
Theory Dec. (2015) 79:167–180
DOI 10.1007/s11238-014-9472-x

A preference model for choice subject to surprise

Simon Grant · John Quiggin

Published online: 14 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Grant and Quiggin (Econ Theo 54:717–755, 2013a, J Econ Behav Organ
93:17–31, 2013b) suggest that agents employ heuristics to constrain the set of acts
under consideration before applying standard decision theory, based on their restricted
model of the world to the remaining acts. The aim of this paper is to provide an
axiomatic foundation, and an associated representation theorem, for the preference
model proposed by Grant and Quiggin. The unawareness of the agent is encoded both
in the specification of the states and in an elaboration of the set of consequences.
We illustrate how the representation can be applied to rationalize two notions of the
precautionary principle that were proposed and discussed in Grant and Quiggin (J
Econ Behav Organ 93:17–31, 2013b).
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1 Introduction

VonNeumann andMorgenstern Neumann andMorgenstern (1947) and Savage (1954)
provided the foundations for the formal theory of decision under uncertainty. Von
Neumann and Morgenstern presented a simple set of axioms under which preferences
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over risky prospects (lotteries allocating prizeswith known objective probabilities) can
be represented by an expected utility functional. Savage addressed the more general
setting of representing preferences over acts, that is, mappings from a set of possible
states of the nature, without known objective probabilities, to a set of conceivable
consequences.

From the 1980s onwards, a variety of alternatives to, and generalizations of,
expected utility theory were proposed, including rank-dependent utility theory,
weighted utility theory, cumulative prospect theory, and maxmin expected utility the-
ory. These theories were motivated by the observation of violations of the predictions
of expected utility theory, such as the Allais problem (Allais 1953) and the Ellsberg
problem (Ellsberg 1961).

From the normative perspective of expected utility (EU) theory, the EU axioms are
implications of rationality, and non-EU representations of choice involve violations
of rationality. Nevertheless, in common with EU, all the generalized EU models dis-
cussed above require unbounded rationality, or at least unbounded reasoning capacity.
Individuals are presumed to consider all possible states of nature, and arbitrarily large
sets of acts.

In the Twenty-first century, research in decision theory has focused more and more
on the case of bounded rationality. Among the most important examples of bounded
rationality is the case where agents have only partial awareness of the set of states of
nature. A large literature has developed concerning the representation of unawareness.
Notable contributions include Halpern and Rêgo (2009) and Heifetz et al. (2006).
Schipper (2014) provides an extensive bibliography.

By contrast with the focus on epistemological problems, relatively little attention
has been paid to problems of decision under bounded awareness, as in Grant and
Quiggin (2013a).1 For some representations of unawareness, the problem is trivial.
If agents are naively unaware of their own unawareness, their preferences may be
represented by expected utility theory or one of its generalizations, applied to the
restricted representation of the world available to them.

More difficult problems arise when individuals are aware (for example, on the basis
of inductive reasoning) of their own unawareness. In this case, the naive approach of
maximizing expected utility with respect to a restricted representation of the world
is unappealing, and vulnerable to manipulation by other, more aware, agents. On the
other hand, any attempt to take unconsidered possibilities into account appears to run
into an insoluble paradox—if possibilities are taken into account in decision making,
they cannot be said to be unconsidered.

Grant and Quiggin (2013a, b) suggest that agents employ heuristics to constrain
the set of acts under consideration before applying standard decision theory, based on
their restricted model of the world to the remaining acts. An example, developed in
Grant and Quiggin (2013b) is the precautionary principle, commonly advocated as a
requirement for decision making in relation to environmental hazards.

The aim of this paper is to provide an axiomatic foundation, and an associated
representation theorem, for the preference model proposed by Grant and Quiggin.

1 Other attempts to axiomatize preferences of a decision-makers facing unawareness include Li (2008),
Schipper (2014), Karni and Vierø (2014) .
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The unawareness of the agent is encoded both in the specification of the states and in
an elaboration of the set of consequences. The state space includes both a standard
Savage state space and a set of ‘surprise’ states. The ‘standard’ set of consequences
(taken to be a closed bounded interval of ‘monetary’ consequences) is augmented by
two unforeseen consequences, one unfavorable and ranked below the worst possible
monetary consequence and the other favorable and ranked above the best possible
monetary consequence. Unforeseen consequences can arise only in surprise states.

The formal specification of the above framework appears in Sect. 2. We then
posit in Sect. 3 that the preferences restricted to those acts involving no unforeseen
consequences admit a Gul and Pesendorfer (2014) expected uncertain utility (EUU)
representation.2 We extend this to the entire set of acts by means of a three-cell
partition of the set of acts. The first cell of the partition comprises those acts the
decision-maker perceives to be subject to an unforeseen unfavorable surprise. The
second cell comprises those acts the decision-maker perceives to be subject to an
unforeseen favorable surprise but not subject to an unforeseen unfavorable surprise.
The third cell consists of acts for which the possibility of an unforeseen consequence
may be neglected. Our axioms ensure that all acts in the first (respectively, second)
cell are ranked below (respectively, above) those in the third.

To allow for the representation to represent the preferences of pairs of acts that reside
within the same cell of our three-cell partition of the acts, we define an operation that
maps any act into the set of acts with no unforeseen consequences by replacing any
occurrence of the unforeseen unfavorable (respectively, favorable) consequence with
the worst (respectively, best) possible monetary consequence. The resulting act is
thus one that is a member of the subset of acts involving no unforeseen consequences,
which is the domain of the EUU representation.We derive an associated representation
and illustrate how the representation can be applied to rationalize two notions of
the precautionary principle that were proposed and discussed in Grant and Quiggin
(2013b).

Section 4 offers some concluding comments.

2 Framework

We begin with an elaboration of the standard Savage framework by defining a triple
(Ω, C,F) consisting of a state space Ω, a consequence space C, and a set of acts F .

The non-standard features of the model arise from the specification of these elements
in a way that allows for both ‘surprises’ and ‘unforeseen’ consequences.

We take the state space to be a product space Ω = S × {0, 1}. The first component
corresponds to the standard way that Savage encodes everything a decision-maker
may be uncertain about. That is, S is a mutually exclusive set of descriptions of
the world leaving no relevant aspect undescribed that can be described. However,
because the decision-maker is cognizant of the fact that his understanding of the
world is incomplete (which in turn renders incomplete his description of the world as
embodied in S) we augment the Savage-style description s with a binary component.

2 This model is closely related to Jaffray’s (1989) preference model over belief functions.
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This binary component is 0 if the situation is one in which no surprises can arise,
and 1 if the situation allows for the possibility of surprise since it falls outside his
(necessarily) bounded understanding of the world. We refer to any augmented state
(s, 0) as a surprise-free state and any state (s, 1) as one that allows for the possibility
of surprise, including unforeseen consequences. We denote the set of surprise-free
states, S × {0}, by Ω0, and its complement, by Ω1. (That is, Ω1 = S × {1}).

The set of consequences is taken to be C =X ∪ {�,⊕}, where: X = [�,m] ⊆ R,
with � < m, is the set of (known) monetary consequences; and � (respectively, ⊕) is
a label for an unfavorable (respectively, favorable) unforeseen consequence that may
arise in the surprise event. The (strict) inequality ordering< is extended to X ∪{�,⊕}
by setting � < � and m < ⊕.

Let ΣS denote a σ -algebra of subsets of S. From this, we define the following two
σ -algebras of subsets of Ω . The first is the collection of events to which acts will be
adapted, and the second will turn out to be the subset of those events for which the
decision-maker is able to precisely quantify the likelihood.

Events Let E denote the smallest σ -algebra that contains all sets of the form A×{0}
and A × {1}, for some A ∈ ΣS .

M-Events Let Σ denote the smallest σ -algebra that contains all sets of the form
A × {0, 1}, for some A ∈ ΣS .

We take the set of acts F to be the subset of the mappings f : Ω → X ∪ {�,⊕},
that are adapted to E , and for which f (S × {0}) ⊂ X .3 We associate with any act
f ∈ F , the two functions f0 : S → X and f1 : S → X ∪ {�,⊕} defined by setting
f0 (s) := f (s, 0) and f1 (s) := (s, 1).
An act f ∈ F has no unforeseen consequences if f −1(X) = Ω . We denote by F̄

the set of acts with no unforeseen consequences.
An act f ∈ F is said to be surprise-free if f (s, 0) = f (s, 1), for all s ∈ S. We

denote by F̄0 the set of surprise-free acts.
Observe that F̄0 ⊂ F̄ ⊂ F .
Following common practice, we will abuse notation and let each x ∈ X denote

the constant act f in F for which f (ω) = x for all ω in Ω , as well as the constant
mappings f0, f1 : S → X for which f0 (s) = f1 (s) = x for all s in S.4

For any subset E ∈ Ω and any pair of acts f and f ′, let fE f ′ denote the act given
by

fE f ′ (ω) =
{
f (ω) if ω ∈ E
f ′ (ω) if ω /∈ E

.

3 That is, neither of the two unforeseen consequences,� and⊕, can occur if a surprise-free stateω ∈ S×{0}
obtains.
4 Note that, since f −1

0 (X) = S there are no constant acts f in F associated with the unforeseen conse-
quences �, ⊕.
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3 Preferences

The decision-maker’s preferences� are defined onF .We first impose conditions such
that these preferences restricted to acts forwhich there are no unforeseen consequences
(that is, to acts in F̄) conform to a special subclass of the Gul–Pesendorfer family of
expected uncertain utility functions.Moreover,when further restricted to acts forwhich
there are no surprises (that is, to acts in F̄0) they conform to subjective expected utility
theory.

3.1 Foreseen consequences

Gul and Pesendorfer (2014) axiomatize the class of expected uncertain utility func-
tions, which are characterized by:

(1) a prior, comprising a countably additive and non-atomic probability measure
defined over a σ -algebra of ideal events; and,

(2) an interval utility index defined over ‘intervals’ of consequences.

In Gul and Pesendorfer’s set-up, it is assumed the individual can quantify without
difficulty the likelihood of an ideal event. Intuitively, this is connected to the defining
property of ideal events, namely, they are ones for which Savage’s sure thing principle
holds.

Definition 1 (Ideal Events) A subset E ∈ E is ideal if for every pair of acts, f and g
in F̄ , f � gE f implies fE g � g. Let I denote the set of ideal events.

Hence, the restriction of her preferences to acts which are adapted to ideal events,
conforms to the standard model of subjective expected utility. When confronted with
acts that are not measurable with respect to ideal events, it is as if the individual forms
ideal lower and upper bounds, representing the range of possible outcomes implied
by the uncertainty that she cannot precisely quantify and then evaluates such an act by
its expected uncertain utility. As Gul–Pesendorfer demonstrate their model is flexible
enough to accommodate Allais-problems as well as Ellsberg-problems.

In our setting, however, the only feature of the uncertainty the individual perceives
to be unquantifiable is whether or not a ‘surprise’ will occur. That is, the set of ideal
events will be the collection of subsets Σ defined in Sect. 2. Hence for our application
of Gul and Pesendorfer’s model, the prior is defined on Σ . Thus, for any set A ∈ ΣS ,
the event A× {0, 1} is an ideal event (and hence admits a precise quantification under
the prior in the EUU representation). Neither A × {0} nor A × {1}, however, is ideal
and so the uncertainty of such events cannot be precisely quantified. Moreover, the
events S × {0} = Ω0 and S × {1} = Ω1 will turn out to be what Gul and Pesendorfer
dub “diffuse” since their likelihoods cannot be bounded by any ideal event, except,
trivally, by the universal event Ω (and any event the decision-maker judges to be just
as likely as the universal event) and by the empty set (and any event the decision-maker
views as “null”). Formally:

Definition 2 (Null Events) A subset E ∈ E is null if for every pair of acts, f and g in
F̄ , f ∼ gE f . Let N denote the set of null events.
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172 S. Grant, J. Quiggin

Definition 3 (Diffuse Events) A subset D ∈ E is diffuse if for any E ∈ I\N , E∩D �=
∅ and E ∩ (Ω\D) �= ∅. Let D denote the set of diffuse events.

That is, an event is diffuse if no non-null ideal event is contained in either that event
or its complement.

The unquantifiable uncertainty arising from the possibility of surprise (but pre-
cluding at this stage any possibility of unforeseen consequences) is accommodated
by an interval utility index. Formally, this is a function u : I → R, where
I = {[�′,m′] : � ≤ �′ ≤ m′ ≤ m}, that is, the set of closed intervals that are a subset
of [�,m]. Furthermore, it is monotonic in the sense that u

([
�′,m′]) ≥ u

([
�′′,m′′]),

whenever �′ ≥ �′′ and m′ ≥ m′′.
Our initial assumption has three parts. The first is that all events in Σ are ideal.

The second is that the set of states in which the decision-maker may be surprised is
diffuse. The last, is that the set of preferences restricted to acts that do not allow for
the possibility of unforeseen outcomes satisfy the six axioms of Gul and Pesendorfer
(2014).5

Axiom 1 (EUU over F̄)

(i) Every M-event E in Σ is ideal.
(ii) The set Ω1 is diffuse.
(iii) The preferences � restricted to F̄ satisfy Axioms 1–6 of Gul and Pesendorfer

(2014).

Our first result is a corollary of Gul and Pesendorfer’s (2014) representation theorem.

Theorem 1 The preferences � satisfy Axiom 1 if and only if there exists a countably
additive and non-atomic probability measure μ on Σ and an interval utility u such
that � restricted to F̄ admits a representation of the form:

V̄ ( f ) =
∫
S
u (min ( f0 (s) , f1 (s)) ,max ( f0 (s) , f1 (s))) μS (ds) ,

where μS is the marginal distribution on S obtained from μ.

We observe that the restriction of � to the set of surprise-free acts F̄0 admits a
standard subjective expected utility representation.

Lemma 1 If for each monetary consequence x in [�,m], we set v (x) := u (x, x),
then it follows that for � restricted to F̄0, we have V̄ ( f ) = ∫

S v ( f0 (s)) μS (ds).

Since Ω1 is a diffuse event, the decision-maker cannot quantify what is the prob-
ability a state that allows for the possibility of surprise will or will not obtain. More
precisely, if we define for any event A (not necessarily in Σ) the inner probability
μ∗ (A) and outer probability μ∗ (A) of A as follows:

μ∗ (A) = sup
E∈Σ,E⊂A

μ (E) and μ∗ (A) = inf
E∈Σ,E⊃A

μ (E) ,

then we have: μ∗ (Ω1) = μ (∅) = 0 and μ∗ (Ω1) = μ (Ω) = 1.

5 For the convenience of the reader we list these axioms in the appendix.
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3.2 Unforeseen consequences

Turning to acts that allow for the possibility of unforeseen consequences, our notion
that a decision-maker perceives an act to be subject to an unforeseen unfavorable
surprise is that the event in which the unfavorable unforeseen consequence � can
arise is not null.

Definition 4 An act f in F is deemed subject to an unforeseen unfavorable (uu)
surprise if f −1 (�) /∈ N .

Notice that the set f −1
1 (�)×{0, 1} is the ‘smallest’ ideal event (that is, is inΣ) that

contains f −1
1 (�). So for preferences that satisfy axiom 0 and thus whose restriction

to F̄ admits an EUU representation characterized by ((μ,Σ) , u), we have an act f

is subject to an unforeseen unfavorable (uu)surprise if and only if μ∗ (
f −1 (�)

) (
=

μ
(
f −1
1 (�) × {0, 1}

) )
> 0.

Similarly, for favorable unforeseen surprises we have:

Definition 5 An act f in F is deemed subject to a unforeseen favorable (uf) surprise
if f −1 (⊕) /∈ N .

Just as was the case for acts subject to unforeseen unfavorable surprises, for pref-
erences that satisfy axiom 0 and thus whose restriction to F̄ admits an EUU repre-
sentation characterized by ((μ,Σ) , u), we have an act f is subject to an unforeseen

favorable surprise (uf ) iff μ∗ (
f −1 (⊕)

) (
= μ

(
f −1
1 (⊕) × {0, 1}

) )
> 0.

Denote by Fuu (respectively, Fu f ) ⊂ F , the subset of acts that are subject to
unforeseen unfavorable (respectively, favorable) surprises. As foreshadowed in the
introduction above, we assume that any act in Fuu (respectively, Fu f − Fuu) is
ranked below (respectively, above) the constant act that yields � (respectively, m).

Axiom 2 The preferences � exhibit a strict aversion to unforeseen unfavorable sur-
prises if � � f , for every act f in Fuu .

Axiom 3 The preferences � exhibit a preference for unforeseen favorable surprises
if f � m, for any act f in Fu f − Fuu.

To express the final axiom and the representation theorem, it is convenient to define
the following operation that maps any act into the set F̄ by replacing any occurrence of
the unforeseen unfavorable consequence�with the worst foreseen consequence � and
correspondingly, replacing any occurrence of the unforeseen favorable consequence
⊕ with the best foreseen consequence m.

Definition 6 For any f in F , denote by f̄ the truncation of the act in F̄ given by

f̄ (ω) =
⎧⎨
⎩

f (ω) if f (ω) ∈ X
� if f (ω) = �
m if f (ω) = ⊕

.
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174 S. Grant, J. Quiggin

Notice that for any f in F̄ , since by definition f −1 (�) = f −1 (⊕) = ∅, it follows
by construction that f̄ = f .

The last axiom in conjunction with the other three axioms, which allows us to
interpret the preferences as rationalizing a two-stage decision procedure, in which
the first stage involves allocating each act into one of three ‘bins.’ The first contains
those acts not subject to unforeseen consequences; the second contains those acts
subject to unforeseen unfavorable surprises; and, the third contains the remaining acts
(that is, those subject to unforeseen favorable surprises and not subject to unforeseen
unfavorable surprises).

Axiom 2 tells us that any act in the first bin is ranked strictly above any act in the
second bin. Axiom 3 tells us that any in the third bin is ranked strictly above any act
in the first bin (and hence, by transitivity, strictly above any act in the second bin).

Our final axiom says that the preference between any pair of acts allocated to the
same ‘bin’ is governed by the preference between their respective ‘projections’ into
F̄ .

Axiom 4 The preferences � permit comparability of unforeseen surprises if for any
pair of acts f and g in F , any one of { f, g} ⊂ F − (Fuu ∪ Fu f

)
, { f, g} ⊂

Fuu or { f, g} ⊂ Fu f − Fuu holds,

f � g ⇔ f̄ � ḡ.

Putting all four axioms together delivers the following representation.

Theorem 2 (Representation Theorem) Suppose � is a binary relation on the acts
F . Then, the following are equivalent.

(i) The relation � satisfies Axioms 1–4.
(ii) There exists a countably additive and non-atomic probability measure μ on Σ

and an interval utility u, such that the relation � admits a representation of the
form:

V ( f ) =
⎧⎨
⎩
V̄

(
f̄
)

if μ∗ (
f −1 (�) ∪ f −1 (⊕)

) = 0
V̄

(
f̄
) − V (m) + V (�) if μ∗ (

f −1 (�)
)

> 0
V̄

(
f̄
)+ V (m)− V (�) if μ∗ (

f −1 (�)
)= 0& μ∗ (

f −1 (⊕)
)
>0,

where

V̄ ( f ) =
∫
S
u (min ( f0 (s) , f1 (s)) ,max ( f0 (s) , f1 (s))) μS (ds) ,

where μ∗ is the outer measure and μS is the marginal measure on S obtained
from μ.

The proof of the sufficiency of the axioms for the preferences to admit such a
representation appears in the appendix.

For necessity, first notice for a representation of the formgiven in (i i), any act placed
in the first bin is ranked strictly above any act in the second bin and strictly below any
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act in the third bin, notice by construction for any act f inF , V̄
(
f̄
) ∈ [

V̄ (�) , V̄ (m)
]
.

Hence for any three acts f, g, andh such that μ∗ (
f −1 (�) ∪ f −1 (⊕)

) = 0,
μ∗ (

g−1 (�)
)

> 0, μ∗ (
h−1 (⊕)

)
> 0 and μ∗ (

h−1 (�)
) = 0, we have

V ( f ) − V (g) = [
V̄

(
f̄
) − V̄ (ḡ)

] + [
V̄ (m) − V̄ (�)

]
> 0 ,

V (h) − V ( f ) = [
V̄

(
h̄
) − V̄

(
f̄
)] + [

V̄ (m) − V̄ (�)
]

> 0 .

Thus, for any act f :

(1) subject to an unforeseen unfavorable surprise (that is, μ∗ (
f −1 (�)

)
> 0) we

have V ( f ) < V (�), so Axiom 2 holds;
(2) subject to an unforeseen favorable surprise but not subject to an unforeseen

unfavorable surprise (that is, μ∗ (
f −1 (�)

) = 0 and μ∗ (
f −1 (⊕)

)
) we have

V ( f ) > V (m), so Axiom 3 holds.

Furthermore, for any pair of acts that reside in the same ‘bin’, their ranking is
determined by the evaluation of their respective truncations, so Axiom 4 holds. And
finally, since V (·), restricted to F is by construction an EUU representation, Axiom
1 holds.

3.3 Rationalizing precautionary principles

As an illustration of the scope of the preferences described here, we consider the
precautionary principle. This principle, most commonly presented as a guide to envi-
ronmental policy decisions, is widely used, but controversial and hard to define pre-
cisely. While no exact formulation of the principle has achieved unanimous support,
the precautionary principle has been widely advocated, the version adopted by the
Wingspread Conference (1998) is fairly representative:

Where an activity raises threats of harm to the environment or human health,
precautionary measures should be taken even if some cause and effect relation-
ships are not fully established scientifically. In this context, the proponent of an
activity, rather than the public, bears the burden of proof.

This idea has proved difficult to interpret in a decision-theoretic framework. As
Sunstein (2003) argues, strong versions of the principle appear to rule out any possible
option, since all activities raise some threat of harm. For example, regulation aimed
at mitigating health risks will normally involve economic costs and thereby limit the
resources available to address other health or environmental concerns. On the other
hand, weak versions commonly amount to little more than a restatement of standard
theory. For example, Gollier et al. (2000) interpret the precautionary principle in terms
the option value associated with waiting for further information. Since a complete risk
analysis should incorporate option values, this defence of the precautionary principle
amounts to the claim that, in practice, risk analyses are usually incomplete, and that
this error can be corrected by adoption of the precautionary principle.

Grant and Quiggin propose Strong and Modified versions of the Precautionary
Principle which lie between the extremes described above in the sense that the Strong
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version does not preclude all possible choices, while the Modified version rules out
some choices that might arise from a standard risk analysis based on the assumption
of full awareness.

Grant and Quiggin (2013b) argue that the Precautionary Principle may be under-
stood in terms of aversion to unforeseen unfavorable surprises, and that, in an inter-
active context, this interpretation naturally gives rise to a burden of proof on the
proponents of potentially hazardous activities. This presumption is not supposed to
be general. Rather it arises in the context of what Grant and Quiggin call ‘domains of
unfavorable surprises’ such as activities involving poorly understood environmental
or health risks. The converse category, ‘domains of favorable surprises’ is exemplified
by scientific research, where the whole rationale of the activity is to discover phe-
nomena that were previously unknown or that provide unexpected insights into poorly
understood problems.

In this section, we derive conditions on preferences of the class given by Theorem 2
which obey Strong and Weak versions of the Precautionary Principle. The Strong
Form considered here is essentially identical to that considered by Grant and Quiggin
(2013b). The Weak Form considered here differs in its formulation from the Modified
Form considered by Grant and Quiggin (2013b), which is presented in the context
of an extensive form-game and invokes the idea of a ‘fallback option.’ However, the
underlying intuition is the same as for the Weak Form considered here.

Suppose a DM faces the problem of choosing an act from a finite set of avail-
able acts B ⊂ F . If her choice is governed by a binary relation � represented by
a function V : F → R, we may express her problem as solving the constrained
optimization:

max
f ∈B

V ( f ) . (1)

The precautionary principle is often advocated in settingswhere not all risks arewell
understood. In such settings, precaution may be manifested by a heuristic restriction
attention to surprise-free choices.

Strong form of the precautionary principle: (SPP)

In choice problems for which there exists an option not subject to surprises (i.e.
B ∩ F̄0 �= ∅) choose such an option.

It is useful to consider this principle in relation to the critique offered by Sunstein.
Unlike the interpretations of the principle put forward and criticized by Sunstein, SPP
does not rule out activities that involve risk, as long as those risks are well defined
(in the sense that f ∈ F̄0) and the potential consequences are bounded (in our model
by the interval [�,m]). For ‘manageable’ risks of this kind a standard expected utility
analysis may be applied.

We shall consider the following domain of acts which we call the domain of unfa-
vorable surprises. An act in this class has the property that the outcome arising should
a surprise occur can be no better than what would have obtained if there was no
surprise.
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Definition 7 (Unfavorable Surprises) The domain of unfavorable surprises is taken
to be:

Fus = { f = ( f0, f1) ∈ F : f0 ≥ f1} .

Proposition 1 If V (.) takes the form given in the representation expressed in The-
orem 2 (ii), and the choice set is in the domain of unfavorable surprises B ⊂ Fus

then argmax f ∈B V ( f ) conforms to the strong form of the precautionary principle

whenever B − Fuu⊂ F̄0.

Proof First notice that B ∩ Fu f = ∅ since f0 ≥ f1 for all f ∈ Fus. So if B ∩ Fuu =
∅, then B ⊂ F̄0 and hence argmax f ∈B V ( f ) ⊂ F̄0, as required. So consider now the

case where B ∩ Fuu �= ∅. Let f 0 ∈ B ∩ F̄0 �= ∅. Applying the expression for the
representation in Theorem 2 (ii) we have, for any g ∈ B ∩ Fuu ,

V
(
f 0

)
− V (g) = V̄

(
f 0

)
− V̄ (ḡ) + V (m) − V (�)

= [V (m) − V (�)] −
[
V̄ (ḡ) − V̄

(
f 0

)]

> 0, since [V (m) − V (�)] >

∣∣∣V̄ (ḡ) − V̄
(
f 0

)∣∣∣ .
As Grant and Quiggin (2013b) note, choices that are too conservative and by pre-

cluding all options that are subject to surprises may lead to sub-optimal choices. In
particular, suppose that, although an act is subject to surprises, the outcome in the
event of a surprise can be bounded below by �, so that the unforeseen and unfavorable
consequence � is precluded. For options subject to surprise, the probability of events
contained in the interval [�,m] will, in general, be ambiguous. But the representation
in Theorem 2 (ii) incorporates attitudes to ambiguity, which allow for any degree of
ambiguity aversion, up to and including the polar case u

([
�′,m′]) = u

([
�′, �′]) . We

may define:

Weak form of the precautionary principle: (WPP)

Whenever there exist options without unforeseen consequences (i.e.,B∩F̄ �= ∅)
choose such an option.

Proposition 2 If V (.) takes the form given in the representation expressed in Theo-
rem 2 (ii), and the choice set is in the domain of unfavorable surprises B ⊂ Fus then
argmax f ∈B V ( f ) conforms to the weak form of the precautionary principle whenever

B ∩ F̄ �= ∅.

Proof Let f ∈ B ∩ F̄ �= ∅. Applying the expression for the representation in Theo-
rem 2(ii) we have, for any g ∈ B ∩ Fuu ,

V ( f ) − V (g) = V̄ ( f ) − V̄ (ḡ) + V (m) − V (�)

= [V (m) − V (�)] − [
V̄ (ḡ) − V̄ ( f )

]
> 0, since [V (m) − V (�)] >

∣∣V̄ (ḡ) − V̄ ( f )
∣∣ .
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In the contexts of domains of unfavorable surprises,WPP rules out acts that leave the
decision-maker exposed to the unbounded possible losses associated with unforeseen
adverse consequences. Any weaker principle would not have this property. Hence,
in such domains of unfavorable surprise, it seems sensible to impose the WPP as a
heuristic constraint.

4 Concluding comments

Standard models of decision under uncertainty require decision-makers to consider
all possible states of nature, and the consequences they yield for the acts under con-
sideration. The starting point is typically a representation theorem showing that given
conditions on choices are satisfied, if and only if preferences over all possible acts can
be represented by a functional of a particular form. To the extent that the given condi-
tions are considered normatively appealing, the associated choices may be regarded
as rationally justified.

In reality, no boundedly rational agent can consider all relevant possibilities, and
it is necessary to limit the set of states and consequences that are considered, leaving
the unconsidered elements of the problem as potential ‘surprises.’ It might be hoped
that there is some optimal way to choose the trade-off between the risk of surprises
and the effort involved in considering additional possibilities. However, this hope is
self-contradictory in two ways. First, the problem of choosing an optimal trade-off is a
decision problem and is therefore subject to the same problems of bounded rationality,
which implies the existence of an infinite regress. Second, andmore critically, the only
way to determining the optimality of considering additional possibilities is to estimate
the consequences of doing so, which in itself requires consideration of the acts in
question.

It follows that any choice procedure capable of being implemented by a boundedly
rational decision-maker must be imperfect from the perspective of an unboundedly
aware outside observer. At most, such procedures may be ecologically rational in the
sense of Goldstein and Gigerenzer (2002), Grant and Quiggin (2013a).

Nevertheless, it is possible to define a domain of choices that may be considered
by a boundedly rational decision-maker, and to impose conditions on those choices
sufficient to yield a representation theorem. In the present paper, we have applied
this approach to derive a version of the EUU model of Gul and Pesendorfer with an
augmented outcome space to accommodate unforeseen consequences.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

We list the six axioms presented in Gul and Pesendorfer (2014) adapted to the frame-
work we developed in Sect. 2.
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GP 1: The preferences � are complete and transitive.
GP 2: For any pair of acts f, g ∈ F̄ , f > g ⇒ f � g .

GP 3: yE∩Dx ∼ yE∩D′x , for any pair of outcomes x, y ∈ X , any ideal event E ∈ I ,

and any diffuse events D, D′ ∈ D.
GP 4: For any four outcomes x > y and w > z , and any pair of ideal events

E, E ′ ∈ I xE y � xE ′ y ⇒ wE z � wE ′ z .

GP 5: For any pair of acts f, g ∈ F̄0 that are finite-ranged, if f � g, then there exists
a finite partition of ideal events E1, . . . , En of Ω such that �Ei f � mEi g for
all i .

GP 6: Fix g, h, ( f n)∞n=1 ∈ F̄ . Suppose g � f n � h for all n. (i) If f n is finite-ranged
for all n and converges pointwise to f then g � f � h. (ii) If f n converges
uniformly to f then g � f � h.

As Gul and Pesendorfer (2014) note: GP 1 and 2 are standard ordering and
monotonicity assumptions; GP 3 embodies the intuition that the decision-maker can-
not use (non-null) ideal events to quantify the likelihood of diffuse events; GP 4 is
simply Savage’s comparative probability axiom (P4) applied to ideal events; GP 5 is
Savage’s small event continuity axiom (P6) applied to pairs of acts that are adapted to
ideal events, that in conjunction with Axiom 0 ensures that there are no atoms in Σ ;
and finally, GP 6 ensures both the countable additivity of the prior probability as well
as guaranteeing the continuity of the interval utility.

Proof of Theorem 2 Sufficiency of the axioms.Axiom 1(i) implies that all acts in F̄0
are adapted to ideal events. Hence for � restricted to F̄0, GP 1–6 yields a standard
expected utility representation with a countably additive probability measure μ and
continuous utility index v : X → R.

Since by Axiom 1(ii), Ω1 is diffuse, it follows that for any interval [x, y] ⊂ X we
can set u(x, y) = v(z)where z ∈ X is such that yΩ1x ∼ z. Axioms GP 2 and 6 ensure
that z ∈ [x, y] exists and therefore that u is well defined.

Fix an act f ∈ F̄ . A greatest lower bound of f that is measurable with respect to
Σ is given by: � f � (s, i) = min ( f0 (s) , f1 (s)). Similarly, a least upper bound of f
that is measurable with respect to Σ is given by: � f � (s, i) = max ( f0 (s) , f1 (s)).

Hence, applying the representation result of Gul and Pesendorfer (2014, Theorem
1, p5), it follows that

V ( f ) =
∫

u (� f � , � f �) dμ

=
∫
S
u (min ( f0 (s) , f1 (s)) ,max ( f0 (s) , f1 (s))) μS (ds) ,

as required. ��
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