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I. EPISTEMOLOGICAL SUGGESTIONS 

From an epistemological view, classifying a statement as 
'vague'O) means to judge the statement in question to be a mixture 
from partial knowledge and partial ignorance. Accordingly it seems 
desirable to describe the boundary between knowledge and ignorance 
hidden in the vague statement. 

Ludwig discusses 1) vagueness in physics, especially vague
ness in measuring statements. The example he uses is 'measurement 
of Euclidean distance', i.e. the meaning of statements which are 
often written as "d(x,y) = CL ± £", where vagueness is expressed by 
"±£" indicating the so-called "error of measurement". Ludwig main
tains that physicists have come to refrain from supposing that 
physical objects have exact properties which cannot be measured 
exactly (but only within the indicated 'error of measurement'). 
The argument substantiating this attitude is obviously that the 
ascription of precise properties to physical objects is beyond the 
reach of physical theorizing. But what is the alternative? At 
first it seems that Ludwig would accept a rivalizing supposition 
to the effect that physical objects do have 'vague' physical pro
perties. This indeed would be a rather puzzling point of view, not 
in accord with the course adopted in the beginning. Vagueness of 
statements there was taken to represent some deficit of knowledge 
but not a knowledge of a special kind, viz. that some objects 
does have a 'vague' property or that n objects (in a certain or
dering) stand in a vague' n-place relation. Now, nothing in Lud
wig's formal treatment of 'vagueness' must be understood to imply 
this 'puzzling view', but on the other hand nothing in Ludwig's 
exposition is apt to exclude it. Are we then to take the well de
fined Euclidean distance function d(x,y), which is as precise a 
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term as you could imagine and pervert it into a 'vague three 
place predicate' when applied to empirical objects? And what does 
such application consist in? Or are we to hold the 'naive view' 
that physical objects x,y are (at one instant of time) separated 
by a precise distance, which simply cannot be measured exactly? My 
way out of this dilemma is to give a rather detailed description 
of how vagueness gets in, without assuming any predicates to be 
'vague,.2) This description amounts to pOinting out different 
means of individuation of objects on different levels of argument 
and reducing statements of vagueness to statements of difference 
in individuation. 

II. LUDWIG'S EXEMPLIFICATION OF 'VAGUENESS' 

Let me indicate what I hold to be the main features of Lud
wig's account of vagueness in the case of measuring d(x,y) and 
then scetch my point of departure. 

To restate the example, we need a rough restatement of the 
MTA-component of Ludwig's structuring PT of the intuitive concept 
of "physical theory": 

MT is a mathematical theory, containing some (rather weak) 
set-theory as a subtheory and, in addition to this, 'special 
axioms'. A suitable two-valued logic is assumed to be incorporated 
in the language of MT. 

G is to be conceived as a kind of 'open collection' (not to 
be taken as a well defined set), which comprises among other 
things 'pre-theories'and labelled empirical objects ai ("genormte 
Realtexte"). 

"(--)" is a set of correspondence rules which 
1. single out terms Q. of MT; 
2. single out some relations Rn of MT (~ has ~ places); 
3. establish rules how to 

a) state sentences of the form raiEQj' 
b) state sentences built up from the relations Rn given in 2. 

taking as arguments the ai and perhaps specific real numbers 
and negations of such sentences. 

In order to cope with vagueness, 3.b) has to be modified by re
placing the Rn by weaker ~n' 

MTA may then be understood as the extension of MT resulting 
from the application of the correspondence rules (--) to the ai 
in G. To restate the example, MT is supposed to contain metrical 
Euclidean geometry with the distance fUnction d(x,y) defined as a 
map: :R3 x lR3 -> :Ro+ which satisfies the usual equat:Lon3). 

The ai in G are supposed to label marked places in physical 
space, the only Qj needed is :R3 , the only Rn is R(x,y,a), defined 
as d(x,y) = a. Thus the statement obtained by 3. of (---) are: 
a) a· E :R3 ;3) 

~ 

b) the measurement-results from G reported in terms of R(x,y,a). 
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To avoid inconsistency of MTA only due to the limited accur
acy of measurements, the statements obtained by 3.b) of (---) have 
to be replaced by analogous statements, in which R(x,y,a) has to 
be replaced by ~(x,y,a), which is defined as follows: First define 
some imprecision-set U for some fixed real number E > 0 by 
U = UE = {<a,S>la,SERAla-SI~E} • Then ~ is defined by 

R(x,y,a) for x,y E R3 and a E R+. 

Here I conclude my summary of Ludwig's account, because the point 
I am interested in does not depend on the further refinement of 
the method of imprecision-sets. Two points seem to me indisputable 
and~I think they are held by Ludwig too: 
1. R is a term of MT, i.e. a purely mathematical term just as R, 

because it is explicitely defined in MT without any reference 
to G or (---). So ~ is as exact or precise a relation as R. 

2. The claim that ~(x,y,a) is needed to replace d(x,y) = a in the 
statement according to 3.b) of (---) implies that not all of 
the ai are uniquely represented in MTA by single elements of 
R3 (because d(x,y) is a f.unction, taking a unique value for 
uniquely identified arguments) • 

These are the features in Ludwig's presentation of the examp
le "measurement of d(x,y)", which I found in need of analysis. The 
observations 1., 2. above do not decide anything with respect to 
the 'puzzling view' sketched in section (I), because from Ludwig's 
treatment it is not clear what is meant by the application of 
d(x,y) to empirical objects. The source of the trouble is that the 
statements obtained by 3.a) of (---) , which assert the ai to be 
elements of R3 are unacceptable as they stand. Instead of state
ments of the form a· E R3 , we should concentrate on statements of 
the form lP(ai) E R~ where (j)(ai) denotes some mathematical objects, 
while keeing in mind that in order to cope with 'vagueness', we 
shall have to consider not one single map 4>, but some set of such 
maps. Now Ludwig may well maintain that a suitable variety of such 
maps is assumed to be supplied by (---). Hy point is merely that 
we do not understand what is meant by "MTA contains vague state
ments" without information about what such mappings look like. 
Thus, in a sense, the rest of this paper is concerned with the 
task of understanding what is meant by the statement 3. a) of (--) " 
or better: by what sort of statements they should be replaced. 

III.l. CONCEIVING 'VAGUENESS' AS RESULTING FROM DIFFERENCES IN 
INDIVIDUATION 

Before specifying the example, I must list some properties of 
what I propose to call a "pragmatically controlled (data-) langu
age", conceived as a first order language. The next step then is 
to conceive a set of data formulated in such a language as a first 
order theory, say: the 'data-theory'. As we may suppose that such 
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a (finite) set of data has a truth evaluation (is truth-value de
finite for any datum in the set) on empirical grounds, we may 
easily fix even the set theoretic interpretation of this data-set. 
The next, and I hope, the decisive step consists in confronting 
the doubly interpreted data-set (empirically and set-theoretically 
interpreted) with the corresponding "idealized measurement struct
ure". This structure is well known from the literature and I take 
it to be expressed as a first order theory plus set theoretic in
terpretation (which I choose to be model-theoretic). The vagueness 
statement then is expected to result from the combination of the 
two clearly different set-theoretical interpretations. To summar
ize not only the procedure but also the thesis: A prominent pro
perty of a "pragmatically controlled (data-) language" will be 
that empirical objects, which figure as the denotata of the indi
vidual constants of the language, are identified operationally, 
and consequently by finitary means. (The truth-value decisions of 
the respective sentences are also approached according to finitary 
methods.) This, in my understanding of theorizing in physics, is 
in sharp contrast to any means used by some physical theory in 
describing (individuating) its objects. Restated: theoretical 
characterization of objects is non-finitary, e.g. by means of a 
theory admitting only infinite models (in the model-theoretic 
sense). Accordingly we should not be astonished, if the difference 
between theoretical and operational individuation is expressed as 
some 'vagueness'. (There is no reason to suppose such vagueness of 
physical assertions as representing a problem 'not yet' solved by 
physical theory. Of course the possibility of varying the sort or 
degree of vagueness will depend on the physical knowledge avail
able at the time. But it seems quite plain that such vagueness is 
rather a consequence of theory-construction in physics, viz. that 
the structure explained are 'idealized structures' only, which re
sults from the use of mathematical methods.) I do not claim that 
the contrast "individuation by finitary means" vs. "individuation 
by non-finitary means" is the only noteworthy thing about "operat
ional" and "theoretical" individuation; but I claim that it suffi
ces as a first attempt to describe how 'vagueness' gets in, as far 
as our example is concerned. 

111.2. A DATA LANGUAGE FOR BASIC MEASUREMENTS 

First I shall state some conditions (1) on any pragmatically 
controlled language of a set of data and secondly state conditions 
(2) on a data-Iaguage for basic measurements of lengths by rods. 
This is a considerable simplification of Ludwig's example (Eucli
dean geometry), but I think it will serve the purpose of demon
stration just as well. 

(1) L is a first order language with identity and with only 
finitely many individual and predicate constants. For each indi-
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vidual constant rail the object denoted is operationally identi
fied, and this object is denoted by no other individual constant. 
For any atomic sentence of L the truth-value can be established 
according to a set of accepted methods. (These methods may, but 
need not all be operational.) A set D of data in L is a finite set 
of quantifier-free sentences in L, including for any individual 
constant rai', that occurs in some member of D, the equation 
rai = ai'. Moreover D is consistent and the sentences of D have 
been decided according to the accepted methods. 4 ) 

(2) The predicates for length-comparison by rods include two 
two-place predicate constants "R" and "G", which shall be under
stood as follows: "R" denotes the operational "greater than" and 
"G" the operational relation "is equal in length to". The accepted 
methods for assigning truth-values shall include: for no ai is 
rRai ail or rGai ail true. The language mayor may not contain a 
further three-place predicate constant "Add" denoting "addition of 
lengths". 

Suppose, the length comparisons lead to results of the kind 
we expect of such comparisons from earlier experience. Then we may 
define a finite weak order if D is complete in the sense, that all 
sentences of the forms rRai a·', rGai aj'" rRai aj', , rGai aj' --
have been decided as true or !alse respectively and D is the set 
of sentences thus decided as true. 

An equivalence relation may be defined by rExy ~ Gxyvx=y', 
and the reflexive order relation may be defined by 
rSxy~ ExyvRxy', thus expanding the data-language by two two
place predicate constants "E" and "S". As domain for the finite 
weak order E we choose (1-1) a denotation for any rail occuring 
in some sentence of D. E is then determined uniquely up to isomor
phism as a finite relational structure. Hence the set-theoretical 
interpretation of D is unique and so is the truth-evaluation by 
the operational identif.ication of the ai and the operationally de
cided predicates "R" and "G". 

Keeping in mind the goal of comparing E with some idealized 
measurement structure, it seems fair enough to expand E by adding 
"Add" to the relations "R", "G", "E", "S", taking its values in 
accordance with the operational results. But note that the set of 
ai's is not enlarged by allowing the operationally interpreted 
"Add". Of course we may assume D', resulting from D by adding the 
atomic "Add"-sentences or their negations respectively, to be com
plete in the quantifier-free sublanguage of L. So D' defines uni
quely a finite relational structure E', which is simply the ex
pansion of E by "Add". 

111.3. AN IDEALIZED MEASUREMENT STRUCTURE 

As an idealized structure for basic measurements of lengths 
we consider the 'positive closed extensive structure' of Krantz 
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et al. (1971). It differs from the finite weak order E' mainly in 
being closed with respect to "length-addition". 

Krantz's idealized addition operation "0" exhibits the Archi
median property. It can be proven (cf. e.g. o~.cit., pp. 74 f) 
that there is a homomorphism into the real numbers, which is uni
que up to the choice of some positive scale factor. For nearly all 
finite structures like E', this does not holdS). As the idealized 
structure is closed with respect to length-addition and hence in
finite, there is no sense in taking (even some of) its objects to 
be operationally identified. 

I shall now write down as first order formulae the axioms for 
the 'idealized measurement structure', taken from Krantz et al. 
(op. cit., p. 73), where ~ and 0 are taken as basic predicates. 

[0.1] 

[0.2] 

[1. 1] 

[1. 2] 

[2] 

[3] 

[4. 1] 

[4.2] 

[ 5] 

!\xy[)Oy ~ x~", y~]; Def. of 11::;,11 in terms of ":::>" 
'V 

!\xy[x"-'y ~ x~"y~]; Def. of 11'\..," in terms of 11:::;," 
'V 

!\xyz [x~":t=>Z;" x~] ; Transitivity of II:::;," 
'V 

!\xy [x~VYi(X] ; n:::>" 
'V is connected 

!\xyz[XO (yoz)'V(xoy)oz]; "0" is weakly associative 

!\xyz[x?y ~ xoz?yoz ~ zox=>zoy]; monotonicity 'V 'V 'V 

Ax[lx=XAAn (n+1)x=nxox]; "nx" recursively defined 

Axy [)Oy ~ Azu V n (nxoz~you) ]; 'Archimedian property" 

!\xy[xoy=»x]; positivity. 

[0.2] implies what is sometimes called the "weak anti symmetry of 
~" and so any model of [0.2] " [1.1] " [1.2] is a weak order. Of 
course [1.2] implies the reflexivity of "~". Infinity comes in by 
axioms [4.1] - [5]. 

"~" is the idealized counterpart of the reflexive order-re
lation "s" defined in 111.2. ":::),' corresponds to "R", "'V" to the 
equivalence relation "E" and "0" corresponds to "Add". As noted 
above it is via the properties of "0" that infinity comes in. This 
is due to the metalogical requirement, that any model of the 
axioms has to be closed with respect to the composition "0". 
Nothing like this is required for model-theoretic interpretations 
of predicate-constants. This is why for the empirical (data-)lang
uage, we had to choose "Add" as a predicate-constant rather than 
an operation symbo16). 

Axiom [4.2] (together with [4.1] asserts the existence of 
lengths transcending any given length. This is what I call 'ideal
ized rod production', having no counterpart in an empirical domain. 



INDIVIDUATION AND VAGUENESS 119 

111.4. THE STRUCTURE U 

The set of (first order) logical consequences of the axioms 
[0.1] - [5] I call T<. The consistency of T< is assumed. Accordin
ly, T~ is assumed to have a model, and as T< only admits infinite 
models, T~ has a countable model. We single out one such countable 
model and refer to it as "U", U is a set-theoretical entity of the 
same sort as E', our uniquely determined model of the set of data 
D'. We may now choose an object from E' (i.e. some set-theoretic 
picture of some ai' to be the unit element. The unit of E' of 
course must be uniquely pictured in U. What about the pictures of 
the remaining ai in E'? The sentences of D' and the choice of the 
unit in the empirical domain and thus in E' do not in the least 
determine a unique embedding of E' in U. The only exception is: 
E', and thus the empirical domain, contains only objects which be
long to some "initial segment of a standard series". A standard 
series is a sequence of objects such that its n-th element equals 
in length n times the unit length. I refer to this exception as 
the "ruler-case". 

IV. CONCLUSION 

In order to get a description of how mathematics is applied 
to empirical objects in basic measurement, I gave a description of 
basic measurement which is sumarized in the scheme below. 

(a) Operationally identified ai and operationally decided predi
cates "R", "G" and "Add"; 

+ determine empirically 

(b) the set of data D', formalized in the quantifier-free sub
language of the indicated language L 

+ determines logically, up to isomorphism, 

the finite weak order E', containing a value for "Add" too; 
(c) 

set-theoretic entity of the type 'relational structure' 

+ isomorphic embedding, not unique, except in the ruler-case 

idealized measurement structure U, which is a model of T<+ (of 
(d) 

§ 111.3.), a countably infinite relatLonal structure 

+ homomorphic embedding, unique up to a scale factor 

(e) the set of positive real numbers R+ with:::;, = and +, 

My thesis is now a comment on the scheme above: 
(i) It is an empirical question, whether the operational verifi
cation of the sentences of D' leads to results of the kind that we 
expect, i.e. whether D' turns out to be consistent, determines a 
weak order, and does not conflict with the axioms for "0" in its 
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"Add"-sentences. But if this is the case, E' is determined unique
ly by D' by purely logical and set-theoretical means. 

So far, there is no chance for 'vagueness' to get in. Though 
E' is a set-theoretical construct, it is only a set-theoretical 
paraphrase of an empirically determined truth-evaluation. The.uni
que truth-evaluation is just the only thing, which is common to 
D', conceived as operationally interpreted, and to D', conceived as 
the set of quantifier-free s'entences true in E'. This double inter
pretation is the only link between empirical and set-theoretical 
semantics in the example. But 'vagueness' did not appear on the 
stage of (a) - (c):. 
(ii) Obviously the source of 'vagueness' is located in the set 
I(E' ,U) of isomorphic embeddings ~ of E' into U. This is, because 
the remaining part of the construction is the homomorphic embedd
ing h of U in <R+,<,=,+,·>, uniquely determined up to a scale 
factor. 
(iii) Now we are in the situation to state some features of 'vague
ness' and how it gets in. First, we might conclude, that none (!) 
of the sentences considered is vague, because to any sentence a 
set-theoretic truth-condition is assigned, which would e.g. not be 
the case, if the methods from box (a) did not lead to yes-no-de
cisions in all cases. Secondly, what is my answer to the question 
of what the sentences obtained by Ludwig's (--) 3.a) are apt to 
mean? 

Well then, take the whole, consisting of boxes (a)-(e) and 
their interrelations, to be a part of PT in Ludwig's sense. Define 
mappings, that transport any ai to R+. Part of the definition of 
any such mapping is some lP E I (E' , U). We know the set I (E' , U) to 
contain not one, but 'many' elements (except in the ruler case). 
The elements of U are pictured in lR+ by h uniquely (unit given) . 
Thus the ambiguous representation of our empirical objects ai 
within R+ is determined by their ambiguous representation in U. 

What sort of 'vagueness' is characterized by the set I(E',U)? 
First, it is not 'error of measurement', since we assumed the mea
surements to be as precise as can be expected at all, namely to 
lead to definite yes-no-decisions. Secondly, it would be systema
tically misleading to say that "we do not know, which mathematical 
statements should be 'equated' with the empirical statements". 
There is nothing to know here. What is to be explained, is the way 
in which empirical statements are correlated with mathematical 
ones. That this correlation is not unique, and in principle cannot 
be unique, is simply a consequence of theory construction. The 
(--) 3.a) statements then have to be replaced by statements of the 
form "ljJ(ai) E X", where both, ljJ(ai) and X are terms of Mr. The 
story to be told is that application of Mr terms to empirical ob
jects does not take place. 
(iv) Let me close the paper with some remarks concerning 'indivi
duation'. The fact that the embedding of E' into U is not uniquely 
determined, is drawn from the enormous differences between the way 
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E' was determined as opposed to the way U was. But we should re
frain from stating this difference in terms of 'operational' vs. 
'axiomatic'. The reason is, that on the stage of box (c) only one 
characteristic of 'operational truth-value-determination' is left: 
E' is characterized by finitary means, exemplifying "finite in
dividuation". Only this information is transported to <R+,<,=,+,·>, 
nothing else can be confronted with the set-theoretic interpretat
ion U of T~. Again, the term 'axiomatic' does not characterize U 
as different from E', since we used a finite set of axioms to 
characterize E' uniquely up to isomorphism. This is even more than 
can be expected of an axiomatic characterization of U, as T~ is a 
theory of first order admitting infinite models. I think the 
difference is well described by stating, that operational indivi
duation is by finitary means, which feature is preserved on the 
stage ofE', while the individuation of objects of U is by non
finitary means, Le. by means of an operation ("0") which admits 
only infinite models. 

I do believe that this contrast between E' and U is not an 
accident, but caused by the different purposes they served. The 
purpose of T< and, accordingly, of U is to define a certain con
cept of measurement, that is general enough to subsume all special 
cases of sets of data like D', and also definite enough to imply 
the uniqueness of the map into the positive reals. 
(v) The last thing I have to explain is, why I call the above 
mentioned contrast one of 'individuation'. Could one not as well 
call it a contrast of, say, 'types of predication'? 

I do not think so, if one accepts a set-theoretical frame for 
describing theories, which is common to Ludwig's approach and to 
model theoretic treatment: The predicates or functions are set
theoretical constructs over the set of 'objects'. Thus, no predi
cate or function can be well defined unless the base sets are de
fined, but not vice versa. Thus the answer depends on a methodo
logical decision. But what I hold to be independent of any such 
decision, is that the contrast of finitary vs. non-finitary means 
produces the so-called 'vagueness' of statements of basic measure
ments. Such 'vagueness' is understood to be unavoidable, as far as 
physics is designed to compare empirical facts with mathematical 
entities produced by 'non-finitary' methods. 

From the epistemological pOint of view: It turned out that 
there are no 'vague statements', but contrary to common belief 
measurement statements are not applications of mathematical terms 
to empirical objects. There is no such application, and no such 
application is needed to describe measurement. There is only a 
correlation of empirical statements with mathematical statements, 
which is not unique. The (limited) arbitrariness exhibited shows 
the 'naive view' as well as the 'puzzling view' mentioned in sect
ion (I) not only to be badly substantiated, but from the outset 
unpromising as an attempt to characterize the way, measurement 
works. 
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FOOTNOTES 

0) single quotation marks ',' are the 'ironic ones), the double 
ones "," are used to cite (interpreted) expressions in the usual 
way; Quine's quasi-quotation signs r,' are also occasionally used. 
No strict treatment of quotation is intended, but hints may seem 
useful and thus are given. 
1) my references to Ludwig's treatment of the example "measure
ment of d(x,y)" as an example of 'vagueness of measurement' are to: 
Ludwig (1970), II § 6; (1978a), § 6; (1978b), II §§ 1-2, and III 
§ 5. 
2) Thus I reject the description, that 'vagueness of measurement
statements' is resulting from the use of vague predicates in the 
sense in which "fish" might have been vague once with respect to 
whales, or "bird" with respect to bats. In fact my thesis might 
well be understood to imply that 'vagueness' is a misnomer in the 
cases considered, for if we know anything relevant which is know
able at all, the phenomenon called "vagueness" will still be pre
sent. 
3) I do not see any relevant modification in taking d(x,y) not to 
be a function of the sort described, but a function d: X x X ->JRo+' 
where X is some set constructed from a base set Y that is diffe
rent from R but satisfies the same axioms. Thus I take X to be 
R3 , as Ludwig does in (1978b), p. 10. 
4) Note first, that the equation rai=ai' are empirical assertions: 
they state, that the denotations of the rai' do not change (during 
the measurements recorded in D) in the properties expressed by the 
predicate constants occuring in some member of D. Note further 
that the condition of the consistency of D is independent of the 
condition that all members of D are decided as true according to 
the accepted methods, and so that both are needed. 
5) the exception is simply what I term below in section 111.4. the 
'ruler-case' 
6) Similarly stated in Krantz et al. (1971), pp. 81f. 
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