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Abstract
One of the most significant achievements from theoretical computer

science was to show that there are non-computable problems, which can-
not be solved through algorithms. Although the formulation of such prob-
lems is mathematical, they often can be interpreted as problems derived
from other fields, like physics or computer science. However no non-
computable problem with economical or financial inspiration has been
presented before. Here we study the problem of valuation: given some
adequate data, find the value of an asset. Valuation is modeled mathemat-
ically by the discounted cash flow operator. We show, using surprisingly
simple arguments, that this operator is not computable. Since, theoreti-
cally, financial markets should trade assets based on their fair value, our
result suggests that unpredictability of such markets may partially stem
from inherent non-computable behavior. A discussion of this result is also
included.

1 Introduction

It is well-known that there are non-computable problems which cannot be solved
by algorithms. Turing [1] presented the most famous non-computable problem,
the Halting Problem, but soon after many mathematical problems were shown
to be non-computable, e.g. Hilbert’s 10th problem [2].

Non-computability is tightly related to the issue of unpredictability. A non-
computable problem may be completely deterministic in the sense that given
an input, there is only one possible mathematical solution. Yet, because of the
problem’s non-computable nature, its solution cannot in general be obtained by
any algorithm, computer program, mathematical formula, rule of thumb, etc.
Thus, in a very strong sense, one may say that non-computable problems are
unpredictable.

Many non-computable problems originate from applications. But no prob-
lem inspired from finance or economics has been previously shown to be non-
computable. In this paper we tackle a problem from finance and show that it is
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non-computable. We consider the following question (the problem of valuation):
given an asset (a stock, an house to be rented, etc.) can we compute its fair
value from some suitable input data?

Our motivation for asking this kind of question comes from stock market
charts. If one sees the variation of a stock price within one single day, its exact
evolution seems rather unpredictable. Several explanations have been proposed
for this behavior: markets may be speculative, irrational, and most useful infor-
mation to markets is unknown. Certainly all these factors, which do not appear
on the ideal world of mathematical models, account for unpredictability on the
real world. But is unpredictability only a defect from perhaps excessive mod-
eling or does it go deeper than that? Can unpredictability be inherent to the
mathematical models of finance? According to financial theory, the fair (or fun-
damental) value of an asset can be determined using the Discounted Cash Flow
Model (DCFM), which we will analyze in more detail in Section 2. The DCFM
is completely deterministic: given complete knowledge about the data of an
asset (includes information about the future) we can mathematically determine
the fundamental value of the asset.

But determinism does not imply predictability. Examples abound in chaos
theory (recall the famous butterfly effect) and even in theoretical computer
science, with non-computable problems.

Here we will show that, while the DCFM is completely deterministic, the
DCFM is non-computable and therefore intrinsically unpredictable. By other
words, even if we have exact knowledge of the inputs for the DCFM (in practice
this information is hard – if not impossible – to obtain, since it relies on the
future) we cannot, in general, compute the fair price of an asset under the
DCFM (although this can be done for some particular cases. The point is that
it cannot be done “in general”).

The aim of this paper is not to introduce sophisticated mathematical ma-
chinery, but rather to show that results from theoretical computer science can
shed new light on the hardness of problems from fields like finance or economics.

In Section 2 we recall the DCFM model. Section 3 recalls material from
computability with real numbers (Computable analysis). Section 4 introduces
the main result of this paper: non-computability of the DCFM operator. In
Section 5 we analyze the result in more detail.

2 The Discounted Cash Flow Model

The discounted cash flow model (DCFM) is a theoretical model which aims to
solve the valuation problem. It is consider to be the foundation on which all
other approaches to pricing are built (see e.g. [3], [4]), although, for practical
reasons, the majority of valuations is done by comparing the value of similar
assets (relative valuation – see e.g. [3]).

The DCFM says that an asset (a stock, an house to be rented, a bond – debt
issued by a government or company, etc.) is worth the discounted sum of all of
its future earnings. Usually this is what is mean as the fair (or fundamental)
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value of the asset. In the discounted cash flow model, one takes two inputs, the
discount rate (see below for details) and the future earnings of the asset, and get
as a result the present value of the asset. Therefore this model defines a function
f which maps the input (discount rate, future earnings) to some element of R
(the value of the asset).

Let us describe what is the discount rate. Suppose that you have a claim over
some company ABC which guarantees that it will pay you $100 exactly within
one year. However, you need money urgently and want to sell this claim now.
A potential buyer must ask itself the following: how much next year’s $100
is worth today? Suppose that the buyer could put his money into a savings
certificate yielding an interest rate of r = 5% with no risk (the risk-free interest
rate). Then, for the buyer, these next year’s $100 are not worth more than

100

(1 + r)
(1)

or approximately $95.24 today. If this claim over the company is as safe as the
savings certificate (i.e. no risk), then one can say that next year’s $100 are worth
(1) with r = 5%. However, claims over companies are not risk-free. Although
some companies are safer than others, none can guarantee no risk. It is usually
assumed (cf. [4]) that investors are risk-averse, meaning that all other things
being equal, an investor will prefer the less risky investment, in this case the
savings certificate. Therefore, in order to buy our claim over company ABC, an
investor will ask a risk premium, let’s say r = 10% in (1) for a relatively safe
blue-chip company, or r = 30% for an even riskier investment like a claim over
a start-up company. The value r is called the discount rate.

This discount rate is one of the inputs to the function f defined above. It
can be determined, for example, by using the well-known Capital Asset Pricing
Model (CAPM). The interested reader can find further details in [4].

Under the DCFM, the value of an asset which pays a dollars each year for
N years, with discount rate r, and in the end of these N years returns b dollars
is

b

(1 + r)N
+

N∑
t=1

a

(1 + r)t

In general, if the asset is never sold, its value will be

∞∑
t=1

a

(1 + r)t

Of course we have made, as usual (see e.g. [3], [4]), some assumptions which
may not be true: we assumed that earnings as well as the discount rates remain
constant over time. This does not happen in reality: a company is expected to
have (hopefully) growing earnings and its discount rate may change over time
(e.g. because the risk-free interest rate changes and/or because its risk profile
may change: a young and risky start-up may mature into a solid blue-chip
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company). For this reason we can say that the value of an asset is

∞∑
t=1

e(t)u(t)

where e(t) is the earnings paid by the asset at time t and u is the discount
function (in the preceding examples we used the simplistic assumption that
e(t) = a and u(t) = 1

(1+r)t for all t ∈ N).

This can be defined formally as follows.

Definition 1 Let A be some financial asset. Its earnings function is a function
e : N → R and its discount function is a function u : N → R. The value of the
asset under the DCFM is

∞∑
t=1

e(t)u(t)

Definition 2 The DCFM operator is a function f : RN × RN → R such that
for any financial asset with earnings function e : N→ R and discount function
u : N → R, f(e, u) returns the value of the asset under the DCFM. More, one
has

f(e, u) =

∞∑
t=1

e(t)u(t)

3 Computable Analysis

In this paper we will be computing with real numbers. To achieve this objective,
we introduce some definitions and results from Computable Analysis. Books on
the subject are, for example, [5], [6], [7] though we recommend the excellent
tutorial [8]. We also suppose that the reader is familiar with Turing machines
and classical computability theory ([9] is a good reference on the subject).

Turing, in its seminal paper [1] where he introduced Turing machines, was
already interested in the subject of computing with real numbers. He proposed
to code each real as its decimal expansion over some tape and then to make
computations over this symbolic representation.

This is the idea behind Type-2 machines (see e.g. [5]). These machines are
like Turing machines, with a few exceptions: (i) there is a read-only input tape,
where the input is written. Contrarily to Turing machines, an infinite number of
cells may have non-blank symbols; (ii) there is a write-only output tape, where
the output is written. The head in this tape cannot move left. This guarantees
that at any given time a partial result is in the output tape. For instance, after
1000 steps of computation, we could have written in the output tape “3.1415”.
Since the head cannot move left, we cannot alter this partial result, but just add
decimal digits i.e. precision to the result. In principle one will need an infinite
amount of time to get the exact result, but the important point is that, at any
time, we have a partial result with improving accuracy over time.
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Actually, as noted by Turing in the correction [10] of its original paper
[1], the decimal expansion is not good for computing with real numbers. This
is because decimal expansion does not preserve the topology of the real line
(e.g. “0.999 . . .” and “1.00 . . .” are far away as sequences of symbols, yet they
represent the same real number). For instance consider the function f : R→ R
defined by f(x) = 3x. It is expectable that this simple function would be
computable. But, using decimal representation of real numbers, it is not [5].

For this reason different representations, which respect the topology of the
real line, are used to encode real numbers as sequences of symbols, for example
by means of Cauchy sequences, sequences of rational intervals converging to the
real number, etc. The “typical” representations used are equivalent in terms of
computability (see [5]). Other notions of computability over the real numbers
which do not involve Type-2 machines can be presented (see e.g. [6] or [7]), yet
they can be shown to be equivalent to this approach [5].

The representation of real numbers that we will use is the following.

Definition 3 A sequence {rn}n∈N of rational numbers is called a ρ-name of a
real number x if there exist three functions a, b, c from N to N, such that for all

n ∈ N, rn = (−1)a(n) b(n)
c(n)+1 and

|rn − x| ≤
1

2n
. (2)

We can also give the notion of ρ-names for sequences of real numbers.

Definition 4 A double sequence {rl,k}l,k∈N of rational numbers is called a ρ-
name for a sequence {xl}l∈N of real numbers if there are three functions a, b, c

from N2 to N such that, for all k, l ∈ N, rl,k = (−1)a(l,k) b(l,k)
c(l,k)+1 and

|rl,k − xl| ≤
1

2k
.

Notice that a sequence of real numbers may be interpreted as a function
f : N→ R, where f(l) = xl. Thus the earnings function and the discount rate
function of Section 2 can be described by ρ-names for their respective sequence.
This characterization of sequences will be used in Section 4.

Definition 5 A real number x (a sequence x = {xl}l∈N of real numbers) is
called computable if there is a Type-2 machine that, without using any input,
outputs a ρ-name for x.

Examples of computable real numbers include: integers, rational numbers,
algebraic numbers (

√
2, 5

2
7 , etc.), π, e, etc. The set of computable numbers

is closed under many operations: addition, multiplication, division, etc (see
e.g. [5], [6]).

Very few non-computable numbers are explicitly known, although “almost
all” real numbers are not computable (the set of computable numbers is count-
able, while the set of real numbers is not. This implies that “almost all” real
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numbers are not computable). To the knowledge of the author, the only non-
computable numbers explicitly presented in the literature are those which result
from the following Proposition, from Section 0.2 of [7].

Proposition 6 Let a : N→ N be a one to one computable function generating
a recursively enumerable nonrecursive set. Then the series

∞∑
i=0

2−a(i)

converges to a non-computable real.

Notice that functions a : N→ N in the conditions of the previous proposition
do exist (actually there are infinitely many), since there are nonrecursive sets
(this can be shown through a diagonalization argument) which can be enumer-
ated, see e.g. [11]. Let us analyze the meaning of

x =

∞∑
i=0

2−a(i)

being not computable. First we notice that this number is “semi-computable”:
one can compute a sequence of rational numbers rk which converge to x. To see
this it is enough to take rk =

∑k
i=0 2−a(i). What is missing to have computabil-

ity as in Definition 3 is the bound 1/2n in (2). By other words, we can compute
an approximation rk to the real number x and we know that rk → x. But if we
use rk as an approximation of x we cannot (algorithmically) know how far rk is
from x.

By other words, if x is a non-computable real number, there is no algorithm
which solves the following problem: “Given as input n ∈ N, output as result
a rational number r such that |r − x| ≤ 2−n”. This means that we cannot
compute an approximation of x within a given accuracy.

For completeness, and because this result is central for our paper, we finish
this section with the proof of Proposition 6, adapted from [7]. In a first reading,
the reader may want to skip this proof.

Lemma 7 Let a : N → N be a one to one computable function generating a
recursively enumerable nonrecursive set A. Define the function w : N→ N by

w(n) = max{m : a(m) ≤ n}. (3)

Then there is no computable function f : N→ N such that f(n) ≥ w(n) for all
n ∈ N.

Proof. Suppose, by absurd, that there is a computable function f : N → N
such that f(n) ≥ w(n) for all n ∈ N. Then the following procedure decides the
set A:

(i) Given input n, compute f(n)
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(ii) For each m ≤ f(n), check whether a(m) = n. If a(m) = n for some
m ≤ f(n), then n ∈ A. If a(m) 6= n for all m, from (3), then it must be n /∈ A.

Since the previous algorithm decides A, this set must be recursive, which is
absurd since A is nonrecursive by hypothesis. Therefore there is no computable
function f : N→ N such that f(n) ≥ w(n) for all n ∈ N.

Lemma 8 Let a : N→ N and w : N→ N be defined as in the preceding lemma.
Take

sk =

k∑
m=0

2−a(m) (4)

and let x = limk→+∞ sk (this limit exists since a is one to one). Define the
“optimal modulus of convergence” e∗(n) to be the smallest integer such that

k ≥ e∗(n) implies |x− sk| ≤ 2−n. (5)

Then w(n) = e∗(n).

Proof. First we show that it must be e∗(n) ≥ w(n). By definition of w we have
that

a(w(n)) ≤ n. (6)

Suppose, by absurd, that k = e∗(n) < w(n). Then the series

x− sk =

+∞∑
m=k+1

2−a(m) (7)

includes the term 2−a(w(n)). Since all terms in the right-hand side of (7) are
positive and 2−a(w(n)) ≥ 2−n by (6), we conclude that |x− sk| > 2−n, which
contradicts (5) since k = e∗(n). Therefore it must be e∗(n) ≥ w(n). We now
show that

k ≥ w(n) implies |x− sk| ≤ 2−n

which shows, in conjunction with the fact that e∗(n) ≥ w(n), that e∗(n) = w(n).
Suppose that k ≥ w(n). Then (7) contains no terms 2−a(m) satisfying a(m) ≤ n.
Therefore

|x− sk| =
+∞∑

m=k+1

2−a(m) ≤
+∞∑

i=n+1

2−i = 2−n

which proves the result.

Lemma 9 Let a : N → N be a one to one computable function generating a
recursively enumerable nonrecursive set and let {sk}k∈N be given by (4) and let

x = lim
k→+∞

sk =

+∞∑
m=0

2−a(m). (8)

Then there is no computable function e : N→ N satisfying

k ≥ e(n) implies |x− sk| ≤ 2−n for all n ∈ N. (9)
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Proof. Suppose, by absurd, that there is a computable function e satisfying
(9). Then, from the preceding lemma, it must be e(n) ≥ w(n) for all n ∈ N.
But, by Lemma 7, e cannot be computable, which is an absurd.

In the lemma below we use the following notion: {sn}n∈N is a computable
sequence of rational numbers if

sn = (−1)a(n)
b(n)

c(n) + 1
(10)

for all n ∈ N, where a, b, c are computable functions from N to itself.

Lemma 10 Let {sn}n∈N be a computable sequence of rational numbers which
converges monotonically upwards to a limit x, i.e. s0 ≤ s1 ≤ . . . ≤ sn ≤ . . . ≤ x.
Then the number x is computable iff there is a computable function e such that
(9) holds.

Proof. Suppose that there is a computable function e satisfying (9). Then
|rn − x| ≤ 2−n where

rn = (−1)a(e(n))
b(e(n))

c(e(n)) + 1

and a, b, c are given by (10), i.e. {rn}n∈N is a computable ρ-name for x and
therefore x is computable.

Reciprocally, suppose that x is computable. Then x admits a computable
ρ-name {rn}n∈N satisfying |rn − x| ≤ 2−n. Then define

e(n) = min{k ∈ N : sk ≥ rn}.

It is easy so see, since {sn}n∈N is computable and converges monotonically to
x, and {rn}n∈N is computable, that e : N → N is a computable function and
satisfies (9).

We now prove Proposition 6.
Proof of Proposition 6. It is easy to see that {sn}n∈N, where sn is defined by
(4) yields a computable sequence of rational numbers which converge monoton-
ically upwards to (8). By Lemma 9, no computable function e exists satisfying
(9). Thus, by Lemma 10, (8) cannot be a computable real.

4 Presentation of results

The following result shows that the DCFM operator is not computable.

Lemma 11 There is a computable earnings function e and a computable dis-
count rate function u such that f(e, u) is not computable, where f : RN×RN → R
is the DCFM operator.

Proof. Take, for instance, e(n) = 1000 for all n ∈ N (1000 is an arbitrary
number. Any computable number could be used) and

u(n) =
1

2a(n)
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where a : N → N is a one to one computable function generating a recur-
sively enumerable nonrecursive set. Notice that both functions e and u are
computable. Thus

f(e, u) =

∞∑
t=1

e(t)u(t) = 1000

∞∑
t=1

1

2a(n)
, (11)

but the value f(e, u) is not computable (if, by absurd, f(e, u) was computable,
then so would be f(e, u)/1000 since the set of computable numbers is closed
under division. But then the value

∑∞
t=1 2−a(i) would be computable, a contra-

diction to Proposition 6).
The previous lemma implies the following result.

Theorem 12 Let f : RN × RN → R be the DCFM operator. Then f is not
computable.

Proof. If f would be computable, then by a standard result from Computable
Analysis (see e.g. [8]), the value f(e, u) should be computable if both e and u
are computable. But this is a contradiction to the previous lemma.

5 Criticism

In the previous section we have seen that the DCFM operator is non-computable.
Here we analyze this result more carefully to understand if non-computability
is genuine or if it follows from using pathological assumptions.

1. A first criticism is the use of an infinite sum in the right-hand side of (6).
It might seem that this series is an artifact of modeling since no one will
live forever and thus one would not be interested in earnings that an asset
might yield beyond his/her death. Actually this problem has more to do
with the DCFM than with our result, but let us analyze it. We begin by
mentioning that there are classes of assets that ideally satisfy e(t) > 0
for all t ∈ N. For example, the United Kingdom government has issued
in the past bonds, called consols, which make fixed periodic payments
that continue indefinitely in time [4]. These consols are actively traded in
the bond market and, according to the DCFM, a series must be used to
determine their value. A buyer will value a consol based on the earnings
it will provide until sold, plus the sell value. But the sell value depends
on the earnings the next buyer will get. Continuing this reasoning, it is
not difficult to see that the initial value of the consol for the first holder is
indeed a series, which will take into account a future where the first buyer
is no longer alive, but where second, third,... buyers can profit from the
earnings. Other assets that in theory might provide earnings indefinitely
in time are, for example, shares of stock, among others.

2. A second criticism is that one might argue that although a series is needed
to compute the exact value of some asset, one can just use a finite number
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of terms of the series to compute a good enough approximation of the
value, let’s say an approximation with precision 2−n, i.e. one can compute
some function l : N→ N such that∣∣∣∣∣∣

∞∑
t=1

e(t)u(t)−
l(n)∑
t=1

e(t)u(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

t=l(n)+1

e(t)u(t)

∣∣∣∣∣∣ ≤ 2−n (12)

This is the case for consols, which make fixed payments along time. But
what about other assets with a more rich behavior, like shares of stock?
How many years do we have to consider to compute the price down to the
cent? 2? 5? 10? 20? What if the earnings start to grow exponentially
after this set period? We would miss important behavior from a “fat
tail” (fat tail myopia) and hence our approximation would not be as good
as we thought it was. This is also the essence of our non-computability
result, since Theorem 12 implies that, in general, no computable function
l satisfying (12) exists (although such function l exists for some particular
cases, like the example of consols).

3. A third criticism is simply the following remark: “But in practice there are
people who compute the values of, say, shares of stock using the DCFM.
How can this problem be non-computable?” Indeed, the DCFM is used to
determine the fundamental value of a share of stock, as often advertised
by investments banks as “target prices”, even if in practice people tend to
use simpler approaches (P/E ratios, etc. See [4]) as rude proxies for the
fundamental value. However these values are only approximations, since
the input data is obtained from estimates of the earnings for the next,
say, 5 years and by using simple assumptions like those of the well-known
Gordon’s model, where earnings are supposed to grow after these 5 years
at a constant rate with a fixed discount rate, cf. [4]. For instance, in this
case, the price would be

5∑
t=1

e(t)u(t) +

∞∑
t=1

e(5)(1 + g)t

(1 + r)t
)

(after 5 years the earnings are assumed to grow at rate g, taking as base
those earnings obtained in the 5th year, e(5)). But using this approach we
might fall again into fat tail myopia, since we are just replacing the tail for
t ≥ 6 by an arbitrary tail (in this case by the one given by Gordon’s model).
But it could happen (and it does happen in practice) that, after some time,
we realize that some assumptions done about the future are wrong (the
company is starting to grow much more quickly/slower than expected)
and this information is updated in the stock price through a significant
increase/decrease of its value. Thus we would not get a single stock price,
but rather a time series in which the value will change accordingly to new
and better information. Under the DCFM (thus in an ideal world removed
from speculators), variations of stock prices are classically attributed to
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inherently uncertain input data, and as we get more reliable information,
we revise the corresponding stock price. In this paper we suggest that
uncertainty of input data might not explain all these price oscillations
since, even if we do know precisely all the input data and this input data
is finite, we might not be able to compute the fair price (or a good enough
approximation) of the stock (of course, in general, the inputs are infinite in
size. But in Lemma 11 we have seen that even if they are computable – and
in this case they can be described in a finite manner through an algorithm
– the result returned by the DCFM operator can be non-computable).

4. A fourth and final criticism is that one might claim that the input data
used in the proof of Lemma 11 is not realistic. We cannot assert that it is
fully realistic (this is more a theme for finance or economics), but we have
tried to ensure that it is as close to reality as possible. For instance, there
are assets with constant earnings along time as in the proof of Lemma
11 (e.g. bonds, consols). Relatively to the discount function, the simplest
type of discount function, which assumes a fixed constant rate r, can be
expressed as the power function

u(n) =
1

(1 + r)n

which is not too dissimilar from the function

u(n) =
1

2a(n)

used in Lemma 11. It is true that the latter discount function has a more
complicated behavior than that obtained by using a constant rate. But
the constant rate discount function is certainly too simplistic. For exam-
ple, the discount rate depends on inflation (one can always buy hard as-
sets, e.g. gold, which will value accordingly to inflation, instead of putting
money into a savings certificate as in Section 2), and inflation is not con-
stant. We could perhaps bound this inflation within certain limits (the
stated objective of several central banks), but even the variation within
this band may be non-computable. Moreover, from time to time, there
have been unexpected surges on inflation, which sometimes got unantici-
pated heights. An example is the German hyperinflation of the 1920s. In
the year of 1923 alone, the inflation was over 1010% [12, p. 39]. Similar
phenomena has been observed more recently in other countries such as
Nicaragua, Bosnia and Herzegovina, Ukraine, or Zimbabwe (for example,
in November 2008, the month-to-month inflation rate in Zimbabwe was
79 600 000 000% [13]). Political instability and civic unrest are leading
causes for hyperinflation, which make this phenomenon quite difficult to
predict.
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6 Conclusion

In this paper we have shown that the mathematical model used to price many
assets like bonds, stocks, etc. is non-computable. Of course, mathematical
models are idealizations of the reality. Nevertheless ours results introduce the
intriguing idea that unpredictable behavior of financial markets may be partially
due to inherent non-computability.
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