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Abstract

Two currently active strands of research on logics for multi-agent systems are dy-
namic epistemic logic, focusing on the epistemic consequences of actions, and logics of
coalitional ability, focusing on what coalitions of agents can achieve by cooperating strate-
gically. In this paper we bridge these topics by considering the question: “what can a
coalition achieve by making public announcements?”. We propose an extension of public
announcement logic with constructs of the form 〈G〉ϕ, where G is a group of agents, with
the intuitive meaning that G can jointly execute a publicly observable action such that ϕ
will be true afterwards. Actions here are taken to be truthful public announcements, but
turn out also to include sequences of such joint actions as well as protocols with alter-
nating actions by different agents, in response to the actions of others. We also study in
detail the difference between ‘knowing how’ (knowing de re) and ‘knowing that’ (knowing
de dicto) in our framework: both can elegantly be expressed in the single-agent case. We
present several meta-logical properties of this Group Announcement Logic, including a
sound and complete axiomatisation, expressivity and the complexity of model checking.
The results are based on but greatly extend a part of [2].

1 Introduction

Analysis of the dynamics of knowledge has received some attention recently, see [20] for an
overview. Van Benthem [18] and Balbiani et al. [4] suggested an interpretation of the standard
modal diamond where ♦ϕ means “there is an announcement after which ϕ.” This was in a
setting going back to the Fitch-paradox [8]. The new interpretation of the diamond ♦ in the
Fitch setting firstly interprets ♦ϕ as ‘sometime later, ϕ’, and secondly specifies this temporal
specification as what may result of a specific event, namely a public announcement: ‘after
some announcement, ϕ’. In other words, the semantics is: ♦ϕ is true if and only if 〈ψ〉ϕ
is true for some ψ; the expression 〈ψ〉ϕ stands for ‘ψ is true and after ψ is announced, ϕ
is true.’ There are some restrictions on ψ. The resulting arbitrary announcement logic is
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axiomatisable and has various pleasing properties (again, see [4], and for more detail the
extended journal version [5]).

Arbitrary announcement logic makes no assumption in the interpretation of ♦ϕ about who
makes the annoncement, or indeed whether or not the announcement can be truthfully made
by anyone. In the current contribution we investigate a variant of arbitrary announcement
logic. Instead of ♦ϕ we use a more specific operator, namely 〈G〉ϕ. Here G is a subgroup
of all agents that simultaneously make a truthful public announcement, i.e., an announcement
of formulae they know. In other words, let G = {1, . . . , k}, then: 〈G〉ϕ is true if and only
if there exist formulae ψ1, . . . , ψk such that 〈K1ψ1 ∧ . . .Kkψk 〉ϕ is true; now, the expression
〈K1ψ1∧. . .Kkψk 〉ϕ stands for K1ψ1∧. . .Kkψk is true and after agents 1, . . . , k , simultaneously
announce ψ1, . . . , ψk , then ϕ is true’. Note that the remaining agents, not included in the
set G of k agents, are not involved in making the announcement, although they are aware of
that action happening. The resulting logic is called Group Announcement Logic (GAL).

Informally speaking, 〈G〉ϕ expresses the fact that coalition G has the ability to make ϕ
come about. Logics modelling the coalitional abilities of agents have been an active area of
research in multi-agent systems in recent years, the most prominent frameworks being Pauly’s
Coalition Logic [16] and Alur, Henzinger and Kupferman’s Alternating-time Temporal Logic
[3]. The main constructs of these logics are indeed of the form 〈G〉ϕ with the intuitive meaning
that coalition G can achieve ϕ. In this paper we investigate these notions when the actions
that can be performed are truthful public announcements.

Section 2 contains an introduction into public announcement logic, and arbitrary public
announcement logic. Section 3 defines group announcement logic, presents various interac-
tion axioms between the different modalities that express intuitive properties of such joint
announcements, and the axiomatization. Section 4 is entirely devoted to expressivity matters,
and Section 5 to model checking. The relation between group announcement logic and various
notions of group ability, including knowledge ‘de re’ and knowledge ‘de dicto’, is discussed in
detail in Section 6, which is followed by a more applied Section 7 that embeds these obser-
vations into security protocols for two agents (sender and receiver) in the presence of a finite
number of eavesdroppers intercepting all communications between them.

2 Background

2.1 Structures

Let N = {1, . . . ,n} be a finite set of agents, n > 0, and Θ be a countable set of primitive
propositions. A Kripke structure (or model) over N and Θ is a tuple M = (S ,∼1, . . . ,∼n ,
V ) where S is a set of states, ∼i ⊆ S × S is an epistemic indistinguishability relation and is
assumed to be an equivalence relation for each agent i ∈ N , and V : Θ → 2S assigns primitive
propositions to the states in which they are true. A pointed Kripke structure is a pair (M, s)
where s is a state in M.

Bisimulation is a well-known notion of structural similarity [6] that we will frequently use
in examples and proofs, e.g. to achieve our expressivity results.

Let two models M = (S ,∼1, . . . ,∼n ,V ) and M′ = (S ′,∼′
1, . . . ,∼′

n ,V
′) be given. A non-

empty relation R ⊆ S × S ′ is a bisimulation between M and M′ iff for all s ∈ S and s ′ ∈ S ′

with (s, s ′) ∈ R:

atoms for all p ∈ Θ: s ∈ V (p) iff s ′ ∈ V ′(p);
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forth for all i ∈ N and all t ∈ S : if s ∼i t , then there is a t ′ ∈ S ′ such that s ′ ∼′
i t ′ and

(t , t ′) ∈ R;

back for all i ∈ N and all t ′ ∈ S ′: if s ′ ∼′
i t ′, then there is a t ∈ S such that s ∼i t and

(t , t ′) ∈ R.

We write (M, s)↔(M′, s ′), iff there is a bisimulation between M and M′ linking s and s ′,
and we then call the pointed Kripke structure (M, s) and (M′, s ′) bisimilar.

2.2 Public announcement logic

The language Lpal of public announcement logic (PAL) [17] over N and Θ is defined as follows,
where i ∈ N and p ∈ Θ:

ϕ ::= p | Kiϕ | ¬ϕ | ϕ1 ∧ ϕ2 | [ϕ1]ϕ2

We write 〈ϕ1〉ϕ2 resp. K̂iϕ for the duals ¬[ϕ1]¬ϕ2 and ¬Ki¬ϕ.
The interpretation of formulae in a pointed Kripke structure is defined as follows (the

other clauses are defined in the usual truth-functional way).

M, s |= Kiϕ iff for every t such that s ∼i t , M, t |= ϕ

M, s |= [ϕ]ψ iff M, s |= ϕ implies that M|ϕ, s |= ψ

where M|ϕ = (S ′,∼′
1, . . . ,∼′

n ,V
′) such that S ′ = {s ′ ∈ S : M, s ′ |= ϕ}; ∼′

i = ∼i ∩(S ′ × S ′);
V ′(p) = V (p) ∩ S ′.

The purely epistemic fragment of the language (i.e., formulae not containing public an-
nouncement operators [ϕ]) is denoted Lel . It was already shown in Plaza’s original publication
on that logic [17] that the language of PAL is equally expressive as the purely epistemic frag-
ment.

2.3 Arbitrary public announcement logic

Arbitrary public announcement logic extends public announcement logic with an additional
inductive construct �ϕ. Its interpretation is:

M, s |= �ϕ iff for all ψ ∈ Lel : M, s |= [ψ]ϕ.

In other words, �ϕ is true iff ϕ is true after announcement of any epistemic formula, i.e.
after arbitrary model restriction to epistemically definable submodels containing the actual
state. Two typical validities for the logic, which we will see recur in similar form in group
announcement logic, are: |= �ϕ → ��ϕ (4) and |= ♦�ϕ → �♦ϕ (Church-Rosser). A
crucial semantic result, which we will also see reappear in different form, is that if ♦ϕ is true
in some epistemic state (M, s), i.e., if a true epistemic formula ψ can be announced to make
ϕ true, then, for some atom p not occurring in ϕ, 〈p〉ϕ is true in model M that is exactly
as model M except for the valuation of the announced p and of possibly other atoms not
occurring in ϕ.

The logic APAL is more expressive than public announcement logic, it is not compact,
and it has a complete axiomatization (see [4] and [5] for details). The axioms and inference
rules involving arbitrary announcement are:
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�ϕ→ [ψ]ϕ where ψ ∈ Lel

From ϕ, infer �ϕ
From ψ → [θ][p]ϕ, infer ψ → [θ]�ϕ where p 6∈ Θψ ∪Θθ ∪Θϕ

where Θϕ denotes the set of atoms occurring in a formula ϕ.

3 Group Announcement Logic

The main construct of the language of Group Announcement Logic (GAL) is 〈G〉ϕ, intuitively
meaning that there is some announcement the group G can truthfully make after which ϕ will
be true. Such a simultaneous announcement may sound like a lot of unintelligible noise. But
in fact it merely means a joint public action—not necessarily involving talking. We will later
even find ways to model subsequent announcements as sequences of simultaneous actions,
making the basic semantic idea even less appear as shouting in groups.

3.1 Language

The language Lgal of GAL is defined by extending the language of PAL with a new operator
[G ] for each coalition G :

Definition 1 (Language)

ϕ ::= p | Kiϕ | ¬ϕ | ϕ1 ∧ ϕ2 | [G ]ϕ | [ϕ1]ϕ2

where i is an agent, G is a set of agents and p ∈ Θ. We write 〈G〉ϕ for the dual ¬[G ]¬ϕ and
〈i〉ϕ for 〈{i}〉ϕ. For the subset of atoms occurring in a formula ϕ we, again, write Θϕ.

3.2 Semantics

The interpretation of formulae in a pointed Kripke structure is defined by extending the
definition for PAL with a clause for the new operator:

Definition 2 (Semantics) By induction on formula structure:

M, s |= p iff p ∈ V (p)

M, s |= Kiϕ iff for every t such that s ∼i t , M, t |= ϕ

M, s |= ¬ϕ iff not M, s |= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= [ϕ]ψ iff M, s |= ϕ implies that M|ϕ, s |= ψ where M|ϕ is as in Sect. 2.2

M, s |= [G ]ϕ iff for every set {ψi : i ∈ G} ⊆ Lel , M, s |= [
∧

i∈G Kiψi ]ϕ

We get the following meaning for the dual:

M, s |= 〈G〉ϕ iff there exists a set {ψi : i ∈ G} ⊆ Lel such that M, s |= 〈
∧

i∈G Kiψi〉ϕ
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If we write this out in detail, we get: M, s |= 〈G〉ϕ iff there exists a set {ψi : i ∈ G} ⊆ Lel

such that M, s |=
∧

i∈G Kiψi and M|
∧

i∈G Kiψi , s |= ϕ.
Observe that 〈G〉 quantifies only over purely epistemic formulae. The reason for this is as

follows. First, in the semantics of 〈G〉ϕ the formulae ψi in
∧

i∈G Kiψi cannot be unrestricted
Lgal formulas, as that would make the definition circular: such a ψi could then be the formula
〈G〉ϕ itself that we are trying to interpret. We therefore avoid quantifying over formulae
containing 〈G〉 operators. However, as public announcement logic is equally expressive as the
purely epistemic language, the semantics obtained by quantifying over the fragment of the
language without 〈G〉 operators is the same as the semantics obtained by quantifying only
over epistemic formulae.

As usual, a formula ϕ is valid on M, notation M |= ϕ, iff M, s |= ϕ for all s in the
domain of M; and a formula ϕ is valid, |= ϕ, iff M |= ϕ for all M. The denotation of ϕ on
M, notation [[ϕ]]M is defined as {s ∈ S | M, s |= ϕ}. The set of validities of the logic is called
GAL (group announcement logic).

3.3 Logical properties

To sharpen the intuition about the logic we mention some relevant validities, with particular
attention to interaction between group announcement and epistemic modal operators. Ex-
amples are |= [G ]ϕ → [G ][G ]ϕ (Corollary 5), |= 〈G〉[G ]ϕ → [G ]〈G〉ϕ (Corollary 10), and
Ki [i ]ϕ↔ [i ]Kiϕ (Proposition 11).

3.3.1 Elementary validities

Proposition 3

1. 〈G〉p → p and 〈G〉¬p → ¬p. (atomic propositions do not change value)

2. 〈∅〉ϕ↔ [∅]ϕ↔ ϕ (the empty group is powerless)

3. 〈Kj1ψj1 ∧ · · · ∧Kjkψjk 〉ϕ→ 〈{j1, . . . , jk}〉ϕ
4. ϕ→ 〈G〉ϕ (truth axiom)

Proof

1. In public announcement logic, and its ‘derivatives’, factual truths never change value.

2. The conjunction of an empty set of formulae is, as usual, taken to be a tautology.

3. Obvious.

4. If all agents announce ‘true’, nothing changes to the system.

�

An announcement by the empty group (the second property above) corresponds to a “clock
tick”, a dynamic transition without informative effect. We could also see this as “nobody
says a thing” (and this now happens...). In fact you could even see this as ‘everybody says
true’, an announcement by the public (as in the fourth property): in other words, the group
of all agents have the option not to exercise their power.
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3.3.2 Sequences of group announcements

Intuitively, 〈G〉ϕ means that G can achieve a situation where ϕ is true in “one step”, by
making a joint announcement. One can easily imagine situations where it could be interesting
to reason about what a group can achieve by making repeated announcements, i.e., by a
sequence of announcements, one after the other, or a communication protocol. A general
example is a conversation over an open channel. We want to express that “there is some
sequence, of arbitrary length, of announcements by G which will ensure that ϕ becomes
true”.

For arbitrary announcement logic, the validity of the principle �ϕ → ��ϕ follows from
the simple observation that a sequence of two announcements ψ and χ is equivalent to the
single announcement of ψ ∧ [ψ]χ. Less obvious is that [G ]ϕ→ [G ][G ]ϕ is also valid, because
now we have to show that two conjunctions of known formulas are again such a conjunction.

Proposition 4 |= [G ∪H ]ϕ→ [G ][H ]ϕ

Proof The diamond version 〈G〉〈H 〉ϕ → 〈G ∪ H 〉ϕ of this validity makes clear that the
requirement is that two successive announcements respectively by the agents in G simulta-
neously and in H simultaneously can also be seen as a single announcement by the agents in
G ∪ H simultaneously. Let us prove how it can be done. Consider two successive announce-
ments

∧
i∈G Kiϕi and

∧
j∈H Kjψj . Let a Kripke structure M and a state s in M be given

such that M, s |=
∧

i∈G Kiϕi , and similarly
∧

j∈H Kjψj is true in state s in the restriction of
M to the

∧
i∈G Kiϕi -states: M|

∧
i∈G Kiϕi , s |=

∧
j∈H Kjψj .

Then we have : M, s |= 〈
∧

i∈G Kiϕi〉〈
∧

j∈H Kjψj 〉θ

only if M, s |= 〈
∧

i∈G Kiϕi ∧ [
∧

g∈G Kgϕg ]
∧

j∈H Kjψj 〉θ

only if M, s |= 〈
∧

i∈G Kiϕi ∧
∧

i∈H\G Ki> ∧ [
∧

g∈G Kgϕg ](
∧

j∈H Kjψj ∧
∧

j∈G\H Kj>)〉θ
because for any agent i , Ki> is a valid formula

only if M, s |= 〈
∧

i∈G∪H (Kiϕi ∧ [
∧

g∈G Kgϕg ]Kiψi)〉θ
with ∀i ∈ G\H , ϕi = > and ∀j ∈ H \G , ψj = >.

only if M, s |= 〈
∧

i∈G∪H (Kiϕi ∧ (
∧

g∈G Kgϕg) → Ki [
∧

g∈G Kgϕg ]ψi)〉θ
by a reduction axiom of PAL

only if M, s |= 〈
∧

i∈G∪H Kiϕi ∧
∧

i∈G∪H ((
∧

j∈G Kjϕj ) → Ki [
∧

j∈G Kjϕj ]ψi)〉θ
by distributing the ∧

only if M, s |= 〈
∧

i∈G∪H Kiϕi ∧
∧

i∈G∪H Ki [
∧

j∈G Kjϕj ]ψi〉θ
because

∧
j∈G Kjϕj is assumed true in the left conjunct of the announcement.

only if M, s |= 〈
∧

i∈G∪H Ki(ϕi ∧ [
∧

j∈G Kjϕj ]ψi)〉θ. �

Corollary 5 |= [G ]ϕ→ [G ][G ]ϕ

We thus get exactly the property alluded to above:
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Corollary 6 M, s |= 〈G〉ϕ iff there is a finite sequence of announcements by agents in G
after which ϕ is true.

In Section 7 we discuss a security protocol example involving sequences of announcements.
Note that our result does not mean that sequences of announcements can simply be replaced
by a single announcement: whether agents are willing to do an announcement may depend
on the postconditions of such announcements. These may be known to be satisfied after each
announcement in the sequence, but not known to be satisfied initially after the entire sequence.
These matters will be discussed in great detail later.

3.3.3 Church-Rosser

We prove that for all groups G and H of agents, for every formula ϕ ∈ Lgal , 〈G〉[H ]ϕ →
[H ]〈G〉ϕ is a valid formula. The principle is fairly intuitive: it says that when in a given
epistemic state group G or group H make a group announcement, there are additional an-
nouncements by group H (after G ’s announcement) and group G (after H ’s announcement),
in order to reach a new common state of information. Unfortunately, its proof is rather
involved. This is because group announcements implicitly quantify over all propositional
variables in the language. Towards the proof, we first define the group-announcement depth
d(ϕ) of a formula ϕ:

Let p ∈ Θ, ψ,ψ1, ψ2 ∈ Lgal , i ∈ N , and G ⊆ N be given; then d(p) = 0; d(¬ψ) =
d(Kiψ) = d(ψ); d(ψ1 ∧ ψ2) = d([ψ1]ψ2) = max (d(ψ1), d(ψ2)); and d([G ]ψ) = d(ψ) + 1. The
following lemma holds for any number k , but we will only use it for k ≤ |N |.

Lemma 7 Let Q = {qi}i∈N ⊆ Θ, and, for some k ∈ N, θ1, . . . , θk be epistemic formulas such
that for i = 1 to i = k , Θθi ∩Q = ∅, and let ϕ ∈ Lgal be such that Θϕ ∩Q = ∅.

For all ψ ∈ Lgal , define
{
ψα = ψ(θ1/q1, .., θk/qk , q1/qk+1, q2/qk+2, ..)
ψ−α = ψ(qk+1/q1, qk+2/q2, ..)

Then, for all structures M = (S ,∼1, . . . ,∼n ,V ) there is a valuation function V ′ : Θ → 2S

such that

1. [[ϕα]]M = [[ϕ]]M′

2. for all ψ ∈ Lel ,

• [[ψ]]M′ = [[ψα]]M
• [[ψ]]M = [[ψ−α]]M′

3. for all i ≤ k , [[qi ]]M′ = [[θi ]]M′ = [[θi ]]M

where M′ = (S ,∼1, . . . ,∼n ,V ′)

Proof We define V ′ as:
V ′(p) = V (p), for all p /∈ Q
V ′(qi) = [[θi ]]V , for all i ≤ k
V ′(qk+i) = V (qi), for all i ≥ 1

Items 2 and 3 follow directly from the definition of V ′. We prove item 1 by induction on the
group-announcement depth of ϕ, by showing the somewhat stronger:
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For all subformulas ϕ∗ of ϕ, for all submodels M∗ of M, and for all states s ∈M∗:
M∗, s |= ϕα∗ iff M′

∗, s |= ϕ∗.

Base case main induction: The base case of this proof shows that this holds for all formulas
without group announcement operators. This is itself a proof by induction on the structure
of ϕ. We proceed:

Base case: ϕ = p ∈ Θ. Then the equivalence M∗, s |= pα iff M′
∗, s |= p follows directly

from the definition of V ′ and α.
Inductive cases: Let us suppose that the property is true for all subformulas of ψ, ψ1 and

ψ2, and let us prove it for ¬ψ,ψ1 ∧ ψ2, K̂iψ and [ψ1]ψ2:

• ¬ψ:
M∗, s |= (¬ψ)α iff M∗, s |= ¬ψα iff M∗, s 6|= ψα iff (by IH) M′

∗, s 6|= ψ iff M′
∗, s |= ¬ψ.

• ψ1 ∧ ψ2:
M∗, s |= (ψ1 ∧ ψ2)α iff M∗, s |= ψα1 ∧ ψα2 iff (M∗, s |= ψα1 and M∗, s |= ψα2 ) iff (by IH)
(M′

∗, s |= ψ1) and M′
∗, s |= ψ2) iff M′

∗, s |= ψ1 ∧ ψ2.

• Kiψ:
(M∗, s |= Kiψ

α iff for all t ∼i s , M∗, t |= ψα iff for all t ∼i s , M∗
′, t |= ψ (by IH) iff

(as ∼i = ∼′
i) for all t ∼′

i s , M∗
′, t |= ψ iff M′

∗, s |= Kiψ).

• [ψ1]ψ2:
(M∗, s |= ([ψ1]ψ2)α iff M∗, s |= [ψα1 ]ψα2 iff (M∗, s |= ψα1 implies M∗|ψα1 , s |= ψα2 ) iff
(using IH twice) (M′

∗, s |= ψ1 implies (M∗|ψα1 )′, s |= ψ2) iff (using IH again for ψα1
and ψ1, and that V ′ on the restriction is the restriction of V ′) (M′

∗, s |= ψ1 implies
M′

∗|ψ1, s |= ψ2) iff M′
∗, s |= [ψ1]ψ2.

Inductive case main induction: It remains to show the inductive case of the original
induction on group-announcement operator depth. Suppose the property is true for all ψ
such that d(ψ) ≤ n. We prove that it is true for ϕ = 〈G〉ψ.

M∗, s |= (〈G〉ψ)α

iff
M∗, s |= 〈G〉ψα
iff
there are χ1, . . . , χ|G| in Lel such that M∗, s |= 〈

∧
Kiχi〉ψα

iff (**)
there are χ1, . . . , χ|G| in Lel such that M∗, s |= 〈(

∧
Kiχ

−α
i )α〉ψα

iff (IH on depth)
there are χ1, . . . , χ|G| in Lel such that M′

∗, s |= 〈
∧

Kiχ
−α
i 〉ψ

iff
M′

∗, s |= 〈G〉ψ.

In (**) we have used (the already shown) property 2 for epistemic formulas from which also
follows that for all such ψ: (ψ−α)α = ψ.

�
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Proposition 8 (Diamond lemma) Let k ≤ |N |. If M, s |= 〈G〉ψ and p1, ..., pk 6∈ Θψ, then
there is a M′′ different from M only on the valuation of the atoms not appearing in ψ such
that M′′, s |= 〈K1p1 ∧ · · · ∧Kkpk 〉ψ.

Proof We use the previous lemma twice:

1. Let Q be Θ\Θψ, k = |G |, and qi be pi for all i 6 k , θi be > for all i 6 k and ϕ be
〈G〉ψ. By Lemma 7, there is V ′ such that V ′(pi) = S and [[〈G〉ψ]]M′ = [[〈G〉ψ]]M. As
M, s |= 〈G〉ψ, we have that M′, s |= 〈G〉ψ. Therefore there are τ1, . . . , τk in Lel such
that M′, s |= 〈

∧
i∈G Kiτi〉ψ.

2. Let Q be Θ\(Θψ∪
⋃

i∈G Θτi ), k = |G |, qi be pi for all i 6 k , θi be τi for all i 6 k and ϕ be
〈
∧

i∈G Kiτi〉ψ. By Lemma 7, there is V ′′ such that (with M′′ as M except for valuation
V ′′) [[〈

∧
Kiτi〉ψ]]M′′ = [[〈

∧
Kiτi〉ψ]]M′ and for all i ≤ k , [[pi ]]M′′ = [[τi ]]M′′ = [[τi ]]M′ .

This last property implies that M′′ |=
∧

Kipi ↔
∧

Kiτi . As M′, s |= 〈
∧

i∈G Kiτi〉ψ (by
the first item), the first property implies that M′′, s |= 〈

∧
i∈G Kiτi〉ψ. The second one

implies that M′′ |=
∧

Kipi ↔
∧

Kiτi . We now have that M′′, s |= 〈
∧

i∈G Kipi〉ψ.

�

A generalization of Proposition 8 indirectly proves the soundness of a derivation rule in the
axiomatization of GAL. Here, we need Proposition 8 to prove the validity of the generalized
Church-Rosser schema.

Proposition 9 (Church-Rosser Generalized) For any G ,H ⊆ N : |= 〈G〉[H ]ϕ→ [H ]〈G〉ϕ.

Proof Suppose the contrary: Let M be a model, s a state of M, ϕ ∈ Lgal and G ,H ⊆ N
two groups of agents such that M, s |= 〈G〉[H ]ϕ ∧ 〈H 〉[G ]¬ϕ. Then, using Proposition 8
twice, for |G | = k and |H | = k ′, we know that there are {pi}i∈G and {qi}i∈H subsets of Θ
and M′ differing from M only on the valuation of the pi , qi such that

M′, s |= 〈
∧
i∈G

Kipi〉[H ]ϕ ∧ 〈
∧
i∈H

Kiqi〉[G ]¬ϕ .

In particular,
M′, s |= 〈

∧
i∈G

Kipi〉[
∧
i∈H

Kiqi ]ϕ ∧ 〈
∧
i∈H

Kiqi〉[
∧
i∈G

Kipi ]¬ϕ .

Note that 〈
∧

i∈G Kipi〉 and 〈
∧

i∈H Kiqi〉 are conjunctions of known facts. As these are positive
formulas, they remain true after further announcements. So we have

M′, s |= 〈
∧
i∈G

Kipi ∧
∧
i∈H

Kiqi〉ϕ ∧ 〈
∧
i∈G

Kipi ∧
∧
i∈H

Kiqi〉¬ϕ

from which directly follows a contradiction. �

Corollary 10 (Church-Rosser) |= 〈G〉[G ]ϕ→ [G ]〈G〉ϕ

We cannot in general reverse the order of G and H in Proposition 9. A simple counterex-
ample is the following model, where b cannot distinguish between two states but a can.

0•p
b

1•¬p

We now have that M, 0 |= 〈a〉[b]Kbp ∧ 〈a〉[b]¬Kbp because M, 0 |= 〈Kap〉[b]Kbp ∧
〈Ka>〉[b]¬Kbp. Therefore 〈G〉[H ]ϕ→ [G ]〈H 〉ϕ is not valid.

9



3.3.4 More validities

Just as for Church-Rosser, one would like to know whether the APAL validity �♦ϕ→ ♦�ϕ
has a GAL generalization. We know that there exists G ,H ⊆ N such that the schema
[G ]〈H 〉ϕ→ 〈H 〉[G ]ϕ is not valid. A simple counterexample is the following model M, i.e. for
G = {a} and H = {b}, with ϕ = (KaKbp ∨KbKaq) ∧ ¬(KaKbp ∧KbKaq).

•p,q11
a

b

•¬p,q
01

b

•p,¬q
10

a •¬p,¬q
00

Here we have M, 11 |= [a]〈b〉ϕ ∧ [b]〈a〉¬ϕ. We do not know whether [G ]〈G〉ϕ→ 〈G〉[G ]ϕ is
valid.

For arbitrary announcement logic we have that Ki�ϕ → �Kiϕ, but not the other way
round. Now, we can do more.

Proposition 11 For arbitrary i ∈ N and G ⊆ N :

1. |= Ki [i ]ϕ↔ [i ]Kiϕ

2. |= Ki [G ]ϕ→ [G ]Kiϕ (but not the other way round)

Proof Proof of Proposition 11.1: In APAL, �Kiϕ → Ki�ϕ is false because after going to
an i -accessible state the subsequent model restriction may exclude the actual state. But for
singleton announcements we have an equivalence. This is because any i -accessible state will
be contained in the actual i -class.

Proof of Proposition 11.2: As for arbitrary announcement logic. Agent i may but need
not be in group G . �

Finally, an intuitively rather puzzling property on the interaction between the announcements
and knowledge by two agents.

Proposition 12 For any atomic proposition p ∈ Θ: |= 〈a〉Kbp ↔ 〈b〉Kap.

Proof AssumeM, s |= 〈a〉Kbp. Then there is a ψa ∈ Lel such thatM, s |= 〈Kaψa〉Kbp. This
formula is equivalent to Kaψa ∧(Kaψa → Kb [Kaψa ]p) and thus to Kaψa ∧Kb(Kaψa → p)—as
p is an atom. Let us noteM′ = M|Kb(Kaψa → p) and let us proof thatM′, s |= Kap. Indeed,
let t ∈ M′ s.t. t ∈ R′

a(x ) (in the restricted model) and let us prove that M′, t |= p. But we
have (1) M, t |= Kb(Kaψa → p) and (2) t ∈ Ra(x ) (in the non-restricted model). But (1)
implies that M, t |= Kaψa → p and (2) implies that M, t |= Kaψa (because M, s |= Kaψa).
Then M, t |= p, and thus M′, t |= p.

�

We now proceed to a more systematic treatment of validities.
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3.4 Axiomatization

Table 1 presents a sound and complete axiomatization of group announcement logic. Our ax-
iomatization of GAL is based on the standard S5 axioms for the epistemic operators Ka , the
standard reduction axioms for the public announcement operators [ϕ], and some additional
axioms and derivation rules involving group announcement operators. These are the axiom
group and specific announcement, and the derivation rules necessitation for group announce-
ment and deriving group announcement. A formula ϕ ∈ Lgal is derivable, notation ` ϕ, iff ϕ
belongs to the least set of formulas containing GAL axioms and closed with respect to the
derivation rules.

The axiom [G ]ϕ → [
∧

i∈G Kiψi ]ϕ, where ψi ∈ Lel , is obviously valid in all structures.
Also the validity of “from ϕ, infer [G ]ϕ” will be obvious. The derivation rule deriving group
announcement (R([G ])) is used to introduce group announcement operators in derivations:

From ϕ→ [θ][
∧

i∈G Kipi ]ψ (where pi 6∈ Θϕ ∪Θθ ∪Θψ) infer ϕ→ [θ][G ]ψ.

It needs some explanation. Consider some way to denote a unique occurrence of a subformula
χ in an expression η containing an empty slot, in a way that the subformula does not appear
just behind a negation, or similar awkward positions. We write η(χ) for that formula η with
the empty slot filled. The following is then the intuitively valid derivation rule that we need:

From η([∧i∈GKiψi ]ψ) for all ψi ∈ Lel , infer η([G ]ψ).

In other words, if you can get ψ after no matter what simultaneous announcement by no
matter what agent in G , then it holds after group announcements by G . The appendix shows
why this formulation can be simplified to the rule deriving group announcement, and why
therefore our rule is sound. An outline of the completeness proof of GAL is also presented
in the appendix. The details for soundness and completeness are very similar to those for
arbitrary announcement logic, in [5].

Theorem 13 (Soundness and completeness) Let ϕ ∈ Lgal . Then ϕ is a theorem iff ϕ is
valid.

4 Expressivity

Given logics X and Y and a model class Z , X is at least as expressive as Y with respect to
Z iff, for every X -formula ϕ there is a logically equivalent Y -formula ψ. In other words, for
every Z -model M, [[ϕ]]M = [[ψ]]M: the denotation of ϕ in M with respect to the X -semantics
is the same as the denotation of ψ in M with respect to the Y -semantics. Two standard ways
to determine that X is at least as expressive as Y are: the Y -formulas are a sublanguage of
the X -formulas (i); there is a translation (reduction) such that every Y -formula is logically
equivalent to an X formula (ii). Logic X is more expressive than Y with respect to Z if X is
at least as expressive as Y , but Y is not at least as expressive as X (the notion is a partial
order). The standard way to determine that Y is not at least as expressive than X is, that
there are an X -formula ϕ and two Z -models (M, s) and (M′, s ′) such that ϕ is true in (M, s)
and false in (M′, s ′), but any Y -formula ψ is true in (M, s) iff ψ is true in (M′, s ′). We then
also say that the logic X , but not Y , can distinguish between the models (M, s) and (M′, s ′).

Known results are that EL is equally expressive as PAL [17], that in the single-agent
situation APAL is equally expressive as PAL, and that in the multi-agent situation APAL
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instantations of propositional tautologies
Ki(ϕ→ ψ) → (Kiϕ→ Kiψ) distribution (of knowl. over impl.)
Kiϕ→ ϕ truth
Kiϕ→ KiKiϕ positive introspection
¬Kiϕ→ Ki¬Kiϕ negative introspection
[ϕ]p ↔ (ϕ→ p) atomic permanence
[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) announcement and negation
[ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) announcement and conjunction
[ϕ]Kiψ ↔ (ϕ→ Ki [ϕ]ψ) announcement and knowledge
[ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ announcement composition
[G ]ϕ→ [

∧
i∈G Kiψi ]ϕ where ψi ∈ Lel group and specific announcement

From ϕ and ϕ→ ψ, infer ψ modus ponens
From ϕ, infer Kiϕ necessitation of knowledge
From ϕ, infer [ψ]ϕ necessitation of announcement
From ϕ, infer [G ]ϕ necessitation of group announcement
From ϕ→ [θ][

∧
i∈G Kipi ]ψ, infer ϕ→ [θ][G ]ψ deriving group announcement / R([G ])

where pi 6∈ Θϕ ∪Θθ ∪Θψ

Table 1: The axiomatisation GAL

is more expressive than PAL [4]. In this section we demonstrate that in the single-agent
situation GAL is equally expressive as EL, and that in the multi-agent situation GAL is more
expressive than EL, and GAL is not more expressive than APAL. We conjecture that APAL
is not as least as expressive as (multi-agent) GAL.

Proposition 14 For a single agent GAL is equally expressive as EL.

Proof Let a be the unique agent. For all ϕ in GAL we have that |= [a]ϕ ↔ ϕ, because
in the single agent situation, each model is bisimilar to the restriction of that model to the
a-equivalence class, from which directly follows that |= [a]ϕ↔ ϕ. �

Theorem 15 If n > 2, then GAL is more expressive than EL.

Proof GAL is obviously at least as expressive as EL. For the strictness part, consider the
formula 〈b〉Kap. Assume that there is an EL formula ψ equivalent to 〈b〉Kap. Formula ψ can
only contain a finite number of atoms. Let q be an atom not occurring in ψ. Consider the
following models M and M′ where a and b have common knowledge of their ignorance of p.

M:

•p1
a,b •¬p

0

M′:

•p,q11
a

b

•¬p,¬q
00

b

•¬p,q
01

a •p,¬q
10

12



It is easy to see that M, 1 6|= 〈b〉Kap, but that M′, 11 |= 〈Kbq〉Kap, and thus that M′, 11 |=
〈b〉Kap. On the other hand, (M, 1) and (M′, 11) are bisimilar with respect to the epistemic
language not including atom q , thus ψ cannot distinguish between these two pointed models.
Therefore, ψ cannot be equivalent to 〈b〉Kap. �

Theorem 16 GAL is not at least as expressive as APAL.

Proof Consider the APAL formula ♦(Kap ∧ ¬KbKap), and suppose there is an equivalent
GAL formula χ. Assume an atomic proposition q not occurring in χ. We prove that the
below pointed models M, 10 and Ma , 10 cannot be distinguished by any GAL-formula χ,
whereas ♦(Kap ∧¬KbKap) is true in the former but false in the latter, thus again deriving a
contradiction.

The crucial insight is that in GAL, unlike in APAL, the only definable model restrictions of
M, 10 are the four below displayed models. And to make the formula ♦(Kap ∧¬KbKap) true
in M, 10, one needs to be able to define the restriction with domain {11, 10, 00}. The formal
proof is by induction on the structure of ψ, and is formulated in terms also involving other
points of other model restrictions of M; of that proof we only give the formal proposition
and for state 10 the inductive cases for announcement and for group announcement.

M: •p,q11
a

b

•¬p,q
01

b

•p,¬q
10

a •¬p,¬q
00

Mb : •p,q11

b

•p,¬q
10

Ma :
10•p,¬q a

00•¬p,¬q Mab :
10•p,¬q

Let ψ ∈ Lgal with q 6∈ Θψ. Then:

M, 10 |= ψ ⇔ Ma , 10 |= ψ ⇔ M, 11 |= ψ (i)
Mab , 10 |= ψ ⇔ Mb , 10 |= ψ ⇔ Mb , 11 |= ψ (ii)
M, 00 |= ψ ⇔ Ma , 00 |= ψ ⇔ M, 01 |= ψ (iii)

Inductive case announcement:

• M, 10 |= [χ]ψ
iff M, 10 |= χ implies M|χ, 10 |= ψ (*)

iff M, 10 |= χ implies
{
M, 10 |= ψ if M, 00 |= χ
Mb , 10 |= ψ otherwise

iff Ma , 10 |= χ implies
{
Ma , 10 |= ψ if M, 00 |= χ
Mab , 10 |= ψ otherwise

(**)

iff Ma , 10 |= χ implies Ma |χ, 10 |= ψ
iff Ma , 10 |= [χ]ψ.

*: By induction hypothesis: M|χ = M if M, 00 |= χ, and M|χ = Mb otherwise.

**: By induction hypothesis: Ma |χ = Ma if Ma , 00 |= χ, and Ma |χ = Mab otherwise.

Inductive case group announcement (there are four different coalitions):

13



• M, 10 |= [∅]ψ
iff M, 10 |= ψ

• M, 10 |= [a]ψ
iff M, 10 |= ψ and Ma , 10 |= ψ
iff Ma , 10 |= ψ (by IH)
iff Ma , 10 |= [a]ψ

• M, 10 |= [b]ψ
iff M, 10 |= ψ and Mb , 10 |= ψ
iff Ma , 10 |= ψ and Mab , 10 |= ψ (by IH)
iff Ma , 10 |= [b]ψ

• M, 10 |= [a, b]ψ
iff M, 10 |= ψ and Ma , 10 |= ψ and Mab , 10 |= ψ and Mb , 10 |= ψ
iff Ma , 10 |= ψ and Mab , 10 |= ψ (by IH)
iff Ma , 10 |= [a, b]ψ

�

Conjecture 17 APAL is not at least as expressive as GAL.

Thus, we conjecture that the two logics are incomparable when it comes to expressiveness.
Now consider a very special model class Mg , namely one where an agent g (for ‘God’)

has the identity relation on all models (there may be other agents). It is clear that the
announcement made by God has the property that Kgϕ ↔ ϕ: everything is known by God.
Therefore ♦ϕ in APAL is equivalent to 〈g〉ϕ in GAL (ignoring a further translation downward
in ϕ). If we restrict the model class of the logic to Mg , we say that God exists. This makes
clear that:

Proposition 18 If God exists, GAL is at least as expressive as APAL.

Proof Given a ϕ ∈ Lapal , replace every occurrence of � in ϕ by [g ]. The resulting formula
is in Lgal . �

5 Model Checking

If a given system can be modeled as a finite model, one would like to verify if a given property
written in a language for specifying desired properties of systems holds in the finite model.
We speak of the model checking problem, an area of automated deduction that has been
addressed for almost all logical languages, for example modal logic [12], temporal logic [10],
etc. There is a need, on the theoretical side, to provide a sound mathematical basis for the
design of algorithms devoted to the model checking problem. This mathematical basis is
given here for GAL in terms of a complexity result saying that model checking for GAL is
PSPACE -complete. The notion of a formula like [{1, . . . ,n}]ϕ being satisfied in a structure
M = (S ,∼1, . . . ,∼n ,V ) at state x ∈ S relies on the satisfiability of all (infinitely many)
formulas like [K1ϕ1 ∧ . . . ∧ Knϕn ]ϕ at x where ϕ1, . . . , ϕn ∈ Lel . Hence, the question arises
whether the following decision problem is decidable:
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input: a finite structure M = (S ,∼1, . . . ,∼n ,V ), a state x ∈ S and a formula ϕ ∈ Lgal ,

output: determine whether ϕ is satisfied at x in M.

This decision problem, denoted (MC(GAL)) is a variant of the well-known model checking
problem. If one restricts to formulas ϕ ∈ Lel , then the above decision problem is known to
be P -complete. In Theorem 20 we show that (MC(GAL)) is in PSPACE and in Theorem
21 we show that it is PSPACE-hard.

5.1 Preliminary results

Let ZM be the greatest bisimulation relation on M. Note that ZM is an equivalence relation
on S . For all s ∈ S , let ‖s‖ be the equivalence class of s modulo ZM. The bisimulation
contraction of M is the structure ‖M‖ = (S ′,∼′

1, . . . ,∼′
n ,V

′) such that:

• S ′ = S |ZM , i.e. the quotient of S modulo ZM

• ‖s‖ ∼′
i ‖t‖ iff there exist v ,w ∈ S such that sZMv , tZMw and v ∼′

i w

• V ′(p) = V (p)|ZM

The following proposition will be obvious, because:

• the bisimulation contraction is bisimilar to the original structure;

• bisimilar structures have the same logical theory[6];

• public announcement and group announcement are bisimilution preserving operations.

Proposition 19 For all ϕ ∈ Lgal , ‖M‖, ‖x‖ |= ϕ iff M, x |= ϕ.

5.2 Model Checking algorithm

Theorem 20 (MC(GAL)) is in PSPACE .

Proof Since APTIME = PSPACE [9], it suffices to prove that (MC (GAL)) is in APTIME .
Let us consider the alternating algorithm 1. This algorithm takes as input a finite model M,
a state s in M, a formula ϕ in Lgal and b in {0, 1}. It stops with a reject iff either b = 0
and M, s |= ϕ or b = 1 and M, s 6|= ϕ whereas it stops with an accept iff either b = 0 and
M, s 6|= ϕ or b = 1 and M, s |= ϕ. Its execution depends primarily on (ϕ, b). Each case
is either existential or universal. For example, the case (ϕ1 ∨ ϕ2, 1) is existential. It is an
accepting case iff for some ϕ′ ∈ {ϕ1, ϕ2}, the case (ϕ′, 1) is accepting, thus corresponding to
the fact that ϕ1 ∨ ϕ2 is true at s in M iff for some ϕ′ ∈ {ϕ1, ϕ2}, ϕ′ is true at s in M. As
well, the case (ϕ1 ∨ ϕ2, 0) is universal. It is an accepting case iff for every ϕ′ ∈ {ϕ1, ϕ2}, the
case (ϕ′, 0) is accepting, thus corresponding to the fact that ϕ1 ∨ ϕ2 is false at s in M iff for
every ϕ′ ∈ {ϕ1, ϕ2}, ϕ′ is false at s in M. Cases labelled with (·) are both existential and
universal.

Obviously,

• sat(M, s, ϕ, 1) accepts iff M, s |= ϕ,

15



Algorithm 1 sat(M, s, ϕ, b)
case (ϕ, b) of
(·) (p, 1): if s ∈ V (p) then accept else reject;
(·) (p, 0): if s ∈ V (p) then reject else accept;
(·) (⊥, 1): reject;
(·) (⊥, 0): accept;
(·) (¬ϕ′, 1): sat(M, s, ϕ′, 0);
(·) (¬ϕ′, 0): sat(M, s, ϕ′, 1);
(∃) (ϕ1 ∨ ϕ2, 1): choose ϕ′ ∈ {ϕ1, ϕ2}; sat(M, s, ϕ′, 1);
(∀) (ϕ1 ∨ ϕ2, 0): choose ϕ′ ∈ {ϕ1, ϕ2}; sat(M, s, ϕ′, 0);
(∀) (Kiϕ

′, 1): choose t ∈ ∼i (s); sat(M, t , ϕ′, 1);
(∃) (Kiϕ

′, 0): choose t ∈ ∼i (x ); sat(M, t , ϕ′, 0);
(·) ([ϕ1]ϕ2, 1): compute the ϕ1-definable restriction M′ = (S ′,∼1, . . . ,∼n ,V ′) of M;

if s ∈ S ′ then sat(M′, s, ϕ2, 1) else accept;
(·) ([ϕ1]ϕ2, 0): compute the ϕ1-definable restriction M′ = (S ′,∼1, . . . ,∼n ,V ′) of M;

if s ∈ S ′ then sat(M′, s, ϕ2, 0) else reject;
(∀) ([G ]ϕ, 1): Compute ‖M‖, choose a definable restriction M′ = (S ′,∼′

1, . . . ,∼′
n ,V

′) of
‖M‖ s.t. S ′ = ∩i∈GCi where Ci are unions of classes of equivalence for ∼i ;
if s ∈ S ′ then sat(M′, s, ϕ, 1) else accept;

(∃) ([G ]ϕ, 0): Compute ‖M‖, choose a definable restriction M′ = (S ′,∼′
1, . . . ,∼′

n ,V
′) of

‖M‖ s.t. S ′ = ∩i∈GCi where Ci are unions of classes of equivalence for ∼i ;
if s ∈ S ′ then sat(M′, s, ϕ, 0) else reject;

end case

• sat(M, s, ϕ, 1) rejects iff M, s 6|= ϕ,

• sat(M, s, ϕ, 0) accepts iff M, s 6|= ϕ,

• sat(M, s, ϕ, 0) rejects iff M, s |= ϕ.

The only difficult case is ([G ]ϕ, 1). Computing ‖M‖ is easy and by Proposition 19 we have
that M, s |= 〈G〉ϕ iff ‖M‖, ‖s‖ |= 〈G〉ϕ. Then we just have to prove it in the case where
‖M‖ = M. Let us suppose it, and let us see that, if there is a definable restriction M′ =
(S ′,∼′

1, . . . ,∼n ,V ′) of M such that S ′ = ∩i∈GCi where Ci are unions of classes of equivalence
for ∼i , if also s ∈ S ′ and M′, s |= ϕ, then M, s |= 〈G〉ϕ. Let us then suppose the first part
of the implication.
M is supposed to be bisimulation-contracted, then we know that for all s ∈ M, there is
ϕs ∈ Lgal , s.t. for all t ∈ M, M, t |= ϕs iff s = t . It implies that s ∈ S ′ iff (for all i ∈ G ,
s ∈ Ci) iff M, s |=

∧
i∈G(

∨
t∈Ci

ϕt) which is equivalent to M, s |=
∧

i∈G Ki(
∨

t∈Ci
ϕt). That

means that M′ = M|
∧

i∈G Ki(
∨

t∈Ci
ϕt) and then M, s |= 〈

∧
i∈G Ki(

∨
t∈Ci

ϕt)〉ϕ (because
s ∈ S ′ and M′, s |= ϕ). We obtain M, s |= 〈G〉ϕ.

Since sat can be implemented in polynomial time, (MC (GAL)) is in APTIME . �

Theorem 21 (MC(GAL)) is PSPACE -hard.

Proof See appendix. �
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We observe that our results also extend to APAL: the model checking problem for arbi-
trary public announcement logic is also PSPACE-complete. A relevant detail in the proof of
Theorem 21 in the appendix is that it involves an omniscient agent g , and that the role of [g ]
is in APAL played by �, and that of 〈g〉 by ♦. (See also the expressivity result involving g ,
Proposition 18 on page 14.)

6 Announcements and Ability

Our initial intuitive interpretation of a formula of the form 〈C 〉ϕ was that coalition C has the
ability to make ϕ come about by making some public announcement. We now have a better
understanding of group announcement logic; let us discuss to what extent that intuition is
precise.

Recent work on strategy logics have illuminated the fact that there are many subtly
different notions of ability in the context of incomplete information [13, 15, 1, 14] (see [14]
for a recent summary). For example, does ability entail knowledge of ability? In [14, p. 433]
three levels of ability in general strategy logics are discussed. We now discuss counterparts of
these in the special context of truthful public announcements. In general strategy logics, such
as atl or stit, agents and coalitions can perform arbitrary state-transforming actions. In
our setting the actions are truthful announcements, and there is thus an intimate relationship
between knowledge and ability. There are two main questions of interest related to the
mentioned different variants of ability here: are they indeed different in this special context,
and are they expressible in the logical language of GAL?

6.1 Singleton Coalitions

For simplicity we first consider a singleton coalition {a}. What does it mean that agent a has
the ability to make a goal ϕ come about by making a public announcement? Let us begin
with the weakest form of ability.

Being able to, but not necessarily knowing it The formula 〈a〉ϕ means that there is
something which a knows, and if the fact that a knows it is announced, ϕ is a consequence.
However, it might be the case that a doesn’t know this, i.e., that Ka〈a〉ϕ is not true. As an
example, first observe that 〈Kaψa〉ϕ→ Ka〈Kaψa〉ϕ is not a principle of public announcement
logic. As a counter-example take state s of the following model

•ps
a •¬p

t

and take ψa = > and ϕ = p. However, this does not mean that a cannot achieve ϕ in
all her accessible states by some other announcements (possibly different ones in different
states). But in group announcement logic, we have in the model above that s |= 〈a〉p (a can
announce Ka>), but t 6|= 〈a〉p and thus, s |= ¬Ka〈a〉p. So, 〈a〉ϕ→ Ka〈a〉ϕ is not a principle
of group announcement logic. This is a first illustration of the fact that we must be careful
when using the term “ability”: in some (but not necessarily all) circumstances it might be
counter-intuitive to say that a has the ability make ϕ come about, when she is not aware
that she is; when she cannot discern between the actual situation and a situation in which
she does not have this ability.
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Being able to, knowing that, but not knowing how Consider the following model M
(some model updates are also shown):

M : M|K1p : M|K1q :

•¬p,q
u

2
2

•p,¬q
v

2 •p,qs
1 •p,qt

•p,¬q
v

2 •p,qs
1 •p,qt •¬p,q

u
2

•p,qs
1 •p,qt

and let
ϕ = K2q ∧ (¬K2p ∨ K̂1(K2p ∧ ¬K2q))

If we take the current state to be s, we have a situation where 1 is able to make ϕ come
about and where she in addition knows this; a stronger type of ability than in the example
above. Formally: s |= 〈1〉ϕ, because s |= 〈K1q〉ϕ, and t |= 〈1〉ϕ because t |= 〈K1p〉ϕ. Thus,
s |= K1〈1〉ϕ. However, we argue, it might still be counter-intuitive to say that 1 can make
ϕ come about in this situation. The reason is that she has to use different announcements
in indiscernible states. Observe that s |= 〈K1p〉¬ϕ and t |= 〈K1q〉¬ϕ: while the same
announcements can be made in both states, they don’t have the same consequences. In fact,
there exists no single announcement agent 1 can make which will ensure that ϕ will be true in
both s and t . To see this, we can enumerate the possible models resulting from 1 making an
announcement in s or t . Because such a model must include 1’s equivalence class {s, t}, there
are four possibilities. First, the starting model itself (e.g., 1 announces a tautology), in which
ϕ does not hold in s. Second, the model where only state u is removed (e.g., 1 announces
K1p), in which ϕ does not hold in s (as we saw above). Third, the model where only state v
is removed (e.g., 1 announces K1q), in which ϕ does not hold in t (as we saw above). Fourth,
the model where both u and v are removed, in which ϕ holds in neither s nor t .

Since agent 1 cannot discern state s from state t , she has the ability to make ϕ come
about only in the sense that she depends on guessing the correct announcement. In other
words, she can make ϕ come about, knows that she can make ϕ come about, but does not
know how to make ϕ come about.

Being able to, knowing that, knowing how Thus, we can formulate a strong notion of
the ability of a to achieve ϕ by public announcements: there exists a formula ψ such that a
knows ψ and in any state a considers possible, 〈Kaψ〉ϕ holds.

Compare this version of ability, “there is an announcement which a knows will achieve the
goal”, with the previous version above, “a knows that there is an announcement which will
achieve the goal”. We can call these notions, respectively, knowing de re and knowing de dicto
that the goal can be achieved, following [15] who use the same terminology for general strategy
logics, after the corresponding notion used in quantified modal logic. In our framework these
notions are more formally defined as follows:

Knowledge de dicto: Agent i knows de dicto that she can achieve the goal ϕ in state s of
model M iff

∀t ∼i s ∃ψ ∈ Lel (M, t) |= 〈Kiψ〉ϕ (1)
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Knowledge de re: Agent i knows de re that she can achieve the goal ϕ in state s of model
M iff

∃ψ ∈ Lel ∀t ∼i s (M, t) |= 〈Kiψ〉ϕ (2)

Note, however, that it is not prima facie clear that there is a distinction between these
notions in GAL, because of the intimate interaction between knowledge and possible actions
(announcements), but the model and formula above show that there indeed is.

We have seen how to express knowledge de dicto. In the most popular general strategy
logics such as atl, where actions are not necessarily truthful announcements, extended with
epistemics, knowledge de re is not expressible. Several recent works have focussed on extend-
ing such logics in order to be able to express knowledge de re and other interaction properties
between knowledge and ability [15, 1, 14, 7]. In the special case of GAL, however, it turns
out that knowledge de re in fact is already expressible (in the single agent case, at least), as
the following proposition shows.

Proposition 22

1. Knowledge de dicto (1) is expressed by the formula Ki〈i〉ϕ

2. Knowledge de re (2) is expressed by the formula 〈i〉Kiϕ

Proof 1. Immediate.

2. Let M be a model and s a state in M. Agent i knows de re that she can achieve
ϕ iff ∃ψ ∈ Lel ((M, s) |= Kiψ and ∀t ∈ S (s ∼i t ⇒ (M, t) |= 〈Kiψ〉ϕ)) iff ∃ψ ∈
Lel ((M, s) |= Kiψ and ∀t ∈ S (s ∼i t ⇒ (M, t) |= Kiψ and M|Kiψ, t |= ϕ)) iff,
since M, s |= Kiψ and s ∼i t implies that M, t |= Kiψ, ∃ψ ∈ Lel ((M, s) |= Kiψ and
∀t ∈ S (s ∼i t ⇒M|Kiψ, t |= ϕ)) iff ∃ψ ∈ Lel ((M, s) |= Kiψ and ∀t ∈ S (M, t |= Kiψ
and (s ∼i t ⇒ M|Kiψ, t |= ϕ))) iff, again since M, s |= Kiψ and s ∼i t implies that
M, t |= Kiψ, ∃ψ ∈ Lel ((M, s) |= Kiψ and ∀t ∈ S (M, t |= Kiψ and ((M, t |= Kiψ
and s ∼i t) ⇒M|Kiψ, t |= ϕ))) iff ∃ψ ∈ Lel ((M, s) |= Kiψ and M|Kiψ, s |= Kiϕ) iff
(M, s) |= 〈i〉Kiϕ.

�

Thus, i knows de re that she can achieve ϕ iff she can achieve the fact that she knows ϕ.
This depends crucially on the fact that by “achieve” we mean achieve by truthful public
announcements; it is not true if we allow general actions. As an illustration of the latter case,
take the following example. An agent i is in front of a combination lock safe. The agent does
not know the combination. The available actions correspond to dialling different codes. The
agent is able to open the safe, 〈i〉open, because there is a successful action (dial the correct
code). She knows de dicto that she can open the safe, Ki〈i〉open, because this is true in
all the states she considers possible (a possible state correspond to a possible correct code).
But she does not know de re that she can open the safe, because there is no code that will
open the safe in all the states she considers possible. However, 〈i〉Kiopen does hold: there is
some action she can perform (dial the correct code) after which she will know that the safe is
open. In GAL, the fact that 〈i〉Kiϕ expresses (2) is a result of the inter-dependence between
knowledge and actions (announcements) and the S5 properties of knowledge. The following
are some properties of knowledge de dicto and de re in GAL.

19



Proposition 23 The following are valid.

1. Ki〈i〉ϕ→ 〈i〉ϕ. Knowledge de dicto of ability implies ability; if you know that you can
do it then you can do it.

2. 〈i〉Kiϕ→ Ki〈i〉ϕ. Knowledge de re implies knowledge de dicto; if you know how to do
it you know that you can do it.

3. 〈i〉Kiϕ ↔ Ki〈i〉Kiϕ. Knowledge de re holds iff knowledge of knowledge de re holds;
you know how to do it iff you know that.

Proof The first point is immediate from reflexivity of the accessibility relations. The second
point is also immediate; let ψ be fixed by (2). For the third point, the direction to the left
is immedate by point 1, so consider the direction to the right. Assume that M, s |= 〈i〉Kiϕ,
i.e., that (2) holds. Let u ∼i s. We must show that ∃ψ ∈ Lel ∀t ∼i u (M, t) |= 〈Kiψ〉ϕ.
Let ψ be as in (2), and let t ∼i u. By transitivity of ∼i we have that t ∼i s, and thus that
(M, t) |= 〈Kiψ〉ϕ by (2). �

On first sight the expression 〈i〉Kiϕ of knowledge de re might seem to suffer from a similar
problem as the expression of “mere” ability of the first type we discussed above, 〈i〉ψ, namely
that while i has the ability to make ψ come about she does not necessarily know this (de
dicto). However, as the last point in the proposition above shows, if ψ is of the special form
Kiϕ (for the same agent i), then ability does in fact imply knowledge of ability. In every
circumstance where you can achieve a state where you know ϕ, you know that you can.

As illustrated above, the other direction of the second property in Prop. 23 does not
hold; knowledge de dicto does not imply knowledge de re. Given our expressions of these two
properties, we thus have that

Ki〈i〉ϕ→ 〈i〉Kiϕ is not valid

– that you know that you can achieve ϕ does not necessarily mean that you can achieve a
state where you know ϕ.

6.2 More than one agent

In the case of more than one agent, there are even more subtleties. In particular, what does
it mean that a group knows how to achieve something, i.e., knows which joint announcement
will be effective? That everybody knows it? That they have common knowledge of it?

In [15] it is argued that the answer depends on the situation. It might be the case that
the agents have common knowledge (although they then need some resolution mechanism for
cases when there are more than one effective announcement, in order to coordinate); that
every agent knows the effective announcement; that the agents have distributed knowledge
about the effective announcement and thus can pool their knowledge together to find out what
they should do; that a particular agent (the “leader”) knows the effective announcement and
can communicate it to the others.

In GAL we do not have distributed or common knowledge in the language, but “everybody
knows” can be defined: EGϕ ≡

∧
i∈G Kiϕ, where G is a coalition. The following generalisation

of (2) says that in state s coalition G can make a truthful announcement which all the members
of G know will achieve the goal ϕ:
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∃{ψi}i∈G ⊆ Lel ∀(t , s) ∈
⋃
i∈G

∼i (M, t) |= 〈
∧
i∈G

Kiψi〉ϕ (3)

However, while the single agent case (2) is expressed by 〈i〉Kiϕ, it is not in general the
case that (3) is expressed by 〈G〉EGϕ. The following is a counter example. Let M and ϕ be
the following model and formula.

•p,¬q
t

•p,qs

1

2

•¬p,q
u

ϕ = p ∧ q

Let G = {1, 2}. It is easy to see that group G in s does not know de re that they can achieve
ϕ in the sense of (3): it would imply, for instance, that it is possible to make an announcement
in state t which at the same time eliminates state t – which is impossible. However, 〈1, 2〉EGϕ
holds in s – {1, 2} can announce K1p ∧K2q .

Let us consider distributed and common knowledge. Assume for a moment that the
language is extended with operators CG and DG where G is a coalition, such thatM, s |= DGϕ
iff for all (s, t) ∈

⋂
i∈G ∼i M, t |= ϕ and M , s |= CGϕ iff for all (s, t) ∈ ∼G

∗ M, t |= ϕ, where
∼G

∗ is the reflexive transitive closure of
⋃

i∈G ∼i . The following version of (3) says that in
s, G can make a truthful announcement which G distributively know will achieve the goal ϕ:

∃{ψi}i∈G ⊆ Lel ∀t ∈ S

(
(s, t) ∈

⋂
i∈G

∼i ⇒ (M, t) |= 〈
∧
i∈G

Kiψi〉ϕ

)
(4)

Contrary to the case for “everybody knows”, this property is in fact expressed by the analogue
to the expression for the single-agent case (can be shown similarly to Prop. 23 – observe that
(s, t) ∈

⋂
i∈G and M, s |=

∧
i∈G Kiψi implies that M, t |=

∧
i∈G Kiψi :

Proposition 24 The property (4) is expressed by the formula 〈G〉DGϕ.

The situation for common knowledge is, however, similar to that of “everybody knows”.
The following version of (4) says that in s G can make a truthful announcement which G
commonly know will achieve the goal ϕ:

∃{ψi}i∈G ⊆ Lel ∀t∼G
∗s (M, t) |= 〈

∧
i∈G

Kiψi〉ϕ (5)

The model M, formula ϕ and coalition G = {1, 2} above is a counterexample showing that
(5) is not expressed by 〈G〉CGϕ: (5) does not hold in state s, but M, s |= 〈G〉CGϕ.

Summing up, it can be argued that all of the different notions of ability discussed in this
section are useful. For example, in different contexts it might be useful to reason about what
an agent can achieve by guessing the right actions to perform, while in others what she can
achieve by identifying the correct actions with certainty. It is, however, of vital importance
to discern between these different notions, for example in the analysis of security protocols.
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7 Security Protocols

Consider a sender and a receiver attempt to communicate a secret to each other without an
eavesdropper learning it. A very powerful eavesdropper is one that intercepts all communica-
tions. This creates the setting where sender, receiver, and eavesdropper are three agents that
can be modelled in a multi-S5 system and where all communications are public announce-
ments by sender and receiver. One specific example of such a setting is known as the Russian
Cards Problem [19]. The setting is one where a pack of all different cards are distributed over
the three ‘players’, where every player only knows his own cards, where sender and receiver
have an informational advantage over the eavesdropper because they hold more cards, and
where the ‘secrets’ that should not be divulged are about card ownership. Posed as a riddle
it looks as follows—Anne and Bill are sender and receiver, Cath the eavesdropper:

From a pack of seven known cards 0, 1, 2, 3, 4, 5, 6 Anne and Bill each draw three
cards and Cath gets the remaining card. How can Anne and Bill openly (publicly)
inform each other about their cards, without Cath learning from any of their cards
who holds it?

To simplify matters, assume that Anne has drawn {0, 1, 2}, that Bill has drawn {3, 4, 5} and
that Cath therefore has card 6. The initial Kripke model D describing this setting consists
of all possible card deals (valuations). In that model an epistemic class for an agent can be
identified with the hand of cards of that agent. For example, given that Anne holds {0, 1, 2},
she cannot distinguish the four deals—allow us to use some suggestive notation—012.345.6,
012.346.5, 012.356.4, and 012.456.3 from one another.

Given that all announcements that can be made by a player are known by that player,
they consist of unions of equivalence classes for that player and can therefore be identified
with sets of alternative hands for that player. One solution is where

Anne says “My hand of cards is one of 012, 034, 056, 135, 246” after which Bill says
“My hand of cards is one of 345, 125, 024.”

The last is equivalent in that information state to Bill saying “Cath has card 6.” Anne and
Bill in fact execute a protocol here, not in the sense of sets of sequences of announcements
but in the sense of functions from local states of agents to nondeterministic choice between
announcements. For example, Anne is executing “given cards i , j , k , the first of my five hands
is that actual hand ijk ; the second of my five hands to announce is ikl where k , l are chosen
from the five remaining cards; the third is imn where m,n are the remaining two cards; etc...;
shuffle the hands before announcing them.”

We can describe this solution in logic. Agent a stands for Anne, b for Bill, and c for Cath.
Let qi stand for ‘agent i holds card q ’ and let klmi stand for ki ∧ li ∧mi . The information and
safety requirements are as follows — the conjunction in the formula suggests a conjunction
over all hands of cards, ‘Cath does not learn any card’ means ‘Cath does not learn the
ownership of any card except her own card.’

Anne learns Bill’s cards
∧

ijk (ijkb → Ka ijkb) (one)
Bill learns Anne’s cards

∧
ijk (ijka → Kbijka) (two)

Cath does not learn any card
∧6

q=0((qa → ¬Kcqa) ∧ (qb → ¬Kcqb)) (three)
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These requirements should hold throughout the model after protocol completion (i.e., they
should be common knowledge). The safety requirement should be satisfied both at the end
and in all intermediate stages: after any announcement that forms part of such a protocol.

All protocols are finite, because the model is finite and all informative announcements
result in proper model restriction. But it is unclear how long such protocols need to be.
The above solution was of length two, but settings that require strictly longer protocols are
also known. The uncertain but finite length cannot be described in public announcement
logic, but it can be described in group announcement logic. The diamond in 〈ab〉ϕ refers to
arbitrarily finite length protocols taking place between sender a and receiver b in the presence
of other agents, such as the eavesdropper, as was discussed in Section 3.3.2.

Let us see how this works for the length-two protocol above that solves the Russian Cards
Problem. First, we model the solution in public announcement logic. In the solution, first
Anne announces 012a∨034a∨056a∨135a∨246a (anne). Then Bill announces 345b∨125b∨024b

(bill). After these two announcements the solution requirements are satisfied. This can now
be described in various ways: as a sequence of two announcements by different agents, as a
sequence of two simultaneous announcements by Anne and Bill, or as a single announcement
by Anne and Bill.

D, 012.345.6 |= 〈Kaanne〉〈Kbbill〉(one ∧ two ∧ three)
D, 012.345.6 |= 〈Kaanne ∧Kb>〉〈Ka> ∧Kbbill〉(one ∧ two ∧ three)
D, 012.345.6 |= 〈Ka(anne ∧ [Kaanne ∧Kb>]>) ∧Kb(> ∧ [Kaanne ∧Kb>]bill)〉(one ∧ two ∧ three)

Either of the last two implies that we have, in this case:

D, 012.345.6 |= 〈ab〉(one ∧ two ∧ three)

Given that we should be able to realize the three postconditions after any execution of the
underlying protocol, and regardless of the initial card deal, the existence of a successful
protocol to realize them can be expressed all at once by the model validity

D |= 〈ab〉(one ∧ two ∧ three)

or in other words

“〈ab〉(one ∧ two ∧ three) is valid in the initial model for card deals” (6)

In principle, we can now model check this formula in that model, thus establishing that a
secure exchange is possible under the uncertainty conditions about card ownership in a fully
automated way.

We have so far overlooked one aspect of the meaning of announcements executing such
protocols. The security requirement three should be an invariant: its validity throughout the
model should be preserved after every good announcement. In this particular case we can
enforce that, because its negation is a positive formula: if it is ever not preserved, then it is
lost forever afterwards. Therefore, it suffices to guarantee it before execution of the protocol,
and at the end. Thus the above expression also incorporates that invariance.

One must be careful when interpreting the meaning the existence of sequences of an-
nouncements. If we can replace the two successive announcements: Anne says “My hand
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of cards is one of 012, 034, 056, 135, 246” after which Bill says “My hand of cards is one of
345, 125, 024”, by a single one, does that not mean that all protocols can be reduced to
length 1? And what would in this case that single simultaneous announcement be? Well:
as both agents are announcing facts and not knowledge, their single announcement is simply
the conjunction of their successive announcements. As the second one for Anne and the first
one for Bill was ‘true’ (vacuous), this means that they could simultaneously have made their
successive announcements: Anne says “My hand of cards is one of 012, 034, 056, 135, 246”
and simultaneously Bill says “My hand of cards is one of 345, 125, 024”. Unfortunately, even
though this indeed solves the problem, the agents do not know the public consequences of
their joint action merely from the public consequences of their individual part in it. This
situation was discussed in the previous section: there is a simultaneous announcement by
Ann and Bill which will achieve the goal, but Ann and Bill do not know that their respective
announcements will achieve the goal – they will not achieve the goal in all the states they con-
sider possible. A different execution of the protocol for Anne, when she holds cards {0, 1, 2}, is
the announcement “My hand of cards is one of 012, 035, 046, 134, 256”. From that with Bill’s
above announcement Cath can deduce straightaway that the card deal is 012.345.6. And, ob-
viously, Bill does not know whether Anne is going to announce the original or the alternative
set of five hands, or any of many others. In epistemic terms,we can sum up our achievements
for this security setting as follows, also using the discussion and results of Section 6.

D |= 〈ab〉(one ∧ two ∧ three) (7)
D 6|= 〈ab〉Ka(one ∧ two ∧ three) (8)
D 6|= 〈ab〉Kb(one ∧ two ∧ three) (9)

D |= 〈a〉Ka(two ∧ three ∧ 〈b〉Kb(one ∧ two ∧ three)) (10)

Recall (Proposition 22.2) that a formula of the form 〈i〉Kiϕ expresses the fact that agent i
knows de re that she can achieve ϕ; that she can make an announcement that will ensure that
ϕ is true in any state that i considers possible. Thus, the last formula above, (10), expresses
the fact that there is an announcement that Anne can make after which Bill has learnt her
cards and Cath remains ignorant, no matter which of the four card deals Anne considers
possible is the actual one, and such that Bill then can make an announcement after which all
three requirements hold. Thus, it is rational for Ann to make that announcement, and for
Bill to make a proper counter announcement in the resulting state. Unlike the property (6),
(10) shows that Ann and Bill know how to execute a successful protocol.

8 Conclusions

We proposed an extension of public announcement logic with constructs 〈G〉ϕ, where G is a
group of agents, with the intuitive meaning that G can jointly execute a publicly observable
action such that ϕ will be true afterwards. This included sequences of such joint actions and
also protocols with alternating actions by different agents, in response to the actions of others.
The logic is completely axiomatizable, using the same method as for arbitrary announcement
logic. The model checking problem for public announcement logic is PSPACE -complete.
Both ‘knowing how’ (knowing de re) and ‘knowing that’ (knowing de dicto) can be expressed
in our framework. Requirements for finite-length protocols can also be investigated in group
announcement logic.
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We anticipate some further research. A simple extension to the language would also al-
lowing factual change, apart from informational change. This would make the correspondence
with multi-player games even more direct. A different, and further, generalization would be
with non-public actions, such as private messages involving subgroups, card showing actions,
etc. This is also technically conceivable, but slightly further down the road, we think.
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Appendix of proofs

Soundness and completeness of GAL (Theorem 13)

We show soundness of the rule R([G ]), and we outline how the soundness and completeness
proofs are interlinked. The completeness part of the proof is very similar to the one for
arbitrary announcement logic. For full details, see [4].

Necessity forms were introduced by Goldblatt [11]. A necessity form contains a unique
occurrence of a special symbol ]. If ψ is such a necessity form and ϕ ∈ Lgal , then ψ(ϕ) is
obtained from ψ by substituting ] in ψ for ϕ. The necessity forms are inductively defined as
follows. Let ϕ ∈ Lgal . Then: ] is a necessity form; if ψ is a necessity form then (ϕ→ ψ) is a
necessity form; if ψ is a necessity form then [ϕ]ψ is a necessity form; if ψ is a necessity form
then Kiψ is a necessity form. We also use the dual notion of possibility form which can be
defined by the dual clauses to a necessity form: ] is a possibility form; if ψ is a possibility
form then (ϕ ∧ψ), 〈ϕ〉ψ and K̂iψ are possibility forms.

First, we prove a generalization of Proposition 8:

Lemma 25 Let η(]) be a possibility form. If M, s |= η{〈G〉ψ} and p1, .., pn 6∈ Θη ∪Θψ then
there is a M′ differing only on the valuation of the pi such that M′, s |= η{〈

∧
i∈G Kipi〉ψ}

Proof The base case where η = ], such that η{〈G〉ψ} = 〈G〉ψ, has been proved by Proposi-
tion 8. For the inductive cases: let η{]} be a possibility form and suppose that the conditions
for M, s |= η{〈G〉ψ} are met, and let ϕ ∈ Lgal . Then:

• If M, s |= ϕ ∧ η{〈G〉ψ} and p1, .., pn 6∈ Θη ∪ Θψ ∪ Θϕ, then the construction made in
the proof of Proposition 8 applies here too and gives us that M′, s |= ϕ, and then, by
IH, M′, s |= ϕ ∧ η{〈

∧
i∈G Kipi〉ψ}.
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• If M, s |= 〈ϕ〉η{〈G〉ψ} and p1, .., pn 6∈ Θη ∪ Θψ ∪ Θϕ then M|ϕ, s |= η{〈G〉ψ} and by
induction hypothesis M|ϕ′, s |= η{〈

∧
i∈G Kipi〉ψ}. By definition of the valuation V ′,

M|ϕ′=M′|ϕ.

• If M, s |= K̂iη{〈G〉ψ}, then there is a t such that s ∼i t and M, t |= η{〈G〉ψ}. Then,
by IH, M′, t |= η{〈

∧
i∈G Kipi〉ψ}. But we also have that s ∼′

i t by construction of M′.

�

This Lemma will help us to show soundness of the rule R([G ]) in the axiomatization. Consider
two variants of the axiomatisation GAL, with instead of R([G ]) either rule Rω([G ]) or rule
R1([G ]) as follows:

• Fromϕ([∧i∈GKiθi ]ψ) for all {θi}i∈G ⊂ Lel , inferϕ([G ]ψ). (Rω([G ]))

• From ϕ([∧i∈GKipi ]ψ) where pi 6∈ Θϕ ∪Θψ, infer ϕ([G ]ψ). (R1([G ])).

The inference rule Rω([G ]) is not finitary, but its soundness is very obvious. The rule
R1([G ]) is finitary (one premiss!), its soundness is not obvious, but fortunately it follows
directly from Lemma 25. Here comes the convenient truth: the rule R1([G ]) is stronger than
the rule Rω([G ]): if we can prove ϕ([

∧
Kiθi ]ψ) for all epistemic formulas θi then we can prove

in particular ϕ([
∧

Kipi ]ψ) for some atoms p1, .., pk 6∈ Θϕ∪Θψ. As a result, we can derive the
conclusion of the infinitary rule using only the finitary rule. Therefore, anything derivable in
the infinitary axiomatization is also derivable in the axiomatization with R1([G ]).

One can also show that R1([G ]) and R([G ]) are equally strong, in the sense that every
derivation using the former can be transformed in one using the latter. The occurrence of
[∧i∈GKipi ]ψ in the necessity form is always the last subformula (see the definition), but it can
be preceded by any wild sequence of implications, epistemic operators, and announcement
operators. All these can be pushed and merged such that the main operator becomes an
implication, with as main operator on the right-hand side an announcement (for a proof, see
[5]—the proof does not use that formulas may have arbitrary announcement operators):

Lemma 26 Given a necessity form ϕ(]), there are χ, ψ ∈ Lgal such that for all θ ∈ Lgal :
|= ϕ(θ) iff |= ψ → [χ]θ.

This Lemma indirectly shows the soundness of the derivation rule R([G ]).

The omitted completeness proof demonstrates that all validities are derivable in the in-
finitary axiomatization, with the rule Rω([G ]), and that then closes the circle. If a formula
is valid, we find an infinitary derivation, by just keeping the one premiss we get a finitary
derivation (that can be transformed into one using the R([G ]) version of the finitary rule
R1([G ])), and soundness of that principle gives us validity again.

Proof of hardness of the model checking complexity (Proposition 21)

We prove that (MC(GAL)) is PSPACE -hard. Let Ψ = Q1x1...QkxkΦ(x1, ..., xk ) be an entry
of the problem QBF-SAT:

• Q1, ...,Qk ∈ {∀,∃}

• x1, ..., xk are boolean variables
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• Φ(x1, ..., xk ) is a boolean formula

We will associate to Ψ a model M1;k = (W1;k ,R1, . . . ,Rk ,V ), a world x ∈ Wk and a
formula ψ(Ψ) ∈ Lgal such that |= Ψ iff M1;k , x |= ψ(Ψ) (Pk ).

Let 1 ≤ m ≤ k ,Wm;k = {x} ∪ {(xl , 0), (xl , 1)}l∈{m,...,k} be the set of possible worlds,
{p−m , p+

m , ..., p
−
k , p

+
k } be the set of atoms, with V (p−l )={(xl , 0)} and V (p+

l )={(xl , 1)}. Let

i , g ∈ N and let us define
{
Ri = Wm;k ×Wm;k

Rg = {(s, s) such that s ∈ Wm;k}
(Note that g is omniscient and that i assumes this fact)

M1;k : p−1 •(x1,0)

i

i
p−2 •(x2,0)

i

i (. . .) i
p−k •(xk ,0)

i

x•
i

i

xx
xx

xx
xx

xx
x

p+
1 •(x1,1)

i
p+
2 •(x2,1)

i (. . .) i
p+
k •(xk ,1)

(Note that i’s relation is reflexive, symmetrical and transitive, and that g’s reflexive arrows
are omitted)
Let us now define some formulae:

for all l ∈ {1, . . . , k}, ql = K̂i(p−l ∧Ki¬p+
l ) ∨ K̂i(p+

l ∧Ki¬p−l ) and rl = K̂ip+
l ∧ K̂ip−l .

Intuitively, M1,k |= rl means that (xl , 0) and (xl , 1) are still possible worlds of the model (i.e.
the truth value of xl is not fixed) and M1,k |= ql means that one and only one of (xl , 0) and
(xl , 1) is still a possible world (i.e. we have fixed the value of xl ).
We can now define the equivalence recursively:

let ψ0 = Φ(K̂ip+
1 , . . . , K̂ip+

k ), suppose ψl is defined for some l < k , then

ψl+1 =
{

Ki [g ](q1 ∧ ... ∧ qk−l ∧ rk−l+1 ∧ ... ∧ rk → ψl ) if Ql+1 = ∀
K̂i〈g〉(q1 ∧ ... ∧ qk−l ∧ rk−l+1 ∧ ... ∧ rk ∧ ψl ) if Ql+1 = ∃

Finally, ψ(Ψ) = ψk .

Example: If Ψ = ∀x1,∃x2,∀x3,Φ(x1, x2, x3) then:

ψ(Ψ) = Ki [g ](q1 ∧ r2 ∧ r3 → K̂i〈g〉(q1 ∧ q2 ∧ r3 ∧Ki [g ](q1 ∧ q2 ∧ q3 → Φ(K̂ip+
1 , . . . , K̂ip+

k ))))

Intuitively, Ki [g ](q1 ∧ r2 ∧ r3 → ϕ) means ”After having fixed the value of x1 only, ϕ” and
K̂i〈g〉(q1 ∧ r2 ∧ r3 ∧ϕ) as ”There is a way of fixing the value of x1 only, such that ϕ”. We can
now prove |= Ψ ⇔M1;k , x |= ψ(Ψ) by induction on k. The induction is quite technical, but
the intuition is that something is true after having fixed the value of k + 1 boolean variables
if and only if it is true after having fixed the value of the first k variables, added the final one
and then fixed its value. More precisely:

Base case: k = 1:
Ψ = Q1x1Φ(x1), and M1 : p−1 •(x1,0)

i

x•
i

p+
1 •(x1,1)

i

xxxxxxxxxxx
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• If Q1 = ∀ then |= Ψ iff (|= Φ(>) and |= Φ(⊥)) iff (|= Φ(>) ↔ > and |= Φ(⊥) ↔ >)
iff ( p+

1 •
i •x |= Φ(K̂ip+

1 ) and p−1 •
i •x |= Φ(K̂ip+

1 ))

iff M1, x |= Ki [g ](q1 → Φ(K̂ip+
1 )) i.e. M1, x |= ψ(Ψ)

• Else, Q1 = ∃ and |= Ψ iff (|= Φ(>) ∨ Φ(⊥)) iff (|= Φ(>) ↔ > or |= Φ(⊥) ↔ >)
iff ( p+

1 •
i •x |= Φ(K̂ip+

1 ) or p−1 •
i •x |= Φ(K̂ip+

1 ))

iff M1, x |= K̂i〈g〉(q1 ∧ Φ(K̂ip+
1 )) i.e. M1, x |= ψ(Ψ)

Inductive case: k → k + 1:
Suppose that (Pk ) is true, and let us note: Ψ = Q1x1...QkxkQk+1xk+1Φ(x1, ..., xk , xk+1).
Then we have: |= Ψ ⇔|= Q1x1 Q2x2..QkxkQk+1xk+1Φ(x1, ..., xk , xk+1)︸ ︷︷ ︸

Ψ̃(x1)

• If Q1 = ∀ then |= Ψ iff (|= Ψ̃(>) and |= Ψ̃(⊥))

iff M2;k+1, x |= ψ(Ψ̃(>)) and M2;k+1, x |= ψ(Ψ̃(⊥)) (by IH)

iff M1;k+1, x |= Ki [g ](q1 ∧ r2 ∧ . . . ∧ rk+1 → ψ∗(Ψ̃(K̂ip+
1 )))

with ψ∗ obtained by replacing any succession q2 ∧ . . . by q1 ∧ q2 ∧ . . .

• If Q1 = ∃ then |= Ψ iff (|= Ψ̃(>) or |= Ψ̃(⊥))

iff M2;k+1, x |= ψ(Ψ̃(>)) or M2;k+1, x |= ψ(Ψ̃(⊥)) (by IH)

iff M1;k+1, x |= K̂i〈g〉(q1 ∧ r2 ∧ . . . ∧ rk+1 ∧ ψ∗(Ψ̃(K̂ip+
1 )))

Agent g ’s announcement is just like a public announcement. Therefore, the same proof
shows hat the model checking for APAL is PSPACE hard, namely by replacing [g ] by �, and
〈g〉 by ♦, above.
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