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Abstract

     Suppose one has a system, the infinite set of positive integers, P, and one wants to study the characteristics of a subset 
(or subsystem) of that system, the infinite subset of odd positives, O, relative to the overall system. In mathematics, this is 
done by pairing off each odd with a positive, using a function such as O=2P+1.  This puts the odds in a one-to-one 
correspondence with the positives, thereby, showing that the subset of odds and the original set of positives are the same 
size, or have the same cardinality.  This counter-intuitive result ignores the “natural” relationship of one odd for every two 
positives in the sequence of positive integers, which would suggest that O is one-half the size of P.  However, in the set of 
axioms that constitute mathematics, it is considered valid.  Fair enough.  In the physical universe (i.e., the starting system), 
though, relationships between entities matter.  In biochemistry, if you start with an organism, say a rat, and you want to 
study its heart, you can do this by removing some heart cells and studying them in isolation in a cell culture system. But, the
results often differ compared to what occurs in the intact animal because studying the isolated cultured cells ignores the 
relationships in the intact body between the cells, the rest of the heart tissue and the rest of the rat.  In chemistry, if a copper 
atom were studied in isolation, it would never be known that copper atoms in bulk can conduct electricity because the atoms
share their electrons.  In physics, the relationships between inertial reference frames in relativity, and observer and observed
in quantum physics can't be ignored.  Relationships matter in the physical world, but the mathematics of infinite sets is still 
used to describe it.  Does this matter?  It seems to, at least in physics.  Infinities cause numerous problems in theoretical 
physics such as non-renormalizability and problems in unifying quantum mechanics and general relativity .  This suggests 
that the pairing off method and the mathematics of infinite sets based on it are analogous to a cell culture system or studying
a copper atom in isolation if they are used in studying the physical universe because they ignore the inherent relationships 
between entities. In the real, physical world, the natural, inherent, relationships between entities can't be ignored.  Said 
another way, the set of axioms that constitute abstract mathematics may be similar but not identical to the set of physical 
axioms by which the real, physical universe runs. This suggests that the results from abstract mathematics about infinities 
may not apply to or should be modified for use in physics.
 
Introduction

    Set theory is considered by many to be the theoretical foundation of mathematics (Bagaria,  2020), and the pairing-off 
method first developed by Cantor (1878) plays a major role in set theory.  The pairing-off method uses a bijective function 
that lets the elements of one set be put into a one-to-one correspondence with the elements of another set.  When the two 
sets whose elements form a one-to-one correspondence are infinite, the sets are said to have the same cardinality.  For 
example, consider the sequential set of positive integers, P={1,2,3...} to be the starting system to be studied, and a subset, O,
of P of the odd positive integers {1,3,5..} as the subsystem. We want to study the characteristics of subsystem O in its 
"natural milieu", P.  If one starts with set P, it can be shown that subset O can be put into a one-to-one correspondence with 
P using a function such as f(O)=2P+1, which means that these two sets have the same size, or cardinality.  The pairing-off 
method, however, ignores the natural relationship in set P of every odd being accompanied by an even, which suggests that 
subset O is one-half the size of P.  But, the pairing-off method is accepted in mathematics, and I do not question this result 
here.  However, the question discussed in this paper is whether or not this result and the mathematics of infinity in general 
are applicable to the physical sciences, specifically physics, where the natural relationships between components (or 
subsystems) are of major importance in determining the behavior of the system.  This question should not be brushed off 
lightly because infinities have indeed caused major problems in physics such as in uniting quantum mechanics with general 
relativity.  One physicist has even suggested that the field look for ways of doing away with infinite amounts (Tegmark, 
2015).
 
    To explore this question, this paper is structured as follows.  The first section illustrates the pairing-off method in 
mathematics and describes in more detail how its use ignores the natural relationships between numbers in a sequence.  The 



second section describes the importance of  relationships between systems and subsystems in the behavior of physical 
systems.  The third section discusses some specific problems with infinite amounts in physics and suggests that Cantor's 
pairing-off method and the abstract mathematics of infinities may need to be modified for use in this field.  Finally, these 
results will be summarized in a short conclusion.

Infinite set (system)-infinite subset (subsystem) size comparison in abstract mathematics

    As described above, Cantor's pairing-off method uses a bijective function that puts the elements of one set into a one-to-
one correspondence with the elements of another set.  If a one-to-one correspondence can be established between two 
infinite sets, they are said to have the same cardinality.  As an example, suppose one starts with the system that is the 
infinite, sequential set of all positive integers, P {1,2,3,4,5...}, and you want to compare the size of the infinite subset, or 
subsystem, of odd positive integers, O  {1,3,5...}, with P.  Furthermore, you want this size comparison to reflect the 
situation within the "natural milieu" of the sequential set P.  This can be be done by using a bijective function such as  
O=2P+1.  Use of this  function shows that there is a one-to-one correspondence between each odd and each positive integer 
as follows:

If P=1, the odd integer is 3    (gap between P and O = 2)
If P=2, the odd integer is 5    (gap between P and O = 3)
If P=3, the odd integer is 7    (gap between P and O = 4)
If P=4, the odd integer is 9    (gap between P and O = 5)
...

    As can be seen, the gap between the positive integer and its corresponding odd integer keeps getting larger.  However, 
because these are both countably infinite sets, this one-to-one correspondence can keep going forever, thereby showing that 
the sets are of the same size or cardinality.  One might object and say that this thought experiment-derived result ignores the
inherent, “natural” relationship in the starting set of positive integers of one odd positive integer for every two integers (i.e., 
(1,2), (3,4), (5,6), (7,8), (9,10)...) and therefore may create experimental artifacts.  While the author agrees, it is considered 
by all mathematicians to be valid within the set of axioms that constitute abstract mathematics.  Fair enough.  But, as shown 
in the next section, ignoring relationships naturally and inherently present between components of a system in the sciences 
is a recipe for creating results that don't reflect reality.   That is, it is a recipe for producing experimental artifacts.

Subsystem-system and system-system relationships in the real, physical universe

    In the physical universe, system-subsystem and system-system relationships are of critical importance, and ignoring them
in experiments can cause incorrect results, or experimental artifacts.  This is true in all the sciences.  Two common sense 
examples are as follows.  In chemistry, if one were to study a single copper metal atom in isolation, one might think that  
copper cannot conduct electricity.  However, this would be an experimental artifact because it is well known that copper in 
bulk, such as in a wire, does conduct electricity. This is because relationships between neighboring copper atoms let them 
share their electrons, which allows the electrons to flow more freely when a voltage is applied to the metal.  In botany, if 
someone interested in the growth of a plant in a jungle grew this plant in the laboratory, the results would likely be different 
than the growth of that plant in its native forest environment where interactions with other plants, the weather, etc. affect 
plant growth. Thus, system-subsystem relationships cannot be overlooked in these chemistry and botany examples.

    This also goes for fundamental physics.  In special relativity, for instance, the length of an object or the rate of time's 
passage in inertial reference frame A as seen by an observer in inertial reference frame B will change depending on the 
velocity of A relative to B (Elani, 2020).  Obviously, the relationship of one physical reference frame to another is of 
physical importance, and ignoring it can produce incorrect results.  Furthermore, in the commonly accepted Copenhagen 
interpretation of quantum mechanics, the observer-observed relationship is of great importance.  The observer or measuring 
apparatus interacts with and can affect the observed (Faye, 2019) which suggests that these two parts of the universe are 
physically related.  Finally, the demonstration of seemingly instantaneous, or non-local, interactions between entities that 
once were close together but are now far apart (reviewed in Berkovitz, 2016) suggests an intimate and instantaneous 
relationship between these entangled systems even if they are separated.

    The importance of system-subsystem and system-system relationships in the physical universe are also demonstrated by 
the presence of experimental artifacts or biases when these relationships are ignored.  For instance, physics employs 



extensive use of advanced mathematics and computer simulations, which often require that a part of the system being 
studied is simplified, or “idealized”, to simplify the mathematics or reduce computational demands.  It is argued that this 
idealization and simplification is analogous to ignoring significant aspects of the subsystem-system interaction, just as the 
cell culture system does in biology, and can lead to artifacts.  Indeed, such idealization-related artifacts are widely known in 
general relativity, cosmology and astrophysics (Barausse et al., 2021; Gueguen, 2019), condensed matter physics 
(Langmann, 2019; Savin, 2016, Walet,  N. R. and Moore, M.A., 2013) and many other specialties in physics.    

    Beyond chemistry and physics, relationships between subsystems and their parent systems are of fundamental importance
in biology as well.  For instance, if one wants to study the function of heart cells, a common experimental method for doing 
this is to  remove the heart from the organism, and then separate out the different kinds of cells from the heart.  The cells of 
interest are then cultured in Petri dishes and studied in this in vitro, or "non-physiological" (outside the whole organism) 
setting.  However, while very valuable, it is widely known that the results in cell culture are often different than what occurs
in the intact organism (Vertrees, 2009) because studying the cells in culture ignores the relationships in the intact body 
between the heart cells, the rest of the heart tissue, the rest of the organism and the environment.  It also introduces 
conditions not present in the natural system (Pamies and Hartung, 2017).  This results in experimental artifacts, which are 
experimental results that don't occur in the original system but are instead due to the experimental method used.  Biologists 
always know that the experimental results found from studying something in vitro in cell culture are not necessarily 
representative of what occurs in the whole organism and must therefore be confirmed in the whole organism.  In sum, the 
physical relationships between one part of a system and the overall system from which it came cannot be ignored in biology.

    System-system relationships are also of critical importance in biology.  For example, as one of the main centers of 
metabolism in the body, the liver affects and interacts with many other organ systems. Insulin, produced by the pancreas, 
travels through the blood and affects glucose uptake by muscle and fat tissue.  Pheromones produced by one animal affect 
the behavior of other animals.  Plants, animals and microbes all interact with each other and the environment within an 
ecosystem.  To ignore relationships between neighboring or communicating systems in biology is the same as not fully 
understanding how biological systems function.

     In sum, it seems clear that system-subsystem and system-system relationships are of key importance and cannot be 
overlooked in the real, physical universe and that removal of a subsystem from a system drastically alters the results 
compared to the overall system-subsystem whole.  

Do the abstract mathematical axioms about infinite sets and infinities cause problems in studies 
of the real, physical universe?

    As described above, system-subsystem relationships can be ignored in the pairing-off method in the mathematics of 
infinities, but they cannot be ignored in the real, physical universe without the risk of producing incorrect results.  Nor can 
the relationships between neighboring systems be ignored. Physics is the study of the real, physical universe, and 
mathematics is used extensively in physics.  So, should the abstract mathematical results about infinite sets and infinities, 
with their built-in ignoring of the relationships in a sequence of numbers, really be used without change in physics?  I 
suggest the answer is no and that their use may need to be modified for studies in physics.  

   That theoretical physics has problems with infinities and infinitesimals  is widely recognized.  One of the earliest of these 
problems is, of course, Zeno's Paradoxes of motion. One of these, the Dichotomy Paradox, suggests that motion is 
impossible because for someone to move from point A to B requires that they always first have to move halfway from 
where they were to where they're going.  This process continues forever, making movement of any distance impossible 
(reviewed in Huggett, 2019). The most common solution is that motion only occurs over unit-sized, or finite, distances 
(Cote, 2013) and times (Huggett, 2019).  But, this seems to be contrary to the requirement for continuous space in relativity 
(Dowker, 2014).  So, solutions to Zeno's Paradoxes seem to conflict with relativity.  Problems with infinities in classical 
physics have been discussed by Van Bendegem (1992).  More relevant to modern physics is that infinities are abundant in 
quantum field theory and necessitate the troublesome renormalization technique to remove them (Nicolai, 2009).  While this
is now accepted, general relativity and, therefore, quantum gravity are non-renormalizable (Doboszewski and Linnemann,  
2018; Hossenfelder, 2013).  Another issue with infinities is the non-renormalizability of inflationary cosmology (Fumagalli,
J. et al., 2020).  The problems with infinities in physics is such that Tegmark even suggests that physicists look for ways of 
doing away with them (Tegmark, 2015).   

    Mathematics is the language of physics.  However, the above results make it seem possible that the use of the 



mathematics of infinities may cause problems and incorrect results and that their use should be modified in fundamental 
physics.

Conclusions

    System-subsystem relationships may be ignorable in the set of axioms that constitute abstract mathematics as described 
above for the pairing-off method applied to the positive integers, but the evidence presented here makes it clear that neither 
they nor system-system relationships can be overlooked in the real, physical universe., and if they are, this can cause 
incorrect results.  Indeed, the mathematics of infinities are widely known to cause problems in modern theoretical physics.  
This suggests that at least in the most fundamental of sciences, physics, the use of the pairing-off method and the 
mathematics of infinities may need to be modified.  

    An objection to this argument might be that physics has made great progress while using the mathematics of infinities, so 
why change?  While this is true, theoretical physics seems to be at a standstill of late, and this is partly due to problems with
infinities. The renormalization technique to remove infinities from equations in quantum physics was problematic for many 
years, and, as described, some fundamental physics theories such as general relativity, quantum gravity and inflationary 
cosmology are now plagued by non-renormalizable infinities so much so that some physicists wish to remove infinities from
physics altogether (Tegmark,  2015). 

    It might also be said that the sequence of positive integers (1, 2, 3, 4, 5...) is nothing like the real universe, so the pairing-
off method and the mathematics of infinities should not be a problem in physics.  However,  as shown above, infinities do 
cause problems in physics.  Also, the pairing-off method is at the heart of set theory, which is at the heart of mathematics, 
and mathematics is used extensively in physics and thus, the problems with infinities cannot be ignored.  Second, locations 
in space and moments in time have built-in spatial and temporal relationships to their neighboring locations and moments, 
respectively, in a very analogous way to the relationship between neighboring odd and even integers in the sequence of 
positive integers. 

    There is precedent for saying that although things can be mathematically valid, they may not occur in nature.  For 
example, changing the sign of the time variable in physics equations is often mathematically fine, and the equation still 
works.  But, time does not seem to run backwards in the real, physical universe.

    While it is beyond the scope of this paper, there are other methods besides pairing-off for measuring the relative sizes of 
sets that may be of use in physics.  One method is calculating the “measure” of a set.  This is more of an intuitive, and 
physically meaningful, way of comparing the sizes of sets and subsets.  Specifically, the Lebesgue measure can be used to 
compare the sizes of the sets in one-, two-, three- and n-dimensional spaces (Knapp,  2005) such as those found in the 
physical universe.  Another way may be by using the concept of natural density, which is the density of a set within the set 
of natural numbers.  The natural density of odd numbers relative to all the natural numbers is ½, for instance. 

    In conclusion, suppose a physicist submits a paper about the relationships found in a physical system but studies this 
system by destroying these built-in, inherent relationships, and then ignores the possibility that the results of this 
experimental processing may have been different than those that would have been obtained in the original system.  I suggest
that this paper would be, or should be, questioned.  And, yet the mathematics of infinities is based on doing just this and is 
used extensively in physics.  Given the known problems of infinities in physics, it seems reasonable that the mathematics of 
infinities should be modified for use in fundamental physics.
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