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Abstract

Refutation systems are formal systems for inferring the falsity of formulae. These systems
can, in particular, be used to syntactically characterise logics. In this paper, we explore the
close connection between refutation systems and admissible rules.
We develop technical machinery to construct refutation systems, employing techniques

from the study of admissible rules. Concretely, we provide a refutation system for the in-
termediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that
this gives a characterisation of these logics in terms of their admissible rules. To illustrate the
technique, we also provide a refutation system for Medvedev’s logic.

Keywords
Intermediate Logic, Admissible Rules, Refutation, Gabbay–de Jongh Logic, Medvedev’s Logic

According to Łukasiewicz (1951), we assert true propositions, and reject false ones. He remarked
that rejection had been neglected in the study of formal logic, and introduced a formal system
to inductively derive rejections of false propositions. We call such systems refutation systems,
following Scott (1957) and Skura (1990). The general theory of such systems has been studied
extensively by Słupecki, Bryll, and Wybraniec-Skardowska (1971, 1972). In this paper, we focus on
refutation systems for intermediate logics.

A refutation system can be thought of as a proof system for rejection. Instead of deriving that
one can correctly assert a statement through a series of truth-preserving inferences from given
axioms, as one does in a proof system of assertion, one derives the refutability of a propositional
statement through a series of non-truth preserving inferences from given anti-axioms. Proofs in
a refutation system will be called refutations, and a formula will be called refutable whenever a
refutation exists ending in this formula.

Let us, byway of example, present a reformulation of the original refutation system for the classical
propositional calculus (CPC) as given by Łukasiewicz (1951). This particular presentation, and
all the following, will be in the style of Skura (1992), which goes back to Scott (1957).1 Here x

*This paper appeared in the Archive for Mathematical Logic. The final publication is available at Springer via http:
//dx.doi.org/10.1007/s00153-014-0388-5.

1 See Słupecki and Bryll (1973) for a similar presentation and further pointers to the literature.
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denotes a propositional variable, ϕ and ψ both denote propositional formulae, and σ denotes a
substitution.

Ax⊣ x
⊣ σ(ϕ)

Subs⊣ ϕ
⊣ ψ ϕ ⊢CPC ψ

MT⊣ ϕ

This refutation system is both sound (all refutable formulae are not derivable in CPC) and com-
plete (all formulae that are not derivable in CPC are refutable). Skura (1999, Section 1.2) gives
a thorough proof of completeness, let us simply remark that to each classically non-derivable
formula there is a substitution under which it is equivalent to falsity, whence completeness is
clear.2

Gödel (1932) showed that the intuitionistic propositional calculus (IPC) enjoys the disjunction
property. With this observation in hand, Łukasiewicz (1952) proposed the following refutation
system for IPC, which he conjectured to be complete.

Ax⊣ x
⊣ σ(ϕ)

Subs⊣ ϕ
⊣ ψ ϕ ⊢IPC ψ

MT⊣ ϕ
⊣ ϕ ⊣ ψ

DP⊣ ϕ ∨ ψ

Kreisel and Putnam (1957) proved that this system is not complete by constructing an intermediate
logic, a consistent axiomatic extension of IPC, now known asKP. This logicKP has the disjunction
property, and it is unequal to IPC, falsifying the conjecture. There exist, in fact, uncountably many
intermediate logics with the disjunction property, see Chagrov and Zakharyaschev (1991) for a
survey.

Observe that the rules DP and MT are structural, in the sense that every substitution instance of
an instance of this rule is again an instance of this rule. This does not hold for Ax and Subs, and
necessarily so, as we will argue in Section 1.

Scott (1957) gave a refutation system which is both sound and complete for IPC by replacing DP
with RScott, as given in Fig. 1. The rule RScott, however, has several side-conditions which makes
it inherently non-structural, in that it has instances with invalid substitution instances. The Kleene
(1962)–Kleene (1962) slash suggests that the refutation system obtained by replacing DP with
RKleene might be complete. This is indeed the case, as follows from de Jongh (1968, Chapter
IV).3 Another refutation system was given by Dutkiewicz (1989) based on the semantic tableaux
of E. W. Beth. Neither of these rules are structural.

Another approach was taken by Skura (1989), who introduced the rules RSkura of Fig. 1.4 The rule
scheme he proposed was structural, and bears great resemblance to the so-called Visser rules, a
rule scheme central to the study of admissibility in intermediate logics.

2 See also Lemma 13 for more details.
3We refer to Bezhanishvili (2004) for a proof using the universal model, and to Iemhoff (2001a, Proposition 5.1) for a
proof using admissible rules. These authors do not propose such a refutation system, the rule given here is taken
from Skura (1999, Section 5.4).

4Traces of this rule can be seen in Wroński (1973, Theorem 4).
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⊣ (
∧n

i=1 χi → ϕi) → χi per i such that ϕi is no variable
RScott with ϕ1, . . . , ϕn ̸= ⊤

⊣ (
∧n

i=1 χi → ϕi) → x

⊣ ψ → χ per χ ∈ ∆
RKleene with ψ | ψ

⊣ ψ →
∨

∆

⊣ (
∧n

i=1 χi → ϕi) → χj per j = 1, . . . , n
RSkura⊣ (

∧n
i=1 χi → ϕi) →

∨n
j=1 χj

⊣ (
∨

∆ → ϕ) → χ per χ ∈ ∆
RD⊣ (

∨
∆ → ϕ) →

∨
∆

Figure 1: Refutation rules for IPC

The admissible rules of a logic can be thought of as those rules under which the set of its theorems
is closed. Such rules were covered explicitly by Lorenzen (1955), although they appeared earlier,
for instance in the work of Johansson (1937). In CPC, all admissible rules are derivable, but this
is not the case for IPC. An early example of a non-derivable but admissible rule of IPC is the
following rule due to Harrop (1960), known as independence of premise.

¬χ→ ϕ ∨ ψ
/
(¬χ→ ϕ) ∨ (¬χ→ ψ)

Prucnal (1979) proved that this rule is admissible for all intermediate logics.5 Later, Minari and
Wroński (1988) proved that, in the above, ¬χ can be replaced by an arbitrary Harrop formula, all
the while maintaining admissibility. Problem 40 of Friedman (1975) states that the set of admissible
rules of IPC is decidable, which has been proven by Rybakov (1984). Iemhoff (2001b) and Rozière
(1992) independently proved that the Visser rules are sufficient to derive all single-conclusion ad-
missible rules of IPC. This result was later generalised to the the logics of bounded branching by
Goudsmit and Iemhoff (2014).

In this paper, we show that the study of admissible rules is closely related to the study of refutation
systems. In particular, we provide a refutation system for the logics of bounded branching Tn, also
known as the Gabbay–de Jongh logics, making use of admissible rules similar to those given by
Goudsmit and Iemhoff (2014). The method naturally extends to cover IPC, providing an intimate
connection between the characterisation of IPC in terms of its multi-conclusion admissible rules, as
given by Iemhoff (2001a), and the structural refutation system of Skura (1989). Moreover, the same
machinery applies toMedvedev’s Logic, re-proving a result by Skura (1992).

5In this paper, Prucnal also solved problem 41 of Friedman (1975). This problem, rephrased in modern language,
conjectured that there exists an intermediate logic with the disjunction property for which all admissible rules are
derivable. The logic Prucnal used was Medvedev’s logic. See Wojtylak (2004) for an exposition of this result, and
see Grigolia (1995) for an algebraic proof. We revisit Medvedev’s logic in Section 3.
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1 Preliminaries

We work over the full propositional language on a set of variables X defined by the following
Backus–Nauer form:

L(X) ::= ⊤ | ⊥ | X | L(X) ∧ L(X) | L(X) ∨ L(X) | L(X) → L(X).

Sets of variables will be denoted by X , Y and variables by their lower-case variants. Formulae
will be denoted ϕ, ψ, χ, θ and sets of formulae by Γ, Π, ∆, Θ. Given a finite set of formulae ∆
we write

∧
∆ and

∨
∆ for the iterated conjunction and disjunction of ∆, in the understanding

that
∧

∅ = ⊤ and
∨

∅ = ⊥. We define a rule to be a pair of finite sets of formulae, written
Γ/∆.

We wish not to be concerned with the intricacies of different axiomatisations of logics. In order to
avoid this, we make use of multi-conclusion consequence relations. We refer toWójcicki (1988) for
background on consequence relations, and to Iemhoff (2013) for an in-depth description of the use
of consequence relations surrounding admissible rules. The multi-conclusion variant we use here
is taken from Scott (1971, 1974). The main difference with the definition in Cintula and Metcalfe
(2010) is that we do not assume structurality in a consequence relation.

1 Definition (Multi-conclusion Consequence Relation)
A set of rules ⊢ is called a multi-conclusion consequence relation whenever it is closed under the
following for all finite sets of formulae Γ,Π,∆,Θ and formulae ψ. Here we write Γ ⊢ ∆ to mean
(Γ/∆) ∈ ⊢.

1 If Γ ∩∆ ̸= ∅ then Γ ⊢ ∆;

2 If Π ⊆ Γ, Θ ⊆ ∆ and Π ⊢ Θ then Γ ⊢ ∆;

3 If Γ ⊢ ψ,∆ and Γ, ψ ⊢ ∆ then Γ ⊢ ∆.

The above three conditions, and the corresponding conditions in Definition 3, are respectively
called reflexivity, weakening and transitivity. Whenever Γ ⊢ ∆ entails σ(Γ) ⊢ σ(∆) for all
substitutions σ, we say that the consequence relation ⊢ is structural. We think of consequence
relations as describing derivability, so if Γ ⊢ ∆ we say that ∆ is derivable from Γ. When we say
that a formula ϕ is derivable, we mean that {ϕ} is derivable from ∅. Such formulae we also call
theorems.

Given any set of rules R, one can consider the least consequence relation containing these rules,
which we will denote by ⊢R. When R is structural, in the sense that it is closed under substitu-
tions, it is clear that ⊢R is structural as well. This is easy to see when we think of ⊢R as being
inductively defined, with the base-case explicating that ⊢R is an extension ofR, and the inductive
cases ensuring closure under the three conditions of Definition 1.

By IPCwe mean the set of theorems of intuitionistic propositional logic, see for instance Troelstra
and Dalen (1988). An intermediate logic L is a proper subset of the set of all formulae, that contains
IPC, and that satisfies:

1 If ϕ ∈ L and σ is a substitution then σ(ϕ) ∈ L;
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2 If ϕ ∈ L and ϕ→ ψ ∈ L then ψ ∈ L.

In particular, IPC is an intermediate logic. We refer to the first rule as being closed under substi-
tutions, and the latter as being closed under modus ponens.

To each intermediate logic L we associate a multi-conclusion consequence relation ⊢L, as below
in (1). Note that this consequence relation is structural. We can see this as a special case of the
relation ⊢R described above, when we let R be the set of all rules Γ/∆ satisfying the right-hand
condition in (1) below.

Γ ⊢L ∆ if and only if
∧

Γ →
∨

∆ ∈ L. (1)

There can be many consequence relations with the same set of theorems. We, for instance, could
also consider the consequence relation defined by the following, and the set of theorems would be
exactly the same as that of ⊢L.

Γ ⊢ ∆ if and only if
∧

Γ → χ ∈ L for some χ ∈ ∆.

In this paper we focus onmulti-conclusion admissible rules, as first suggested by Kracht (1999), and
used in the context of modal logic by Jeřábek (2005) and intermediate logics by Goudsmit (2013a).
Admissible rules, as defined by the aforementioned authors, are inherently structural. We first
define refutation rulesmuch like Skura (2009),6 and using this definitionwe define admissible rules.
Note that our notion of a refutation rule has both multiple conclusions and multiple assumptions.
For our purposes we quickly will forget the multiple assumptions, as for intermediate logics this
difference is immaterial.

2 Definition (Refutation Rules & Admissible Rules)
Let ⊢ be a consequence relation. We say that Γ/∆ is a refutation rule with respect to ⊢ if ⊢ χ holds
for some χ ∈ ∆ when ⊢ ϕ holds for all ϕ ∈ Γ. A rule is said to be an admissible rule, denoted
Γ ∆, when σ(Γ)/σ(∆) is a refutation rule for all substitutions σ.

Naturally, itself is again a multi-conclusion consequence relation. Given any set of refutation
rulesR one can consider ⊢R, and it can be readily proven that all rules in ⊢R are refutation rules
with respect to ⊢. As remarked above, when R is structural then ⊢R is structural as well. These
observations combine to show that is structural. Also note that if ⊢ is structural, then is an
extension of ⊢.

In the following few paragraphs, we will show how the system of refutation rules for CPC, as
given in the introduction, can be seen as a kind of consequence relation. Let us first define R as

∆ R ϕ iff if ⊣ χ for all χ ∈ ∆ then ⊣ ϕ. (2)

Consider MT, which states that ⊣ ψ and ϕ ⊢CPC ψ entail ⊣ ϕ. From this observation, it naturally
follows that if ϕ ⊢CPC ψ then ψ/ϕ is contained inR. It is also easy to see that the reversal of this
rule, ϕ/ψ, is a refutation rule with respect to ⊢CPC. In a similar manner Subs corresponds to the
rule σ(ϕ)/ϕ, which is an element of R, and its reversal is a refutation rule. One can also see that

6A similar definition appeared earlier in Skura (2005, Section 3), where it was called a generalised Socratic rule.
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x/∅ is a valid refutation rule by virtue of x, or any variable for that matter, being non-derivable in
⊢CPC. This rule, of course, corresponds to Ax.

From the above, we can conclude that the rules of the refutation system of CPC correspond to
refutation rules in the formal sense of Definition 2. Moreover, see that R satisfies the single-
conclusion variants of Definition 1, as given in Definition 3.

3 Definition (Single-conclusion Consequence Relation)
A relation ⊢ between finite sets of formulae and formulae is called a consequence relationwhenever
the following hold for all finite sets of formulae Γ, Π, ∆ and formulae χ and θ.

1 χ ⊢ χ;

2 If Γ ⊆ Π and Π ⊢ χ then Γ ⊢ χ;

3 If Γ ⊢ χ and ∆, χ ⊢ θ then Γ,∆ ⊢ θ.

As the above argument suggests, it makes good sense to define a refutation system with respect
to ⊢ as being a single-conclusion consequence relation R such that:

if ∆ R ϕ then ϕ/∆ is a refutation rule with respect to ⊢. (3)

Analogously to the situation with multiple-conclusion consequence relations, one can define a
least single-conclusion consequence extending a given set of rules R. When we take R to be the
set of all rules ∆/ϕ satisfying (3) then Lemma 1 below shows that R itself is a single-conclusion
consequence relation.

1 Lemma
Let ⊢ be a (multi-conclusion) consequence relation, let R be a set of rules each satisfying (3) and
let ⊢R be the least single-conclusion consequence relation extendingR. All rules in ⊢R satisfy (3).
In particular, the reverse of the totality of all refutation rules is a consequence relation.

Proof By induction along the inference of ∆ R ϕ, we prove that ϕ/∆ is a refutation rule. The
base case follows by assumption. We only treat the case of transitivity. Suppose ∆1, θ R ϕ and
∆2 R θ with∆ = ∆1 ∪∆2. By induction, we know both ϕ/(∆1 ∪{θ}) and θ/∆2 to be refutation
rules. Assume that ⊢ ϕ holds. This ensures us that either ⊢ θ or ⊢ χ for some χ ∈ ∆1. In the
former case, it follows that ⊢ χ for some χ ∈ ∆2. Hence ⊢ χ for some χ ∈ ∆ holds in both cases,
finishing the argument. ■

We call a refutation system complete whenever ̸⊢ ϕ is equivalent to ⊣ ϕ, for all formulae ϕ. In
symbols, ⊣ = ̸⊢. Following Słupecki, Bryll, and Wybraniec-Skardowska (1971), we say that a logic
is Ł-decidable when it has a complete refutation system.

In Definition 4 below, we construct refutation systems out of a basic set of “falsehoods” (or anti-
axioms) Θ and a set of rulesR. These are the types of structural systems we wish to consider. Do
note that the reverse of ⊢Rf is not structural in the sense of consequence relations, and indeed,
for our purposes, never could be. For whenever ⊢ is a consequence relation corresponding to an
intermediate logic, it is clear that variablesmust be refutable, yet anything is a substitution instance
of a variable.
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As remarked above Lemma 1, the reversal of the rules in a refutation system ought to be refutation
rules. It is clear that the conditions (1)–(3) all satisfy this, hence Lemma 1 guarantees that ⊢Rf

indeed meets this requirement.

4 Definition
Let ⊢ be a (multi-conclusion) consequence relation, let Θ be a set of non-derivable formulae and
letR be a set of admissible rules. The refutation system determined by Θ andR is the least single-
conclusion consequence relation ⊢Rf such that the following hold.

1 ∅ ⊢Rf θ for all θ ∈ Θ;

2 σ(ϕ) ⊢Rf ϕ for all formulae ϕ and all substitutions σ;

3 ∆ ⊢Rf ϕ for all ϕ R ∆.

The above definition can be reformulated in the same form as the refutation system given in the
introduction, as we state in Lemma 2 below. We will use this form throughout the following,
silently sidestepping the single-conclusion consequence relation formulation of Definition 4. One
can think of the relation ⊢Rf⊣, defined within the proof below, as a formalised version of the rela-
tion ⊣ of Lemma 1. Intuitively speaking, whereas in Lemma 1 we consider all refutation rules, in
Lemma 2 we restrict ourselves to those rules where the refutation can be “witnessed formally” by
the predicate ⊣ (−).

2 Lemma
Let the situation be as in Definition 4 and inductively define the predicate ⊣ (−) on formulae as
below. We now have ∅ ⊢Rf ϕ precisely if ⊣ ϕ for any formula ϕ.

θ ∈ Θ
Ax⊣ θ

⊣ σ(ϕ)
Subs⊣ ϕ

⊣ χ per χ ∈ ∆ ϕ/∆ ∈ R
Inv ϕ/∆⊣ ϕ

Proof By structural induction along the definition of ⊣ (−), it immediately follows that if ⊣ ϕ
then ∅ ⊢Rf ϕ. Indeed, in the base case we have ⊣ ϕ because ϕ ∈ Θ, so ∅ ⊢Rf ϕ holds by definition.
Now suppose that ⊣ ϕ holds because of Subs. Induction ensures us that ∅ ⊢Rf σ(ϕ), and we know
that σ(ϕ) ⊢Rf ϕ holds as well. Through transitivity, as provided by Definition 3.(3), it is immediate
that ∅ ⊢Rf ϕ.

To prove the other direction, we first define an auxiliary relation ⊢Rf⊣ as follows:

∆ ⊢Rf⊣ ϕ iff if ⊣ χ for all χ ∈ ∆ then ⊣ ϕ.

The desired will be obtained through the following two claims. Indeed, assuming both claims it is
clear that if ∅ ⊢Rf ϕ then ∅ ⊢Rf⊣ ϕ by (1), and so ⊣ by (2). It is clear that (2) holds, and the proof of
(1) is similar to a contrapositive formulation of Lemma 1.

1 ⊢Rf is a subset of ⊢Rf⊣;

2 ∅ ⊢Rf⊣ ϕ holds precisely if ⊣ ϕ for any formula ϕ. ■
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To prove results on admissibility, it is often convenient to reason semantically. For this purpose
we use Kripke models, see e.g. Troelstra and Dalen (1988) or Chagrov and Zakharyaschev (1997).
A Kripke model on a set of variables X is a partial order K together with a monotone map v :
K → PX , called a valuation, wherePX denotes the set of subsets ofX ordered by inclusion. We
define v, k ⊩ ϕ for formulae ϕ ∈ L(X) and nodes k ∈ K as usual. Given a node k ∈ K we write
Th (v, k) for the theory of this node, that is, the set of ϕ ∈ L(X) such that v, k ⊩ ϕ. We abbreviate∩

k∈K Th (v, k) as Th (v,K). We will also write Th (K) to mean the intersection of all Th (v,K)
for sets X and monotone maps v : K → PX .

When there is little chance of confusion, we simply say that K is a model, and omit reference to
both X and v. Maps between models on X are, as usual, bounded morphisms or p-morphisms.
For partial orders P we writeW ↑ forW ⊆ P to mean the upset generated byW , that is to say, the
set {p ∈ P | w ≤ p for some w ∈W}. Similarly we writeW ↑↑ to mean the strict upset generated
by W , defined as W ↑ −W . A subset W ⊆ P is said to be an anti-chain when all elements are
pairwise incomparable. WewritemaxW for the set ofmaximal elements inW , where we consider
an element k to be maximal if k↑ = {k}.

We will make heavy use of the machinery described by Goudsmit (2013b). Much of this is folklore,
for more background and references to the literature we refer to the aforementioned. Themain def-
initions and resultswe depend upon are given below, with sparsemotivation.

5 Definition (Cover)
Let K be a model, W ⊆ K and k ∈ K . We say that W covers k, written W κ k, when k↑ =
W ↑ ∪ {k}.

6 Definition
Let v : K → PX be a model. We say that K is concrete when for every pair a, b ∈ K we have
that a = b whenever both v(a) = v(b) and for all k ∈ K − {a, b} one has a ≤ k if and only if
b ≤ k. The model K is image finite when for all k ∈ K the set k↑ is finite. Finally, we call K
refined when for all a, b ∈ K we have a ϕ ∈ L(X) such that a ⊩ ϕ and b ̸⊩ ϕ whenever a ̸≤ b.

Let us give some pointers to the use of these definitions in the context of this paper. It is easy to
verify that every refined model is concrete, the converse holds for image-finite models by Theo-
rem 2 below. Indeed, if a, b ∈ K are such that v(a) = v(b), and a ≤ k holds precisely if b ≤ k
for all k ∈ K − {a, b}, then one can easily show that Th (a) = Th (b). This immediately proves
a = bwheneverK is refined. Also note that every map whose domain is a refined model has to be
injective. As a consequence, concrete image-finite models (over a set of variables) are isomorphic
to rooted subsets of the universal model of IPC (over that same set of variables) as defined in The-
orem 1. From this observation, Lemma 5 is quite easy to obtain. For a proof we refer to Goudsmit
(2013b, Corollary 4).

1 Theorem
LetX be a finite set of variables. There is a model UL(X) of L, called the universal model of L over
X , which is such that to any rooted finite model K of L there is a unique map f : K → UL(X).
This model UL(X) is concrete, and its theory consists of the L-theorems in L(X).

Below we introduce the Jankov (1963)–de Jongh (1968). We refer to up k as the “upset formula”
and nd k as the “not-downset formula” of k. WhenK is a rooted model, we sometimes write upK
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and ndK to refer to the upset- and not-downset formula of the root of K . A proof of Theorem 2,
in the notation employed here, can be found in Goudsmit (2013b, Theorem 2), cf. Bezhanishvili
(2006, Section 3.3).

7 Definition (Characteristic Formulae)
Let v : K → PX be an image-finite model. Per node k ∈ K we define:

propsk := {p ∈ X | k ⊩ p},
newsk := {p ∈ X | k↑↑ ⊩ p and k ̸⊩ p}.

Now define maps up (−), nd (−) : K → L(X) by well-founded recursion as follows, where W
denotes the set of immediate successors of k.

up k :=
∧

propsk ∧
((∨

newsk ∨
∨

w∈W ndw
)
→
∨

w∈W upw

)
,

nd k := up k →
∨

w∈W upw.

We will write upU to mean
∨

k∈U up k.

2 Theorem
For any concrete image finite model K and all a, b ∈ K we have b ⊩ up a iff a ≤ b and b ̸⊩ nd a
iff b ≤ a.

1 Corollary
Let k be a node in UIPC(X). We have k ̸⊩ ϕ precisely if ϕ ⊢IPC nd k. Moreover, ̸⊢CPC nd k if and
only if k is maximal.

Proof Note that, for each ϕ ∈ L(X), we have ⊢CPC ϕ precisely if m ⊩ ϕ, for all maximal m ∈
UIPC(X). From here, the desired is immediate. ■

3 Lemma
Let v : K → PX be a finite concrete model. To every model w : K → PY there is a substitution
σ : L(Y ) → L(X) such that v, k ⊩ σ(ϕ) iff w, k ⊩ ϕ for all k ∈ K .

Proof For convenience, we write cozu(ϕ) := {k ∈ K | u, k ⊩ ϕ} for u = v, w. This is the set of
elements of K which, under the valuation u, make the formula ϕ true. We define σ on variables
as below. This definition is well-defined due to the finiteness ofK , which ensures that cozw(ϕ) is
finite and hence definable by means of a Jankov–de Jongh formula.

σ(x) := up cozw(ϕ)

Let us now prove, by structural induction along ϕ, that

cozv(σ(ϕ)) = cozw(ϕ)

For propositional variables, this much is clear. Indeed, k ∈ cozv(σ(ϕ)) holds precisely if k ∈
cozw(ϕ). Let us treat the implicative case where ϕ = ψ → χ, all other cases can be proven
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similarly. Consider the following chain of equivalences, where the second equivalence is through
Theorem 2, the fourth through induction and the final one again through Theorem 2.

k ∈ cozv(up cozw(ψ → χ)) iff v, k ⊩ up cozw(ψ → χ)

iff w, k ⊩ ψ → χ

iff w, l ⊩ ψ implies w, l ⊩ χ for all l ≥ k

iff v, l ⊩ σ(ψ) implies w, k ⊩ σ(χ) for all l ≥ k

iff k ∈ cozv(up cozw(ψ) → up cozw(χ))

The following lemma illustrates that one can endow any partial order with a concrete model. By
using the elements of the order as variables, all elements can easily be distinguished, making the
proof of concreteness straightforward.

4 Lemma
LetK be a partial order. Define the valuation vK as below. The model vK : K → PK is concrete.

vK : K → PK, k 7→ k↓ := {l ∈ K | l ≤ k} .

The following lemma occurs in several places surrounding refutability, let us mention but a few.
For intermediate logics, see Skura (1989, Lemma 1), Skura (1990), Skura (1992, Theorem 2.2) and
Skura (1999, Section 4.2), a similar lemma for modal logics is covered in Skura (1994, Lemma 3.1)
and Goranko (1994, Lemma 1.3.3).

5 Lemma
Let K be a finite rooted partial order K . For every formula ϕ ∈ L(X), we have K ̸⊩ ϕ precisely
if there is a substitution σ : L(X) → L(K) such that σ(ϕ) ⊢IPC nd vK .

Proof Let K be a partial order and consider the concrete model vK : K → PK of Lemma 4.
As a consequence K is isomorphic to k↑ ⊆ UIPC(K) for some k ∈ UIPC(K), as indicated above.
Suppose that v : K → PX is such that v ̸⊩ ϕ. By Lemma 3 we know of a substitution σ : L(X) →
L(K) that vK ̸⊩ σ(ϕ). This entails k ̸⊩ σ(ϕ), and so by Corollary 1 we obtain σ(ϕ) ⊢IPC nd k. As
nd vK = nd k, we have thus proven the desired. ■

The following lemma will be used to prove Lemma 11, a crucial step towards Theorem 6, in which
we present a refutation system for Medvedev’s logic. We include the proof because the implication
from (1) to (2) is a good illustration of the use of Jankov-de Jongh formulae, and it provides some of
the flavour of the arguments to come in Section 2. From this lemma, the characterisation as given
by Maksimova (1986, Lemma 7) naturally follows through Lemma 4.

6 Lemma
Let v : K → PX be an image-finite model and let n ∈ N be a natural number. Now (2) implies
(1), and the converse holds whenever v is concrete.

1 For all ϕ ∈ L(X) and∆ ⊆ L(X) with |∆| ≤ n, we have

K ⊩

¬ϕ→
∨
χ∈∆

¬χ

→
∨
χ∈∆

¬ϕ→ ¬χ

10



2 For all W ⊆ maxK with |W | ≤ n and all a ∈ K such that W ⊆ max a↑, there exits a
b ≥ a such thatW = max b↑.

Proof Suppose that (2) does not hold, and assume that (1) does hold. This yields someW ⊆ maxK
with |W | ≤ n and an a ∈ K withW ⊆ max a↑ such that, for all b ≥ a, we have max b↑ ̸= W .
As a consequence, we know that for all b ≥ a that whenever b ̸≤ c for all c ∈ maxK −W then
W ̸⊆ max b↑. Define ϕ := up (maxK −W ) and ∆ := {upw | w ∈W}. Observe that, for any
k ∈ K , we have the following, as follows directly through Theorem 2.

k ⊩ ¬ϕ if and only if k ̸≤ c for all c ∈ maxK −W (4)

k ⊩
∨
χ∈∆

¬χ if and only ifW ̸⊆ max k↑ (5)

From here, (4) and (5) yield some w ∈ W such that a ⊩ ¬ϕ→ ¬upw. Because a ≤ w and w ̸⊩ ϕ
and w ⊩ upw, we reached a contradiction, proving (1) to not hold, as desired.

Now assume that v is concrete and that (2) holds. Let ϕ ∈ L(X) and ∆ ⊆ L(X) with |∆| ≤ n be
given. We proceed by contradiction, so we assume that there is an a ∈ K with

a ⊩ ¬ϕ→
∨
χ∈∆

¬χ yet a ̸⊩
∨
χ∈∆

¬ϕ→ ¬χ. (6)

The latter ensures the existence of bχ ≥ a such that bχ ⊩ ¬ϕ and bχ ̸⊩ ¬χ per χ ∈ ∆. Given
χ ∈ ∆, we see that there must be a wχ ∈ max bχ↑ with wχ ⊩ χ. DefineW := {wχ | χ ∈ ∆} and
note thatW ⊆ maxK and |W | ≤ n.

It is clear thatW ⊆ max a↑, and so, by assumption, we know of a b ≥ a such thatW = max b↑.
From here it is clear that b ⊩ ¬ϕ, so from (6) we know b ⊩

∨
χ∈∆ ¬χ. This gives us some χ ∈ ∆

such that b ⊩ ¬χ. As a consequence wχ ⊩ ¬χ, which is blatantly fase, proving (1). ■

2 Admissible Rules

The consequence relation ⊢IPC has an associated relation of admissibility . It is easy to see that
⊥ ∅. Indeed, ⊢IPC σ(⊥) simply does not hold for any σ, so this rule is vacuously admissible.
This is is an example of what Rybakov, Terziler, and Gencer (1999) call a passive rule. Note that
this rule is, in our definition of ⊢IPC, both derivable and admissible. Another example of a rule is
x∨ y/{x, y}. This rule is admissible for ⊢IPC, and the argument to show this uses the well-known
fact that IPC has the disjunction property.

Consider again the independence of premise rule IPR, as covered in the introduction, listed in
Fig. 2. A straightforward argument can show its non-derivability, a Kripke model with but three
nodes suffices. Intuitively, this rule allows for the distribution of an implication from a negative
formula over a disjunction. IPRwas generalised by Harrop (1960,Theorem 3.1) to allow for a wider
class of formulae on the left-hand side. Both of these results have been generalised from IPC to
arbitrary intermediate logics, the former by Prucnal (1979) and the latter by Minari and Wroński
(1988).

11



The following rulewas shown to be both admissible and non-derivable for IPC byMints (1976).

(x→ z) → x ∨ y
/ (

(x→ z) → x
)
∨
(
(x→ z) → y

)
Citkin (1977) generalised it by taking a disjunction with a fixed variable in both the assumption and
conclusion. This amounts to what is now known as the first Visser rule, see Citkin (2012) for more
details. Moreover, Citkin (1979a,b) presented these now so-called Visser rules, and conjectured
that all admissible rules of IPC follow from them.7 D. H. J. de Jongh and A. Visser formulated the
Visser rules in the eighties, but they did not publish their formulation until much later.8 Rozière
(1992) and Iemhoff (2001a) independently proved that these rules suffice to derive all admissible
rules of IPC. In this section, we discuss variants of the Visser rules as given by Iemhoff (2005,
Section 4).

A list of the variants of the Visser rules we wish to consider is given in Fig. 2. The scheme V−
n gives

what are known as the restricted Visser rules (cf. Iemhoff (2005)). From Iemhoff (2005, Theorem 4.7)
andTheorem 3 below it follows that all of these rules are admissible precisely if D−

n are admissible
for all n ∈ N. We consider the variants D−

n , Dn, and Dn, because these correspond to the semantic
properties introduced by Iemhoff (2005). Moreover, they stratify smoothly along the intermediate
logics of bounded branching. Also note that the admissibility of Dn is equivalent to the property
Pn of Iemhoff (2001a, Definition 2).

(
∨n

i=1 zi → x) →
∨n

j=1 zj

/∨{
(
∨n

i=1 zi → x) → zj
∣∣ j = 1, . . . , n

}
(D−

n )

y ∨ (
∨n

i=1 zi → x) →
∨n

j=1 zj

/
y ∨

∨{
(
∨n

i=1 zi → x) → zj
∣∣ j = 1, . . . , n

}
(Dn)

(
∨n

i=1 zi → x) →
∨n

j=1 zj

/{
(
∨n

i=1 zi → x) → zj
∣∣ j = 1, . . . , n

}
(Dn)

(
∧n

i=1(zi → xi)) → zn+1 ∨ zn+2

/∨
{(
∧n

i=1(zi → xi)) → zj | j = 1, . . . , n} (V−
n )

¬z → (x ∨ y)
/∨

{¬z → x,¬z → y} (IPR)

Figure 2: Several schemes of rules, all admissible for IPC.

In many situations, admissibility of some of the above rules corresponds quite nicely to certain
semantic properties. Below we give these semantic properties. Note that the latter two relate
intimately to the weak extension property and the offspring property of Iemhoff (2005, Section 2.5)
respectively, as can be seen through an argument similar to that in Corollary 3. A deep discussion
of this is beyond the scope of this paper, but sufficed to say that throughGoudsmit (2013b, Corollary
6) it is clear that the class of models of an intermediate logic L has the weak extension property
precisely if its canonical model is weakly n-ary covered for all n ∈ N.

One can read Lemma 7 and Theorem 3 with K instantiated as UL(X). Given that L has the finite
model property, it is easy to see that the implications of Lemma 7 then neatly correspond to the

7For a historical note on these developments we refer to Citkin (2008).
8Traces of the Visser rules can be seen in Visser (1984, Theorem 1.1.11). We refer to Visser (2002) for the Visser rules
in the context of Heyting Arithmetic (his Theorem 9.1) and more historical information (his Section 1.4).
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previously discussed rule schemes, as spelled out in Corollary 2. In this lies the appeal of the prop-
erties of Definition 8; their validity in the universal model is exactly reflected by the admissibility
of a scheme of admissible rules.

8 Definition (Model Properties)
We say that a model is:

1 downwards directed when each finite set of elements has a lower bound;

2 weakly n-ary covered when each set of size at most n with a lower bound is a cover of some
node;

3 strongly n-ary covered when each set of size at most n with a lower bound, say k, is a cover
of some node, say l, and there is a lower bound of l and k.

7 Lemma
LetK be a model. The following hold.

1 IfK is downwards directed thenK ⊩
∨

∆ impliesK ⊩ χ for some χ ∈ ∆;

2 If K is weakly n-ary covered then for all ∆ and ϕ with |∆| ≤ n we have that K ⊩
(
∨

∆ → ϕ) →
∨

∆ impliesK ⊩
∨

χ∈∆ (
∨

∆ → ϕ) → χ;

3 If K is strongly n-ary covered then for all ∆ and ϕ with |∆| ≤ n we have that K ⊩ ψ ∨
(
∨

∆ → ϕ) →
∨

∆ impliesK ⊩ ψ ∨
∨

χ∈∆ (
∨

∆ → ϕ) → χ.

Proof Assume thatK is downwards directed, and suppose∆ is a set of formulae such thatK ̸⊩ χ
for all χ ∈ ∆. Per χ ∈ ∆, this yields a wχ ∈ K such that wχ ̸⊩ χ. By downwards directness, we
know there to be a k ∈ K such that k ≤ wχ, for all χ ∈ ∆. If k ⊩

∨
∆ then k ⊩ χ for some

χ ∈ ∆, and as such, wχ ⊩ χ by construction. Via this contradiction, we arrive at (1).

Now suppose thatK is strongly covered, and take∆ andϕ, ψ to be such thatK ̸⊩ ψ∨
∨

χ∈∆ (
∨

∆ → ϕ) →
χ and |∆| ≤ n. This gives us some k ∈ K with k ̸⊩ ψ, and k ̸⊩

∨
χ∈∆ (

∨
∆ → ϕ) → χ. The latter

yields wχ ≥ k such that wχ ⊩
∨

∆ → ϕ, yet wχ ̸⊩ χ. See thatW := {wχ | χ ∈ ∆} has a lower
bound, namely k. It is also quite clear that |W | ≤ n. As K is strongly n-ary covered this yields
l, l′ ∈ K withW κ l, and l′ ≤ l, k. Observe that l ̸⊩ (

∨
∆ → ϕ) →

∨
∆, whence (3) is clear. We

omit a proof of (2), the reader will be able to reconstruct a proof of this statement from the above
argument. ■

3 Theorem
LetK be an image finite and concrete model. All implications of Lemma 7 are equivalences.

Proof For (1), let W ⊆ K be of size at most n. Observe that w ̸⊩ ndw, and as such, K ̸⊩ upw
for all w ∈ W . By assumption, it follows that K ̸⊩

∨
w∈W ndw. This yields a k ∈ K such that

k ̸⊩ ndw, which in turn precisely proves that k is a lower bound forW .

We now treat (3), see Goudsmit (2013b, Theorem 3) for a proof of (2). Suppose that W ⊆ K is
finite and has a lower bound, say k. For convenience define

∆ := {ndw | w ∈W}, ϕ :=
∨

w∈W
upw, ψ := nd k
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We can see that k ̸⊩ ψ ∨
∨

χ∈∆ (
∨

∆ → ϕ) → χ. Indeed, both disjuncts are clearly falsified at k.
Remark that |∆| ≤ n. By assumption, this ensures the existence of some l′ ∈ K such that

l′ ̸⊩ ψ ∨
(∨

∆ → ϕ
)
→
∨

∆.

Because l′ falsifies the left-hand disjunct we know l ≤ k. Similarly, because l′ falsifies the right-
hand disjunct, we obtain a l ≥ l′ such thatW κ l by Goudsmit (2013b, Corollary 7), whereK is to
be read as l′↑. This proves the desired. ■

Corollary 2 below follows immediately from the above Theorem 3 and the completeness of uni-
versal models, as stated in Theorem 1. See Corollary 3 as an illustration of how the “internal”
relation of being downwards directed relates to a well-known property of the models of a logic, cf.
Maksimova (1986,Theorem 1) and Gabbay and de Jongh (1974, Lemma 14).

2 Corollary
Let L be an intermediate logic with the finite model property. Now L has the disjunction property
precisely if its universal models are downwards directed. Moreover, L admitsD−

n (orDn) precisely
if its universal models are weakly (or strongly) n-ary covered.

3 Corollary
Any intermediate logic L with the finite model property has the disjunction property precisely if
to every pair of finite rooted models K1 and K2 there is a rooted model K such that there are
nodes k1, k2 ∈ K and morphisms fi : Ki → ki↑ per i = 1, 2.

Proof We show only the implication from left to right, the other direction is of similar difficulty.
Suppose that L has the disjunction property and letK1 andK2 be arbitrary models. Without loss
of generality, we may assume that K1 and K2 are models on the same set of variables X . By
Theorem 1 we know of k1, k2 ∈ UL(X) such that fi : K1 → ki↑ exist per i = 1, 2. We know
L to have the disjunction property, so Corollary 2 ensures us that UL(X) is downwards directed.
This yields a k ∈ UL(X) such that k1↑, k2↑ ⊆ k↑. We take K := k↑, and this completes the
argument. ■

A basis of admissibility is, intuitively, a set of admissible rules from which all others follow. We
define this notion formally below.

9 Definition (Basis of Admissible Rules)
A set of admissible rules R ⊆ is a basis of admissibility ⊢R equals .

1 Remark
When R1 and R2 are sets of admissible rules such that ⊢R1 = ⊢R2 it is clear that the structural
refutation system determined by Θ and R1 equals that determined by Θ and R2 for any set of
formulae Θ. In particular, if R is a basis of admissible rules then the structural refutation system
determined by Θ and R equals that determined by Θ and . As such, basis of admissibility are of
interest in constructing succinct structural refutation systems.
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3 Admissible Approximations

Consider an arbitrary intermediate logic L and its consequence relation ⊢L as a preorder on the set
of propositional formulae on a fixed, countably infinite, set of variables. When considering L as
a preorder in a similar manner, it becomes apparent that the former is a sub-preorder of the latter.
Consequently, one can wonder whether this inclusion functor has a left adjoint. Ghilardi (1999, p.
874) proved that such a left adjoint exists in the casewhere L is IPC. When this left-adjoint exists we
call the image of a formula ϕ under it the admissible approximation of ϕ.9

Admissible approximations are useful in proving a certain set of rules to be a basis of admissibility.
For examples of the use of this concept see Iemhoff (2001b, Theorem 3.13), Jeřábek (2005, Theorem
4.5), Jeřábek (2010, Theorem 3.8), Goudsmit and Iemhoff (2014, Theorem 3), and Goudsmit (2013b,
Lemma 20). In this section, we illustrate how admissible approximations come into play when
constructing refutation systems. We introduce a very particular type of model, the admissible ap-
proximation of the not-downset formulae of whichwill be a disjunction of classically non-derivable
formulae.

It should be noted that the results we obtain about admissible approximations are not neces-
sary, strictly speaking, to obtain our end-results on refutability. We do include them here to
drive home the idea that bases of admissibility and refutation systems can be quite closely re-
lated.

Recall that to each partial order one can assign a valuation such that the resulting model is con-
crete, as shown in Lemma 4. The valuation there is such that all elements of the underlying order
are assigned distinct variables. In Definition 10, we specify a kind of partial order for which we
can construct a more “economic” valuation, taking values only in the maximal nodes of K . This
valuation will assign to an element the set of maximal elements above it. There are situations
in which this will suffice to distinguish between all elements, for instance when the underlying
partial order is a proper tree, as shown in Lemma 8.

The advantage of such a valuation will become clear by Lemma 14, very roughly speaking, the
formulae up k and nd k will be of a form amenable to manipulation by the earlier described admis-
sible rules. See Fig. 3 for examples and non-examples of the notions introduced in the following
definition. The partial orderK1 is maximally separable andK1,K2 andK3 are maximally distin-
guishable. Note that K2, K3 and K4 are most certainly not maximally separable, and the latter is
not maximally distinguishable.

10 Definition (Maximally Separable and Distinguishable)
Let K be a partial order. We say that K is maximally separable when the following equivalence
holds for all a, b ∈ K

a ≤ b iffmax b↑ ⊆ max a↑.

9 We deviate a little from the currently prevalent use of the term “admissible approximation” in doing this. More
commonly, as for instance in Jeřábek (2010, Definition 3.6) and Goudsmit and Iemhoff (2014, Definition 19), a close
connection to “projective approximations” as introduced by Ghilardi (1999) is maintained. An admissible approxi-
mation of ϕ thus commonly is defined to be a set of formulae ∆ satisfying certain properties such that

∨
∆ is an

admissible approximation in the above sense. We do not need these additional properties in the following exposition,
hence our sloppiness in employing this term.
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K1 K2 K3 K4

Figure 3: Examples of maximal separability and distinguishability.

We callK maximally distinguishable when the model mK defined below is concrete.

mK : K → PmaxK, k 7→ {k} ∩maxK

Recall that IPC is complete with respect to the Jaśkowski sequence, a particular sequence of proper
trees, see Smoryński (1973) and Surma, Wroński, and Zachorowski (1975) for more details. We
point out that proper finite trees are maximally separable.10 To be completely precise, a tree is a
rooted partial order T such that for all a, b, c ∈ T with a, b ≤ c we have a ≤ b or b ≤ a. A tree T
is said to be proper when a κ b if and only if a = b for all a, b ∈ T .

8 Lemma
Every finite tree is maximally separable if and only if it is proper.

Proof Let T be a finite tree, and suppose that T is proper. Note that if a, b ∈ T are such that b < a
then there is am ∈ maxT such that b ≤ m yet a ̸≤ m. Indeed, suppose that b < a, and letW be
the set of immediate successors of b. Because of properness we know there to be an a′ ∈ W with
a′ ̸= a. Choose a m ∈ maxT such that a′ ≤ m. If a ≤ m then a′ and a are comparable because
T is a tree, a contradiction.

Now suppose that a, b ∈ T are such max b↑ ⊆ max a↑ and assume that a ̸≤ b. There must be be
a maximalm ∈ maxT with b ≤ m, and so a, b ≤ m holds by assumption. Because T is a tree, it
follows that a ≤ b or b ≤ a, which yields b < a. By the above paragraph, there is a m′ ∈ maxT
with b ≤ m′ and a ̸≤ m′, a contradiction. This proves that T is maximally separable.

Now assume that T is maximally separable and that T is not proper. This yields a, b ∈ T with
a κ b and a ̸= b. Consider any m ∈ maxT and assume b ≤ m. Because a κ b, we know that
either a ≤ m or b = m. In the latter case, we obtain a contradiction because m < a, and m is
maximal. By maximal separability, we now know that a ≤ b, yet b ≤ awas known. Consequently
a = b follows, a contradiction, proving the desired. ■

9 Lemma
Let K be a maximally separable partial order, and endow it with the valuation mK . For each
a, b ∈ K we have

a ≤ b iff for allm ∈ maxK − a↑ it holds that b ⊩ ¬m.

In particularK is maximally distinguishable.
10More generally speaking, any meet-semilattice where each element can be expressed as a meet of maximal elements

is maximally separable.
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Proof The implication from left to right is clear. Indeed, suppose a ≤ b and take some k ≥ b such
that k ⊩ mwithm ∈ maxK−a↑. It follows that k = m, and so b ≤ m. By maximal separability,
this yields a ≤ m, a contradiction.

In order to prove the other direction, we assume the right-hand side and take m ∈ maxK to be
such that b ≤ m. If a ̸≤ m then b ⊩ ¬m and so b ⊩ ⊥, a contradiction. This proves a ≤ m as
desired, so maximal separability proves a ≤ b.

For the final statement, assume a, b ∈ K are such thatmK(a) = mK(b) and for all k ∈ K−{a, b}
we have a ≤ k if and only if b ≤ k. It is easy to verify that for each formula ϕ we have a ⊩ ϕ
precisely if b ⊩ ϕ. The desired is now immediate by the equivalence proven above. ■

10 Lemma
Let K be a concrete and image-finite model on X , let k ∈ K be given, and let W ⊆ K be an
anti-chain such thatW κ k and |W | ̸= 1. We now know

⊢IPC

(
up k →

∨
w∈W

ndw

)
≡ nd k.

Proof ByTheorem 1, we knowK to correspond to a node in UIPC(X), for convenience’s sake we
use the same name for the node inK and its corresponding node in UIPC(X). ThroughTheorem 2,
we need to prove that the following are equivalent for a ∈ UIPC(X).

1 For all b ≥ a we have that if k ≤ b then b ̸≤ w for some w ∈W .

2 a ̸≤ k.

Suppose (1) holds and a ≤ k. Filling in b := k in (1) yields k ̸≤ w for some w ∈ W , this
contradiction proves (2) to hold.

Conversely, assume that (2) holds, and suppose there is a b ≥ a with k ≤ b and b ≤ w for all
w ∈ W . Because k ≤ b and W κ k, we know k = b or b ∈ W ↑. In the former case, we arrive
at k ≥ a, contradicting a ̸≤ k. The latter case, there is a w+ ∈ W such that w+ ≤ b. We have
b ≤ w+ by assumption, and so b ∈W follows.

There must be a node w− ∈W with w− ̸= b. Yet we know b ≤ w−, violating the assumption that
W is an anti-chain. All cases reach a contradiction, so (1) follows. ■

Before we continue along our main line of reasoning, let us first spend a few words on Medvedev’s
logic. The purpose of this intermezzo is to motivate Definition 12. In Theorem 5 we show that this
definition can be used to define complete refutation systems, whichwe use to obtain our end-result,
Theorem 11. Our proof is based upon the reasoning of Maksimova (1986), but given in terms of the
machinery described above. We moreover employ a characterisation of Levin (1969) as described
by Wojtylak (2004). The refutation system we eventually obtain in Theorem 6 is the same as given
by Skura (1992, Theorem 6.1).

11 Definition (Medvedev’s Logic)
Per set X the Medvedev frame, denoted B(X), is PX − ∅ ordered by ⊇. Medvedev’s Logic ML is
the intermediate logic defined by

ML :=
∩

Th
(
{B(X) | X a finite set}

)
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Through the theorem of Glivenko (1929), we know that ⊢IPC ¬ϕ holds if and only if ⊢CPC ¬ϕ
for any formula ϕ. The equivalence below holds for any intermediate logic L with the disjunction
property, and for any finite set of formulae ∆.

⊢L

∨
χ∈∆

¬χ if and only if ⊢CPC ¬χ for some χ ∈ ∆. (7)

A formula is said to be disjunctive-negative in L whenever, within L, it is equivalent to a formula
of the above left-hand form. Note that this differs from the definition on Maksimova (1986), who
requires a formula to be syntactically of the above form. We say that a formula ϕ is essentially
negative when each variable occurs within the scope of a negation. More symbolically, the set of
essentially negative formulae on X , denoted L–(X), is defined by

L–(X) ::= ⊤ | ⊥ | ¬L(X) | L–(X) ∧ L–(X) | L–(X) ∨ L–(X) | L–(X) → L–(X).

A substitution σ : L(X) → L(Y ) is said to be essentially negative if its image is contained in
L–(Y ). Consider the intermediate logic ND defined below, as introduced by Maksimova (1986). It
is a straightforward observation that the logic KP of Kreisel and Putnam (1957) is an extension of
ND.

ND := IPC+

{(
¬x→

n∨
i=1

¬zi

)
→

n∨
i=1

¬x→ ¬zi

∣∣∣∣∣ n ∈ N

}
KP := IPC+ (¬x→ z1 ∨ z2) → (¬x→ z1) ∨ (¬x→ z2)

We mention some elementary properties of KP and ML in Lemma 11, both of which are crucial
for Theorem 4.

11 Lemma
The logics ML and KP are extensions of ND and both have the disjunction property.

Proof That KP has the disjunction property is proven by Kreisel and Putnam (1957, p. 75). By
Maksimova (1986, Proposition 2) it is clear that ML has the disjunction property as well.

From the definitions of both KP and ND, it is immediate that the latter contains the former. Let
us prove that ML is an extension of ND. To this end, let X ̸= ∅ be a finite set and consider any
model v : B(X) → PY . Let W ⊆ maxB(X) and a ∈ B(X) be such that W ⊆ max a↑. By
Lemma 6, it suffices to show that there exists an element b ∈ B(X) satisfying both a ≤ b and
max b↑ = W . Such an element always exists, simply take b :=

∪
W , and see that it satisfies all

requirements. ■

In ND, all essentially negative formulae are in fact disjunctive negative, as we prove below. This
statement is but a minor reformulation of Maksimova (1986, Lemma 4).

12 Lemma
Let ϕ ∈ L(X) be a formula, and let σ : L(X) → L(Y ) be an essentially negative substitution.
There is a finite ∆ ⊆ L(Y ) such that

⊢ND σ(ϕ) ≡
∨
χ∈∆

¬∆. (8)
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Moreover, ⊢KP ϕ precisely if ⊢ML ϕ.11

Proof The former statement can be proven by means of a straightforward inductive argument
along the structure of ϕ. Let us focus on the second statement, and prove the implication from left
to right. Suppose that ⊢KP ϕ. Through (8) and Lemma 11 it follows that there is some χ ∈ ∆ such
that ⊢KP ¬χ. By Glivenko’s theorem we now know that ⊢ML ¬χ. Another application of (8) and
Lemma 11 yield ⊢ML ϕ as desired. ■

Fix a finite maximally separable partial order K , and endow it with the valuation mK . From
Lemma 9 we know that for all a, b ∈ K the following holds.

a ≤ b iff b ⊩ ¬
∨(

maxK − a↑
)

Intuitively, this amounts to saying that a lies below b precisely when every maximal element that
is not above a is not above b. In maximally separable models, this naturally holds, as proven in
Lemma 9. Through this equivalence, one can readily infer that the substitution ρ, as defined below,
is such thatK ⊩ ρ(ϕ) ≡ ϕ for all formulae ϕ.

ρ : L(maxK) → L(maxK), m 7→ ¬
∨

(maxK − {m}) . (9)

We employ this substitution in Theorem 4 below. This theorem shows that to each formula that is
non-derivability inML there must be a substitution instance that is not derivable in KP. We spell
this out in a bit more detail in Corollary 4.

4 Theorem (Levin, 1969)
The following are equivalent for any formula ϕ ∈ L(X):

1 ⊢ML ϕ;

2 For all finite sets Y and all essentially negative substitutions σ : L(X) → L(Y ) we have
⊢KP σ(ϕ).

Proof Suppose (1) holds and let σ be essentially negative. From Lemma 12we know that ⊢ML σ(ϕ)
and ⊢KP σ(ϕ) are equivalent. Structurality ensures the former, hence (2) holds.

Now suppose that (1) does not hold. This gives us some finite Z ̸= ∅ and a valuation v : B(Z) →
L(X) such that v ̸⊩ ϕ. The partial orderK := B(Z) is maximally separable, and hence the model
mK : K → L(maxK) is concrete due to Lemma 9. Indeed, we know that k ∈ B(X) is maximal
precisely if k is a singleton. Now observe that a ≤ {x} implies b ≤ {x} for all x ∈ X precisely
means that a ⊆ b, which is equivalent to b ≤ a. This proves thatK is indeed maximally separable.

For convenience we write Y := maxK . By Lemma 3, we know of a substitution τ : L(X) →
L(Y ) such that mK ⊩ τ(ψ) holds precisely if v ⊩ ψ. Now consider ρ : L(Y ) → L(Y ), as given
in (9), and define σ := ρτ : L(X) → L(maxK). It is clear that this substitution is essentially
negative.

11 Let us remark that through Maksimova (1986, Proposition 6) we might also replace this last statement with: for all
intermediate logics L above NDwith the disjunction property one has that ⊢L ϕ holds precisely if ⊢ND ϕ. The proof
is analogous, and the original statement may be retrieved through Lemma 11.
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By Lemma 12, we now know that ⊢KP ρ(ϕ) entails ⊢ML ρ(ϕ). But thenmK ⊩ ρ(ϕ), which ensures
mK ⊩ τ(ϕ) due to the remark above this theorem. This, in turn, would yield v ⊩ ϕ, a contradiction
proving (2) not to hold. ■

4 Corollary
Let ⊢ be the least structural consequence relation extending both ⊢KP and x ∨ y/{x, y}. For any
formula ϕ, we have that ̸⊢ML ϕ precisely if there is a substitution σ and a finite set of formulae∆,
each non-derivable in CPC, such that σ(ϕ) ⊢ ∆.

Proof From left to right we assume ̸⊢ML ϕ. By Theorem 4, we get an essentially negative sub-
stitution σ such that ̸⊢KP σ(ϕ). Due to Lemma 12, this gives to a set formulae ∆ such that
σ(ϕ) ⊢ND

∨
∆. Note that (7) ensures that each of the formulae in ∆ is non-derivable in CPC.

It follows from Lemma 11 that ⊢ND ⊆ ⊢KP, so the above combine to show σ(ϕ) ⊢ ∆, as desired.

To prove the converse, we suppose σ(ϕ) ⊢ ∆ for a particular substitution σ and a set of formulae
∆ non-derivable in CPC. It follows from Lemma 11 that ⊢ ⊆ ML. Now see that if ⊢ML ϕ,
then ⊢ML σ(ϕ) by structurality, so ⊢ML χ holds for some χ ∈ ∆. Yet this entails ⊢CPC χ, a
contradiction. ■

The following property is a generalisation of the above Corollary 4. In Theorem 5, we show that if
a logic L is such that ⊢L has this property then it is complete with respect to the refutation system
generated by the set of non-derivable formulae Θ and rulesR. More concretely, in Theorem 6 we
use this general machinery to give a refutation system for ML.

12 Definition (Admissibly Reducible)
We say that a consequence relation ⊢ is admissibly reducible to Θ through R when the following
hold:

1 Θ is a set of formulae, and each formula in Θ is non-derivable in ⊢;

2 R is a set of rules closed under substitutions, and each rule in R is admissible with respect
to ⊢;

3 for each ϕ the following equivalence holds

̸⊢L ϕ iff there is a σ and ∆ ⊆ Θ such that σ(ϕ) R ∆.

Note that, in the above definition, the formulaeΘ are necessarily non-derivable in L, even without
assuming this, wheneverR contains reflexivity. Indeed, for each θ ∈ Θwe then have that θ R {θ}
and so ̸⊢L θ follows. However, it need not be the case that the formulae in Θ are non-derivable in
CPC.12

Through a slight abuse of language, we will say that an intermediate logic L is admissibly re-
ducible to Θ through R whenever ⊢L is. Let us give the following lemma to illustrate the defini-
tion.

12 Examples of this can be seen in Skura (1992). For instance, his Lemma 3.3 shows that Smetanich’s logic (there called
Heyting-Łukasiewicz logic) is admissibly reducible to x ∨ ¬x through ⊢IPC. We do not explore such logics in the
following.
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13 Lemma
Let L be an intermediate logic. Now L is admissibly reducible to ∅ through L precisely if L = CPC.

Proof From right to left, we assume ϕ ∈ L(X) to be such that ̸⊢CPC ϕ. This gives a model
v : {∗} → PX such that v ̸⊩ ϕ, where {∗} is the one-point partial order. Define the substitution
σ : L(X) → L(∅) by mapping x ∈ X to⊤ if x ∈ v(∗) and to⊥ otherwise. It is easy to verify that
σ(ϕ) ≡ ⊥, and thus σ(ϕ) CPC ∅.

To prove the other direction, we proceed by contraposition. Assume that L ⊂ CPC and remark
that ϕ := ¬¬x→ x is such that ̸⊢L ϕ. Consider any substitution σ and observe that CPC ⊢ σ(ϕ).
This yields a a substitution τ such that IPC ⊢ τ(σ(ϕ)) ≡ ⊤. As a consequence, σ(ϕ) L ∅ can not
hold, proving the desired. ■

To connect Definition 12 to the above discussion, remark that in Corollary 4 it is argued that
ML is admissibly reducible to the set of all non-derivable formulae in CPC through the set of
rules

⊢KP ∪
{
x ∨ y/{x, y}

}
.

5 Theorem
Let L be an intermediate logic admissibly reducible to Θ through R. The refutation system de-
termined by Θ and R is complete and, hence L is Ł-decidable. Moreover, when Θ is the set of
formulae non-derivable in CPC then the refutation system determined by {⊥} and R ∪ ⊢IPC is
already complete.

Proof In order to prove completeness, we assume ϕ to be some formula such that ̸⊢ ϕ. By assump-
tion, we obtain a substitution σ and a finite subset∆ ⊆ Θ such that σ(ϕ) R ∆. We now compute
the following, where the first and last relation follow immediately by Definition 4.

∅ ⊢Rf ∆ ⊢Rf σ(ϕ) ⊢Rf ϕ

Through transitivity, we thus infer ⊢Rf ϕ.

Let us now focus on the final statement. To prove completeness, it suffices to show that ⊥ ⊢Rf θ
for arbitrary θ ∈ Θ. Take X such that θ ∈ L(X) and know that, as ̸⊢CPC θ by assumption, there
must be some σ : L(X) → L(∅) such that ⊢IPC σ(θ) ≡ ⊥. This entails ⊥ ⊢Rf σ(θ) ⊢Rf θ, hence
the desired follows. ■

6 Theorem (Skura, 1992)
The refutation system below is both sound and complete for ML.

Ax⊣ ⊥
⊣ σ(ϕ)

Subs⊣ ϕ
⊣ ψ ϕ ⊢KP ψ Inv ⊢KP⊣ ϕ

⊣ ϕ ⊣ ψ
RDP⊣ ϕ ∨ ψ

Proof This is a direct consequence of Lemma 2, Theorem 5 and Corollary 4. ■

The remainder of this section is devoted to developing the conditions under which not-down for-
mulae ofmodels can play the role ofϕ in Definition 12. Let us take a brief detour through admissible
approximations. Recall the motivation of this notion, as given at the start of this section. To be
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concrete, we say that ψ is an admissible approximation of ϕ whenever the following holds for all
formulae χ:

ϕ χ if and only if ψ ⊢ χ.

The intuitive feel to the following is that one can iterative compute the admissible approximation
of a formula ndmK , whenever K is maximally distinguishable and proper, so in particular when
K is maximally separable. One can think of this iteration as traversing the tree from the root to
all of its leaves. At each stage, one considers a set of nodes and their corresponding not-downset
formulae. Step-by-step we replace a node by its immediate successors, if it has any. Throughout
this process, the admissible approximation of the disjunction of these formulae remains invari-
ant.

In Lemma 14, we show sufficient conditions for maintaining this invariant. Theorem 8 provides
the evidence needed to show that when the computation ends one is left with an admissible ap-
proximation. Finally, all of this is put together in Theorem 9. It might be helpful to remark that
Lemma 14 andTheorem 9 play roles similar to those of Lemma 17 andTheorem 3 of Goudsmit and
Iemhoff (2014).

We should note that, in order to apply Theorem 5, our eventual end-goal, it will not be necessary
to know that this computation actually delivers an admissible approximation. Indeed, it suffices
to merely know that ndmK can be admissibly transformed into a disjunctive-negative formula.
We do prove this stronger fact to stress the connection between the proof technique as employed
by Skura (1989, Theorem 2) and methods commonly used in the study of admissibility. In the
following, we write ⊢L,Dn

to mean (⊢L)Dn
.

14 Lemma
Let n be a natural number, and let L be an intermediate logic with the finite model property. Take
W ⊆ UL(X) to be an anti-chain with 1 ̸= |W | ≤ n such thatTh (W )∩X = ∅, and let k ∈ UL(X)
be such thatW κ k. It follows that

nd k ⊢L,Dn
{ndw | w ∈W} and

∨
w∈W

ndw ⊢L nd k.

Proof Before we proceed, first recall that by Lemma 10 we have

⊢L

(
up k →

∨
w∈W

ndw

)
≡ nd k.

The second statement trivially follows from this observation. We now focus on the former state-
ment. Let us first apply the above equivalence and unfold the definition of up (−).

⊢L nd k ≡

(
up k →

∨
w∈W

ndw

)
≡

(( ∨
w∈W

ndw →
∨

w∈W
upw

)
→

∨
w∈W

ndw

)
.
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The desired now follows from the computations below.

nd k ⊢L

( ∨
w∈W

ndw →
∨

w∈W
upw

)
→

∨
w∈W

ndw

⊢L,Dn

{( ∨
w∈W

ndw →
∨

w∈W
upw

)
→ nd v

∣∣∣∣∣ v ∈W

}
⊢L {ndw | w ∈W}

The first line is due to the assumed equivalence and the second is an immediate application of D−
n .

Finally, see that for each v ∈W we have

v ̸⊩
( ∨

w∈W
ndw → upW

)
→ nd v.

Through Corollary 1, we now know the last inference to be valid as well, which finishes the
proof. ■

To prove Theorem 8, we introduce some additional terminology and results from the literature.13
We say that a formula ϕ is L-projective whenever there is a substitution σ such that ⊢L σ(ϕ) and
for all formulae ψ we have ϕ ⊢L σ(ψ) ≡ ψ. The subsequent theorem is a reformulation of the
original characterisation of projective formulae due to Ghilardi (1999), here given in the context
of the universal model.

7 Theorem (Ghilardi, 1999)
Let L be an intermediate logic with the finite model property. A formula ϕ ∈ L(X) is L-projective
precisely if there is a k ∈ UL(X) with k ⊩ ϕ and for all anti-chainsW ⊆ UL(X) withW ⊩ ϕ we
have a l ⊩ ϕ withW κ l whenever there is a k ∈ UL(X) withW κ k.

8 Theorem
Let L be an intermediate logic with the finite model property, let X be a finite set, and let W ⊆
UL(X) be an upset. The following are equivalent.

1 The formula nd k is projective, for all k ∈ UL(X) such thatW κ k and k ̸∈W ;

2 There are distinct k, k′ ∈ UL(X) such thatW κ k, k′.

Proof Suppose (2) holds, and let k ∈W be such thatW κ k. We proceed through Theorem 7. By
assumption, we know of a k′ ̸= k such thatW κ k′. As a consequence, k′ ̸≤ k, proving k′ ⊩ nd k
by Theorem 2.

Let V ⊆ UL(X) be such that V ⊩ nd k, and assume that there is a l ∈ UL(X) with V κ l. If
l ∈ V then we are done, so assume the contrary. To prove the desired, we seek a l′ ∈ UL(X) with
l′ ⊩ nd k and V κ l. If l ̸≤ k then simply pick l = l′. Suppose l ≤ k, then either l = k or l ∈W ↑.
In the latter case, we know w ≤ l ≤ k for some w ∈W , so this case never occurs.

13Through Theorem 7 one can see that Bezhanishvili and de Jongh (2012, Theorem 4.13) is equivalent to Theorem 8.
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Assuming k = l we compute

k↑ =W ↑ ∪ {k} =W ∪ {k} = V ∪ {l} = V ↑ ∪ {l} = l↑,

and so V = V − {l} = W − {k} = W . By assumption, we know of a k′ ̸= k such thatW κ k′,
hence V κ k′. Now take k′ = l′ and we have proven (1).

To prove the converse, we reason by contraposition, so assume the negation of (2). This means that
W can have either no covers at all, or a unique one. In the former case, the desired is vacuously
true, so suppose there is but one unique k ∈ UL(X) such thatW κ k. Clearly,W ⊩ nd k because
if w ∈W were such that w ̸⊩ nd k then w ≤ k, and as k ≤ w this entails k ∈W , a contradiction.
But if l ∈ UL(X) is such thatW κ l, then l = k holds by assumption, hence l ⊩ nd k can never
hold. Through Theorem 7, this proves the negation of (1). ■

Beforewe can state the following theoremweneed two additional definitions.

13 Definition (Branching)
Let K be a partial order. The branching degree of an element k ∈ K is its number of immediate
successors. We say K is at most n-fold branching when the branching degree of all k ∈ K is
bounded by n.

In Theorem 9 below we prove that, for any finite rooted maximally separated models K , the
admissible approximation of its not-down formula equals the disjunction of the not-down for-
mulae of its maximal nodes. This can be readily seen when one instantiates ∆ by ndK and∨{

ndm
∣∣ m ∈ max(K)

}
, making (10) and (11) true. Note that we take special care to keep track

of the rules we use in this argument.

9 Theorem
Let n be a natural number, and let L be an intermediate logic with the finite model property that
admits Dn. Let K be a rooted finite maximally separable partial order, and endow it with the
valuation mK . Assume that K is at most n-fold branching. The following are equivalent, for all
finite set of formulae formulae ∆.

ndK L ∆ (10)∨{
ndm

∣∣ m ∈ max(K)
}
⊢L ∆ (11)

ndK ⊢L,Dn
∆ (12)

Proof We claim that the following holds for all k ∈ K .

nd k ⊢L,Dn
{ndm | m ∈ max(k↑)} and

∨
{ndm | m ∈ max(k↑)} ⊢L nd k. (13)

Assume that the claim holds. It is easy to see that (12) entails (10), because ⊢L,Dn
is contained in

L. We also note that (11) and the first conjunct of (13) immediately yield (12).

Now suppose that (10) holds. The second conjunct of (13) leads to the following, bearing in mind
that ⊢L,Dn

⊆ L. ∨{
ndm

∣∣ m ∈ max(K)
}

L ∆
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Due to Theorem 8, we know that for each m ∈ max(K) the formula ndm is L-projective. Fix a
m ∈ max(K) and know that we have, due to the projectivity of ndm, a substitution σm such that
⊢L σm(ndm) and ndm ⊢L σm(ϕ) ≡ ϕ for all ϕ. As ⊢L σm(ndm) holds, we know of some χ ∈ ∆
such that ⊢L σm(χ) by the above. By the second property of σm, it now follows that ndm ⊢L χ.
Through transitivity, we thus obtain the following.∨{

ndm
∣∣ m ∈ max(K)

}
⊢L ∆

Combining this with the first conjunct of (10) we get (11), as desired.

Let us now prove the claim (13) by well-founded induction along the order in K for all k ∈ K .
WriteW for the set of immediate successors of k ∈ K . IfW is empty, then there is nothing left to
prove, so assume the contrary.

We compute as below. The first line makes use of Lemma 14, and the second holds by induction and
transitivity. The third line follows mainly from transitivity of consequence relations, keeping in
mind that max(k↑) =

∪
w∈W max(w↑). The subsequent three lines follow for analogous reasons

in the reversed order.

nd k ⊢L,Dn
{ndw | w ∈W}

⊢L,Dn

∪
w∈W

{ndm | m ∈ max(w↑)}

⊢Dn
{ndm | m ∈ max(k↑)}∨

{ndm | m ∈ max(k↑)} ⊢L

∨
w∈W

∨
{ndm | m ∈ max(w↑)}

⊢L

∨
w∈W

ndw

⊢L nd k

4 Refutation for Tn

Gabbay and de Jongh (1974) introduced an infinite series of finitely axiomatizable intermediate log-
ics with both the disjunction property and finite model property, now known as the Gabbay–de
Jongh logics, given in Definition 14 below.14 Per natural number n, one can consider the inter-
mediate logic complete with respect to finite trees with branching of degree at most n. This is the
(n − 1)th Gabbay–de Jongh logic. Chagrov and Zakharyaschev (1997) call this logic Tn, and we
will refer to it as such from now on. An axiomatization of this logic is given below, immediately
followed by a characterization of the concrete models of this logic.

14 Definition
The logic of bounded branching until the nth degree, Tn, is given as the intermediate logic

Tn := IPC+

n+2∧
i=1

xi → ∨
j ̸=i

xj

→
∨
j ̸=i

xj

→
n+2∨
i=1

xi.

14 As attested to by Segerberg (1973), this result was already known and published in a technical report in 1969.
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The following series of results are meant to describe the structure of concrete models of Tn. In
Lemma 15, we, roughly speaking, describe models of Tn as those models where only anti-chains
of size at most n can cover an element.

15 Lemma (Goudsmit, 2013b, Lemma 12)
Let K be a concrete and image-finite model K model. Now K is a model of Tn precisely if for
each anti-chainW ⊆ K and each k ∈ K we have |W | ≤ n wheneverW κ k.

5 Corollary
A concrete and image-finite model whose underlying partial order is a tree is a model of Tn pre-
cisely if it is at most n-fold branching.

6 Corollary
For each set of variables X the universal model UTn(X) is strongly n-ary covered. In particular,
Dm is admissible for eachm ≤ n.

Proof The first statement is immediate from the observation that every anti-chain in the universal
model covers something, and Lemma 15. The second statement follows from the first through
Corollary 2. ■

The remainder of this section will be used to argue that the refutation system as given in Theo-
rem 11 is both sound and complete. The system given there is the refutation system determined
by {⊥} and Dn. We prove sound- and completeness by means of the machinery developed in Sec-
tion 3. In short, we will show that Tn admissibly reduces to the set of CPC non-derivable formulae
through Dn.

16 Lemma
For each natural n ≥ 2, the logic Tn is sound and complete with respect to proper at most n-fold
branching finite trees. Moreover, each of these trees is maximally separable.

Proof Soundness is immediate through Corollary 5. Let us now argue for completeness. Take ϕ
to be a formula such that Tn ̸⊢ ϕ. By Gabbay and de Jongh (1974, Equation 34) we obtain a finite
and at most n-fold branching tree such that T ̸⊩ ϕ. Without loss of generality we may assume
that T is indeed proper, taking care to note that n ≥ 2. The final statement is immediate from
Lemma 8. ■

10 Theorem
For any n ≥ 2, the intermediate logic Tn is admissibly reducible to the set formulae that are
non-derivable in CPC through all instances of Dn and derivability in IPC.

Proof Suppose that ϕ is such that ̸⊢Tn ϕ. Then there is a maximally separable model K ⊩ Tn of
branching degree at most n such that K ̸⊩ ϕ by Lemma 16. From Lemma 5 we get a substitution
such that σ(ϕ) ⊢IPC ndK . Through Theorem 9 we know the following.

ndK ⊢IPC,Dn

∨
{ndm | m ∈ max(K)}

We combine the above two observations into:

σ(ϕ) ⊢IPC ndK ⊢IPC,Dn

∨
{ndm | m ∈ max(K)} .

Finally, we remark that ⊢IPC,Dn
is included in Tn via Corollary 6. ■
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The following two theorems are our main results. Note that, due to Remark 1, we may replace
RDn with the basis of Tn as described by Goudsmit and Iemhoff (2014). This too would yield a
structural refutation system, yet its formulation would be more cumbersome. Theorem 12 is to Tn

what Iemhoff (2001a, Theorem 3.5) is to IPC, and Maksimova (1986, Theorem 5) is toML, namely, a
characterisation of an intermediate logic as the strongest intermediate logic that admits a particular
set of rules.

11 Theorem
For any n ≥ 2 the refutation system below is sound and complete for the intermediate logic Tn.
In particular, Tn is Ł-decidable.

Ax⊣ ⊥
⊣ σ(ϕ)

Subs⊣ ϕ
⊣ ψ ϕ ⊢IPC ψ

MT⊣ ϕ

⊣ (
∨n

i=1 χi → ϕ) → χj per j = 1, . . . , n
RDn⊣ (

∨n
i=1 χi → ϕ) →

∨n
j=1 χj

Proof This is a consequence ofTheorem 10,Theorem 5, and Lemma 2, bearing Remark 1 inmind. ■

12 Theorem
For any n ≥ 2 the intermediate logic Tn is the greatest intermediate logic that admits Dn.

Proof Let L be an intermediate logic that is greater thanTn which admitsDn. There must be some
ϕ such that L ⊢ ϕ yet Tn ̸⊢ ϕ. By Theorem 11 we know ⊣ ϕ. Now remark that this refutation
system is sound for L too, yielding ̸⊢L ϕ, a contradiction. ■
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