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Review
Glossary

Computational reinforcement learning: defines the problem of how to solve an

MDP (or a POMDP) through learning (including trial and error), as well as

associated computational methods.

Developmental robotics: research field modeling how embodied agents can

acquire novel sensorimotor, cognitive, and social skills in an open-ended

fashion over a developmental time span through integration of mechanisms

that include maturation, intrinsically and extrinsically motivated learning, and

self-organization.

Intrinsic and extrinsic rewards: normative accounts of behavior based on

computational reinforcement learning and optimal control theory rely on the

concept of a reward to assign value to alternative options, and often

distinguish between extrinsic and intrinsic rewards. Extrinsic rewards are

associated with classical task-directed learning and encode objectives such as

finding food and winning a chess game. By contrast, intrinsic rewards are

associated with internal cognitive variables such as esthetic pleasure,

information-seeking, and epistemic disclosure. Intrinsic rewards may be based

on uncertainty, surprise, and learning progress, and they may be either learnt

or innate.

Markov decision process (MDP): defines the problem of selecting the optimal

actions at each state to maximize future expected rewards in a Markov process.

Markov process (MP): mathematical model of the evolution of a system in

which the prediction of a future state depends only on the current state and on

the applied action, and not on the path by which the system reached the

current state.

Metacognition: capability of a cognitive system to monitor its own abilities –
Intelligent animals devote much time and energy to
exploring and obtaining information, but the underlying
mechanisms are poorly understood. We review recent
developments on this topic that have emerged from the
traditionally separate fields of machine learning, eye
movements in natural behavior, and studies of curiosity
in psychology and neuroscience. These studies show
that exploration may be guided by a family of mecha-
nisms that range from automatic biases toward novelty
or surprise to systematic searches for learning progress
and information gain in curiosity-driven behavior. In
addition, eye movements reflect visual information
searching in multiple conditions and are amenable for
cellular-level investigations. This suggests that the ocu-
lomotor system is an excellent model system for under-
standing information-sampling mechanisms.

Information-seeking in machine learning, psychology
and neuroscience
For better or for worse, during our limited existence on
earth, humans have altered the face of the world. We
invented electricity, submarines, and airplanes, and devel-
oped farming and medicine to an extent that has massively
changed our lives. There is little doubt that these extraor-
dinary advances are made possible by our cognitive struc-
ture, particularly the ability to reason and build causal
models of external events. In addition, we would argue that
this extraordinary dynamism depends on our high degree
curiosity, the burning desire to know and understand.
Many animals, especially humans, seem to constantly seek
knowledge and information in behaviors ranging from the
very small (such as looking at a new storefront) to the very
elaborate and sustained (such as reading a novel or carry-
ing out research). Moreover, especially in humans,
the search for information seems to be independent of a
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foreseeable profit, as if learning were reinforcing in and of
itself.

Despite the importance of information-seeking for intel-
ligent behavior, our understanding of its mechanisms is in
its infancy. In psychology, research on curiosity surged
during the 1960s and 1970s and subsequently waned [1]
and has shown a moderate revival in neuroscience in
recent years [2,3]. Our focus here is on evaluating three
lines of investigation that are relevant to this question and
have remained largely separate: studies of active learning
and exploration in the machine learning and robotics
fields, studies of eye movements in natural behavior,
and studies of curiosity in psychology and neuroscience.
for example, its knowledge, competence, memory, learning, or thoughts – and

act according to the results of this monitoring. An example is a system capable

of estimating how much confidence or uncertainty it has or how much learning

progress it has achieved, and then using these estimates to select actions.

Optimization: mechanism that is often used in machine learning to search for

the best solution among competing solutions with regard to given criteria.

Stochastic optimization is an approach in which improvements over current

best estimates of the solution are searched by iteratively trying random

variations of these best estimates.

POMDP: extension of MDP for the case where the state is not entirely or

directly observable but is described by probability distributions.
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As described below, although they use different terminolo-
gy and methods, these three lines of research grapple with
strikingly similar questions and propose overlapping
mechanisms. We suggest that achieving closer integration
holds much promise for expansion of this research field.

Information-seeking obeys the imperative to reduce
uncertainty and can be extrinsically or intrinsically
motivated
Multiple paradigms have been devoted to the study of
exploration and have used a common definition of this
process as the choice of actions with the goal of obtaining
information. Although exploratory actions can involve
physical acts, they are distinct from other motor acts in
that their primary goal is not to exert force on the world,
but to alter the observer’s epistemic state. For instance,
when we turn to look at a new storefront, the goal of the
orienting action is not to affect a change in the external
world (as we would, for instance, when we reach for and
grasp an apple). Instead, the goal is to obtain information.
Thus, the key questions we have to address when studying
exploration and information-seeking pertain to the ways in
which observers handle their own epistemic states, and
Ini�al st ate

Updated st a

S

G

S

G

Obse rvin g
ac�o n

S

G

(A)

p(rg ) = 0.5

P(

P(

P(

P(

P = 0.5

P = 0.5

r0 = –0.1

r0 = –0.1

p(rs ) = 0.5

p(xa1 ) = 0.5

Xa

P(xb1 ) = 0.0
p(xb2 ) = 1.0

Xb

Xb
P(xb1 ) = 1.0
p(xb2 ) = 0.0

p(xa2 ) = 0.5

Figure 1. Information searches while executing a known task. (A) Description of an obser
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specifically, how observers estimate their own uncertainty
and find strategies that reduce that uncertainty.

Theoretical and empirical considerations show that the
motivations behind this process can be diverse and derive
from extrinsic or intrinsic factors. In extrinsically motivat-
ed contexts, information-gathering is a means to an end: it
is used to maximize the agent’s progress toward a separate
goal. Paradigmatic examples of this type of sampling are
the eye movements that subjects make in natural behavior,
such as glancing at the traffic light at a busy intersection
[4], an example we discuss in detail below (Figure 1A). In
reinforcement learning (RL) terms, such task-related in-
formation sampling is a feature of pure exploitation. The
agent is engaged in a task that seeks to maximize an
extrinsic reward (e.g., food or money) and information-
gathering is an intermediate step in attaining this reward.
A more complex form of this process arises while learning a
task, when an agent wishes to reach a goal but must
explore to discover an appropriate strategy for reaching
that goal (e.g., learning how to drive or how to play chess).

In contrast with such task-related sampling, informa-
tion-seeking can also be intrinsically motivated, that is, a
goal in and of itself. The fact that animals, and particularly
te (B)
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ving action – looking at the traffic light at an intersection – using a partly observable

 intersection and can take two actions, stop (S) or go (G). State xa can be described

 and going, respectively, and have equal probabilities of 0.5. Thus, the expected
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humans, show intrinsic curiosity and seem to avidly seek
out information without an apparent ulterior motive sug-
gests that the brain generates intrinsic rewards (see
Glossary) that assign value to information, and raises
complex questions regarding the computations underlying
such rewards.

In the following sections we first discuss task-defined
forms of information searches and their links to eye move-
ments and attention, and then address the more complex
curiosity-like mechanisms.

Task-directed searches for information through the
prism of eye movements
Information sampling while executing a known task

Computational studies have shown that when an agent
knows a task, the controllers implementing that task can
select actions that harvest immediate rewards, or actions
that have indirect benefits by facilitating future actions.
For example, to get a cookie from a high shelf, an individual
may first pull up a chair and climb on it before reaching and
grasping the cookie. Information-gathering actions are a
special type of intermediate step that obey the imperative
to reduce uncertainty and adjudicate among competing
interpretations. As we discuss below (Figure 1A), a driver
who seeks to arrive home safely may glance at a traffic light
before crossing an intersection as an intermediate step
that reduces uncertainty and increases the chance of suc-
cess of his future actions.

Many computational approaches can model this type of
information-seeking in a sound way. A common one relies
on partially observable Markov decision processes
(POMDPs) [5,6] (alternative representations are presented
in [7,8]). A POMDP is a mathematical formalism that
describes a task as a series of states, each with a set of
possible actions and immediate or future outcomes
(rewards or punishments). The states are partially observ-
able in the sense that their identities are not deterministic
but described by probability distributions, making
POMDPs useful tools for measuring uncertainty and the
value of new information.

For illustration, we consider the task of driving safely
across an intersection (Figure 1A). In a POMDP, the agent
performing the task would be described as starting in an
initial state (e.g., the intersection, denoted by xa) from
which he can choose two possible actions, S (stop) or G
(go). However, the agent has uncertainty about the true
nature of state xa. For example, xa may be a state for which
only stopping receives a reward [P(rS) = 1 and P(rG) = 0] or
for which only going receives a reward [P(rG) = 1 and
P(rS) = 0]. If these two states are equally likely, the agent
has maximal uncertainty and can only expect a rate of
reward of 0.5 regardless of which action he takes. However,
rather than acting directly under this uncertainty, the
agent can choose to obtain more information through an
intermediate observing action, such as looking at a traffic
light. This action is modeled as a transition to a different
state, xb, for which the probability distributions are more
clearly separated, and the agent can be certain whether the
optimal action is to stop [the light is red and P(rS) = 1,
bottom panel] or to proceed [the light is green and P(rG) = 1,
top panel]. Regardless of which alternative is correct, the
agent has a much higher likelihood of obtaining a reward
after rather than before having taken the observing action.

It is clear from this POMDP-based analysis that the
observing action is not valuable in and of itself, but only if it
increases the likelihood of reward for subsequent actions.
In the short term, the observing action delivers no reward
but has a cost in terms of the time and effort needed to
discriminate the information (indicated by ro < 0 in
Figure 1A). This cost becomes worthwhile only if the
observing action transitions the agent to a better state,
that is, if the cumulative future value of state xb exceeds
that of state xa by a sufficient amount. Balancing the costs
and benefits of information sampling can also be cast in an
information theoretic perspective [9].

Whether or not information-sampling has positive value
depends on two factors. First, the observer must know the
significance of the information and use it to plan future
actions. In the traffic example, glancing at the light is only
valuable if the observer understands its significance and if
he takes the appropriate action (e.g., if he steps on the
brake at the red light). Thus, information value is not
defined unless observers have prior knowledge of the task,
a strong point to which we return below.

A second factor that determines information value is the
observer’s momentary uncertainty. Although uncertainty in
a given task is typically associated with specific junctures
that are learnt while learning the task (e.g., when driving we
generally expect high uncertainty at an intersection) this
may quickly change, depending on the observer’s momen-
tary state. If, for example, the driver looked ahead and saw
that there was a car in the intersection, his uncertainty
would be resolved at this point, rendering the light redun-
dant and reducing the value of looking at it. This raises the
question (which has not been explored so far in empirical
investigations) to what extent informational actions such as
task-related eye movements are habitual, immutable
aspects of a task and to what extent they rapidly respond
to changing epistemic conditions (Box 1).

Information-sampling while searching for a task strategy

Strategies for solving a task, including those for generating
informational actions, are not known in advance and must
also be learnt. This implies an exploratory process whereby
the learner experiments, selects, and tries to improve
alternative strategies. For instance, when learning how
to drive, individuals must also learn where to look to
efficiently sample information; when learning chess,
players must discover which strategy is most powerful
in a given setting.

Deciding how to explore optimally when searching for
strategy is a very difficult question, and is almost intrac-
table in the general case. This question has been tackled in
machine learning for individual tasks as an optimization
problem, in which the task is modeled as a cost function
and the system searches for the strategy that minimizes
this function. The search may use approaches ranging from
reinforcement learning [5,10,11] to stochastic optimization
[12], evolutionary techniques [13], and Bayesian optimiza-
tion [14]. It may operate in model-based approaches by
learning a model of world dynamics and using it to plan a
solution [15], or it may directly optimize parameters of a
3



Box 1. Using eye movements to probe multiple processes of information-searching

Because of its amenability to empirical investigations and the large

amount of research devoted to it, the oculomotor system is a

potentially excellent model system for probing information-seeking.

In human observers, eye movements show consistent patterns that

are highly reproducible within and across observers, both in

laboratory tasks and in natural behaviors [4,30]. Moreover, eye

movements show distinctive patterns during learning versus skilled

performance of visuomanual tasks [27], suggesting that they can be

used to understand various types of information-searching.

In non-human primates, the main oculomotor pathways are well

characterized at the level of single cells, and include sensory inputs

from the visual system, and motor mechanisms mediated by the

superior colliculus and brainstem motor nuclei that generate a

saccade [75]. Interposed between the sensory and motor levels is

an intermediate stage of target selection that highlights attention-

worthy objects, and seems to encode a decision of when and to what

to attend [32,76]. Importantly, responses to target selection are

sensitive to expected reward in the lateral intraparietal area (LIP), the

frontal eye field (FEF), the superior colliculus, and the substantia nigra

pars reticulata [32,77–79], suggesting that they encode reinforcement

mechanisms relevant for eye movement control.

Against the background of these results, the oculomotor system

can be used to address multiple questions regarding exploration.

Two especially timely questions pertain to saccade guidance by

extrinsic and intrinsic rewards, and to the integration of various

information-seeking mechanisms.

Multiple valuation processes select stimuli for eye movement

control

Animal studies of the oculomotor system have so far focused on

the coding of extrinsic rewards, using simple tasks in which monkeys

receive juice for making a saccade. However, as we have discussed,

eye movements in natural behavior are not motivated by physical

rewards but by more indirect metrics related to the value of

information. Although this question has not been systematically

investigated, evidence suggests that such higher-order values may be

encoded in target selection cells. One line of evidence shows the

entity that is selected by cells is not the saccade itself but a stimulus of

interest, and this selection is independent of extrinsic rewards that the

monkeys receive for making a saccade [80,81]. A second line of

evidence suggests that the cells reflect two reward mechanisms:

direct associations between stimuli and rewards independent of

actions, and a measure of, potentially, the information value of

action-relevant cues (Figure 1A).

Evidence of the role of Pavlovian associations comes from a task in

which monkeys were informed whether or not they would receive a

reward by means of a visual cue. Importantly, the cues were not

relevant for the subsequent action, that is, they did not allow the

monkeys to plan ahead and increase their odds of success in the task.

Nevertheless, positive (reward-predictive) cues had higher salience

and elicited stronger LIP responses than negative (non-reward-

predictive) cues [82]. This valuation differs fundamentally from the

types of valuation we discussed in the text: not only is it independent

of action, but it is also independent of uncertainty reduction, because

the positive and negative cues provided equally reliable information

about forthcoming rewards. Thus, the brain seems to employ a

process that weights visual information based on direct reward

associations, possibly related to a phenomenon dubbed ‘attention for

liking’ in behavioral research [83]. Although a bias to attend to good

news is suboptimal from a strict information-seeking perspective, it

may be adaptive in natural behavior by rapidly drawing resources to

potential rewards.

Additional evidence suggests that along with this direct stimulus–

reward process, cells may be sensitive to an indirect (potentially

normative) form of valuation such as that shown in Figure 1A. Thus,

cells select cues that provide actionable information even when the

monkeys examine those cues covertly, without making a saccade

[84,85]. In addition, an explanation based on information value may

explain a recent report that LIP neurons had enhanced responses for

targets threatening large penalties in a choice paradigm [86].

Although this result is apparently at odds with the more commonly

reported enhancement by appetitive rewards, in the task that the

monkeys performed the high penalty target was also an informative

cue. The monkeys were presented with choices between a high-

penalty target and a rewarded or lower-penalty option, and in either

case the optimal decision (which the monkeys took) was to avoid the

former target and orient to the alternative options. It is possible,

therefore, that LIP cells encode a two-stage process similar to that

shown in Figure 1A, in which the brain first attends to the more

informative high-penalty cue (without generating a saccade) and

then, based on the information obtained from this cue, makes the

final saccade to the alternative option.

In sum, existing evidence is consistent with the idea that target

selection cells encode several valuation processes for selecting visual

items. Understanding the details of these processes can shed much

light on decisions guiding information seeking.

Integrating extrinsically and intrinsically motivated searches

Although information-sampling in task- and curiosity-driven

contexts seems to answer a common imperative for uncertainty

reduction, these behaviors evoke very different subjective

experiences, suggesting that they recruit different mechanisms.

The neural substrates of these differences are very poorly under-

stood. Behavioral and neuropsychological studies in rats suggest

that the brain contains two attentional systems. A system of

‘attention for action’ relies on the frontal lobe and directs resources

to familiar and reliable cues, and a system of ‘attention for

learning’ relies on the parietal lobe and preferentially weights

novel, surprising, or uncertain cues [87,88]. However, this hypoth-

esis has not been investigated in individual cells and it is not clear

how it maps onto various information-seeking mechanisms. Thus,

an important and open question concerns the representation of

task-related versus open-ended curiosity mechanisms, and in

particular the coding of factors such as the novelty, uncertainty,

or surprise of visual cues. Although responses to novelty and

uncertainty have been reported for cortical and subcortical

structures [89], it is unknown how they relate to attention and

eye movement control.
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solution in model-free approaches [16]. Approximate gen-
eral methods have been proposed in reinforcement learn-
ing that are based on random action selection, or give
novelty or uncertainty bonuses (in addition to the task-
specific reward) for collecting data in regions that have not
been recently visited, or that have a high expected gain in
information [10,15,17–21]; we discuss these factors in more
detail below. Yet another approach to strategy-learning
involves generalizing from previously learnt circum-
stances; for example, if I previously found food in a super-
market, I will look for a supermarket if I am hungry in a
new town [22]. Many of these methods can be seen as a
POMDP whose uncertainty does not apply to the task-
relevant state but to the task parameters themselves. It is
4

important to note that although these processes require
significant exploration, they are goal-directed in the sense
that they seek to maximize a separate, or extrinsic, reward
(e.g., drive successfully to a destination).

Eye movements reflect active information searches

In foveate animals such as humans and monkeys, visual
information is sampled by means of eye movements and in
particular saccades, rapid eye movements that occur sev-
eral times a second and point the fovea to targets of
interest. Although some empirical and computational
approaches have portrayed vision as starting with a pas-
sive input stage that simply registers the available infor-
mation [23,24], the study of eye movements makes it clear
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that information sampling is a highly active process
[23,24]. Far from being a passive recipient, the brain
actively selects and proactively seeks out the information
it wishes to sample, and it has been argued that this active
process plays a key role in the construction of conscious
perception [25].

Converging evidence suggests that when deployed in
the service of a task, eye movements may be explained by
the simple imperative to sample information to reduce
uncertainty regarding future states [4,26]. In well-prac-
ticed tasks that involve visuomanual coordination (such as
moving an object to a target point), the eyes move ahead of
the hand to critical locations such as potential collision or
target points, and wait there until the hand has cleared
those locations (Figure 1B) [27]. Notably, the eyes never
track the hand, which relies on motor and proprioceptive
guidance and, for short periods of time, follows a predict-
able path; instead, they are strategically deployed to ac-
quire new information. Additional evidence that gaze is
proactively guided by estimates of uncertainty comes from
a virtual reality study in which groups of observers walked
along a track [28]. Subjects preferentially deployed gaze to
oncoming pedestrians whose trajectory was expected to be
uncertain (i.e., who had a history of veering onto a collision
course) relative to those who had never shown such devia-
tions. This suggests that observers monitor the uncertain-
ty or predictability of external items and use these
quantities proactively to deploy gaze (i.e., before and re-
gardless of an actual collision). Finally, the eye movement
patterns made while acquiring a task differ greatly from
those made after learning [29,30], suggesting that eye
movements are also coupled to exploration for a task
strategy. These observations, together with the fact that
eye movements are well investigated at the single neuron
level in experimental animals and use value-based deci-
sion mechanisms [31,32], suggest that the oculomotor
system may be an excellent model system for understand-
ing information-seeking in the context of a task (Box 1).

Curiosity and autonomous exploration
Whereas in the examples discussed so far the goal of the
task is known in advance and can be quantified in terms of
extrinsic rewards, the open-ended nature of curiosity-like
behaviors raises more difficult questions. To explain such
behaviors and the high degree of motivation associated
with them, it seems necessary to assume that the brain
generates intrinsic rewards that assign value to learning
or information per se [33]. Some support for this idea comes
from the observation that the dopaminergic system, the
chief reward system of the brain, is sensitive to intrinsic
rewards [34], responds to anticipated information about
rewards in monkeys [35], and is activated by paradigms
that induce curiosity in humans [2,3]. However, important
questions remain regarding the nature of intrinsic rewards
at what David Marr would call the computational, repre-
sentational, and physical levels of description [36]. At the
computational level, it is not clear why the brain should
generate intrinsic motivation for learning, how such moti-
vation would benefit the organism, and the problems that
it seeks to resolve. At the algorithmic and physical levels, it
is unclear how these rewards are calculated and how they
are implemented in the brain. We discuss each question in
turn.

The benefits and challenges of information-seeking

The most likely answer to why intrinsic motivation for
learning is generated is that such a motivation maximizes
long-term evolutionary fitness in rapidly changing envi-
ronmental conditions (e.g., due to human social and cul-
tural structures, which can evolve much faster than the
phylogenetic scale). For example, Singh et al. used com-
puter simulations to show that, in dynamic contexts, even
if the objective fitness/reward function of an organism is to
survive and reproduce, it may be more efficient to evolve a
control architecture that encodes an innate surrogate re-
ward function rewarding learning per se [37]. The benefits
of such a system arise because of the limited cognitive
capacities of the agent (i.e., inability to solve the fitness
function directly) [38–40] or because information or skills
that are not immediately useful may be reused in the
future. This idea resonates with the free-energy principle,
which states that the possession of a large array of skills
can be useful in avoiding future surprises by ‘anticipating a
changing and itinerant world’ [41,42]. In fact, it is possible
to show that making the environment predictable (by
minimizing the dispersion of its hidden states) necessarily
entails actions that decrease uncertainty about future
states [42]. This idea resonates with the notion of Gestalt
psychologists that humans have a ‘need for cognition’, that
is, an instinctive drive to make sense of external events
that operates automatically in mental processes ranging
from visual segmentation to explicit inference and causal
reasoning [1]. In one way or another, all these formulations
suggest that information-seeking, like other cognitive
activities, acquire value through long-term evolutionary
selection in dynamic conditions.

If we accept that learning for its own sake is evolution-
arily adaptive, a question arises regarding the challenges
that such a system must solve. To appreciate the full scope
of this question, consider the challenges that are faced by a
child who learns life skills through an extended period of
play and exploration [43–47]. One salient fact regarding
this process is the sheer vastness of the learning space,
especially given the scarce time and energy available for
learning. In the sensorimotor domain alone, and in spite of
significant innate constraints, a child needs to learn to
generate an enormous repertoire of movements by orches-
trating multiple interdependent muscles and joints that
can be accessed at many hierarchical levels and interact in
a potentially infinite number of ways with a vast number of
physical objects/situations [48]. At the same time, in the
cognitive domain, infants must acquire a vast amount of
factual knowledge, rules, and social skills.

A second salient fact regarding this question is that
while sampling this very large space, a child must avoid
becoming trapped in unlearnable situations in which he
cannot detect regularities or improve. In stark contrast to
controlled laboratory conditions in which subjects are
given solvable tasks, in real world environments many
of the activities that an agent can choose for itself are
inherently unlearnable either because of the learner’s own
limitations or because of irreducible uncertainty in the
5
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problem itself. For instance, a child is bound to fail if she
tries to learn to run before learning to stand, or tries to
predict the details of the white noise pattern on a television
screen. Thus, the challenge of an information-seeking
mechanism is to efficiently learn a large repertoire of
diverse skills given limited resources, and avoid being
trapped in unlearnable situations.

A number of processes for open-ended exploration have
been described in the literature that, as we describe below,
have individual strengths and weaknesses and may act in
complementary fashion to accomplish these goals. We
consider first heuristics based on random action selection,
novelty, or surprise, followed by deliberate strategies for
acquiring knowledge and skills.

Randomness, novelty, surprise and uncertainty

In neuroscience research, the most commonly considered
exploration strategies are based on random action selec-
tion or automatic biases toward novel, surprising or uncer-
tain events. Sensory novelty, defined as a small number of
stimulus exposures, is known to enhance neural responses
throughout visual, frontal, and temporal areas [49] and
activate reward-responsive dopaminergic areas. This is
consistent with the theoretical notion that novelty acts
as an intrinsic reward for actions and states that had not
been recently explored or that produce high empirical
prediction errors [50]. A more complex form of contextual
novelty (also called surprise) has been suggested to account
for attentional attraction toward salient events [51] and
may be quantified using Bayesian inference as a difference
between a prior and posterior world model [52] or as a high
prediction error for high-confidence states [53]. Computa-
tional models have also incorporated uncertainty-based
strategies, generating biases toward actions or states that
have high variance or entropy [54,55].

As discussed above, actions driven by randomness,
novelty, uncertainty, or surprise are valuable in allowing
agents to discover new tasks. However, these actions have
an important limitation in that they do not guarantee that
an agent will learn. The mere fact that an event is novel or
surprising does not guarantee that it contains regularities
that are detectable, generalizable, or useful. Therefore,
heuristics based on novelty can guide efficient learning
in small and closed spaces when the number of tasks is
small [56], but are very inefficient in large open ended
spaces, where they only allow the agent to collect very
sparse data and risk trapping him in unlearnable tasks
[48,57,58]. This motivates the search for additional solu-
tions that use more targeted mechanisms designed to
maximize learning per se.

Information gap hypothesis of curiosity

On the basis of a synthesis of psychological studies on
curiosity and motivation, Lowenstein proposed an infor-
mation gap hypothesis to explain so-called specific episte-
mic curiosity, an observer’s desire to learn about a specific
topic [1]. According to the information gap theory, this type
of curiosity arises because of a discrepancy between what
the observer knows and what he would like to know, where
knowledge can be measured using traditional measures of
information. As a concrete illustration, consider a mystery
6

novel in which the author initially introduces ten suspects
who are equally likely to have committed a murder and the
reader’s goal is to identify the single true culprit. The
reader can be described as wanting to move from a state
of high entropy (or uncertainty, with 10 possible alterna-
tive murderers) to one of low entropy (with a single culprit
identified), and his curiosity arises through his awareness
of the difference between his current and goal (reference)
uncertainty states. Defined in this way, curiosity can be
viewed as a deprivation phenomenon that seeks to fill a
need similar to other reference-point phenomena or bio-
logical drives. Just as animals seek to fill gaps in their
physical resources (e.g., energy, sex, or wealth), they seek
to fill gaps in their knowledge by taking learning-oriented
actions. This brings us back to the imperative to minimize
uncertainty about the state of the world, and suggests that
this imperative is similar to a biological drive.

It is important to recognize, however, that whereas
biological drives are prompted by salient and easily recog-
nizable signs (e.g., somatic signals for hunger or sex),
recognition and elimination of information gaps require
a radically different, knowledge-based mechanism. First,
the agent needs some prior knowledge to set the starting
and the reference points. When reading a novel, we cannot
estimate the starting level of entropy unless we have read
the first few pages and acquired ‘some’ information about
the setting. Similarly, we cannot set the reference point
unless we know that mystery novels tell us about culprits,
meaning that we should define our reference state in terms
of the possible culprits rather than, for example, the prop-
erties of DNA. In other words, an agent cannot be curious
outside a known context, similar to the requirements for
prior knowledge that arise in extrinsically motivated eye
movement control (Figure 1). Second, to define an infor-
mation gap, an individual has to monitor her level of
uncertainty, again similar to eye movement control.

Exploration based on learning progress (LP)

Despite its considerable strengths, a potential limitation of
the information gap hypothesis is that agents may not be
able to estimate the starting or desired levels of uncertain-
ty given their necessarily limited knowledge of the broader
context. In scientific research, for example, the results of an
experiment typically open up new questions that were not
foreseen, and it is not possible to estimate in advance the
current entropy or the final desired state. Thus, a difficult
question posed by this theory is how the brain can define
information gaps in general situations.

An alternative mechanism for targeted learning has
been proposed in the field of developmental robotics, and
eschews this difficulty by tracking an agent’s local learning
progress without setting an absolute goal [48,57,58] fol-
lowing an early formulation presented by Schmidhuber
[59]. The central objective of developmental robotics is to
design agents that can explore in open-ended environ-
ments and develop autonomously without a pre-pro-
grammed trajectory, based on their intrinsic interest. A
system that has been particularly successful in this regard
explicitly measures the agent’s learning progress in an
activity (defined as an improvement in its predictions of
the consequences of its actions [57] or in its ability to solve
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Figure 2. Curiosity-driven exploration through maximization of learning progress. (A) The Playground Experiment studies curiosity-driven exploration and how it can self-
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organization of structured developmental trajectories, whereby the robot explores objects and actions in a progressively more complex stage-like manner while acquiring

autonomously diverse affordances and skills that can be reused later on. The robot also discovers primitive vocal interaction as a result of the same process [65,67].
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animate objects (the other robot) [66]. (B) The R-IAC architecture implements this curiosity-driven process with several modules [48,57]. A prediction machine (M) learns to

predict the consequences of actions taken by the robot in given sensory states. A meta-cognitive module (metaM) estimates the evolution of errors in prediction of M in

various subregions of the sensorimotor space, which in turn is used to compute learning progress as an intrinsic reward. Because the sensorimotor flow does not come pre-

segmented into activities and tasks, a system that seeks to maximize differences in learnability is also used to progressively categorize the sensorimotor space into regions,

which incrementally model the creation and refining of activities/tasks. Then an action selection system chooses activities to explore for which estimated learning progress

is high. This choice is stochastic in order to monitor other activities for which learning progress might increase, and is based on algorithms of the bandit family [46,90]. (C)

Confronted with four sensorimotor activities characterized by different learning profiles (i.e., evolution of prediction errors), exploration driven by maximization of learning

progress results in avoidance of activities already predictable (curve 4) or too difficult to learn to predict (curve 1) to focus first on the activity with the fastest learning rate

(curve 3) and eventually, when the latter starts to reach a plateau, to switch to the second most promising learning situation (curve 2). This allows the creation of an

organized exploratory strategy necessary to engage in open-ended development. Adapted with permission from [69].
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self-generated problems over time [60,61]), and rewards
activities in proportion to their ability to produce learning
progress (Figure 2). Similar to an information-gap mecha-
nism, this system produces a targeted search for informa-
tion that drives the agent to learn. By using a local
measure of learning, the system avoids difficulties associ-
ated with defining an absolute (and potentially unknow-
able) competence or epistemic goal.

This progress-based approach has been used most suc-
cessfully in real-world situations. First, it allows robots to
efficiently learn repertoires of skills in high dimensions
and under strong time constraints while avoiding unfruit-
ful activities that are either well learnt and trivial, or
random and unlearnable [60,62–64]. Second, the system
self-organizes development and learning trajectories that
share fundamental qualitative properties with infant de-
velopment, in particular the gradual shift of interest from
simpler to more complex skills (Figure 2) [57,65–67]. This
led to the hypothesis that some of the progressions in
infant sensorimotor development may not be pre-pro-
grammed but emerge from the interaction of intrinsically
motivated learning and the physical properties of the body
and the environment [57,68,69]. Initially applied to senso-
rimotor tasks such as object manipulation, the approach
also spontaneously led a robot to discover vocal communi-
cation with a peer (while traversing stages of babbling that
resemble those of infants as a consequence of its drive to
explore situations estimated to be learnable [65,67]).
7
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In sum, a system based on learning progress holds
promise for achieving efficient, intrinsically motivated
exploration in large, open-ended spaces, as well as for
self-organizing and ordering developmental stages. It must
be noted, however, that although computationally power-
ful, this approach entails a complex meta-cognitive archi-
tecture for monitoring learning progress that still awaits
empirical verification. Possible candidates for such a sys-
tem include frontal systems that encode uncertainty or
confidence in humans and monkeys [70–72] or respond
selectively for behavioral change or the beginning of
exploratory episodes [73,74]. However, a quantitative
response to learning progress (which is distinct from phasic
responses to novelty, surprise or arousal) has not been
demonstrated in empirical investigations.

Concluding remarks
Although the question of active exploration is vast and
cannot be exhaustively covered in a single review, we
attempted to outline a few key ideas that are relevant to
this topic from psychology, neuroscience, and machine
learning fields. Three main themes emerge from the re-
view. First, an understanding of information-seeking
requires that we understand how agents monitor their
own competence and epistemic states, and specifically
how they estimate their uncertainty and generate strate-
gies for reducing that uncertainty. Second, this question
requires that we understand the nature of intrinsic
rewards that motivate information-seeking and learning,
and may impact cognitive development. Finally, eye move-
ments are natural indicators of active information search-
ing by the brain. By virtue of their amenability to
neurophysiological investigations, the eyes may be an
excellent model system for tackling this question, especial-
ly if studied in conjunction with computational approaches
and the intrinsic reward and cognitive control mechanisms
of the brain.
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