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Immersive technology for human-centric cyberphysical systems includes broad concepts that enable users in the physical world
to connect with the cyberworld with a sense of immersion. Complex systems such as virtual reality, augmented reality, brain-
computer interfaces, and brain-machine interfaces are emerging as immersive technologies that have the potential for improving
manufacturing systems. Industry 4.0 includes all technologies, standards, and frameworks for the fourth industrial revolution to
facilitate intelligent manufacturing. Industrial immersive technologies will be used for smart manufacturing innovation in the
context of Industry 4.0’s human machine interfaces. This research provides a thorough review of the literature, construction of a
domain ontology, presentation of patent metatrend statistical analysis, and datamining analysis using a technology functionmatrix
and highlights technical and functional development trends using latentDirichlet allocation (LDA)models. A total of 179 references
from the IEEE and IET databases and 2,672 patents are systematically analyzed to identify current trends. The paper establishes an
essential foundation for the development of advanced human-centric cyberphysical systems in complex manufacturing processes.

1. Introduction

Industry 4.0 (I4.0) is the latest standard for data and
computation oriented advanced manufacturing [1, 2]. The
emphasis is placed on the deployment of technologies such
as cyberphysical systems (CPS), Internet of Things (IoT),
and big data analytics to achieve cost and quality benefits in
the manufacturing sectors. The deployment helps overcome
issues such as scalability, distribution, timeliness, reliability,
security, and fault tolerance. The wide array of differential
and affordable sensors at the physical level, the increased
processing at the computational level, and the variety of data
available for analytics at the data level form a three-pillar
foundation for the transition from Industry 1.0 to Industry 4.0

[3–8]. Table 1 shows the industrial evolution transition that
leads to technology shifts from Industry 1.0 to the Industry
4.0 [9]. Further advances from the basic user interface (UI)
to VR-enabled CPS are explained in [10].

The current generation of products has short lifespans due
to dynamically changing consumer demand. When coupled
with the need for increased product quality and increasing
labor costs for mass customization, smart factories become
the goal of I4.0 [3]. In principle, CPS gives industrial objects
microintelligence. IoT provides the ability for things to
connect to the Internet and to combine big data analytic
solutions to optimize production systems with continuous
learning capabilities. Immersive technologies help visual-
ize the data and actions in real-time facilitating dynamic
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Table 1: Technology evolution from Industry 1.0 to Industry 4.0.

Time Evolutional transition Defining technology
1800s Industry 1.0 Mechanical manufacturing
1900s Industry 2.0 Assembly line (mass production)
1970 Industry 3.0 Robotic manufacturing (flexible manufacturing)
2010 Industry 3.5 Cyber physical systems
2012 Forward Industry 4.0 Virtual manufacturing

responses to demand [11]. Immersive technologies create a
human-centric virtual world where humans and machines
interact seamlessly.

Immersive technologies provide an environment for
objects that are otherwise virtual in nature through the
integration of vision, sound, and tactile feedback [12]. There
are three levels for immersive technologies [13]. The nonim-
mersive level is a desktop computer experience where the
virtual environment is generated without the need for spe-
cialized hardware. The semi-immersive level uses elements
of the real world to construct virtual reality applications for
applications such as constructionmodeling, flight simulators,
and robotic navigation. The user navigates a representation
of themselves within the virtual environment. The fully
immersive or neural-direct mode achieves the highest level
of virtual reality. This level provides an immersion into the
virtual world where the human brain is directly interlinked to
the database system and the viewer’s current orientation and
position in the virtual world are experienced as it unfolds.

This research is a continuation of earlier research in
the area of Industry 4.0 [14], industrial CPS, and IoT
linking towards human-centric Industry 4.0 [15, 16]. The
research objective is to integrate and propagate industrial
immersive technologies (IIT). The study provides technical
specifications and an ontology for IIT. Quantitative and
qualitative analyses of technical publications and patents
form the basis for the current IIT development. The datasets
for analytics are extracted from global governing bodies
including the Institute of Electrical and Electronic Engineers
(IEEE), the International Organization for Standardization
(ISO), the Institution of Engineering and Technology (IET),
the International Electrotechnical Commission (IEC), the
Advancement ofMedical Instrumentation (AMI), the United
States Patent and Trademark Office (USPTO), the World
Intellectual Property Organization (WIPO), and the Guobiao
Standards (Standardization Administration of China, GB).
The research findings and analysis identify market potential
by outlining growth benefits for embedding immersive tech-
nologies into advanced manufacturing.

2. Domain Definition and Motivation

Thedomain of this research includes virtual reality (VR), aug-
mented reality (AR), and brain-machine interface (BMI) that
is interchangeable referred to as brain-computer interfaces
(BCI). Background studies show brain research increasing in
the virtual reality area [5, 10, 11, 13, 17–20]. The motivation
for this research comes from an immersive technology

background review covering IEEE and IET online databases.
The methodology developed in this research is generic;
additional literature databases can be added to enhance
the comprehensive background study. The review points
towards BMI related research which will act as an enabler
to translate virtual world interactions into real world actions.
Thebackground information helps formhypotheses that BMI
will play a key role in the next industrial revolution.Milgram’s
reality-virtuality continuum is remodeled in Figure 1 [21].
This assumption is supported by Lexinnova’s generic VR
patent landscape analysis report [22].The domain definitions
are explained in the following paragraphs.

VR provides innovative ways for designers and engineers
to interact and collaborate which accelerates creativity and
productivity. VR is a host of technologies that mimic interac-
tive 3D environments. This virtual world is designed so that
users find it hard to distinguish the differences between real
and virtual. The VR world can be created by wearing VR-
enabled helmets or goggles [23]. Users see events from all
angles in immersion and can manipulate virtual elements or
constructs in the virtual world.

Augmented reality (AR) combinesMixedReality (MR) or
Substitutional Reality (SR) where the virtual world and the
real world are blended in the immersive settings. AR helps
designers and developers create images within applications
that blend elements of the real world.Users are able to interact
with real world virtual content and make distinctions [23].
The brain-machine interface is a framework that helps to
create a communication channel between the human brain
and the machine. There are three categories, that is, invasive,
semi-invasive, and noninvasive BMIs. Invasive BMIs are
microelectrode arrays surgically placed into the cortex area
of the brain. Semi-invasive BMIs are electrodes placed on
the exposed surface of the brain using electrocorticography
(ECoG). Noninvasive BMIs use sensors and circuits placed
on the scalp to measure the electrical potentials produced by
the brain electroencephalography and the magnetic fields of
the brain called magnetoencephalography. Noninvasive BMI
using electroencephalography shows significant advance-
ments in signals and systems [11]. Steady-state visually evoked
potentials are based on the brains electrical signals generated
when the retina is excited by a visual stimulus.This technique
is preferred in brain interfacing research because of good
signal-to-noise ratio [24]. The focus of our current research
is an evaluation of noninvasive BMI, which is viewed as the
technical evolution of VR and AR which enables users to
translate action conceived in the virtual world into actions in
the real world.
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Figure 1: Milgram’s reality-virtuality continuum extended.
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Figure 2: The research flow of a comprehensive IIT overview.

3. Research Methodology and Structure

A systematic review cross-references technical publications
and essential patents. The detailed methodology is presented
as a research structural flow in Figure 2. The domain
definition is the primary building block for this research

and reflects the current state of the science. A principal
domain technology review (for domain definition) is fol-
lowed by key term identification and ontology generation.
The domain ontology and schema key terms serve as query
input for further literature and patent searches. The result
of query execution is a high volume of publication and
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patent data. The publication data is manually reviewed,
classified, and organized on the basis of citation count.
This approach helps ensure high coverage of publications
related to the current state of IIT. The patent documents
are text and data mined, using computer-assisted algorithms,
to depict the underlying patent landscape. The results are
cross-referenced to improve review accuracy. Further, the
results act as input to identifying key technical development
trends.

The goal of this research is to learn the structure and
opportunities for technology, standards, and intellectual
property in the domain of IIT. The methodology begins
with domain definition to identify related terms.The domain
scope considered for this research is immersive technology
in industries and manufacturing. The domain definition
is followed by the literature review and the creation of
the key term corpus. The IEEE and IET web explorer is
used as the search platform to collect literature and key
terms and the review are based on the order of citations in
descending order. A top-down and bottom-up approach is
used to build the key term corpus, organize technological
specifications, and create a domain ontology. The ontology
is enhanced iteratively every time a relevant key term is
identified.The ontology generated is tested and refined using
expert review. A patent search is executed using intellectual
property search interfaces on the web. Conventional analysis
transforms patent volume information into basic inferences
such as top assignees and patent codes.The cross-referencing
of these results helps validate the direction of research.
Further, the analysis uses a technology function matrix
(TFM) and latent Dirichlet allocation (LDA) to model IIT
patent groupings.

A TFM is a patent map that helps visualize quantita-
tive patent information with respect to the technical and
functional features in the patent landscape. TFM consists of
key technology terms on one axis and key function terms
on another. Normalized Term Frequency (NTF) values are
calculated for the key terms. The higher the NTF value, the
more important the term. A one hundred key term limit is
applied to each term library to ensure accuracy. The patent
text mining is executed where the frequencies of terms in
each patent are used to calculate the NTF value. The patent
document NTF vector is compared with the term libraries
NTF vector to determine if the patent belongs to a specific
technology or function and assigned to the corresponding
cell in the TF matrix.The final TFM is ready when all patents
in the patent dataset are fully iterated.

Topic modeling is a statistical approach for finding topics
that occur in an archived corpus. LDA is an unsupervised
algorithmic approach for proficient information examina-
tion [25]. Topic modeling is utilized widely in numerous
industries for different mining functions [26–32]. The results
are used to formulate business objectives and core strategies
where understanding patent dynamics are beneficial. LDA
application allows identification of current industry trends
and emerging applications useful for additional research and
commercialization. A consistency check is performed by
cross-referencing technology specifications with the patent
analytics results.

4. Immersive Technology Ontology
and Key Terminologies

Ontology is a collection of terms in a domain linked
to visualize properties, relationships, and associations. An
ontology structures domain knowledge, enables reuse of
domain knowledge, and makes domain assumptions explicit
[33].The technology review combinedwith expert evaluation
is used to generate the ontology represented in Figure 3.
Since many subtopics in VR and AR are highly correlated,
they are merged into one technology group. This approach
increases query performance and reduces redundancy.There
are some abbreviations commonly applied as the domain
terminologies. The following abbreviations used to represent
the ontology schema for IIT are shown in Figure 3:

(1) 3D: three-dimensional space
(2) EEG: electroencephalogram
(3) SBCI: self-paced brain-computer interface
(4) CNC: computer numerical control
(5) PLC: programmable logic controller.

The ontology represented in Figure 3 has immersive
technologies as the top most layer followed by VR, AR, and
BMI. Key terms that fall under each domain are arranged
alphabetically under each section. Knowledge from hetero-
geneous sources is combined to form a single schema for
a consolidated view. The key terms for VR and AR are
derived from [10, 13, 34–47]. The key terms for BMI are
derived from [17–20, 24, 48–52]. The key terms are prepro-
cessed to eliminate redundant values and are reviewed by
subject matter expert before ontology integration. Ontology
offers a perspective towards solving interoperability prob-
lems brought about by semantic obstacles [53]. The results
represent explicit knowledge contained within VR, AR, and
BMI domain types software applications within the industrial
andmanufacturing domain. Ontology validation is explained
in Sections 6, 7, 8, and 9 by cross-referencing patent and
technology analysis results.

5. Technology Review and Specifications

During the 1990s, many companies failed to deliver VR prod-
ucts and services to the marketplace. Nintendo Virtual Boy
was discontinued a year after market introduction [54]. The
increase in the processing power of computers has enabled
the current market success of immersive technologies. VR,
AR, and BMI are being introduced across a number ofmarket
channels that include industrial and consumer applications
[23]. The theoretical and methodological contributions and
current knowledge from IEEE and IET publications are used
to collect data for immersive technologies. IEEE and IET
databases represent the research of the broad scientific com-
munity along with tools to facilitate advanced search opti-
mization and downloads. The diverse coverage of research
journals, conference, eBooks, and technical standards helps
users collect data related to the current state of the art. The
search reflects the tabulated publication data. The 2010–2016
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Figure 3: Ontology schema of IIT.

dataset, row 2, Table 2, is used to derive the preliminary
background and inferences. The dataset from row 4, Table 2,
is used for the literature review and ontology generation for
IIT.

Literature classification requires a subject matter expert
(SME) to cluster the publication dataset as shown in Figure 4.

Publications belonging to the application group encapsu-
lates research of IIT integration for product/concept design,
robotics control, and equipment for manufacturing. Publi-
cations in the training group encapsulate research on pro-
fessional training systems for manufacturing, skill transfer,
and human resource development using 3D manipulators.
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Figure 4: SME classification results.

Table 2: Publication counts by categories (indicating R&D trends
and distributions).

Timeline VR AR BMI
2007–2016 5,277 4,903 1,138
2010–2016 1,034 1,524 320
2016 594 716 158
2007–2016 (industrial
specialization) 58 45 76

Publications in the case studies group encapsulate IIT stud-
ies conducted on industrial robotics, semiconductor chip
forming and breakages, perception mechanism for assembly
line environments, interaction with Computer-Aided Design
(CAD), and visual communication methods. Publications in
the hardware group encapsulate research on IIT customiza-
tions for motion capture devices, brain wave capture, cus-
tomized displays for vehicular environments, and specialized
head mounted displays. Publications in the simulation group
encapsulate research on escape vehicles, precision welding,
power cell production, and fixtures for grinding wheels.
Publications in the algorithm group encapsulate research for
feature extraction for EEG signals, correction of geometric
distortions, and genetic algorithms for structure optimiza-
tion. Publications in the review group consist of literature
reviews related to VR production lines in China. Publica-
tions in the software group encapsulate research on motion
tracking and eye positioning in VR displays. Publications
in the movement group encapsulate research on navigation
methods and kinesiology for human and robotics in IIT
environments. Publications in the interfacing technology

group encapsulate research for IIT interoperability for the
brain with 3D applications for hardware devices and software
platforms. Publications in the brain study group encapsulate
research on awheelchair, unmanned aircraft control, a virtual
avatar for gait adaptation, temporal perception usingVRneu-
rocognitive, and brain imaging for concussion assessment.

An overlap across topics such as VR, application,
research, and the interface is observed from manual review
and clustering. The overlap strengthens the assumption
(Figure 1) that Milgram’s reality-virtuality continuum is an
enabler for future industrial VR and AR products. The
following sections present a consolidation of key points from
literature and technological specifications. The dataset is
ordered by citations and time in descending order to ensure
maximum coverage of key technology specifications.

Technology analysts predict that immersive technologies
such as AR and BCI/BMI will be commercial successful
[23]. Immersive VR and AR are used to train pilots to
overcome fear of height as well as disorientation from flight
maneuvers. With the help of VR, scientists better visualize
models and comprehend chemical reactions with enhanced
visual details. Architects use VR to visualize and change the
angle of view of structures and simulate walking through
prototype buildings. VR also offers the potential formuseums
and art galleries to allow visitors greater access from remote
distances.TheVR computer is the portal for access to physical
experiences and visualization. The leading immersive frame-
works include Oculus Rift and Microsoft HoloLens. These
cost efficient applications have gained considerable market
share as Computer-Aided Design (CAD) interface solutions.
Immersive technologies enable designers and engineers to
collaborate on projects from multiple locations. Microsoft,
Apple, Samsung, HTC, Facebook, and Sony are leading
investors in these technologies [23]. Immersion, when com-
bined with the Internet of Things (IoT), promises a new
era of technologies for Industry 4.0 called the Internet of
Presence (IoP) or the Internet of Experience (IoE). The
SME classification results represented in Figure 4 show that
the application related literature has the highest number of
publications followed by training, case studies, and simu-
lations. The technology specifications from industrial VR
publications with high citation are provided in the following
paragraphs.

The industrial virtual reality literature shows that indus-
trial training has a high demand for innovation in higher
education. 3D visualization and computer hardware advance-
ments lead to a growing range of training materials. Com-
panies, professionals, and researchers are creating interactive
VR educational environments [36], such as theMathematical
Virtual Learning Environment (MAVLE) using VR [55].
The Microsoft Visual C++ programming platform has been
used to identify opportunities, reduce cost, and increase
competitiveness in many parts of the product development
life cycle [56]. A VR based aircraft carrier management
system for the French navy (GASPAR) demonstrates further
industrial VR’s capabilities. GASPAR simulates environment
modeling, procedure organization, and validation using VR
applications [57]. Virtual walk around for factories increases
productivity. Motion-capturing sensors record the user’s
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indoor movements and the algorithm digitizes these move-
ments for the virtual world. Virtual walk around reduces
health problems, decreases labor turnover, and reduces costs
[38]. VR manufacturing reduces costs and the time needed
to go from product concept to production. Advancements
in processing, optical visualization, power management, and
data sciences are making VR a viable solution for traditional
manufacturing and product realization [37, 58].

Industrial augmented reality literature has the highest
number of publications followed by case studies, hard-
ware customization for industrial machines, and movement
related studies. SME classifications show that all publications
with high citations are application related that support
industrial processes. Industrial AR is applied in areas such
as design, planning and production, abd service and main-
tenance. The German manufacturer Volkswagen has con-
tinuously worked on AR-based factory planning processes.
Volkswagens reports that AR system application increases
reliability [39]. AR applied in aeronautical maintenance
allows for the efficient transfer of knowledge by offering new
perspectives with dramatic improvements in maintenance
tasks [41]. AR applied in acceptance testing helps real-time
comparison planned for a given project.The comparisons are
realistic and use an expert heuristic for automatic validations
[42]. Operator safety in industrial material management and
processing is critical. AR systems deployed in radioactive
material processing can superimpose virtual digital models
onto video streams which increase the operator’s viewing
scope and decrease fatigue. The concept is validated by
superimposing radiation information on real data streams
[46].

The IIT brain interface literature is divided into invasive,
semi-invasive, and noninvasive classes. The industrial BMI
area is noninvasive-centered. SME classification shows that
noninvasive industrial BMI publications are concentrated in
the VR area, followed by algorithms and case studies. Top
citations are distributed across a spectrum of case studies,
simulations, mobility research, EEG research, monitoring,
software, algorithm, and hardware. Key points denoting
technology specifications are presented below. BCI as a
support system for video game control offers a new means
of navigation and interaction in 3D environments. The
interactions are supported by the noninvasive capture of
cerebral activity, recorded using EEG electrodes. This helps
to create a “think-and-play” user experience for games of the
future and has been successfully applied to robotics control
[18, 48]. Another widely used technology is called functional
magnetic resonance imaging (fMRI), a neuroimaging pro-
cedure based on magnetic resonance imaging. fMRI brain
activity is measured by detecting changes in blood flow.
fMRI technology results in higher activation and improves
task performance [51]. BCI in VR allows individuals to
interact directly with an environment rather than a computer
monitor ensuring higher immersion and interaction with
the computer [19]. BMI applications for wheelchair control
is a case analogous to driving a car. Motor execution and
motor imagery simulations indicate control and accuracy
[20, 49]. Technology specifications indicate the potential
for industrial brain interface applications for robotic arm

control. The future growth in the area requires collaboration
among physical scientists, neuroscientists, engineers, and
social and behavioral scientists [17]. Finally, the geographical
analysis of publication metadata indicates that China has
the largest number of publications in the area of industrial
VR and AR, followed by Germany. The USA has the largest
number of publications in the area of BMI/BCI research and
publications followed by Japan and Canada.

6. Patent Search and Statistical Analysis

The ontology represented in Figure 3 is used to generate
a search query for the Derwent Innovation (DI) system.
The DI system automatically converts the search query to
Boolean format. The DI search ensures an accurate and
broader set of data for analysis and inference generation.
The search scope includes patent databases from prominent
global manufacturing economies.The dataset is filtered using
a nine-year range from 2007 to 2016.

The ontology in Figure 3 represents the IIT hierarchy.
An ontology is a higher dimension visual representation
which needs dimensional reduction and simplification. The
ontology in this step is converted into a search query
that the DI patent search system uses as input to generate
the patent dataset. This conversion is carried out using
prior experience in patent search query optimization. High-
frequency words identified during the literature review are
subject to independent expert review. Table 3 represents the
key terms represented in the DI system input format: column
2 represents a topic, keyword filtering criteria, and scope
filtering while column 3 shows the generated Boolean search
query.

The result of the above queries is split into 2 categories
according to the derived ontology. VR and AR contain
1,995 patents in 629 Derwent world patents index (DWPI)
classification families and BMI contain 677 patents under 427
DWPI families. When analyzing patent data for landscaping,
data are assessed from a qualitative and a quantitative
perspective. Quantitative analysis is statistical and helps
determinemetrics and ratios.The quantitative information in
this section represents top assignees and international patent
classification (IPC) analysis for VR, AR, and BMI.

Table 4 presents a statistical meta-analysis that identifies
the top 10 assignees of technology in the field of IIT. Top
assignees analysis shows that Seiko Epson has the most
patents in the industrial VR and AR domain with 28 patents.
Seiko Epson is one of the largest Japanese owned imag-
ing related manufacturers, followed by Korea Electronics
Telecomm with 11 patents. LG Display and Hyundai Motor
have 10 patents each. From the technology specification
in Section 5, VR technology is extensively used in the
automotive industry [39]. The placement of Hyundai Motor
as the third is a cross-reference between literature review and
patent data analysis. Table 5 presents Samsung Electronics
as the largest assignee in the BMI area with 26 patents and
accounts for 15.76 percent of the market. Panasonic is the
next largest assignee with 13 patents. Thalmic labs has 13
patents and is the creator of wearable technology. Microsoft
has patents in VR, AR, and BMI. Microsoft holds 8 patents in
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Table 3: The search query key terms.

Number Key term Boolean format

(1)

Topic:
“Virtual reality” “VR” “Augmented reality” “AR” “Mixed
reality” “MR”
Filtering criteria: Title/Abstract/Claims:
“Advanced manufacturing” OR “Agile” OR “Assembly line” OR
“Control procedures” OR “CNC machining” OR “Capacity
planning” OR “Capital machinery acquisition” OR
“Compliance” OR “Distribution management” OR “Electronic
commerce” OR “Facility management” OR “Forecasting
budgeting” OR “Inventory management” OR “Logistics” OR
“Machine downtime” OR “Manufacturing” OR “Materials
management” OR “PLC machining” OR “Plant management”
OR “Preventative maintenance” OR “Process improvement” OR
“Procurement” OR “Product testing” OR “Production
management” OR “Production methodologies” OR “Production
scheduling” OR “Prototype design” OR “Purchasing” OR
“Quality assurance” OR “Retooling” OR “Safety” OR
“Warehouse”
Scope (Publication and application year):
(PY >= (2007) AND PY <= (2016)) OR (AY >= (2007) AND AY
<= (2016)

Query:
SSTO = (“Mixed Reality” “Augmented Reality”
“Virtual Reality”) AND TAB = (“Advanced
manufacturing” OR “Agile” OR “Assembly line” OR
“Control procedures” OR “CNC machining” OR
“Capacity planning” OR “Capital machinery
acquisition” OR “Compliance” OR “Distribution
management” OR “Electronic commerce” OR
“Facility management” OR “Forecasting budgeting”
OR “Inventory management” OR “Logistics” OR
“Machine downtime” OR “Manufacturing” OR
“Materials management” OR “PLC machining” OR
“Plant management” OR “Preventative maintenance”
OR “Process improvement” OR “Procurement” OR
“Product testing” OR “Production management” OR
“Production methodologies” OR “Production
scheduling” OR “Prototype design” OR “Purchasing”
OR “Quality assurance” OR “Retooling” OR “Safety”
OR “Warehouse”) AND (PY >= (2007) AND PY <=
(2016)) AND (AY >= (2007) AND AY <= (2016));

(2)

Topic:
“Brain machine interface” “BMI” “Brain computer interface”
“BCI”
Filtering criteria1: SSTO:
“Mixed reality” or “Augmented reality” or “Virtual reality”
Scope (Publication and application year):
(PY >= (2007) AND PY <= (2016)) OR (AY >= (2007) AND AY
<= (2016)

Query:
(SSTO = (“Brain machine interface” “BMI” “Brain
computer interface” “BCI”) AND (PY >= (2007) AND
PY <= (2016)) AND (AY >= (2007) AND AY <=
(2016)));
Sub query:
(SSTO = (“Mixed reality” “Augmented reality”
“Virtual reality”)

Table 4: Top assignees of VR and AR patents.

Assignee Patent count Percentage
Seiko Epson 28 22.58%
Korea Electronics
Telecomm 11 8.87%

LG Display 10 8.06%
Hyundai Motor 10 8.06%
BOE Technology Group 9 7.26%
Microsoft 8 6.45%
Denso 8 6.45%
Flextronics 5 4.03%
Essilor 5 4.03%
Sony 5 4.03%

VR and AR which represent around 6 percent of all patents.
Microsoft holds 8 patents in the BMI alongside extra 9
patents in brain interfacing technologies through its auxiliary
Microsoft Technology Licensing.

The top IPC classes for global VR, AR, and BMI utility
patents are shown in Table 6. There is an overlap between
VR, AR, and BMI in terms of IPC classes. IPC category
analysis shows the top three IPC in both categories are
G06F referencing electrical digital data processing. The
G06F subclass contains patents dealing with processing or

Table 5: Top assignees of BMI patents.

Assignee Patent count Percentage
Samsung Electronics 26 15.76%
Panasonic 13 7.88%
Thalmic Labs 13 7.88%
Morikawa Koji 11 6.67%
Matsushita Denki Sangyo 10 6.06%
Univ Tianjin 9 5.45%
Microsoft Technology
Licensing 9 5.45%

Microsoft 8 4.85%
French Alternative Energies
and Atomic Energy
Commission

7 4.24%

Advanced
Telecommunications
Research Institute
International

7 4.24%

transporting of data and data processing equipment such as
electric digital data processors. The G02B categorizes optics
and the subclasses contain patents dealing with lens or prisms
(an optical system designed to produce realistic images);
G06T categorizes imaging and subclasses containing patents
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Table 6: Top IPC classes and their patent counts.

IPC VR/AR BMI Content
G06F 983 414 Electric digital data processing
G02B 606 29 Optical elements, systems, apparatus
G06T 278 37 Computing, calculating, counting
G06Q 167 11 Data processing systems
H04N 146 27 Pictorial communication
B60K 86 0 Arrangements or mounting of units
G06K 76 38 Recognition of data
B60R 73 0 Vehicles, vehicle fittings
A61B 71 206 Diagnosis, surgery
G02F 69 0 Devices, arrangements

A61F 0 32 Prostheses, orthopedic, nursing appliances,
treatment or protection of eyes or ears

H04W 0 15 Wireless communication networks
G06N 0 18 Computer systems based on biological models

dealing with image acquisition, feedback, watermarking, and
compression. Table 6 shows that IPC classes A61B, H04W,
andG06Kare specialized for brain interfacing.TheA61B class
is focused on invasive and semi-invasive brain interfacing.
This class refers to diagnosis and surgery and its subclasses
deal with prostheses, orthopedic, nursing appliances, and
treatment or protection of eyes or ears. The H04W class
is focused on wireless communication needed for noninva-
sive interfacing with focus on protocols, connectivity, and
information. The G06N class deals with algorithms, plat-
forms, and architectures required for biological computing
[59].

An application on a year-by-year basis for VR and AR
patent domains shows exponential growth from the year
2014 with the publication counts of 339, 394, and 579 against
the application count of 118, 138, and 79 for years 2014, 2015,
and 2016. BMI patent data shows low volumes until 2014
with steady growth in patenting.There are a total of 81 grants
against 24 applications during the year 2016. This ratio is due
to a reduction in the cost of sensors, actuators, and controller
technology coupled with advanced manufacturing demand
[14].

A geographical patent distribution analysis shows China
companies as the leading assignees in industrial VR related
patents.This growth results frommobile platform companies
including Xiaomi, Huawei, Pico VR, Baofeng Mojing, and
Deepoon. Followed by the USA, Korea is in the 3rd place.
The US companies are the leading assignees in BMI mind-
machine interface (MMI) and direct neural interface (DNI)
patents. The US has a large number of industrial companies
and research centers for brain research combined with
governmental policies and incentives. The following sections
are text mining techniques applied to construct the TFM
and group patents based on LDA to map insights and the
inferences from IIT data set and external cross-references.

7. Patent Technology Function
Matrix Construction

A technology function matrix (TFM) is a unique approach
to patent data analytics. A patent map visualizes quantitative
patent information with respect to the technical and func-
tional features in the patent landscape [15]. A TF framework
consists of technology columns and function columns. The
conventional method of constructing a matrix is to read
the patent documents manually and fit them into a matrix.
IIT TFM uses text mining for a qualitative overview of
underlying IP dynamics. The TFM is constructed using the
ontology represented in Figure 3. The steps to generate
a TFM are presented as a flow chart in Figure 5. TFM
is constructed using VR, AR, and BMI technologies and
industrial engineering function key terms from the ontology.

The TFM construction uses the patent dataset and IIT
ontology as the primary input. The ontology is split for
technology and function term libraries. The TFM structure
is created with technology keywords related to immersive
building blocks assigned to the technology axis. Industrial
application functionality keywords are assigned to the func-
tion axis. Normalized Term Frequency (NTF) based text
mining terms are applied to extract the key terms represented
in

NTF (𝑎, 𝑏, 𝑛) = tf𝑎𝑏 ×
1

WN𝑏
× ∑
𝑛
𝑑=1WN𝑑
𝑛 . (1)

NTF(𝑎, 𝑏, 𝑛) is the multiplication of tf𝑎𝑏, the reciprocal of
WN𝑏, and the summation of WN𝑑 divided by 𝑛, where 𝑎
is one of the terms in all document collections, 𝑏 is one of
the documents in all document collections, 𝑛 is the total
number of all the document collections, tf𝑎𝑏 is the frequency
of term 𝑎 appearing in the document 𝑏, WN𝑏 is the total
number of words in document 𝑏, and ∑𝑛𝑑=1WN𝑑 is the
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each T or F and rank top
keywords for each patent
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and similarity
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Surpassing threshold

Patent data set
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Figure 5: TFM construction process.
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Figure 6: An example of TFM generation process.

total number of words in all document collections. Figure 6
is an example of the TFM generation process. The NTF
value of each word is the weighted value and a term library
comparison is made for each indicator for patents in the
IIT data set. The assumption is that patents with high-term
repetitions belong to a certain technology or function. The
degree of association between the patent and the term library
is represented by the sum of NTF value that appears in the
keywords of patent and term library simultaneously. Since
patent size influences term frequencies, matrix standardiza-
tion needs to be carried out on the total NTF value as shown
in

𝑍 = 𝑋 − 𝑋𝑆 . (2)

𝑋 is the dependent variable (NTF value),𝑋 is the population
mean, and 𝑆 is the population standard deviation. A threshold
value is applied to remove less relevant patents for a given
term. The threshold used is the third quartile value which is
themiddle value between themedian and the highest value of
the given dataset.The logic for assignment into the cell for the
TFM is to determine whether the words under each indicator
and the words below the patent match. If equal, the assigned
value for the cell is 1; otherwise, it is 0. The term comparison
table for each indicator with patents is constructed with a
summation value of each patent word NTF value under each
indicator term library. The keywords represent each patent
and each technology or function indicator. The summation
value is considered to be the similarity level between each
patent and each technology or function indicator. The patent
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Table 7: IIT technology function matrix.

Technology function matrix Functions
𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8 𝐹9 𝐹10 𝐹11 𝐹12 𝐹13 𝐹14 𝐹15 Total

Technology

3D 42 0 2 13 43 8 26 48 3 16 2 8 55 0 5 271
Augmented reality 76 9 7 18 124 26 99 94 6 59 11 30 134 1 8 702
Avatar 26 2 9 12 44 10 31 35 1 21 8 19 45 0 9 272
Brain computer 40 34 6 10 62 29 63 44 8 33 7 31 76 1 3 447
EEG 27 11 5 11 13 2 42 39 18 31 14 16 41 0 0 270
Electrode 1 2 0 0 1 0 2 0 0 0 0 1 0 0 0 7
Graphic 29 6 4 4 38 4 21 22 3 12 2 9 50 0 1 205
Immersive 33 2 9 15 44 12 39 62 13 18 13 13 49 0 7 329
Mixed Reality 12 0 0 1 16 3 11 14 0 4 0 2 13 0 0 76
Neurocognitive 0 1 0 2 3 2 1 1 0 3 0 0 2 0 2 17
Neuropsychological 25 7 9 13 30 11 39 37 7 36 7 17 41 5 3 287
Recognition 40 9 13 15 32 7 51 55 7 34 10 18 43 4 9 347
Sensor 54 26 12 24 69 14 107 93 40 60 19 33 101 0 1 653
Virtual reality 42 15 4 11 49 9 52 64 12 20 4 22 78 0 2 384
Wearable 16 3 5 2 52 2 32 20 2 14 2 1 43 0 1 195
Total 463 127 85 151 620 139 616 628 120 361 99 220 771 11 51

𝐹1: assembly line; 𝐹2: CNCmachining; 𝐹3: capital machinery; 𝐹4: distribution management; 𝐹5: electronic commerce; 𝐹6: facility management; 𝐹7: logistics;
𝐹8: manufacturing;𝐹9: preventativemaintenance;𝐹10: process improvement;𝐹11: product testing;𝐹12: productionmanagement;𝐹13: prototype design;𝐹14:
safety; 𝐹15: warehouse.

is then regarded as belonging to the set of functions or
the technology set. The results of the technology and the
function patent counts are computed independently and the
two matrices are multiplied to obtain the final TFM.

The IIT TF Matrix is presented in Table 7. TFM suggest
growth in AR, and sensors are favouring patenting across
industrial functional domains. Demands for a diverse array
of sensors in logistics and prototype design functions are
triggers for the growing volume of 653 patents in sensor
technology. The role of integration and convergence of
engineering tools, methods, and the need for processing in
the context of interfacing, brain-computer, and virtual reality
technologies occupies consecutive positionswith 447 and 384
patents. Compared to the sensor technology, there are fewer
patents for electrode technology which shows IIT favour-
ing noninvasive sensing methods, against invasive or semi-
invasive methods. Correlating the result of this TFMwith the
top IPC analysis presented in Section 6, it can be inferred
that optics, sensing, and processing are the most competitive
areas. Since there are fewer patents in the industrial safety
area this could be a future area of patenting expansion.
Optical sensing and processing are crucial elements for
immersive systems because human eye limitations for the
display are placed 3 to 4 cm away from the eye. Advancements
in optics will make lenses in immersive technologies more
human-friendly. A reduction in the number of core VR
patents can be seen from the TFM numbers. This represents
VR technology reaching maturity and leveraging technolo-
gies like AR and BMI. The finding further supports the
Milgram’s reality-virtuality continuum expansion hypotheses
proposed in Section 2. AR technologies progressive patenting
in prototyping, e-commerce, logistics, and manufacturing
design functions in the industrial ecosystem suggest the need

for future standardization research for sustainable industrial
interoperability.

8. LDA Patent Topic Modeling

LDA is a generative statistical model for topic modeling.
LDA is used in modeling descriptions for given documents
called topics [27, 30, 31]. LDA was initially introduced for
textual data modeling and uses words in a document. Topics
generated are based on the probability distribution of words
in a document compared to conventional stripped word
frequencies. The models assumption is that words carry
strong semantics information and documents with similar
topics will use similar groups of words. Hence, documents are
seen as a probability distribution over latent topics and topics
are probability distributions over words. LDA model has
been extended to various other applications such as semantic
annotation in satellite imaging, social media tagging, natural
language processing, object recognition, spam filtering, web-
mining, and fault identification [26–32]. LDA is chosen for
the probabilistic patent analysis because of prior application
and validation against various bag of words model and proof
of higher efficiency in unstructured literature data clustering
for systematic reviews [60].This section is an implementation
of LDA model using online method to model topics for IIT
patent data [61].

LDA is a generative model for sematic words of a
patent based on generic continuous latent parameters for
mixtures of hidden topics. Each topic is characterized by
words in vocabulary 𝑉 and represented with per word topic
distribution. Amixture of topics is used to represent a corpus
of a patent using its per topic patent distribution. Assume
that there are |𝑉| words in vocabulary 𝑉 and 𝐾 topics in the
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patent corpus 𝐷 with𝑀 patents. Let 𝑁𝑑=1,...,𝑀 represent the
number of words in the 𝑑th patent in corpus𝐷 and the prior
parameter vectors for Dirichlet distribution are 𝛼 and 𝜂. In
per topic patent distribution, let 𝑧𝑑,𝑛=1,...,𝑁𝑑 ∈ {1, . . . , 𝐾} be the
topic that the 𝑛th word in 𝑑th patent may belong and let 𝑧𝑑,𝑛
be amultinomial distributed randomvariable with parameter
vector 𝜃𝑑 ∈ (0, 1)𝐾 drawn fromDirichlet(𝜃𝑑;𝛼). Since a word
structure stands for a topic, per word topic distribution is
needed. For per word topic distribution, let 𝑤𝑑,𝑛=1,...,𝑁𝑑 ∈ 𝑉

be the 𝑛th word in 𝑑th patent and the word 𝑤𝑑,𝑛 may be
assigned to a topic, namely, 𝑧𝑑,𝑛. Since a topic is composed by
words, let 𝑤𝑑,𝑛 | 𝑧𝑑,𝑛 be a random variable with multinomial
distribution (𝛽𝑧𝑑,𝑛=𝑘), where 𝛽𝑘 ∈ (0, 1)|𝑉| is sampled from
Dirichlet(𝛽𝑘; 𝜂) [25]. The structure relation among the above
parameters of the model is represented in the plate notation
shown in Figure 7. The joint distribution of per word topic
and per topic patent distributions is described in

𝑃 (wd, zd, 𝜃d,Β;𝛼, 𝜂) =
𝑁𝑑

∏
𝑗=1

𝐾

∏
𝑘=1

𝑃(𝑤𝑑,𝑗 | 𝛽𝑧𝑑,𝑗=𝑘)Dirichlet (𝛽k; 𝜂) 𝑃 (𝑧𝑑,𝑗 | 𝜃𝑑)Dirichlet (𝜃𝑑;𝛼) , (3)

where Β is a matrix with dimension 𝐾 × |𝑉| spanned by row
vectors 𝛽k=1,...,K. Further, by integrating 𝜃1, . . . , 𝜃𝑀 and B, the
joint distribution in (3) is derived as (w, z;𝛼, 𝜂). Thereafter,
the prior parameter vectors 𝛼 and 𝜂 are approximated by
using the online method [61, 62]; the final patent topic
assignment is determined. For example, for a patent with 𝑁
words, to determine whether it contains latent topic 𝑘, (4) is
utilized. For any 𝜀 ∈ [0, 1],

𝐼𝑧=𝑘 (w) =
{{
{{
{

1,
𝑁

∑
𝑛=1

𝑃 (𝑤𝑛, 𝑧𝑛 = 𝑘;𝛼, 𝜂) > 𝜀

0, Otherwise.
(4)

The flowchart presented in Figure 8 gives an overview
of the steps involved in the LDA application. IIT patent
information from sections title, abstract, summary, and
claims is extracted, filtered by cleaning, preprocessing, and
normalization to form the patent data corpus. A document
termmatrix is then generated on which LDA object is trained
for term generation. A selection criterion is used to filter
terms of interest. Terms surpassing a minimum number of
patents are considered as resultant patent topics. Extracted
LDA topics are grouped and analyzed.

LDA application models the VR, AR, and BMI dataset
of 2,672 patents across 467 topics with an average of 22
patents per topic. Patent documents contain high volumes
of technological legal information that is subjective. The
automatic selection of the optimal number of topics to
represent the corpus in consideration is still a problem to
be solved. Since an insufficient number of topics render the
patent groups as too coarse, an excessive number of topics
are selected. Exhaustive subject matter expertise is further
used to make interpretations and validations. The subject
matter expert uses prior experience in the patent pooling
and licensing management area to determine the best fit. A
similar validation approach was applied in validating human
mobility region discovery using LDA [63]. An IPC class
code cross-verification is applied manually to further verify
the results obtained. The outcome demonstrates that while
topics with higher patent frequencies represent a broader
technological domain, topics with lower patent frequencies
represent very specific technological inventions. Further, 188

topics having comparative semantics are reduced to common
terms. The SME driven manual term reduction yields a
specific IIT patent topic dictionary (Table 8).

The reduced terms obtained from the analysis form
six groups. The optics group has an average of 36 patents
and contains patents related to inventions related to the
behavior of light and displays and its association with three-
dimensional planes in IIT context. The ownership summary
below provides a snapshot of termwise institutional holdings.
The summary encompasses sample technology based on
the analysis of details corresponding to the reduced terms.
Seiko Epson leads with patents for manufacturing light guide
devices, virtual image display apparatus, optical elements,
image display devices, and polarized light separation devices.
Denso and companies like LG, Samsung, Motorola, and
Qualcomm have patents in display apparatus and heads-up
display manufacturing. The hardware group is a collection of
physical components that constitute IIT including sensors,
actuators, circuits, and computation elements. The group
has an average of 26 patents. Top assignees vary in the
group depending on the subtopic term. Companies such as
BOE and LG have considerable presence in the hardware
level touch screen technology. Examples of inventions in
this group are the Korea Research Institute of Standards
and Science’s patenting in the elastic tactile sensors and
Samsung’s physical button display module. The software
group contains patents consisting of information, data, and
computer programs. The group has an average of 37 patents.
The Advanced Telecommunication Research Institute Inter-
national’s patent on brain information processing software,
Apple’s programmable tactile touch for interfacing, Baidu on
line network technology patent on transaction information
systems, and Guangdong Coagent Electronics gesture and
voice control systems are some grants in this group.

The interaction group contains patents relating to user’s
communicating with a system or other users. The group
has an average of 30 patents. BOE Technology patents are
in the wearable interaction technologies, Commissariat’s
patents are in neural control, and Ethicon Enco Surgery Inc.’s
patent targets eye glance guidance. General Motor, Huawei
Device, and Guangdong’s patents cover head mounted dis-
play interaction technology. Hyundai Motor Company’s
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Table 8: IIT patent topic dictionary.

Reduced
term

Average number
of patents LDA topic

Optics 36

3D, angle, beam, camera, capture, color, concave, crystal, curved, diffraction, direction,
display, disposition, film, frame, glass, grating, guide, haptic, laser, layer, lens, light,
medium, mirror, panel, photoresist, picture, piezoelectric, plate, portion, position,
projection, reflect, region, scene, screen, section, state, stereoscopic, surface, transparent,
video, visual, wave, waveguide

Hardware 26
Actuator, array, board, circuit, compute, connected, controller, EEG, electrode, EMG,
feedback, gate, infrared, network, platform, processing, robot, sensing, sensor,
transmission, wireless

Software 37
Access, activity, character, cloud, communication, configuration, content, data, detection,
driver, environment, filter, frequency, GPS, indication, information, key, mode,
navigation, operation, pattern, process, recognition, security, unlocking

Interaction 30

Biometric, biosignal, brainwave, button, capacitive, command, elastic,
electroencephalogram, gaze, gesture, glove, haptic, headup, helmet, HMD, holographic,
HUD, interface, menu, mobile, notification, phone, stimulus, tactile, terminal, touch,
wearable

Anatomy 23 Action, arm, biological, blood, body, brain, eye, face, finger, hand, head, neural, person,
physical, sensory, skin, stimulation, surgical

Industrial 17

Apparatus, assembly, component, coordinate, current, customization, dimension,
driving, effect, electric, fluid, force, grid, harness, housing, instrument, insulating,
intelligent, lighting, line, location, machine, management, manufacturing, marker, mass,
material, metric, motion, mounting, movement, operator, plane, portable, presentation,
product, safety, shell, shopping, simulation, structure, subsystem, support, temperature,
tool, training, vehicle, vibration, welding

 k wd,n

zd,n

d

Nd

M
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Figure 7: LDA algorithm process model.

patents present examples of patenting under the topic group.
The anatomy group contains patents related to the structure,
characteristics, and functions of human anatomy roles and
implication in IIT. Sensory feedback patents of AliphCom
and BOE Technology face motion-capturing method for
the head mounted display systems, the center of Human-
Centered Interaction for Coexistence patents related to

Document term matrix
generation

Patent data set

Selection
criteria

No

Yes

Discard term

Patent topics

LDA object creation

Topic term generation

Preprocessing

Figure 8: Flowchart for applying LDA algorithm in patent topic
generation.

mobile terminal and trainingmethod for a person, and finger
operation of a vehicle by Hyundai Motor Company. The
industrial group represents patents applied in the context
of industrial engineering including assembly, manufacturing,
welding, automobile, and tools. The group has an average
of 17 patents. The group contains patents related to self-
adaptive interaction systems by Anhui Agricultural Uni-
versity, three-dimensional GIS system by Beijing Huadian
Tianyi, intelligent lens rotation by Beijing Yunshi, and VR
welding education systems by Lincoln Global.
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Figure 9: IIT patent topic distribution of top countries.
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Figure 10: Evolutionary trends in IIT topics.

The leading country reduced term analysis can be ana-
lyzed using LDA. The results are represented graphically in
Figure 9. China has good topic coverage in the IIT domain
with an average distribution of 7 patents per topic, followed
by the USA, Korea, WIPO, and Japan with 6, 2, and 1
patents per topic. These findings are in line with Lexinnova’s
prior VR patent landscape analysis reports for geographical
coverage [22]. A comparative reduced term graph is shown
in Figure 7 and shows that the market leaders in IIT patent
representations have uniformly high patents followed by
followed by groups dealing with hardware, software, and
interactive optics.

Further evolutionary trends of topics over a period of
years from 2007 are calculated. Figure 10 demonstrates a
graphical layout of a topic trend across the reduced topic
spectrum. The evolution graph shows that patents related to
IIT software and interaction have dynamic progressive trends
since 2007. These reduced term groups show exponential
growth since the year 2011 with patent grants doubling
yearly. The topic evolution graph identifies the direction
of promising patents for frequent transfer transactions for

future industrial use. Technology transfer and licensing are
mechanisms for industrial collaboration and helps secure
advances in technology.

LDA asmodeling technique achieves a platform for a host
of patent analytics functions. LDA is a probabilistic, genera-
tive model, with patents grouped on top of LDA semantics.
Patent groups identified in this section promote technological
opportunity and identify areas of risk, opportunity within a
given technology area.

9. Standardization Outline and Future
Research Scope

Standardization is a systematic approach to propagate inno-
vation, interoperability, and knowledge [64]. The lack of
clarity in generic immersive technology standards limits the
rate of adaptation for designers and engineers [35]. Virtual
reality markup language (VRML) is one such standard. The
University of Kiel has created a tool for Volkswagen that
produces point clouds in VRML 2.0 format [39]. A report
on Devices and Radiological Health workshop in brain-
computer interfacing summarize the need for regulations,
privacy, and patient protection. Regulation deals with the
development of new tools, standards, and approaches to
assess the safety, efficiency, quality, and performance. The
need for creation of standards in engineering adhering to
establishedmedical standards ensures consistency in product
development and clinical trial design. The need for medical
device standards organizations, such as Association for the
Advancement of Medical Instrumentation in collaboration
with engineering associations such as Institute of Electrical
and Electronics Engineers (IEEE) and International Orga-
nization for Standardization (ISO), are needed to develop
BMI/BCI standards [65]. Patent data citation analytics play
an important role in standards outline mapping. Forward
citations (patents that cite a given patent), backward citations
(patents that a given patent cites), and nonpatent citation
analytics help determine essential patents via a citation map.
A preliminary forward citation analysis in the IIT patent
dataset reveals that USPTO patent in the BMI area with
patent ID US20090312817A1 published in the year 2009 by
Wicab has the highest count of citing patents with 136
citations. Wicab’s patent deals with systems and methods for
altering brain and body functions and for treatment. Patent
ID US20100238161A1 in the VR area refers to a computer-
aided system for 360∘ heads-up display published in the
year 2010 with 127 citations. Patent ID US20090273563A1
on programmable tactile touch screens has 115 citations. An
average citation analysis shows that industrial VR and AR
technology Japan’s semiconductor energy lab (SEL) has the
highest average citation.The companies’ 14 patents have been
cited 135 times giving it an average citation value of 9.64.
BMI’s InteraXon has key patents in the area of brainwave-
controlled computing technology and applications has 9
patents cited 58 times giving it an average citation value of
6.44. Since the immersive technology adoption pace in the
area of manufacturing depends on the creation of standards
and a broader range of licensable IPs, standardization outline
is an urgent requirement.



Complexity 15

Research findings show that immersive technologies in
manufacturing are reaching an inflection point. Industries
today approach new products by simulations and analy-
sis instead of assumptions or conjecture [38]. Technology
research firm Superdata predict VR reality will grow in areas
other than gaming.This report predicts that the initial growth
wave in VR related to the gaming themarket share will shrink
and social media, entertainment, automobile, aerospace, and
manufacturing will see exponential growth [41, 66]. Accord-
ing to latest WIPO IP Facts and Figures, 2016 consolidation
report that trademarks are the fastest growing segment with
27% growth in the past one year [59]. This research shows
that the volume of patents in each competitor segment has
grown exponentially in the past 12 to 18 months. This growth
curve shows similar characteristic as the smartphone growth
curve. Historically, such growth curves lead to litigation.
Thus, standardization for litigation avoidance and mitigation
along with trademarking is required.

10. Conclusions

This paper presents a systematic study of IIT for improving
manufacturing systems using collective intelligence.The idea
of “smart” factories is no longer a futuristic vision but a
commercial necessity. Independent publication, reports, and
white papers from leading manufacturers report a planning
reliability increase, higher shop floor utilization, and testing
outsourcing benefits achieved using immersive component’s
application such as VR and AR [37–39, 58]. Manufactur-
ing industries, however, lack confidence in new immersive
investments to upgrade their existing infrastructure due
to concerns of underlying market fragmentation and costs
involved. This research presented a novel review to the
problem of immersive inclusion using exploratory discovery
over a large corpus of unstructured technical literature and
patents. A collection of 179 publications and 2,672 patents
between years 2007 to 2016 is subjected to statistical, text
mining and probabilistic analysis. The key contributions
are outlined as an ontology for IIT and technology review
specifications presented in Sections 4 and 5. An organized
patent query generation method and preliminary statistical
analysis representing top assignees in each category, IPC
classes, the time evolution of patent publications, and geo-
graphical indicators are presented in Section 6. Section 7
presents word frequenciesmined technology functionmatrix
that allowed visualization of the technofunctional direction
and current industry trend. A probabilistic topic modeled
patent grouping is presented in Section 8 identifying topics
terms in underlying IIT spectrum. The results are validated
using subject matter expertise and cross-referencing with
external sources to further find associations and evolution
across geography and time. The algorithmic discussion and
simplification presented in this paper towards analytic ensure
transparency for IP professionals and industry practitioners
who usually find it hard to accept results of black-box
engines in generic landscape reports. An introduction to
future standards research using standard essential patents
and patent citation analytics is presented in Section 9. These
research maps and benchmarks prove the market potential

and growth benefits for embedding immersive technolo-
gies in advanced manufacturing. Industry 4.0 promises an
increase in efficiency, flexible resource management, and
the individualization of mass customization. The resulting
intelligent collaboration of all technical components pre-
sented involved in immersive technology spectrum has high
potential in advancedmanufacturing technologies and smart
factories for the realization of Industry 4.0 [22, 47, 67, 68].
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