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abstract. Labelled tableaux are extensions of semantic tableaux with

annotations (labels, indices) whose main function is to enrich the modal

object language with semantic elements. This paper consists of three parts.

In the first part we consider some options for labels: simple constant la-

bels vs labels with free variables, logic depended inference rules vs labels

manipulation based on a label algebra. In the second and third part we

concentrate on a particular labelled tableaux system called KEM using free

variable and a specialised label algebra. Specifically in the second part we

show how labelled tableaux (KEM) can account for different types of logics

(e.g., non-normal modal logics and conditional logics). In the third and fi-

nal part we investigate the relative complexity of labelled tableaux systems

and we show that the uses of KEM’s label algebra can lead to speed up on

proofs.
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1 Introduction

Since the seminal work by Fitch [12] labels have been widely used in modal
logic to simulate possible world semantics in the proof theory to improve,
simplify and speed up proofs. Usually the main function of labels is to “im-
port” or simulate semantic structures in the object language. Accordingly,
in semantic based proof methods (cf., among others, [32]), labels represent
possible worlds and accessibility relations (using sequences of atomic labels)
in Kripke models.

Semantic tableaux (cf., [35]) is one of the most common form of semantic
based proof procedures and, we believe, it offers the best format for the
use of labels. The basic idea is to supplement the object language with a
label language and a label algebra. The basic entities of labelled deductions
are labelled formulas, i.e., expressions of the form A : x, where x is a label
drawn form the label language, and A (the declarative unit) is a well-formed
formula of the logic at hand (cf., [14]). Intuitively the meaning of a labelled
formula such as A : x is that the declarative unit (A) is true at the world(s)
denoted be the label x.

The structure of the paper is as follows: in Section 2 we introduce the
formalism and we discuss some options to combine labels and tableaux. In
Section 3 we examine how to extend labelled tableaux to cover other logics
having possible world semantics, namely non-normal modal logic (modal
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logic where necessitation does not hold) and conditional logics. Finally in
Section 4 we investigate the relative complexity of two labelled tableaux
systems presented in Section 2 and we discuss the general issue for the
methodology to compare this kind of proof systems.

2 Labelled modal tableaux

As is well known semantic tableaux calculus is a refutation proof method1.
Therefore a proof of A is a failed attempt to provide a model for ¬A. A
tableaux for a formula A is a (binary) tree whose root is A : i0 where i0 is
the initial label, and the nodes are derived from previous nodes according to
the inference rules of the system. A branch is closed iff it contains a pair of
complementary formulas (the notion of complementary formulas may vary
from system to system), otherwise it is open; a tree is closed iff every branch
in it is closed. Finally a proof of A is a closed tree with root ¬A : i0. A tree
is complete iff every rule that can be applied has been applied.

A labelled modal tableaux systems is defined by the structure of labels
and the inference rules for analysing the formulas. In most systems (new)
labelled formulas are generated from previous formulas using inference rules
that closely resemble the semantic evaluation of the premises. Given the
semantic conditions, it is indeed possible that the conclusion of a premise
holds in a set of possible worlds instead of a single worlds; for example,
just consider the semantic clause for 2A which requires A to be true in all
worlds accessible from the world where 2A is currently evaluated. We have
two alternative ways for representing such conclusions using labels:

1. we can use ground labels and generate all possible/relevant instances
of such worlds;

2. we can use a label with a free-variable, where the variable is intended
to range over such worlds.

The second issue we have to tackle is how to represent the structure of
the model. Different modal logics determine different structures on Kripke
frames (or better, possible world frames in the general case). Again we have
multiple options.

1. We can define logic dependant inference rules assigning formulas to
existing labels or generating new labels and formulas (see Section 2.2
for examples).

2. We can use a single logic neutral inference rule for a modal operator,
make use of an explicit representation of the relevant semantics struc-
tures (e.g., the accessibility relation) and, then use an external mech-
anism to resolve and compute the semantic structure and propagate
the formulas to the labels accordingly. For example for a transitive

1For a comprehensive account of tableaux for modal logic we refer the reader to [17].
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logic one can have the following rules (see, among others [5, 16])

3A : w
A : w′

wRw′

w′ new on the branch
wRw′, w′Rw′′

wRw′′

3. For the last alternative, the option we are going to investigate in
the rest of the paper, we follow the previous case in so far as each
modal operator has a single inference rule common to all logics and
the various logics are differentiate by logic specific operations that
manipulates the labels. In other words every logic has its own label
‘algebra’.

In the rest of the section we are going to introduce a two label tableaux
systems, both using free variables, the first SST adopts the first strategy,
and the second KEM adopts the third strategy.

2.1 Label formalism
In this section we present the KEM label formalism. The formalism will also
be used for SST. In fact most of the differences between the formalisms of
the two systems are just notational ones, and the differences that are not
notational are not relevant for the present investigation.

KEM has two basic kinds of atomic labels: variables and constants. For-
mally, let ΦC = {w1, w2, . . . } and ΦV = {W1,W2, . . . } be two arbitrary sets
of atomic labels: the set of constant world-symbols (or simply constants) and
the set of variable world-symbols (or simply variables). A label is then an
element of the set of labels ℑ defined as follows:

DEFINITION 1. ℑ =
⋃

1≤p ℑp where ℑp is:

ℑ1 = ΦC ∪ ΦV
ℑ2 = ℑ1 × ΦC
ℑn+1 = ℑ1 ×ℑn, n > 1.

Thus, a label i is either a variable or a constant or a “structured” sequence
of atomic labels. For a structured label i = (k′, k) we have the following
cases: (i) k′ is an atomic world-symbol and (ii) k ∈ ΦC or k = (m′,m)
where (m′,m) is a label. As we have alluded to in the previous section, we
may think of constant and variable world-symbols as denoting respectively
worlds and sets of worlds in a standard Kripke setting. A label of the form
(k′, k) is called a “world-path”. For instance, the label (W1, w1) represents
a path from w1 to the set W1 of worlds accessible from w1; (w2, (W1, w1))
represents a path which takes us to a world w2 accessible by any world
accessible from w1 (i.e., accessible by the sub-path (W1, w1)) according to
the appropriate accessibility relation. Thus a label of the form (k′, k) is
“structurally” designed to record information about the accessibility rela-
tion when we move from a label (a world or a set of worlds) to another
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label. We define the length of a label i, ℓ(i), as the number of atomic labels
in i. From now on we shall use i, j, k, . . . to denote arbitrary labels.

DEFINITION 2. For a label i = (j, k), we shall call j the head and k the
body of i, and denote them by h(i) and b(i) respectively.

The notions of body and head are obviously recursive (they can be defined
as projection functions), and allow us to identify any sub-label of a given
label; thus, if b(i) denotes the body of i, then b(b(i)) will denote the body
of b(i), b(b(b(i))) will denote the body of b(b(i)), and so on. We call each of
b(i), b(b(i)), etc., a segment of i. Let s(i) denote any segment of i (obviously,
by definition every segment s(i) of a label i is a label); h(s(i)) will denote
the head of s(i). With sn(i) we will denote the segment of i of length n, i.e.,
sn(i) = s(i) such that ℓ(s(i)) = n. We shall use hn(i) as an abbreviation
for h(sn(i)). A label is restricted if its head is a constant, and unrestricted
otherwise.

DEFINITION 3. For any label i, ℓ(i) ≥ n, we define the countersegment-n
of i, as follows:

cn(i) = h(i)× (· · · × (hk(i)× (· · · × (hn+1(i), w0)))) for n < k < ℓ(i)

where w0 is a dummy label, i.e., a label not appearing in i (the context in
which such a notion is applied will tell us what w0 stands for).

If n = ℓ(i) we have that cn(i) = w0, and sn(i) = i.

EXAMPLE 4. If i = (w4, (W3, (w3, (W2, w1)))), then ℓ(i) = 5, h3(i) = w3,
s3(i) = (w3, (W2, w1)), and its countersegment-3 is c3(i) = (w4, (W3, w0));
intuitively cn(i), is what remains of i after deleting sn(i).

To clarify the notion of countersegment, which will be used frequently in
this work, we present, in the following table the list of the segments of i
in the left-hand column and the relative countersegments in the right-hand
column.

s1(i) = w1 c1(i) = (w4, (W3, (w3, (W2, w0))))

s2(i) = (W2, w1) c2(i) = (w4, (W3, (w3, w0)))

s3(i) = (w3, (W2, w1)) c3(i) = (w4, (W3, w0))

s4(i) = (W3, (w3, (W2, w1))) c4(i) = (w4, w0)

s5(i) = i c5(i) = w0

The dummy label w0 is considered as an atomic label, and it is used to
encapsulated complex labels into an atomic one.

We are now ready to introduce the two labelled tableaux systems.

2.2 Single step tableaux (SST)
Single Step Tableaux [27] originate from and add modularity to Fitting’s
prefix tableaux [13]. The free-variable version we shall focus on here has
been proposed by Beckert and Goré [7].
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The basic idea of SST is that (modal) formulas are used to move the
evaluation point to the “neighbourhood” of the labels they are associated
with, that is, each time we are allowed to move only one step apart. In other
words the information that can be extracted from a formula is propagated
only to the labels that the current label extends immediately or an are an
immediate extension of the current label.

SST has the following inference rules. For the presentation of the infer-
ence rules of SST, and subsequently of KEM we shall assume familiarity
with Smullyan-Fitting α, β, ν, π unifying notation [13]. For the proposi-
tional part we give only the rules for ∧.

A ∧B : i
A : i
B : i

(α-rules)

¬(A ∧B) : i
¬A : i | ¬B : i

(β-rules)

3A : i
A : (w⌈π⌉, i)

¬2A : i
¬A : (w⌈π⌉, i)

(π-rules)

where ⌈·⌉ is an arbitrary but fixed bijection from the set of formulas to N

2A : i
A : (Wn, i)

¬3A : i
¬A : (Wn, i)

(νD-rules)

2A : i
A : i

¬3A : i
A : i

(νT -rules)

2A : i
2A : (Wn, i)

¬3A : i
¬3A : (Wn, i)

(ν4-rules)

2A : i
2A : b(i)

¬3A : i
¬3A : b(i)

(ν4r -rules)

2A : i
A : b(i)

¬3A : i
¬A : b(i)

(νB-rules)

2A : i
2A : (Wn, h1(i))

¬3A : i
¬3A : (Wn, h1(i))

(ν5-rules)

In the above rules Wn must a be a new label, i.e., a label that does not
previously occur in the tableaux. The νD-rules are also known as the νK-
rules. SST has an additional mechanism to keep track of which labels are
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denoting, and the mechanism essentially differentiates between serial and
non-serial logics (see [7] for the details).

The α-, π-, and νD-rules are common to KEM and SST and the β-rules
are the usual branching rules of tableau methods. The νT -rules are the rules
specific to reflexive logics; the ν4-rules for the transitive logics; the ν4r -rules
and ν5-rules for Euclidean logics; and finally the νB-rules are the specific
rules for symmetric logics. The intuition behind these logic is that we ‘move’
a formula to a labels that is one single step (using the accessibility relation)
from the labels the formula in the antecedent is associated to. Thus for
the νB-rules the idea is that symmetry allows us to travel backward in the
accessibility relation. For the full list of characterisation of the fifteen basic
modal logics see [7].

The tableaux system for a logic is given by a combination of the above
rules. For example SST for S4 has the following (modal) rules: π, νD, νT
and ν4; and the symmetric and serial logic DB is characterised by the rules
π, νD and νB . The main consequence of n sets of ν-rule is that every time
we have a formula of type ν we have to introduce n new labelled formulas.

We say that two labelled formulas A : i and B : j are complementary in
SST when B = ¬A and there exists a substitution ρ which is a unifier of i
and j.

Let L be one of the fifteen basic modal logics. With ⊢SST(L) A we mean
that there is a close SST-tree for ¬A : w1; or, in other words, that SST
proves that A is a theorem of L.

THEOREM 5. ⊢SST(L) A iff �L A.

For the proof and for detailed accounts of SST see [7, 29].

2.3 KEM
KEM (see [18, 1, 20]) is a labelled analytic proof system based on a combi-
nation of tableau and natural deduction inference rules which allows for a
suitably restricted (“analytic”) application of the cut rule and a specialised,
yet modular, unification mechanism for the labels.

Unifications
In the course of proofs labels are manipulated in a way closely related to the
semantics of the logic under analysis. Labels are compared and matched
using a specialised logic dependent unification mechanism. The notion of
two labels i and j being unifiable means that the intersection of their deno-
tations is not empty and that we can “move” to such a set of worlds through
the path corresponding to the result of the unification of the two labels.

The definition of the unification appropriate for the various logics (or
logic unification) is carried out in several steps with the help of several
auxiliary notions of unification.

First we have to provide the foundation of our unification (σ-unification).
The basic unification is defined, as usual, in terms of a substitution, then
we use the basic unification to define the unifications corresponding to the
various modal axioms (axiom unifications); in the same way a modal logic
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is obtained by combining several axioms we combine the axiom unifications
in combined unification. Finally we apply, in a recursive way, the combined
unification to define the unification for the logic (logic unification).

Before presenting the formal machinery for the various unifications we
have to give the notation used for them. Let L be a modal logic, and
A1, . . . ,An be the axioms of L. With σAi we denote the unification for the
axiom Ai; with σA1...An the unification obtained from the combination of
the σAi-unifications; and with σL the unification for the logic L. Given two
labels i and j and a unification σ∗ we shall use [i, j]σ∗ to denote both the
result of the σ∗-unification of i and j, and the fact that i and j σ∗-unify.

DEFINITION 6. A substitution is a mapping ρ : ℑ1 → ℑ1 such that

ρ(i) =

{
i i ∈ ΦC
j otherwise

Accordingly we have that two atomic (“world”) labels i and j σ-unify iff
there is a substitution ρ such that ρ(i) = ρ(j). The notion of σ-unification
(or label unification) is extended to the case of composite labels (path labels)
as follows:

DEFINITION 7. Let i, j ∈ ℑ
[i, j]σ = k iff ∃ρ : h(k) = ρ(h(i)) = ρ(h(j)) and

b(k) = [b(i), b(j)]σ

Clearly σ is symmetric, i.e., [i, j]σ iff [j, i]σ . Moreover this definition of-
fers a flexible and powerful mechanism: in Section 3.1 we show that different
classes of modal logics (in particular classes of non-normal modal logics such
as regular and monotonic modal logics) are determined by conditions on the
underlying substitution but the axiom unifications can be left unchanged.
At the same time it allows for an independent computation of the elements
of the result of the unification, and variables can be freely renamed without
affecting the result of a unification.

Let A be a modal axiom. In general the “axiom” unification can be
described as follows:

[i, j]σA ⇐⇒ [fA(i), gA(j)]σ and CA

where fA and gA are given logic-dependent functions from labels to labels
and CA is a set of constraints.

We now give the axiom unifications for the axioms for the fifteen basic
normal modal logics2.

DEFINITION 8. Let i, j ∈ ℑ
[i, j]σK = [i, j]σ if at least one of i and j is restricted, and

∀n ≤ ℓ(i), [sn(i), sn(j)]σK

2For the full details and explanations of the unifications, see [15, 20].
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DEFINITION 9. Let i, j ∈ ℑ. [i, j]σD = [i, j]σ

EXAMPLE 10. For the difference between σK and σD, let us consider first
the labels

i = (w3, (W1, w1)) j = (W2, (w2, w1))

Obviously i and j σK- and σD-unify on (w3, (w2, w1)) with the substitution

ρ : W1 7→ w2, W2 7→ w3

On the other hand the labels

i = (w2, (W1, w1)) j = (W2, (W1, w1))

σD- but not σK-unify. This is due to the fact that both s2(t) and s2(s) are
variables, while in the definition of σK it is required that at least one of them
is a constant. The reason for this condition on σK is that the interpretation
of W1 is the set of worlds accessible from w1, but such a set may be empty
so the denotation of W1 would be empty; this is not the case with σD since
the corresponding accessibility relation is serial, so W1 cannot be empty.

To simplify the remaining definition of axiom unifications we introduce
the following notation: given two labels i and j (of different length), we use
ı̄ to denote the longest of the two and ̄ for the shortest of the two.

DEFINITION 11. Let i, j ∈ ℑ

[i, j]σT = [sℓ(̄)(i), j]σ if ∀n ≥ ℓ(̄), [hn(̄ı), h(̄))]σ = [h(̄ı), h(̄)]σ

DEFINITION 12. Let i, j ∈ ℑ

[i, j]σ4 = cℓ(̄)(̄ı) if h(̄) ∈ ΦV and w0 = [̄, sℓ(̄)(̄ı)]σ

DEFINITION 13. Let i, j ∈ ℑ

[i, j]σ5 =


([h(t), h(s)]σ ; c1(s2(t))) if ℓ(t) > 2, ℓ(s) > 1, h(t) ∈ ΦV , or

h(t) = h(s) ∈ ΦC
[t, s]σ if ℓ(t) = ℓ(s) = 2
([t, h(s)]σ ; c1(s2(s))) if ℓ(s) > 2, ℓ(t) > 1, h(s) ∈ ΦV , or

h(t) = h(s) ∈ ΦC

where w0 = [s1(t), s1(s)]σ .

For the unification for axiom B or σB-unification we first have to introduce
some auxiliary definitions and constructions. For a label i and an integer n
we define the sets of restricted and unrestricted segments longer that n.

Φi,nC = {sm(i) : m > n and hm(i) ∈ ΦC}
Φi,nV = {sm(i) : m > n and hm(i) ∈ ΦV }
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We can give now the key notion to be used in the definition of the σB-
unification.

DEFINITION 14. Given a label i and an integer n, i has the bmorphism
property for n iff there is a morphism η : Φi,nC 7→ Φi,nV such that

1. η is injective, and

2. if η(sk(i)) = sl(i), then k < l.

We are now ready to give the definition of σB-unification.

DEFINITION 15. Let i, j ∈ ℑ
[i, j]σB = [sℓ(̄)(̄ı), ̄]σ iff (1) ℓ(̄ı)− ℓ(̄) = 2n,(n > 0), and

(2) ı̄ has the bmorphism property for ℓ(̄).

According to the above definition labels like

(W1, (w2, w1)) w1

provide a simple instance of this unification. Intuitively W1 denotes the
set of worlds accessible from w2, but, since w2 is accessible from w1, so, by
symmetry, w1 is one of the world accessible from w2.

The key idea of σB-unification is to match world symbols laying an even
number of steps apart, where the number of steps is determined by the
sequences of variable and constants. In the above example the head of
the first label is a variable we can go back by two steps. In general every
constant must be compensated for by a variable following it.

EXAMPLE 16. Let us consider the labels

i = (W3, (W2, (w3, (W1, (w2, w1))))) j = (W4, w1)(1)

The labels i and j σB-unify since the difference of the lengths of the two
labels is even (ℓ(i) = 6 and ℓ(j) = 2); moreover s2(i) = (w2, w1) and j
σ-unify, and the restricted segment s4(i) can be mapped to the unrestricted
segment s5(i).

In similar way the labels

i = (W3, (w3, (W2, (w2, w1)))) j = w1(2)

σB-unify, with the injective morphism η that maps s2(i) to s3(i) and s4(i)
to s5(i). On the other hand the labels

i = (w3, (W1, (w2, w1))) j = (W2, w1)(3)

do not σB-unify since there is no (injective) morphism that satisfies condition
(2) of Definition 14.

Before introducing the main unification, the unification for the various
logics at hand we introduce the combined unification (or σA1...An-unification),
where A1 . . .An is the list of axioms defining a logic L.



96 Guido Governatori

DEFINITION 17. Let i, j ∈ ℑ

[i, j]σA1...An =


[i, j]σA1 or
...

[i, j]σAn

Finally we are ready to give the main unification for a logic L (or σL),
where the logic is defined by axioms A1 . . .An. This unification which will
be used within the inference rules.

DEFINITION 18. Let i, j ∈ ℑ

[i, j]σL =

{
[i, j]σA1...An or
[cn(i), cm(j)]σA1...An ∃n,m : 1 ≤ n ≤ ℓ(i), 1 ≤ m ≤ ℓ(j)

where w0 = [sn(i), sm(j)]σL.

Notice that σL has a recursive definition.

EXAMPLE 19. Let us consider the labels

i = (W2, (w2, w1)) j = (W3, (w3, w1))(4)

The two labels do not σB-unify, they have the same length and do not σD-
unify: the segments of length 2 are restricted and they have different heads
thus there is no substitution ρ such that ρ(w2) = ρ(w3). However, the two
labels σDB-unify. We use the following decompositions

c1(i) = (W2, (w2, w0)) s1(i) = w1

c3(j) = w0 s3(j) = (W3, (w2, w1)).

It is easy to see that [c1(i), c3(j)]σB = w0 and w0 = [s1(i), s3(j)]σB = w1.

When we consider the interpretation of the labels in (4) we have that i,
intuitively, denotes the set of worlds accessible from w2 which is accessible
from w1 and, similarly, the interpretation of j is the set of worlds accessible
from w3 which, in turn, is accessible from w1. Since the accessibility relation
is symmetric, w1 belongs to both interpretations; thus the denotations of i
and j have a non empty intersection and thus they labels hold unify. The
σDB-unification takes care of cases like this.

Inference rules

For the propositional part of KEM we exemplify only the rules for conjunc-
tion.

A ∧B : i
A : i
B : i

(α-rules)
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The α-rules are just the familiar linear branch-expansion rules of the tableau
method.

¬(A ∧B) : i
A : j

¬B : [i, j]σL

¬(A ∧B) : i
B : j

¬A : [i, j]σL
(β-rules)

The β-rules are nothing but natural inference patterns such as Modus Po-
nens, Modus Tollens and Disjunctive syllogism generalised to the modal
case. To apply such rules it is required that the labels of the premises unify
and the label of the conclusion is the result of their unification.

3A : i
A : (wn, i)

¬2A : i
¬A : (wn, i)

(π-rules)

where wn is new, that is, it does not occur in the tree.

2A : i
A : (Wn, i)

¬3A : i
¬A : (Wn, i)

(ν-rules)

where Wn is new.
ν- and π- rules allow us to expand labels according to the intended seman-

tics, where, with “new” we mean that the label does not occur previously
in the tree.

A : i | ¬A : i
(PB)

PB (the “Principle of Bivalence”) represents the semantic counterpart of the
cut rule of the sequent calculus (intuitive meaning: a formula A is either
true or false in any given world). PB is a zero-premise inference rule, so
in its unrestricted version it can be applied whenever we like. However, we
impose a restriction on its application. Then PB can be only applied w.r.t.
immediate sub-formulas of unanalysed β-formulas, that is β formulas for
which we have no immediate sub-formulas with the appropriate labels in
the branch (tree).

A : i
¬A : j
× [i, j]σL(PNC)

The rule PNC (Principle of Non-Contradiction) states that two labelled
formulas are σL-complementary when the two formulas are complementary
and their labels σL-unify.

Let L be one of the fifteen basic modal logics. With ⊢KEM(L) A we mean
that there is a close KEM-tree for ¬A : w1; or, in other words, that SST
proves that A is a theorem of L.

THEOREM 20. [15, 20] ⊢KEM(L) A iff �L A.
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3 Beyond basic modal logics

3.1 Non-normal modal logics
Normal modal logics are extensions of classical propositional logic with ax-
iom K (i.e., 2(A → B) → (2A → 2B)) and the necessitation rule (i.e.,
⊢ A/ ⊢ 2A). However, weaker extensions are possible, when we consider
the following rules to extend classical propositional logic:

⊢ A↔ B

⊢ 2A↔ 2B
(RE)

⊢ (A1 ∧ · · · ∧An)→ A

⊢ (2A1 ∧ · · · ∧2An)→ 2A
n ≥ 0(RK)

and, in particular, we shall consider

⊢ A
⊢ 2A

(RK, n = 0)(Nec)

⊢ A→ B

⊢ 2A→ 2B
(RK, n = 1)(RM)

⊢ (A ∧B)→ C

⊢ (2A ∧2B)→ 2C
(RK, n = 2)(RR)

We can now classify modal logics according to their deductive power.

DEFINITION 21. A modal logic L is classical iff it is closed under RE;
monotonic iff it is closed under RM; emphregular iff it is closed under RR;
normal iff it is closed under RK.

According to [9] the smallest classical logic is called E, the smallest regular
logic R, the smallest monotonic logic M, and the smallest normal logic K.

The semantics of non-normal modal logic is given in terms of neighbour-
hood semantics. A model is a structure

M = 〈W,N, v〉
where W is a set of possible worlds, N is a function from W to 22W

and v
is an evaluation function: v : WFF ×W 7→ {T, F}, where WFF is the set
of well-formed formulas.

Before providing the evaluation clauses for the formulas we need to define
the notion of truth set.

DEFINITION 22. Let M be a model and A be a formula. The truth set
of A wrt to M, ‖A‖M is thus defined: ‖A‖M = {w ∈W : v(A,w) = T} .

The evaluation clauses for atomic and boolean formulas are as usual while
those for modal operators are given below.

DEFINITION 23. Let w be a world inM = 〈W,N, v〉:
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1. w � 2A ⇐⇒ ‖A‖M ∈ Nw;

2. w � 3A ⇐⇒ W − ‖A‖M 6∈ Nw.

It is natural to add some conditions on the function N in neighbourhood
models. The conditions relevant for the present work are given in the fol-
lowing definition.

DEFINITION 24. Let M be a model. For every world w ∈ W and every
proposition A, and B.

(m) If ‖A‖ ∩ ‖B‖ ⊆ Nw, then ‖A‖ ∈ Nw and ‖B‖ ∈ Nw;

(c) If ‖A‖ ∈ Nw and ‖B‖ ∈ Nw, then ‖A‖ ∩ ‖B‖ ∈ Nw;

(n) W ∈ Nw.

According as the function N in a neighbourhood model satisfies condition
(m), (c), or (n), we shall say that the model is supplemented, is closed under
intersections, or contains the unit. When a model is both supplemented
and closed under intersections then we shall call it a quasi-filter ; when a
quasi-filter contains the unit it is a filter.

The conditions determining the minimal non-normal modal logics are as
follows:

1. E is characterised by the class of neighbourhood models;

2. M is characterised by the class of supplemented models;

3. R is characterised by the class of quasi-filters;

4. K is characterised by the class of filters.

From now on we shall use �L A to denote that A is valid in the class of
model characterising L.

KEM for non-normal modal logic

Here we illustrate how to modify KEM to capture monotonic and regular
modal logics. The required modifications involve the definition of substitu-
tion, Definition 6.

We shall denote the constants occurring in labels obtained as the result
of an unification with ∗, and we shall denote the set of such constants by
Φ∗C .

It is worth noting that the variables can be mapped on more than a
label in the course of a proof; imposing restrictions on the number of labels
a variable can be mapped to in the course of a proof makes us able to
characterise the classes of modal logics at hand. More precisely the world
substitutions for the classes of logics under analysis are:
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Monotonic logics

ρM : ΦV 7→ ℑbranch injective
1Φ∗C

The condition for monotonic logics states that a variable can be mapped to
a unique label in a branch of a KEM-proof, while constants are mapped to
themselves only if they are the result of a unification. It is worth noting that
it is possible to map a variable to different labels if they occur in distinct
branches.
Regular logics

ρR : ΦV 7→ ℑ
1Φ∗C

For regular logics the restriction on variables is released, while that on
constants still obtains.

THEOREM 25. [21] Let L be either M or R. ⊢KEM(L) A iff �L A.

Unfortunately at the moment it is not know whether it is possible to
capture classical modal logics by imposing similar restrictions to the sub-
stitution functions.

More on non-normal modal logics
Jones and Pörn [24, 25] defined a non-normal multi-modal deontic logic
where, semantically, the set of worlds accessible from a given world w is
partitioned into ideal and sub-ideal worlds: an accessible world is ideal if all
obligations in w are respected and sub-ideal if some of the obligations in w
are violated. In addition each world is either an ideal or a sub-ideal version
of itself.

First of all atomic labels are indexed with either d, s or nothing. Thus,
for example, (wd2 , w1) means that w2 is an ideal version of w1; (W s

1 , w1)
denotes the set of all subideal versions of w1, and (w2, w1) says that we do
not know if w2 is an ideal or subideal version of w1.

To accommodate the above conditions it is possible to define new infer-
ence rules operating on labels instead of the declarative units of labelled
formulas.

Exc

A : (W s, i)
A : (W d, j)

A : (W, [i, j]σJP)
LPNC

A : is

B : id
× LPB

A : is | B : id
i restricted

The above three rules give us that the set of worlds accessible from a given
is a partition. Exec tells us that if A holds in all ideal versions of a world as
well as in all subidal versions then it holds in all accessible worlds. LPNC
says that it is not possible to have a world that is at the same time an ideal
and a subideal ideal version of another world. Finally, the meaning of LPB
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is that the classes in a partition are mutually exclusive and so we can create
two mutually exclusive branches for our tableaux tree.

Ref

2A : i
¬A : j
2A : ks

¬A : ks

[i, j]σJP = k

Finally the Ref rules (reflexivity rules) allows us on detection of a violation
(i.e, we both have an obligation and the negation of the content of the
obligations with two labels that unify) to determine when a world is a
subideal version of itself. For a full account, we refer to [19, 4].

Labelled tableaux systems using the explicit representation of the acces-
sibility relation have been proposed for non-normal modal logic by [16].

3.2 Conditional logics
Conditional logics are extensions of classical logic with a binary intensional
operators, >, meant to represent hypothetical, conditional or counterfactual
reasoning [26, 31]. Different possible world semantics have been put forward
for conditional logics: the system of sphere semantics [26] and the selection
function semantics [31]. If one wants to use labels to mimic the semantics of
conditional logics, one has to chose the most appropriate semantics. Most of
the (labelled) tableaux systems for conditional logics assume the selection
function semantics, where a model M is a structure 〈W, f, v〉, where W
is a set of possible worlds, f is a selection function which picks for every
formula A a subset f(A,w) of W for each world w ∈W , and v is a valuation
function assigning to every formula A and w ∈W a boolean value. We refer
to f(A,w) as the set of A-worlds relative to w. The valuation condition for
a conditional formula A > B is as follows:

w � A > B iff f(A,w) ⊆ ‖B‖
Chellas [8] proposed the reading of a conditional operators as a parametrised
modal operator, that is A > B can be understood as [A]B. Based on this
reading it is possible to consider conditional logics as a type of multi-modal
logic and to use the idea of having different types of labels for each modal
operator. Accordingly, to cope with conditional logics, we extend the label
formalism, and atomic labels can be indexed by formulas. Hence we can
have labels as (WA

1 , w1), intuitively denoting the set of A-worlds relative to
the world denoted by w1 and (wB2 , w1) for a possible word in f(B,w1).

In general the unification for a conditional logic has the following struc-
ture:

[iY , jZ ]σ> = [i, j]σ

and for each ‘turning point’ (i′Y
′
, j′Z

′
) one of the following conditions (for

normal conditional logics) (i) Y ′ ≡ Z ′ or (ii) Y ′ ≡ ⊤ and h(i′) ∈ ΦV or (iii)
For the inference rules we have to consider that now formulas can occur

both in the declarative part of a labelled formula but also as index of a
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label. Thus the notation A@X : iY means that X is either Y or C. Based
on the intuition described so fare the inference rules for > are as follows:

A > B@X : iY

B : (WA
n , i

Y )

A > B@X : iY

A@X ′ : jA

A : (cℓ(j)−1)A
¬(A > B))X@iY

¬B : (wAn , iY )

The presence of two rules for the case of a positive conditional is due to the
fact that positive conditional behaves both as α and β formulas (according
to Smullyan classification). Notice that the β-version can be problematic in
some conditional logic.

In [2] we discuss the issues of the design of a labelled tableaux for con-
ditional logic (some of them are related to the fact that one has to begin
a new tableaux to check the equivalence of two formulas when computing
a unification), and in [3] we provided a sound and complete system for the
flat fragment of some particular logics. Pozzato and co-workers [33] used
and extended the ideas of [2, 3] to provide sequents and tableaux systems
for a larger class of conditional or conditional like logics. Priest [34], on
the other hand presented tableaux for conditional logics using the propa-
gation of fomulas based on the representation of the semantic structure in
first-order logic.

4 Relative complexity: the beauty of symmetry

In the last few years several comparisons (competitions) of theorem provers
for modal logic have been held (cf. [6, 28, 30]) and experimental research
has been carried out (cf. [23, 22]). Despite the potential interest for even-
tual applications, we believe that this kind of research provided little or no
insight on better theoretical architectures for modal theorem provers. Very
often the overall performance is heavily influenced by external factors, for
example, language specific optimisations of the implementation.

In this section we compare SST and KEM from a theoretical perspective.
This means that we do not consider implementation issues, but only logical
ones; moreover we are not interested in the propositional features and in
the interaction of modal operators and propositional connectives, but only
in the modal characteristics.

To prove that a proof system A is essentially better than a proof system
B we have to exhibit at least one formula (or a class of formulas) for which
A is better than B, and for all formulas A is not essentially worse than B.3

There are many distinct modal logics, and it is possible that results in a logic
do not apply to a different logic. Moreover A may cover some modal logics
which are not covered by B and the other way around. However, any general
purpose modal theorem prover should cover the basic fifteen normal modal
logics. Among them, some offer too simple modal structures while other lend
themselves to specialised optimisation procedures (in particular the logics

3We shall give a precise definition of what “better” and “worse” mean in this context
in Section 4.2.
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with a finite number of distinct modalities). In both cases, these logics
do not provide the best scenario to really test the theoretical architecture
behind a modal theorem prover. Therefore we have to identify a modal logic
with the following properties:

1. it is one of the basic fifteen normal modal logics;

2. the proof procedures are modular for both systems, that is, they are
the combination of the proof procedures of the single components of
the logic; and

3. there are no specialised proof procedures.

The basic normal modal logic DB satisfies the criteria listed above to be a
representative candidate to test the capability of a theorem prover for modal
logic. Moreover, due to some well-known difficulties [13], symmetric logics
lie outside most of the current modal theorem prover methods, though they
play an important role in different applications areas.

4.1 The complexity of KEM unifications for DB

To provide a comparison of the two methods at hand first we have to study
the complexity of the KEM unification procedure. We start by showing that
the unification of two world symbols can be computed in constant time.

LEMMA 26. The σ-unification of two world symbols w and w′ can be com-
puted in constant time.

Proof. It is immediate to see that the unification of two world symbols
requires at most three steps, and thus it has constant complexity. �

As we have seen the unification of two world symbols is just the first basic
step of the unification. The next step is the σ-unification of two labels; in
this case, we can prove that its complexity is linear in the length of the two
labels.

LEMMA 27. The σ-unification of two labels i and j can be computed in
linear time.

Proof. All we have to do is to see whether the word symbols in the two
labels stepwise unify.

Thus at the end we have to verify n unifications of world symbols, but
from Lemma 26, we know that the unification of world symbols can be
computed in constant time. Therefore the σ-unification of two labels can
be computed in linear time. �

The next unification we have to examine is the unification for the axiom
B.

LEMMA 28. The σB-unification of two labels i and j can be computed in
linear time.
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Proof. The computation of the σB-unification of two labels i and j can
be reduced to three sub-problems. (1) To compute the lengths of the two
labels and to determine whether the difference is even. This obviously can
be computed in linear time: all we have to do is to scan sequentially the
two labels. (2) To determine whether an injective morphism from Φı̄,ℓ(̄)C

to Φı̄,ℓ(̄)V exists. It is to implement a linear time algorithm that scans the
labels and increments or decrements a counter to verify that there is such
an injective morphism. (3) To compute [sℓ(̄)(̄ı), ̄]σ : by Lemma 27 the σ-
unification of two labels has linear complexity. Therefore the complexity of
σB is linear. �
Unfortunately we cannot prove such good complexity results for σDB; how-
ever, for special labels we can prove the following result.

LEMMA 29. The σDB-unification of two labels i and j such that ℓ(i) = 1
can be computed in quadratic time.

Proof. For a label j of length n there are n distinct segments and n distinct
countersegments, namely

cn(j) = w0 sn(j) = j

cn−1(j) = (hn(j), w0) sn−1(j) = b(j)

cn−2(j) = (hn(j), (hn−1(j), w0)) sn−2(j) = b(b(j))
...

...

Now we have to see whether i either σB- or σ-unifies with the counter-
segments and whether i σDB-unifies with the segments. Thus we have to
compute 2n linear unifications and n σDB-unifications. Let us examine the
first of these, i.e., [sn−1(j), i]σDB. This time the length of sn−1(j) is n− 1,
and thus we have n − 1 ways to split it in segments and countersegments.
That is:4

cn−1(cn−1(j)) = w0 sn−1(j) = b(j)

cn−2(cn−1(j)) = (hn−1(j), w0) sn−2(j) = b(b(j))
...

...

A close inspection shows that only the countersegments are different from
the previous step. Therefore we can repeat this process for all the segments
of j, and each time we can replace the σDB unification for the appropriate
segment of length m, with 2m linear unifications. Hence, at the end, the
number of linear unifications we have to compute is

2
n=ℓ(j)∑
n=1

n = O(n2)

which shows that the σDB-unification for the case at hand is quadratic. �
4Notice that for m ≤ n sm(sn(i)) = sm(i).
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4.2 KEM vs. SST

So far the standard way to compare the relative complexity of two proof
systems was given by the notion of p-simulation.

DEFINITION 30. A proof system A p-simulates a proof system B iff there
is a function g, computable in polynomial time, which maps derivations in
B for any given formula φ, to derivations in A for φ (cf. [10]).

The main problem with p-simulation is that it considers only proofs,
i.e., closed trees in tableaux terminology, and it says nothing about open
trees. While this notion is fully appropriate for semi-decidable logics and
non deterministic proof systems, it does not offer a good measure to com-
pare tableaux-like proof-systems for decidable modal propositional logics.
The main point is that this notion does not contemplate proof-procedures.
Modal tableaux proof-procedures, in effect, are systematic searches for mod-
els that make the initial formula true with respect to the initial world. In
this perspective modal tableaux can show that a formula is not a theorem by
showing that the negation of the formula is satisfiable. However, to show
that a formula is satisfiable we have to complete its tree. In general, to
complete a tree we have to explore the whole search space generated by the
formula.

Therefore, to obviate the above problem, we propose a stepwise simu-
lation. Here the main idea is that a proof system A stepwise simulates a
proof system B iff A does not perform any inference steps for which no
corresponding inference steps exist in B.

DEFINITION 31. A proof system A p-search-simulates a proof system B
iff there is a polynomial function g such that for any formula φ, g maps
derivations (trees) from φ in A to derivations (trees) from φ in B (cf. [11]).

Note that a stepwise simulation is independent of whether the considered
derivations (trees) are proofs or not.

We are now ready to present the main result of the paper. To prove it
we have to identify a formula (or a class of formulas) whose complete KEM-
tree is polynomial in the size of the formula while the complete SST-tree is
exponential in the size of the formula. Surprisingly the formula is extremely
simple, namely:

(5) p→ (23)np

As we shall see (5) involves only one propositional linear step and there
are no interaction between propositional connectives and modal operators.
Therefore the discriminant is only the way the two proof systems deal with
modal operators.

THEOREM 32. The length of the complete proof of p → (23)np in KEM
is O(n2).
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Proof.

1. ¬(p→ (23)np) : w1

2. p : w1

3. ¬(23)np : w1

4. ¬3(23)n−1p : (w2, w1)
5. ¬(23)n−1p : (W1, (w2, w1))

...
2n+ 3. ¬p : (Wn, (wn+1, (. . . , (W1, (w2, w1)) . . . )))

The initial formula, i.e., ¬(p→ (23)np) : w1, is of type α, then we expand
the tree with two nodes both labelled with w1: the first of such nodes (2)
consists of p which is atomic and does not need further investigations; the
second node (3) contains a formula of type π labelled with w1. From (3) we
obtain (4), which is of type ν. Applying the ν-rule on it, we get (5). We
repeat the above steps n− 1 times, for a total of 2n+ 3 steps (nodes).

At this point we have two complementary formulas, the formulas in (2)
and (2n+ 3). We have to verify whether the two labels σDB-unify.

From Lemma 29 we know that the complexity of the instance of σDB-
unification at hand is quadratic in the length of the labels involved, which
in turn, is linear in the size of the formula. Therefore the complexity of the
complete KEM-proof of p→ (23)np is 2n+ 3 +O(n2) = O(n2). �

THEOREM 33. The length of the complete proof of p→ (23)np in SST is
O(2n+1).

Proof.
1. ¬(p→ (23)np) : w1

2. p : w1

3. ¬(23)np : w1

4. ¬3(23)n−1p : (w2, w1)
5. ¬(23)n−1p : (W1, (w2, w1))
6. ¬(23)n−1p : w1

7. ¬3(23)n−2p : (w3, (W1, (w2, w1)))
8. ¬3(23)n−2p : (w3, w1)
9. ¬(23)n−2p : (W2, (w3, (W1, (w2, w1))))

10. ¬(23)n−2p : (w2, w1)
11. ¬(23)n−2p : (W2, (w3, w1))
12. ¬(23)n−2p : w1

...

The formula we start with (¬(p → (23)np) : w1) is of type α, and then
we obtain two formulas p : w1 and ¬(23)np : w1. At this point we have
an atomic formula and a formula of type π. We apply the π-rule on it
deriving ¬3(23)n−1p : (w2, w1). Now we have a formula of type ν, and
we have to apply both the ν-rule for D and B, thus we have to produce the
formulas ¬(23)n−1p : w1 and ¬(23)n−1p : (W1, (w2, w1)). These last two
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formulas are of type π, and from them we obtain ¬3(23)n−2p : (w3, w1)
and ¬3(23)n−2p : (w3, (W1, (w2, w1))); both formulas produce two new
formulas. It is then clear that each formula of type ν produces two new
formulas of less complexity, showing thus a geometrical progression; it is
then immediate to see that the formula determining the number of steps is

2
n∑

m=1

2m−1 + 2m = 2
(

2(n−1)+1 − 1
2− 1

)
+ 2n

= 2(2n − 1) + 2n

= 2n+1 + 2n − 2

thus the complexity of the complete proof of p→ (23)np in SST is O(2n+1).
�

It is true that there are shorter proofs for (5) in SST. However, if instead
of (5) we consider the formula

(6) p→ (23)nq

which is not a theorem of DB, then the search space for it is O(2n+1), since
(6) has the same modal structure as (5) and we have to explore the whole
search space before we can conclude that its negation has a model. This is
the reason why when we compare proof systems using p-search-simulation
we have to consider exhaustive proof-search procedures and worst-case sce-
narios.

THEOREM 34. SST cannot p-search-simulate KEM.

Proof. From Theorem 32 and Theorem 33 it follows that SST cannot p-
simulate KEM since the complexity of p → (23)np is O(2n+1) for SST,
while for KEM it is O(n2). �

Let us now examine the question whether KEM p-search-simulates SST or
whether the two systems cannot p-search-simulate each other. To show that
a system A p-search-simulates a system B we have to define a polynomial
procedure that transforms a tree for φ in A in a tree for φ in B for any
formula φ.

LEMMA 35. The rule νB is a derived rule in KEM, and it can be derived
in polynomial time.

Proof.
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We apply PB with respect to ν0, and with label b(i); in the right branch
we apply the ν rule and we obtain ν0 : (wn, i), but [b(i), (Wn, i)]σDB, and
thus the branch is closed. In particular it is possible to show that the labels
involved σB-unify, and we have seen (Lemma 28) that the σB-unification
can be computed in linear time. Therefore the derivation of νB has linear
complexity. �

Lemma 35 allows us to define a proof-search in KEM where we use both the
new derived ν-rule and the original ν-rules of KEM, and the unification is
restricted to σ. It is immediate to see that this proof procedure corresponds
to SST, and the components involved have linear complexity, we have thus
proved the following theorem.

THEOREM 36. KEM p-search-simulates SST.

Notice that the results above extends immediately to the ground version
of SST [27, 29] as well as to Fitting’s prefix tableaux [13].

5 Conclusions

Labels can be a very powerful tool for the design of (semantic based) de-
ductive systems. In this paper we have seen how labels can be used to
create tableaux system for a variety of logics amenable of possible world
semantics. In addition we have shown that the use of free-variable labels
with particular logic dependant label algebra can speed up the complexity
of modal tableaux.
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