XF>) (every state which is not a terminal endsees one, has an immediate successor, and no immediate successor is aterminal end);III.6 #kA((G? ^HF"k)!"k) (every path has at most one terminal end).RULES:1. MP: '; '! ;10

2. NECA: 'A' ;3. CLSUB: 'clsub(') ;where clsub(') is a result of uniform substitution of closed formulae forpropositional variables in '.4. WITNESS:#kA("k$ p)! ' for some propositional variable p not occurring in '' ;5. PATH: '! NmH for every m = 0; 1; 2; : : :'! F(G?^H):The last two rules deserve some comments.The rule WITNESS is similar by idea to some quanti�er rules in �rst-orderlogic (e.g.: if ` A(c) for some constant c not occurring in A(x) then ` 8xA(x))and especially to a type of rules discussed in detail in [Ven 93], originating fromGabbay's "irreexivity rule", see [Ga 81]. In the presence of the substitutionrule WITNESS is deductively equivalent to#kA("k$ p)! ' for every propositional variable p' :The e�ect of WITNESS is this: if a formula ' is not valid, i.e. it is falsi�edat a point t of a model in which validity is preserved under WITNESS, thenthere will be a propositional variable p which is a witness of the failure ' bybeing a "name" for the falsifying state t, i.e. being true at that state only. Intemporal setting the variable p says: "it is t o'clock now (when ' is false)". Foranalogues and further discussion of WITNESS see [PaT 91, GaG 93, Gor 94].The rule PATH will ensure that in the canonical model every path is of type!, and it either has a terminal end or can be extended with one.While the rule WITNESS plays a very important rôle in the derivationsin CTLrp, the main reason (so far) for the introduction of PATH is the proofof completeness, though, it is used for derivations too, e.g. of the inductionscheme � ^N� ^G(�! N�)! F(G?^H�).Some related open problems are formulated at the end of the paper.Theorem 3 The logic CTLrp is sound and complete with respect to the classof extended computation trees ECT . 11

Proof:I. Soundness.The validity of the �rst two groups of axioms (except for I.4) and all rulesexcept for PATH is shown in [Gor 96]. As for I.4 and the third group of axioms,it is a routine task to check that their ST translations are respectively equivalentto the following �rst-order conditions:i.4) 8y(xRy $ (x < y ^ :9z(x < z ^ z < y)));iii.1) :x < x;iii.2) 8y8z((z < y ^ y < x)! z < x);iii.3) 9y(8z(y = z _ y < z) ^ 9z(y < z));iii.4) 8y8z((y < x ^ z < x)! (y = z _ y < z _ z < y));iii.5) 9y(x < y) ! (9y(x < y ^ :9z(y < z)) ^ 9y(x < y ^ :9z(x < z ^ z <y)) ^ 8y((x < y ^ :9z(x < z ^ z < y))! 9z(y < z)));iii.6) 8y((:9z(y < z) ^ 8z(z < y ! z < x))! y = x);which are valid in every extended computation tree.Finally, the rule PATH preserves validity, too. Indeed, if the conclusion ofPATH is falsi�able in some !+-tree then it is falsi�ed at a state s in a modelM over a �nitely branching one, by theorem 1. If all premises are valid there,then there are arbitrarily long �nite paths starting from s, along which theformula is true, hence by K�onig's lemma there is an in�nite path startingfrom s along which is true, and therefore there is a terminal end of such apath | a contradiction.II. Completeness.The proof of completeness consists of two major parts: in the �rst part,given a consistent formula � we construct a model satisfying �, which is almostan extended computation tree. In the second part, we modify this model into aproper extended computation tree in such a way that the resulting model willstill satisfy �.Part II.1. This part closely follows, mutatis mutandis, the proof of com-pleteness for the basic temporal logic with reference pointers presented in[Gor 94] (for the logic with one pair of reference pointers) and [Gor 96] (forlogics with more pairs of pointers). Nevertheless, it will be outlined here insome detail in order to make the paper more self-contained and to demonstratethat the in�nitary rule PATH presents no additional complications.II.1.i. We �rst introduce the syntactic notion of universal forms of � inL lt (originating from the admissible forms in [Gol 82], see also [GaG 93]),recursively as follows: 12

� � is a universal form of �.� If u(�) is a universal form of �, ' is a closed formula in Llt, and L isa box-modality in Llt (i.e. A, G, X) then ' ! u(�) and Lu(�) areuniversal forms of � in Llt.Every universal form of � in Llt can be represented (up to tautologicalequivalence) in a uniform way:u(�) = '0 ! L1('1 ! : : :Ln('n ! �) : : :)where L1; : : : ;Ln are box-modalities in Llt and some of '1; : : : ; 'n may be >if necessary.For every universal form u(�) and a formula � we denote by u(�) the resultof substitution of � for � in u(�). Obviously, if � is a closed formula then u(�)is a closed formula, too.II.1.ii. Now we introduce the rulesWITNESSU : u(#kA("k$ p)! ') for every propositional variable pu(') ;and PATHU : u(NmH) for every m = 0; 1; 2; : : :u(F(G? ^H))where u is an arbitrarily �xed universal form.Although the new rules WITNESSU and PATHU seem much strongerthan WITNESS and PATH, in fact they are respectively derivable from thelatter in CTLrp (cf. [Gor 96]), and therefore deductively equivalent to them.II.1.iii. We now introduce and prove some necessary facts about an appro-priately strengthened notion of a maximal theory, which will eventually serveas a building block of the canonical model for �.De�nition 1 A theory in L lt is a set of closed formulae of L lt, whichcontains all theorems of CTLrp and is closed with respect to MP.A good theory is a theory in Llt which is closed with respect toWITNESSUand PATHU .Note that for every set of closed formulae � there is a minimal good theoryGTh(�) /resp. a minimal theory Th(�)/ containing �. Indeed, the set of allclosed formulae is a good theory. Furthermore, the intersection of every familyof good theories is a good theory. Then GTh(�) is the intersection of all goodtheories containing �. Likewise for theories.De�nition 2 A theory (resp. good theory) is consistent if it does not con-tain the falsity ?. A set of closed formulae � is well-consistent if GTh(�) isconsistent. 13

Lemma 4 (Deduction theorem for good theories (cf. [Gor 96])) If � isa good theory and '; are closed formulae then '! 2 � i� 2 GTh(�[f'g)Proof: The proof follows the standard lines of an inductive proof of deductiontheorem in modal logic, using in addition the fact that �! u(�) is an universalform whenever u(�) is. For more detail, see [Gor 94]).As a corollary to the Deduction theorem, note that for every consistentformula �, the set f�g is well-consistent.De�nition 3 A (good) theory � is maximal if for every closed formula ',either ' 2 � or :' 2 �.Every maximal theory is consistent and cannot be extended to another con-sistent theory. The most important property of a maximal good theory � is thatit contains a "witness" #kA("k$ q) for some propositional variable q. Indeed,otherwise all : #k A("k$ p) would be in �, and hence, by WITNESSU ;?would belong to �.Lemma 5 (Lindenbaum lemma) Every well-consistent set �0 can be ex-tended to a maximal good theory.Proof: First, note that � = GTh(�0) is a consistent good theory. Let 1; 2; : : :be a list of all closed formulae of Llt and u1; u2; : : : be a list of all universalforms in Llt. Then we can list all combinations fui(j)g1i;j=1 in a sequence�1; �2; : : : . (obviously, with repetitions, but that does not matter). We de�nea sequence of consistent good theories T0 � T1 � : : : as follows: T0 = �;suppose that Tn is de�ned and consider GTh(Tn [f�ng). If it is consistent,this is Tn+1. Otherwise let �n = ui(j). Then :ui(j) 2 Tn by the Deductiontheorem. Therefore ui(#k A("k$ p) ! j) does not belong to Tn for somepropositional variable p and some k (and therefore, due to Ax. II.3, for all k).Then we put Sn+1 = GTh(Tn [f:ui(#kA("k$ p)! j)g):By the Deduction theorem, Sn+1 is a consistent good theory.Now, if j is not of the form F(G? ^H) then Tn+1 = Sn+1. Otherwise,let j = F(G?^H). Then, by closedness of Sn+1 under PATH, ui(NmH)does not belong to Sn+1 for some m 2 N and we putTn+1 = GTh(Sn+1 [f:ui(NmH)):Again, by the Deduction theorem, Tn+1 is a consistent good theory.Finally, we put T = S1n=0 Tn: By construction, T is a maximal good theory.Now, for any set of formulae � we de�neG� = f' : G' 2�g; X� = f' : X' 2�g and A� = f' : A' 2�g:14

Lemma 6 If � is a maximal good theory then G�;X� and A� are goodtheories.Proof: The proof hinges on the fact that Lu(�) is a universal form wheneveru(�) is, where L 2 fG;X;Ag.Lemma 7 If � is a maximal good theory and F� 2 � (resp. N� 2 �;E� 2 �)then there is a maximal good theory �0 such that � 2 �0 and G� � �0 (resp.H� ��0;A� ��0).Proof: By Lemma 6 G� is a good theory. Moreover, G:� 62� since � isconsistent. Therefore :� 62 G�, hence GTh(G� [f�g) is consistent. Then,by Lemma 5 it can be extended to a maximal good theory �0. The other casesare analogous.II.1.ivWe are now prepared to construct a "canonical" model for any well-consistent set of formulae, in particular for the consistent formula �.De�nition 4 A model hS;R;<; V i is called clock-model if for every t 2 Sthere is a "t o'clock-variable" pt such that V (pt) = ftg.Lemma 8 Every well-consistent set �0 in CTLrp is satis�able in a clock-model.Proof:The proof follows, mutatis mutandis, the standard canonical model con-struction. First, we extend �0 to a maximal good theory �. Then we de�ne agood canonical model M = hS;R;<; V i as follows:� S = f� : � is a maximal good theory and A� � �g;� For any �1;�2 2 S: R�1�2 if X�1 � �2, and �1 < �2 ifG�1 � �2;� For any propositional variable p; V (p) = f� 2 S : p 2 �g.M is a clock model since every maximal good theory contains a "witness".This completes the proof of the lemma.Note that for any �1;�2 from the canonical model M constructed above,A�1 � �2.The modelM satis�es the following truth lemma, the proof of which essen-tially repeats the one in [Gor 96] and crucially depends on the fact that M isa clock-model:Lemma 9 For every closed formula � and � 2 T ,M j= �[�] i� � 2 �:15

In particular, �0 is satis�ed at the point � of the model M.It also follows from the truth lemma that M is a model for all theorems ofCTLrp. In particular, all axioms for the structure, hence their corresponding�rst-order conditions listed in the proof of soundness, are valid inM. Also, theaxiom I.4 guarantees that the relations R and < in M are related accordingly.Indeed, that axiom, being a pure formula (with no atomic propositions) , canbe easily seen to be "canonical" i.e. to hold in M and to impose there thecondition for R to be the immediate successor relation associated with thepartial ordering <.Therefore,M is a rooted tree where every path is of type ! or !+. Indeed,every path will have an initial segment of type !; suppose there is a states beyond that initial segment which is not a terminal end and let p be thevariable which is true at s and only s. Then NmHFp is true at the root forevery natural m, hence, by closedness under PATH, F(G? ^HFp) is true atthe root, so HFp is true at some terminal end, implying (by axiom III.6 andWITNESS) that s is the terminal end itself | a contradiction.Thus M is almost an extended computation tree, since not (necessarily)every path in that tree has a terminal end.It now remains to note that, since f�g is well-consistent, � is satis�ed in agood canonical model M.Part II.2. Given a good canonical model M = hS;R;<; V i satisfying theformula � we shall modify it into an extended computation tree by adding themissing terminal ends to all maximal paths in such a way that the resultingmodel will still satisfy �.II.2.i. Let p1; : : : ; pk be the atomic propositions occurring in �. We restrictthe temporal language by omitting all other atomic propositions, and let L� bethe corresponding �rst order language with unary predicates P1; : : : ; Pk. Wenow regardM as a model for the restricted languages.II.2.ii. For every state � from M and a natural number n we de�ne amodal description of depth n of � inductively on n as follows:d0(�) =#1 X: "1 ^ #1 G: "1 ^p̂1;^ : : : ^ p̂k;where p̂i = pi if � 2 V (pi), otherwise p̂i = :pi;dn+1(�) = dn(�)^V�6=� #1 E(: "1 ^dn(�))^V�<�Fdn(�) ^V�R�Ndn(�)^V�<�Pdn(�) ^V�R� #1 E(N "1 ^dn(�))^G �W�<� dn(�)� ^X(W�R� dn(�))^H(W�<� dn(�))^ #1 A(N "1! W�R� dn(�))^#1 A(: "1! W�6=� dn(�))16

Intuitively, dn(�) describes the part of the model M consisting of thosestates which can be reached from � within n steps (forward or backward)along the relations R and <.Note that for every n 2 N there are �nitely many di�erent formulae dn(�)for � 2M. For n = 0 we denote them by �1; : : : ; �j .Now, for every n 2 N we denote�nM = ^�2MEdn(�) ^A _�2M dn(�)!II.2.iii. A standard induction on n shows that ST (�nM) is equivalent to theformula �nM as introduced in the proof of Fra�{ss�e's theorem in [EFT 94], p.253,and therefore the following lemma holds (see Th. 3.10, p.255 in [EFT 94]). (By�n we denote n-equivalence of structures.)Lemma 10 For any L�-model A and n 2 N ,A �n M i� A j` ST (�nM)II.2.iv. Let f�igi2N be a maximal path inM without a terminal end. Weadd to the model a new state �e in such a way that it is a terminal end forthat path. In order to de�ne the truth of p1; : : : ; pk at �e we construct chainsof sets D0i � D1i � : : : for i = 1; : : : ; j as follows.Let, for every n 2 N , n1 ; : : : ; njn be all formulae dn(�i); i 2 N and n =(n1 _ : : : _ njn). Then H n is true at every �i; i 2 I , hence NmH n are trueat every �i for all m 2 N . Let q 2 N be large enough so that for everyr � q, �n = Pn1 ^ : : : ^ Pnjn 2 �r. By the truth lemma and the rule PATH,F(G?^H n) is true at �r, hence there is a terminal end � such that �r < �and H n ^ P�n, hence H n ^ �n is true at �. Since � is not a terminal endfor f�igi2N , for large enough r1 > r; �r1 6< �. Repeating the same argumentfor �r1 we �nd a terminal end �1 such that �r1 < �1 and H n ^ �n is true at�1, etc.Now, for every i = 1; : : : ; j we de�ne Dni to be the set of those (in�nitelymany) terminal ends � in M such that �i ^H n ^ �n is true at �.Note that for every n:i) at least one Dni is in�nite, andii) Dn+1i � Dni because n+1 implies n and �n+1 implies �n since (by aneasy induction on n) for any �, dn+1(�) implies dn(�).Therefore, there is an index i such that Dni is in�nite for every n 2 N .We then extend the valuation V of the atomic propositions p1; : : : ; pk to �eaccording to �i.II.2.v. Let Me = hSe; R;<e; V ei be the extension of the model M byadding terminal ends, as described above, to all maximal paths which do nothave them, i.e.: 17

� Se extends S by adding all newly constructed terminal ends;� <e extends < with �i <e �e for each maximal path f�igi2I with a newlyconstructed terminal end �e;� V e extends V as described above.Note that for every n 2 N and � 2M, dn(�) inMe is the same as dn(�) inM (straightforward induction on n) and dn(�e) = dn(�) for every � 2 Dni (�e).Therefore �nM = �nMe .II.2.vi. We now prove that Me is elementarily equivalent in L� to M,and therefore Me j` 9xST (�). By lemma 10 it is su�cient to show thatMe j` ST (�nM), or equivalently, Me j= �nM, which follows from the fact that�nM = �nMe .This completes the proof of the main theorem.Theorem 11 The logic CTLrp is decidable.Proof: This follows from the more general result in [GuS 85] about decidabil-ity of the monadic second order theory of trees with path quanti�ers.We can now extend Th 2 as follows.Theorem 12 For any state formula � in the language of CTL� the followingare equivalent:(i) � is CTL�-valid.(ii) � is valid in the class of �nitely branching computation trees.(iii) (F> ! �(�)) is valid in the class ECT .(iv) (F> ! �(�)) is valid in the class FECT .(v) (F>! �(�)) is a theorem of CTLrp.4 Some concluding remarks and open problems.As mentioned in the introduction, the logic CTLrp can be considered as analternative to the �-calculus strongly expressive logical system in which CTL�can be embedded, and for which an explicit complete axiomatization is pro-vided. The �-calculus is well-studied and known to have many virtues whichmake it a very interesting and attractive logical system: elegant axiomatization,decidability, well-developed model-checking systems etc. On the other hand,the idea and technicalities of reference pointers on which the temporal logicproposed here is based are still little known. It is therefore di�cult to o�eran objective comparison at this stage, yet a few remarks can be made. Thetwo languages, although both quite expressive, are formally incomparable in18

their expressiveness (which is not yet known precisely for either language) andquite di�erent in style. While the semantics of �-calculus is mathematicallyquite clear, it is a rather non-trivial task to determine explicitly the semanticmeaning of a formula from that language. In that respect, the language ofCTLrp seems easier to use as it comes closer to the style of �rst-order logic.That feature, however, comes as a trade-o� for the elegance and succinctnessof the expression. As for the axiomatization, the one proposed here being atypical Hilbert-style deductive system is of a little practical use and the logicswith reference pointers are awaiting the development of e�cient proof systems,although a signi�cant step forward is made in [Bl 99]. Until that time the use-fulness of the CTLrp will admittedly remain mainly theoretical. Finally, unlike�-calculus, the complexity of the latter logic has not been studied yet, thoughsome related results for logics with reference pointers are known (see [BT 99]).Now, some more questions and directions for further research.Due to the decidability of CTLrp, the in�nitary rule PATH can be replacedby a recursive set of axioms. It is an open question if it can be eliminated atthe expense of adding �nitely many new axioms.An important question is whether the axiomatic system for CTLrp and itscompleteness proof can be "translated backwards" into CTL� and thus providea solution of the long-standing problem for an explicit axiomatization of thatlogic.The expressiveness of the TLrp still awaits precise characterization, thoughsome related results are included in [Gor 96] and [BT 99]. A related questionis if there is a natural notion of bisimulation which would correspond to TLrp-equivalence of models.Finally, some topics for further work, related to the practical utilization oftemporal logics with reference pointers for speci�cation, analysis and veri�ca-tion of programs are:� investigation of practically important properties of computation treeswhich are expressible in these logics but not in CTL�.� construction of e�cient deductive systems for CTLrp, in particular se-mantic tableaux, and development of e�cient decision procedures andsystems for automated deduction for that logic.� development and implementation of real systems for speci�cation andveri�cation of programs based on temporal logics with reference pointers.5 AcknowledgementsThis work was supported by research grant GUN 2034353 of the Foundationfor Research Development of South Africa. The paper has bene�ted from thereferees' suggestions and critical comments.19

References[BRV95] Backofen R., J. Rogers, & K. Vijay-Shanker, A First-order Axiom-atization of the Theory of Finite Trees, Journal of Logic, Language andInformation, 4, 1995, 5-39.[BMP 81] Ben-Ari M., Z. Manna, & A. Pnueli, The Temporal Logic of Branch-ing Time, Proc. 8th ACM Symp. on Princ. of Prog. Lang. Wiliiamsburg, VA,1981, 164-176; also in: Acta Informatica, 20(3), 1983, 207-226.[Ben 91] van Benthem J.F.A.K., The Logic of Time, Reidel, Dordrecht, 2nded., 1991.[BS 95] Blackburn P. & J. Seligman, Hybrid Languages, Journal of Logic, Lan-guage and Information, 4, 1995, 251-272.[BT 98] Blackburn, Patrick and Miroslava Tzakova. Hybrid Completeness,Logic Journal of the IJPL, 4 (1998), 625-650.[BT 99] Blackburn, Patrick and Miroslava Tzakova. Hybrid Languages andTemporal logic, J. of Logic, Language and Information, to appear.[Bl 99] Blackburn, Patrick. Internalizing Labelled Deduction, to appear.[Bur 84] Burgess J., Basic Tense Logic, in: Handbook of Philosophical Logic,D. Gabbay and F. Guenthner (eds.), Reidel, Dordrecht, vol.II, 1984, 89-133.[CE 81] Clarke E.M. & E.A. Emerson, Design and Synthesis of SynchronizationSkeletons using Branching Time Temporal Logic, in: Proc. Workshop onLogics of Programs, LNCS 131, Springer-Verlag, 1981, 52-71.[Dam 94] Dam M., CTL� and ECTL� as Fragments of the modal mu-calculus,Theoretical Computer Science, 126 (1994), pp77-96.[EFT 94] Ebbinghaus H.-D., J. Flum, W. Thomas, Mathematical Logic,Springer-Verlag, 2nd ed., 1994.[Eme 90] Emerson, E.A., Temporal and Modal Logic, in: Handbook of Theo-retical Computer Science, vol. B, J. van Leeuwen (ed.), Elsevier, 1990, pp.995-1072.[EmH 83] Emerson, E.A., & J.Y. Halpern, "Sometimes" and "Not Never" re-visited: on Branching versus Linear Time Temporal Logic, in:Proc. of the10th Annual Symp. on Principles of Programming Languages, 1983, 127-140;also in Journal of the ACM, 33(1), 151-178.[EmS 84] Emerson, E.A., & A.P. Sistla, Deciding full Branching Time Logic,Information and Control, 61(3), 1984, 175-201.20

[ES 89] Emerson E.A. & J. Srinivasan, Branching Time Temporal Logic, in:Linear Time, Branching Time and Partial Order in Logics and Models forConcurrency, J de Bakker, W.-P. de Roever, G. Rosenberg (eds.), LNCS354, Springer-Verlag, 1989, 123-172.[Ga 81] Gabbay, D., An Irreexivity Lemma with Applications to Axiomatiza-tions of Conditions on Tense Frames. in: Aspects of Philosophical Logic, U.Monnich (ed.). Reidel, Dordrecht, 1981, 67-89.[GaG 93] GargovG. & V. Goranko, Modal Logic with Names, Journal of Philo-sophical Logic, 22(6), 1993, 607-636.[Gol 82] Goldblatt R.I., Axiomatizing the Logic of Computer Programming,Springer LNCS 130, 1982.[Gol 87] Goldblatt R.I., Logic of Time and Computation, CSLI Lecture Notes,No. 7., 1987.[Gor 94] Goranko V., Temporal Logic with Reference pointers, in: TemporalLogic, D. Gabbay, H.-J. Ohlbach (eds.), Lecture Notes in Arti�cial Intelli-gence 827, Springer-Verlag, 1994, pp. 133-148.[Gor 96] Goranko, V., Hierarchies of Modal and Temporal Logics with Refer-ence Pointers, Journal of Logic, Language and Information, 5, 1996, 1-24.[Gor 99] Goranko, V., Trees and Finite Branching, 1999, submitted.[GuS 85] Gurevich Y. & S. Shelah, The Decision Problem for Branching TimeLogic, Journal of Symbolic Logic, 50(3), 1985, 668-681.[MaP 89] Manna Z., & A. Pnueli, The Anchored Version of the TemporalFramework, in: Linear Time, Branching Time and Partial Order in Logicsand Models for Concurrency, J. de Bakker, W.-P. de Roever, G. Rosenberg(eds.), LNCS 354, Springer-Verlag, 1989, 201-284.[PaT 91] Passy S. & T. Tinchev, An Essay in Combinatory Dynamic Logic,Information and Computation, 93(2), 1991, 263-332.[Pen 95] Penczek W., Branching Time and Partial Order in Temporal Logics,in: Time and Logic: a Computational Approach, Univ. College of London,1995, 179-228.[Pnu 77] Pnueli A., The Temporal Logic of Programs, in: Proc. 18th Ann.IEEE Symp. on Foundations of Computer Science (1977), 46-57.[Pri 67] Prior A., Past, Present, and Future, Clarendon Press, Oxford, 1967.[Sti 92] Stirling C., Modal and Temporal Logics, in: Handbook of Logic in Com-puter Science, vol. 2: Computational Structures, S. Abramski, D. Gabbay,T. Maibaum (eds.), Clarendon Press, Oxford, 1992, 478-563.21

[Tho 88] Thomas W., Computation Tree Logic and Regular !-languages, in:Linear Time, Branching Time and Partial Order in Logics and Models forConcurrency, J de Bakker, W.-P. de Roever, G. Rosenberg (eds.), LNCS354, Springer-Verlag, 1989, 690-713.[Ven 93] Venema Y., Derivation Rules as Anti-axioms in Modal Logic, Journalof Symbolic Logic, 58(3), 1993, 1003-1034.[Wol 95] Wolper P., On the Relation of Programs and Computations to Modelsof Temporal Logic, in: Time and Logic: a Computational Approach, Univ.College of London, 1995, 131-178.[ZaC 93] Zanardo A., J. Carmo, Ockhamist Computational Logic: Past-Sensitive Necessitation in CTL�, J. of Logic and Computation, 3 (3), 1993,249-268.[Zan 96] Zanardo A., Branching-time Logic with Quanti�cation Over Branch-es: The Point of View of Modal Logic, J. of Symbolic Logic, 61 (1), 1996,1-39.

22

